You are here

Inverse Problems, Multi-Scale Analysis and Effective Medium Theory

Habib Ammari and Hyeonbae Kang, editors
American Mathematical Society
Publication Date: 
Number of Pages: 
Contemporary Mathematics 408
We do not plan to review this book.

  • H. Ammari and H. Kang -- Generalized polarization tensors, inverse conductivity problems, and dilute composite materials: A review
  • Y. Capdeboscq and H. Kang -- Improved bounds on the polarization tensor for thick domains
  • H. Kang and G. W. Milton -- On conjectures of Polya-Szegö and Eshelby
  • K. Houzaki, N. Nishimura, and Y. Otani -- An FMM for periodic rigid-inclusion problems and its application to homogenisation
  • H. Cheng, W. Crutchfield, Z. Gimbutas, L. Greengard, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao -- Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions
  • T. Hou, D. Yang, and H. Ran -- Multiscale computation of isotropic homogeneous turbulent flow
  • N. Albin and A. Cherkaev -- Optimality conditions on fields in microstructures and controllable differential schemes
  • M. Fink -- Time-reversal acoustics
  • G. Dassios -- What is recoverable in the inverse magnetoencephalography problem?
  • J. J. Liu, H. C. Pyo, J. K. Seo, and E. J. Woo -- Convergence properties and stability issues in MREIT algorithm
  • G. Nakamura, G. Uhlmann, and J.-N. Wang -- Oscillating-decaying solutions for elliptic systems
  • M. Ikehata -- Stroh eigenvalues and identification of discontinuity in an anisotropic elastic material
  • G. Nakamura, R. Potthast, and M. Sini -- A comparative study between some non-iterative methods for the inverse scattering