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So much of the mathematics curriculum, 
the early curriculum in particular, 
constructs models to help explain to 
children how numbers work. For example, 
in the world of counting numbers, 

multiplication is repeated addition ( 3 4  is 
rightfully interpreted there as “three groups 
of four”) and fractions are not so much 
numbers but the results of actions on 
different wholes: half of a pie, one sixth of 
the kittens, one-and-a-half times as much 
money.  
 
And this is fine and dandy. But often the 
curriculum forgets to point out that models 
are being used only to motivate beginning 
ideas and to illustrate facets of our intuition 
that feel like “truth.” No model can speak to 

what we might later decide to be the whole 
truth. For instance, in “groups of” thinking 
am I justified in saying that 0 4 3  ? After 
all, there are no groups of four among three 
objects. Is it possible to add these non-
numbers called fractions? What is one third 
of the kittens plus half of a pie? 
 
A typical curriculum will subtly adjust and 
tweak the details of the model as it goes 
along, both to extend its power and to 
overcome philosophical misgivings. Since 
“half of a group of ten” makes intuitive 

sense, let’s say that 
1

10 5
2
  and thus 

extend our notion of multiplication to 
fractions. (So we are simply declaring that 
“of” means “multiply” it seems.) We might 
also insist that the addition of fractions be 

http://www.gdaymath.com/
http://www.theglobalmathproject.org/
http://www.gdaymath.com/
http://www.jamestanton.com/


  

done only if those fractions refer to the 
same whole: half a pie and a third of a pie, 
clearly gives five-sixths of a pie and so 

justifies writing 
1 1 5

2 3 6
  . 

 
But matters inevitably become hazy as we 
push the models we cling to further. For 
example, I think I can make sense of 

 2 3  , two groups of negative three, but 

 2 3   has me flummoxed: I have no idea 

what negative two groups of something 
are.1 

 

Also, I see how I can add two pieces of pie. 
But I have no idea what it means to multiply 
pieces of pie. What does it mean to multiply 
fractions, even if they are parts of the same 
whole?2 

 

 
 

My point is that every model we devise has 
limitations and will “break down” at some 
point. In the end, it is up to us to settle on 
some key properties of numbers, the ones 
that somehow feel universal to us, and just 
accept those rules as beliefs. (And our next 
job is to detail the logical consequences of 
those choices.)  
 
Don’t get me wrong, models are good for 
exploring the properties of different types 

                                                 
1 I do know that the “opposite” of two groups of 

three would be negative six. (Opposites: Another 

model!) But is it obvious that  2 3   is the 

same as  2 3  ? They read differently.  

Or maybe, in an attempt to salvage the model, 

we should just declare that  2 3   is the same 

as  3 2  , which is three groups of negative 

two. (Can we do this? Should we believe the 

of numbers to help us decide on possible 
universal beliefs about them. For example, 
this picture shows that three groups of four 
really is the same as four groups of three.  
 

 
 
Moreover, it leads the way to explaining 

why, in our “groups of” model, a b  is sure 

to have the same value of b a  no matter 
the counting numbers a  and b . The 
commutativity property for multiplication is 
a truth in this view of counting number 
arithmetic. It is a very appealing truth. It 
feels like a fundamental truth, so 
fundamental that we feel compelled to 

believe that a b b a    should hold for 

all types of numbers a  and b , even though 
we don’t know how to justify this so for 
negative numbers, fractions, and irrational 
numbers.  
 
I have no objection to making choices like 
these. (Welcome to the art of doing 
mathematics!) So let’s go ahead and choose 
to believe that multiplication is 
commutative for all numbers. But let’s not 
hide from our students the fact that we’ve 
just made a choice to believe. 
 
This means we must be explicit with our 
students about the limitations of models 

commutativity property holds even for negative 

numbers? What makes us believe in the 

commutative property in the first place?) 

 
2 I have considerable difficulty with the changing 

models of fractions throughout the typical 

curriculum.  

See http://gdaymath.com/courses/fractions-are-

hard/. 
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and point how, and when, each model 
eventually breaks down. (I understand that 
this is sophisticated conversation, best 
reserved for upper-middle school and high 
school students.) Let’s be clear about which 
properties of numbers highlighted by a 
model we are simply choosing to believe 
extend beyond the limitations of that 
model.3 
 
An Example: The Power and the 
Limitations of a Model 
 

Some texts define 2n  , for n  is a positive 
whole number greater than one,  as “the 
number two multiplied by itself n  times.” 
For example,  

32 2 2 2 8      
and  

ten times
102 2 2 2 1024     . 

 

Question: What is 12  here, the result of 

multiplying 2  by itself one time? (Is the 
answer four?) 
 
This definition is certainly challenged if we 
extend matters to other types of exponents. 

What is 02 , the result of multiplying two by 
itself zero times?  (Does that just leave the 

number as two?) What is 12 ,  the result of 
multiplying two by itself negative one 

times?  What is 22 ? And so on.  
 
But here is a lovely model to the rescue! 
 
 

                                                 
3 We have such conversations in the study of 

geometry. (What properties of parallel lines do 

we choose to believe? Which properties of rigid 

motions shall we accept? And so on.)  So why 

not in the study of arithmetic and algebra? 

 

The answer is that we never entertain alternative 

systems of arithmetic in the K-12 curriculum and 

so we cannot conceive of any different type of 

arithmetic. All properties of numbers feel like 

pre-ordained edicts, and the matter of making 

Take a strip of paper and fold it in half one 
time. That makes two layers of paper. 
 

 
   

1  fold   2  layers. 
 
Fold that strip in half a second time and the 
count of layers doubles.  
 

 
 

2  folds   22 2 2 4    layers. 
 
A third fold doubles the number of layers 
again.  
 

 
3  folds   

32 2 2 2 8     layers. 
 

In general, for n  folds we get 2n  layers, at 
least for n  a positive counting number 
greater than one.  
 

This model allows us to make sense of 12 . 
In fact, we’ve already seen that one fold 
gives two layers. So according to this model 
we have 
 

12 2 . 
 

belief choices is moot. In geometry, at least, we 

are vaguely aware of alternative systems of 

geometry (geometry on the surface of a sphere, 

for instance) and so there is context for a 

conversation on understanding fundamental 

assumptions. I am not advocating we introduce 

examples of non-commutative algebras in the 

school curriculum. But I do personally believe 

that being frank and upfront about the role of 

models is important and pedagogically helpful. 

 



  

What about 02 ? Well, with no folds, the 
strip is only one layer thick!  
 

 
 

0  folds   1 layer. 
 

So according to this model, 02 1 . 
 
 

What about 12 ? What does it mean to fold 
a strip of paper in half negative one times? 
What’s an “unfold”?  
 
Well, unfolding would correspond to 
peeling the paper apart (as though the 
paper were already folded) to make a strip 
twice as long but only half a layer thick. So  

 
1 1

2
2

  . 

Wow! 
 

And 22  would correspond to peeling the 
paper apart two times, making a strip a 
quarter of a layer thick. 

 
2 1

2
4

  . 

 

In fact, we can now argue that 
1

2
2

n

n

   

for each positive whole number n . 
 
What a brilliant model!  
 
(I love demonstrating this model with actual 
strips of paper in front of students and 
teachers. It invariably excites.)  
 
But my point is that all models have 
limitations and will eventually break 
down! 
 
Here’s a breaking point of this model: a 
natural question.  

What about something like 

1

22 ? 
 

Ouch! I have no idea what it means to fold a 
strip of paper in half half a time. (I can’t 
even conceive of anything to do with paper 

to get something 2  layers thick.)  
 
And this is actually why I think this model is 
pedagogically brilliant: it propels one and all 
into a state of excitement over the 
enlightenment it brings (“Wow! I can see 

the meaning of 12 ”) and then crashes, 
bringing home so starkly the realization that 
models have limits and can’t solve all our 
math questions. Everyone is left hanging: 
What are we to do? 
 
Answer: We can now start mathematics.  
 
Step away from the model and ask: Okay. 
What feels so natural and “basic” to how 
exponents work – at least for positive whole 
numbers? What property of exponents 
should we choose to believe as universal, as 
holding for all types of numbers being used 
as exponents?  
 
Most people agree with the basic exponent 

property 2 2 2n m n m   feels 
fundamental. It is patently true for positive 
counting numbers. (For instance 

   2 3 52 2 2 2 2 2 2 2       .) And 

at some gut level it feels right to take 

2 2 2n m n m  as a fundamental belief that 
should hold for all numbers.   
 
Let’s go with it!  
 
What then are the logical consequences of 
this belief? 
 

To make sense of 02  let’s try substituting 

0n   and, say, 3m  , into the assumed 

rule. It gives 0 3 32 2 2  , that is,
02 8 8  . We see that 02 1  is a forced 

consequence of our belief.     
 
What does the our fundamental belief say 

about 12 ?  



  

 

Well, try 1n    and 4m  , say. Then we 

have 1 4 32 2 2   , that is, 12 16 8   , 

forcing us to set 1 1
2

2

  . 

 
Question: How would you demonstrate 

that 22  must be 
1

4
 as a consequence of 

this belief?   How would you demonstrate 

that 12  must be 2 ?  
 
 
We can now make sense of the 

troublesome 
1

22   too. Choosing 
1

2
n   and 

1

2
m   gives 

1 1

12 22 2 2  . Since 12 2 , 

we have that 
1

22  is some number that 

multiplies by itself to give 2 . It must be 

that 

1

22 2 . 
 

Question: How would you establish that 

1

32  

must be 3 2 ?  
 
Question: How might you establish that 

5 42  and  
4

5 2  both deserve to be called 

4

52 ?  
 
Question: How would you make sense of 

1.42 ? Of 1.412 ? Of 1.4142  ? Of 22 ?    
 
 
 

*** 
Arithmetic models are certainly powerful 
tools for tapping into our intuition and 
beliefs about the properties of numbers. 
But in the end, we must step back from the 
models and decide which properties a 
model might highlight that seem relevant to 
a universal play of numbers. Which 
properties of arithmetic, in the end, should 
we just choose to believe, and what are the 
logical consequences of those beliefs? 
 
The mechanics of arithmetic and algebra is, 
by-and-large, perceived as edict and law in 
the K-12 experience. But by being upfront 
about the nature of models with our (upper 
grade) students, we can engage a human 
mindset towards mathematics. We can 
foster perspective, flexibility, and powerful 
meta-cognition. 
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