You are here

Pitfalls and Potential Solutions to Your Primary Source Problems: References

Adam E. Parker (Wittenberg University)


Andre, Nicole R., Susannah Engdahl, and Adam E. Parker. 2012, July. An Analysis of the First Proofs of the Heine-Borel Theorem. Loci: Convergence 9.

Barnett, Janet Heine, Kathleen M. Clark, Dominic Klyve, Jerry Lodder, Daniel E. Otero, Nicholas A Scoville, and Diana White. 2015, 20 January. Using Primary Source Projects to Teach Mathematics. AMS Blog: On Teaching and Learning Mathematics.

Barrow-Green, June, Jeremy Gray, and Robin Wilson. 2022. The History of Mathematics: A Source-based Approach. Vol. 2. Providence, RI: MAA Press Imprint of the American Mathematical Society.

Birkhoff, George, ed. 1973. A Source Book in Classical Analysis. Cambridge: Harvard University Press.

Calinger, Ronald. 1994. Classics of Mathematics. Englewood Cliffs, NJ: Pearson. (Orig. pub. 1982.)

Csiszar, Alex. 2016, 21 April. Peer Review: Troubled From the Start. Nature 532:306–308.

Cummings, Sarah and Adam E. Parker. 2015, September. D’Alembert, Lagrange, and Reduction of Order. Convergence 12.

d’Alembert, Jean le Rond. 1750. Suite des recherches sur le calcul intégral, troisiémie partie. Histoire de l’Académie Royale des Sciences et des Belles-Lettres de Berlin 4:249–291.

d’Alembert, Jean le Rond. 1766. Extract de différentes lettres de M. d’Alembert à M. de la Grange écrites pendant les années 1764 & 1765. Miscellanea Taurinensia 3:381–396.

Dauben, Joseph W. 1999. Historia Mathematica: 25 Years/Context and Content. Historia Mathematica 26:1–28.

Eneström, Gustaf. 2018. Seventeen letters from Euler to Johann I Bernoulli, 1727–1740. Euler Archive. (Orig. pub. 1740.)

Engdahl, Susannah, and Adam E. Parker. 2011, March. Peano on Wronskians: A Translation. Loci: Convergence 8.

Euler, Leonhard. 1768. Institutionum calculi integralis. Vol. 1. St. Petersburg: Imperial Academy of Sciences.

Fauvel, John, and Jeremy Gray, eds. 1987. The History of Mathematics: A Reader. London, MacMillan Press. 

Gillispie, Charles C., Robert Fox, and Ivor Grattan-Guinness. 1997. Pierre-Simon Laplace, 1749–1827: A Life in Exact Science. Princeton, NJ: Princeton University Press.

Hairer, Ernst, and Gerhard Wanner. 2008. Analysis by its History. New York: Springer.

Hancock, S. T. R. 1963. The Laplace Transform. The Mathematical Gazette 47(361):215–219.

Harvard Library. 2023. Library Research Guide for the History of Science: Introduction.

HOM SIGMAA. 2023. History of Mathematics Special Interest Group of the MAA.

HPM. n.d. International Study Group on the Relations Between the History and Pedagogy of Mathematics.

Huygens, Christian. 1656. De Saturni luna observatio nova. The Hague, Netherlands: Adriann Vlacq.

Huygens, Christian. 1659. Systema Saturnium. The Hague, Netherlands: Adriaan Vlacq.

Ince, Edward L. 1944. Ordinary Differential Equations. New York: Dover. (Orig. pub. 1927.)

Katz, Victor J. 1993. A History of Mathematics: An Introduction. New York, Harper Collins.

Kline, Morris. 1990. Mathematical Thought from Ancient to Modern Times. Vol. 3. Oxford: Oxford University Press. (Orig. pub. 1972.)

Lagrange, Joseph-Louis. 1766. Solution de différens problêmes de calcul intégral. Miscellanea Taurinensia 3:179–380.

Leanhardt, Aaron E., and Adam E. Parker. 2017. Fontaine’s Forgotten Method for Inexact Differential Equations. Mathematics Magazine 90(3):208–219.

MathSciNet. 2023. Abbreviations of Names of Serials. Mathematical Reviews.

Otero, Daniel E. 1999. Calculus from an Historical Perspective: A Course for Humanities Students. PRIMUS 9(1):56–72.

Parker, Adam E. 2013. Who Solved the Bernoulli Differential Equation, and How Did They Do It? College Mathematics Journal 44(2):89–97. .

Parker, Adam E. 2016. What’s in a Name: Why Cauchy and Euler Share the Cauchy-Euler Equation. College Mathematics Journal 47(3):191–198.

Parker, Adam E. 2020a. Solving First-Order Linear Differential Equations: Bernoulli’s (almost) Variation of Parameters Method. TRIUMPHS. Differential Equations, 3.

Parker, Adam E. 2020b. Solving First-Order Linear Differential Equations: Gottfried Leibniz’ “Intuition and Check” Method. TRIUMPHS. Differential Equations, 1. triumphs_differ/1/.

Parker, Adam E. 2020c. Solving First-Order Linear Differential Equations: Leonard Euler’s Integrating Factor Method. TRIUMPHS. Differential Equations, 4.

Parker, Adam E. 2020d. Wronskians and Linear Independence: A Theorem Misunderstood by Many. TRIUMPHS. Differential Equations, 2.

Parker, Adam E. 2021a. Leonhard Euler and Johann Bernoulli Solving Homogenous Higher Order Linear Differential Equations With Constant Coefficients. TRIUMPHS. Differential Equations, 6.

Parker, Adam E. 2021b. Runge-Kutta 4 (and Other Numerical Methods for ODEs). TRIUMPHS. Differential Equations, 7.

Parker, Adam E. 2021c, January. Wronskians and Linear Independence: A Theorem Misunderstood by Many – A Mini-Primary Source Project for Students of Differential Equations, Linear Algebra and Others. Convergence 18.

Parker, Adam E. 2022, July. Solving Linear Higher Order Differential Equations with Euler and Johann Bernoulli: A Mini-Primary Source Project for Differential Equations Students. Convergence 19.

Peano, Giuseppe. 1889a. Sur le Déterminant Wronskien. Mathesis 9:75–76.

Peano, Giuseppe. 1889b. Sur les Wronskiens. Mathesis 9:110–112.

Peano, Giuseppe. 1890. Démonstration de l’intégrabilité des équations différentielles ordinaries. Mathematische Annalen 37:182–228.

Pulskamp, Richard. n.d. Pierre Simon Laplace on Probability and Statistics.

Sarton, George. 1936. Notes on the History of Anagrammatism. Isis 26(1):132–138.

Simmons, George F. 2017. Differential Equations with Applications and Historical Notes. 3rd ed. Boca Raton, FL: CRC Press.

Skof, Fulvia, ed. 2008. Giuseppe Peano between Mathematics and Logic. Milan: Springer.

The Euler Archive. n.d. St. Petersburg Academy Publications.

TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources. 2023. Welcome to TRIUMPHS!

TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources. n.d. The TRIUMPHS Society.

Whiteside, Derek Thompson, ed. 1981. The Mathematical Papers of Isaac Newton. Vol. 3. Cambridge: Cambridge University Press. (Orig. pub. 1969.)


Adam E. Parker (Wittenberg University), "Pitfalls and Potential Solutions to Your Primary Source Problems: References," Convergence (December 2023)