You are here

Games, Scales, and Suslin Cardinals: The Cabal Seminar, Volume I

Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors
Association for Symbolic Logic and Cambridge University Press
Publication Date: 
Number of Pages: 
Lecture Notes on Logic
We do not plan to review this book.

Part I Games and Scales

1. Games and scales; Introduction to Part I John R. Steel
2. Notes on the theory of scales Alexander S. Kechris and Yiannis N. Moschovakis
3. Propagation of the scale property using games Itay Neeman
4. Scales on E-sets John R. Steel
5. Inductive scales on inductive sets Yiannis N. Moschovakis
6. The extent of scales in L(R) Donald A. Martin and John R. Steel
7. The largest countable this, that, and the other Donald A. Martin
8. Scales in L(R) John R. Steel
9. Scales in K(R) John R. Steel
10. The real game quantifier propagates scales Donald A. Martin
11. Long games John R. Steel
12. The length-w1 open game quantifier propagates scales John R. Steel

Part II Suslin Cardinals, Partition Properties, Homogeneity

13. Suslin cardinals, partition properties, homogeneity; Introduction to Part II Steve Jackson
14. Suslin cardinals, K-suslin sets and the scale property in the hyperprojective hierarchy Alexander S. Kechris
15. The axiom of determinacy, strong partition properties and nonsingular measures Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis and W. Hugh Woodin
16. The equivalence of partition properties and determinacy Alexander S. Kechris
17. Generic codes for uncountable ordinals, partition properties, and elementary embeddings Alexander S. Kechris and W. Hugh Woodin
18. A coding theorem for measures Alexander S. Kechris
19. The tree of a Moschovakis scale is homogeneous Donald A. Martin and John R. Steel
20. Weakly homogeneous trees Donald A. Martin and W. Hugh Woodin.