Hortensia Soto
MAA Past President
Professor & Graduate Director Colorado State University - Fort Collins
Term: July 1, 2025, to June 30, 2026
This Section Visitor is available to present on the following topics at Section meetings:
Diverse Assessments 2.0
Diverse assessments can inform us about students’ understanding of undergraduate mathematics and can shape our teaching. Oral assessments such as classroom presentations and individual student interviews can paint a better picture of students’ conceptions as well as their misconceptions. Reading assignments with structured questions allow students to get a glimpse of new content and their responses can be used to structure the classroom discussion. Perceptuo-motor activities offer opportunities for students to feel, experience, and be the mathematics. In this talk, I will share numerous diverse assessments that I have implemented, the benefits of such assessments, and the challenges in implementing these assessments.
Intentionally Bringing Diversity Awareness into the Classroom
We are in an era where we are intentionally trying to address the need to embrace diversity, especially in the STEM disciplines. Initiatives to address this need include hiring faculty of color, inviting speakers of color to national meetings, having mission statements that address diversity, etc. These are all wonderful efforts that support diversity. In my presentation, I discuss the value of identifying with others, looking inward, and reflecting on how our own experiences can be used to support diversity in STEM disciplines. Specifically, I will share my efforts to do this with my history of mathematics students, who are prospective secondary teachers and have an opportunity to influence generations to come.
Compassion in & Access to Learning Mathematics (CALM)
Research indicates that students from minoritized groups are more likely to pursue STEM degrees if they can see how these fields benefit their communities and if they are in classrooms where they experience micro or macro-affirmations. In this presentation, I will share my perspectives, based on research and personal experiences, on how we can create learning environments that provide our students access to learning mathematics. I argue that we can help students see the value of mathematics by challenging them, providing a supportive learning environment, and creating a space where they have a voice in their learning.
Embodied Cognition: What is it? How Does it Involve Mathematics?
Embodied cognition is a philosophy that claims that learning is body-based. One might ask how that has anything to do with teaching and learning mathematics. In this talk, I will illustrate ways in which this lens can facilitate learning especially for students whose second language is English. I argue that most faculty probably already adopt aspects of embodied cognition into their courses and my hope is to help make faculty more aware of how they do this. Please bring your fun meters so we can experience some of these ideas together.
Developing Geometric Reasoning of Complex Analysis
In this presentation, I will share research related to the teaching and learning of complex analysis that my colleagues and I have conducted over the past 10 years. Much of this research centers on how research participants can discover and develop geometric foundations of complex analysis, beginning with the product of two complex numbers and extending to differentiation and integration. Research participants include high school students, pre-and in-service teachers, undergraduate mathematics and physics majors, and mathematicians. As part of my presentation, I will offer some teaching implications.
Intentional Integration of Embodiment Forms to Teach the FHT
In this case study, we explored how a mathematics education researcher integrated embodiment beyond gesture as she developed an experiential foundation for the Fundamental Homorphism Theorem (FHT) in a first semester abstract algebra course. We found that this instructor intentionally used embodiment to support student contributions and to reduce levels of abstraction for the formal definitions, theorems, and proofs. In addition, she encouraged students to interact with physical materials and simulate the mathematics with their bodies. Simulations opened communication lines between the instructor and students, who were not fluent in formal language. The instructor’s simultaneous use of various forms of embodiment primed students for the formalism and symbolism, highlighted and disambiguated students’ referents, amplified students’ contributions to develop fluency, and linked students’ body form catchments to reinforce the FHT. Our results offer practical implications for teaching by illustrating examples of how embodiment can be implemented into an abstract algebra classroom.
For more information about the Section Visitor program, please visit the Section Visitor webpage.