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INTRODUCTION
RESOURCES FOR CALCULUS COLLECTION

Beginning with a conference at Tulane University in January, 1986, there developed in the mathe-
matics community a sense that calculus was not being taught in a way befitting a subject that was
at once the culmination of the secondary mathematics curriculum and the gateway to collegiate sci-
ence and mathematics. Far too many of the students who started the course were failing to complete
it with a grade of C or better, and perhaps worse, an embarrassing number who did complete it pro-
fessed either not to understand it or not to like it, or both. For most students it was not a satisfying
culmination of their secondary preparation, and it was not a gateway to future work. It was an exit.

Much of the difficulty had to do with the delivery system: classes that were too large, senior
faculty who had largely deserted the course, and teaching assistants whose time and interest were
focused on their own graduate work. Other difficulties came from well intentioned efforts to pack
into the course all the topics demanded by the increasing number of disciplines requiring calculus
of their students. It was acknowledged, however, that if the course had indeed become a blur for
students, it just might be because those choosing the topics to be presented and the methods for
presenting them had not kept their goals in focus.

It was to these latter concems that we responded in designing our project. We agreed that there
ought to be an opportunity for students to discover instead of always being told. We agreed that the
availability of calculators and computers not only called for exercises that would not be rendered
trivial by such technology, but would in fact direct attention more to ideas than to techniques. It
seemed to us that there should be explanations of applications of calculus that were self-contained,
and both accessible and relevant to students. We were persuaded that calculus students should, like
students in any other college course, have some assignments that called for library work, some
pondering, some imagination, and above all, a clearly reasoned and written conclusion. Finally, we
came to believe that there should be available to students some collateral readings that would set
calculus in an intellectual context.

We reasoned that the achievement of these goals called for the availability of new materials, and
that the uncertainty of just what might work, coupled with the number of people trying to address
the difficulties, called for a large collection of materials from which individuals could select. Qur
goal was to develop such materials, and to encourage people to use them in any way they saw fit.
In this spirit, and with the help of the Notes editor and committee of the Mathematical Association
of America, we have produced five volumes of materials that are, with the exception of volume V
where we do not hold original copyrights, meant to be in the public domain.

We expect that some of these materials may be copied directly and handed to an entire class,
while others may be given to a single student or group of students. Some will provide a basis from
which local adaptations can be developed. We will be pleased if authors ask for permission, which
we expect to be generous in granting, to incorporate our materials into texts or laboratory manuals.
We hope that in all of these ways, indeed in any way short of reproducing substantial segments to
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viii APPLICATIONS OF CALCULUS

sell for profit, our material will be used to greatly expand ideas about how the calculus might be
taught, A

Though I as Project Director never entertained the idea that we could write a single text that
would be acceptable to all 26 schools in the project, it was clear that some common notion of topics
essential to any calculus course would be necessary to give us direction. The task of forging a
common syllabus was managed by Andy Sterrett with a tact and efficiency that was instructive to
us all, and the product of this work, an annotated core syllabus, appears as an appendix in Volume
1. Some of the other volumes refer to this syllabus to indicate where, in a course, certain materials
might be used.

This project was situated in two consortia of liberal arts colleges, not because we intended to
develop materials for this specific audience, but because our schools provide a large reservoir of
classroom teachers who lavish on calculus the same attention a graduate faculty might give to its
introductory analysis course. Our schools, in their totality, were equipped with most varieties of
computer labs, and we included in our consortia many people who had become national leaders in
the use of computer algebra systems.

We also felt that our campuses gave us the capability to test materials in the classroom. The size
of our schools enables us to implement a new idea without cutting through the red tape of a larger
institution, and we can just as quickly reverse ourselves when it is apparent that what we are doing
is not working. We are practiced in going in both directions. Continual testing of the materials we
were developing was seen as an integral part of our project, an activity that George Andrews, with
the title of Project Evaluator, kept before us throughout the project.

The value of our contributions will now be judged by the larger mathematical community, but
I was right in thinking that I could find in our consortia the great abundance of talent necessary
for an undertaking of this magnitude. Anita Solow brought to the project a background of editorial
work and quickly became not only one of the editors of our publications, but also a person to whom
I turmed for advice regarding the project as a whole. Phil Straffin, drawing on his association with
UMAP, was an ideal person to edit a collection of applications, and was another person who brought
editorial experience to our project. Woody Dudley came to the project as a writer well known for
his witty and incisive commentary on mathematical literature, and was an ideal choice to assemble
a collection of readings.

Our two editors least experienced in mathematical exposition, Bob Fraga and Mic Jackson, both
justified the confidence we placed in them. They brought to the project an enthusiasm and freshness
from which we all benefited, and they were able at all points in the project to draw upon an excellent
corps of gifted and experienced writers. When, in the last months of the project, Mic Jackson took
an overseas assignment on an Earlham program, it was possible to move John Ramsay into Mic’s
position precisely because of the excellent working relationship that had existed on these writing
teams.

The entire team of five editors, project evaluator and syllabus coordinator worked together as
a harmonious team over the five year duration of this project. Each member, in tum, developed
a group of writers, readers, and classroom users as necessary to complete the task. I believe my
chief contribution was to identify and bring these talented people together, and to see that they were
supported both financially and by the human resources available in the schools that make up two
remarkable consortia.

A. Wayne Roberts
Macalester College
1993



THE FIVE VOLUMES OF THE
RESOURCES FOR CALCULUS COLLECTION

1. Learning by Discovery: A Lab Manual for Calculus
Anita E. Solow, editor

The availability of electronic aids for calculating makes it possible for students, led by good ques-
tions and suggested experiments, to discover for themselves numerous ideas once accessible only
on the basis of theoretical considerations. This collection provides questions and suggestions on 26
different topics. Developed to be independent of any particular hardware or software, these mate-
rials can be the basis of formal computer labs or homework assignments. Although designed to be
done with the help of a computer algebra system, most of the labs can be successfully done with a
graphing calculator.

2. Calculus Problems for a New Century
Robert Fraga, editor

Students still need drill problems to help them master ideas and to give them a sense of progress in
their studies. A calculator can be used in many cases, however, to render trivial a list of traditional
exercises. This collection, organized by topics commonly grouped in sections of a traditional text,
seeks to provide exercises that will accomplish the purposes mentioned above, even for the student
making intelligent use of technology.

3. Applications of Calculus
Philip Straffin, editor

Everyone agrees that there should be available some self-contained examples of applications of the
calculus that are tractable, relevant, and interesting to students. Here they are, 18 in number, in a
form to be consulted by a teacher wanting to enrich a course, to be handed out to a class if it is
deemed appropriate to take a day or two of class time for a good application, or to be handed to an
individual student with interests not being covered in class.

4. Problems for Student Investigation
Michael B. Jackson and John R. Ramsay, editors

Calculus students should be expected to work on problems that require imagination, outside reading
and consultation, cooperation, and coherent writing. They should work on open-ended problems that
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APPLICATIONS OF CALCULUS

admit several different approaches and call upon students to defend both their methodology and their
conclusion. Here is a source of 30 such projects.

5. Readings for Calculus

Underwood Dudley, editor

Faculty members in most disciplines provide students in beginning courses with some history of
their subject, some sense not only of what was done by whom, but also of how the discipline has
contributed to intellectual history. These essays, appropriate for duplicating and handing out as
collateral reading aim to provide such background, and also to develop an understanding of how
mathematicians view their discipline.
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PREFACE: USING THESE MODULES

Many students leave a traditional calculus course with very little sense of the powerful
role calculus plays in the modern world. They don’t know that calculus is the language
which describes anything that changes, that much of the technology they use is based on
ideas from calculus, that calculus is useful in social science as well as physical and biological
science, or that optimization is a key to efficiency in business and industrial processes. If
we merely tell students these things, they may not take our pronouncements very seriously.
If we offer students only “toy” applications, we invite them not to take us seriously.

Yet calculus is useful, and giving students access to the variety of fascinating applica-
tions of calculus can enrich their learning. That is the goal of this volume.

The eighteen applications collected here are diverse, and I hope they will be interesting
to students even beyond a student’s particular field of interest. I think students might be
interested in ways to arbitrate disputes even if they aren’t economists, in how fast a
raindrop falls even if they aren’t physicists, or in the spread of AIDS even if they aren’t
doctors. Each module starts with a concrete problem—Is a Canadian voting scheme fair?
What happens when you tune a radio? How could you choose a best portfolio of stocks?—
and develops a solution to the problem based on the ideas of calculus. The discussions are
fairly detailed, realistic, and pay careful attention to the process of mathematical modeling.
Students can learn a lot from them.

The applications are listed in order of the calculus ideas they use, and where those
ideas appear in a standard calculus sequence. On pages 3-5 you will find the ACM-GLCA
calculus project curriculum committee’s suggested syllabi for Calculus I and two versions
of Calculus II, annotated with suggestions for where particular application modules might
fit. Note that some modules are listed in two places. For instance, “Moving a Planar Robot
Arm” is listed as a Calculus II module because it deals with parametric motion in the plane.
However, it is written so that students could understand it as soon as they understand the
idea of a derivative, and it has been used successfully in Calculus I classes. In the other
direction, a number of instructors have found that using “Calculus I” modules in Calculus
IT helps students review basic ideas. More detailed information on the prerequisites needed
for each module can be found at the beginning of that module.

I want to say something more about the matter of difficulty. Applications, like the
ideas of calculus itself, are hard. You have to think hard to understand a problem, to
model that problem as mathematics, to solve it, and to understand what you have and
haven't solved. This does not mean that students shouldn’t learn about applications—if
they can’t understand a use of calculus, it probably doesn’t do them much good to “know”
calculus. It does mean that we should give them help, and provide an environment which
is as friendly as possible. In particular, I think the following are necessary:
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¢ You should read any module before you assign it to students. Judge if the level of
difficulty is appropriate.

¢ You should be available to help students. Give class time, or invite them in to talk
with you. For real problems, consulting experts is an accepted practice.

o You should let students help each other. I recommend, in fact, that the modules
be worked on in groups (see below). Real applications usually involve teamwork, and
talking mathematics benefits everyone involved.

With an open and helpful environment, our students can do impressive things.
These modules can be, and have been, used in many different ways. Here are some:
o The instructor uses modules as bases for occasional “application day” lectures.

e Modules are given to eager students, or students interested in particular application
areas, to read for interest.

¢ Students report on modules to a math club, or department colloquium, or a special
“calculus honors seminar.”

¢ Students are asked to read a module and do exercises from it. This works best if a
student is offered a choice of several modules, has considerable flexibility about which
problems to do, and has many chances to get help.

¢ Students write papers based on modules. One format is to ask the student to find
or construct a problem which could be solved by a particular technique, and solve it,
explaining all steps carefully. Again, choice and ability to get help are important.

¢ Students give group reports or panel presentations about modules.

¢ Students read modules and do exercises in groups. The optimal size for a group seems
to be three. I recommend giving class time for the groups to meet, with you there to
answer questions. I use the modules this way, breaking class twice during the term, for
a week, to work in groups on applications. It is an appreciated change of pace.

I hope your students enjoy these applications, and come away intrigued and convinced of
the usefulness of calculus.

I am grateful to the writers of the modules, to Creighton Buck and Tom Barr who
diligently read all of the modules and offered suggestions, to my students who worked on
versions of these modules and told me what they liked and didn’t, and to all the faculty
and students in the ACM-GLCA liberal arts colleges who class-tested the modules in
1990-1992.

—Philip Straffin, Beloit College, Beloit, WI 53511
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CALCULUS I: THE DERIVATIVE AND THE INTEGRAL

1. Introduction

2. Functions and Graphs

definition, domain and range, linear and quadratic functions
trigonometric functions (sine, cosine and tangent)
exponential and logarithmic functions

composite functions

functions described by tables and graphs

3. The Derivative
e average rates of change

instantaneous rates of change, developed intuitively

a study of limits, either intuitively or epsilon-delta
definition and properties of the derivative

derivatives of polynomials, sine and cosine

derivatives of exponential and logarithmic functions
derivative of sums, differences, products and quotients
the chain rule and inverse functions

4. Extreme Values

extreme values; approximate graphical or numerical solutions

existence theorem for a function continuous on a closed, bounded interval
critical point theorem: extreme values are attained only at critical points
monotonicity theorem: a function with positive derivative is increasing
concavity theorem: a function with positive second derivative is concave up
first and second derivative test for local extremes

the mean value theorem
1,2,3,4,5,13, 14

5. Antiderivatives and Differential Equations

antiderivative and their basic properties
introduction to differential equations; separation of variables; constants of inte-

gration and initial conditions

6. The Definite Integral

Riemann sums

limit of Riemann sums

integrability theorem; properties of definite integrals
the fundamental theorem of calculus

the derivative of integrals with variable upper bounds
8,9, 10
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CALCULUS IIA: EXACT AND APPROXIMATE REPRESENTATION
OF NUMBERS AND FUNCTIONS

1. Introduction

2. The Integral Revisited
e the definite integral: exact values from the fundamental theorem of calculus

e antiderivatives: finding them by substitution, including trigonometric substitu-
tions; integration by parts
e the definite integral: approximate values by Riemann sums and the trapezoidal

rule, with some error analysis
7, 8,9, 10, 11, 12, 15

3. Sequences and Series of Numbers

Sequence topics:
¢ infinite sequences as functions
¢ limits of sequences
e recursively defined sequences 5
e improper integrals; ’'Hopital’s rule 16
¢ limits at infinity and the asymptotic behavior of functions

Series topics:
¢ infinite series
e geometric series
o the nth term test for divergence
e equivalence of series, and the limit comparison test
e p-series, with emphasis on the harmonic series

4. Sequences and Series of Functions

e the mean value theorem revisited and its second degree analogue

e Taylor polynomials with remainder theorem

e graphical comparison of a function and its Taylor polynomials; the graph of the
error function for a Taylor approximation

e error estimation on intervals

o Taylor series: the general expansion and examples (sine, cosine, exponential,
logarithmic, the binomial theorem)

e power series, with ratio test to give domains of convergence

e algebraic manipulation and term-by-term integration and differentiation

5. Series Solutions of Differential Equations
o defining functions with differential equations, for example y"+ky = 0 and y' = ky
e solving homogeneous linear second order equations with constant coefficients us-
ing power series
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CALCULUS IIB: CALCULUS IN A THREE-DIMENSIONAL WORLD

1. Introduction

2. The Integral Revisited
o the definite integral: exact values from the fundamental theorem of calculus
e antiderivatives: finding them by substitution, including trigonometric substitu-
tions; integration by parts
e the definite integral: approximate values by Riemann sums and the trapezoidal

rule, with some error analysis
7,8, 9,10, 11, 12, 15

3. The Integral in R? and R3
e real-values functions of two and three variables; graphing; level curves
o definitions of double and triple integrals
e integrals over rectangles and boxes
e evaluation of double integrals over regions with curves boundaries

4. The Derivative in Two and Three Variables
e partial derivatives: definition and geometric motivation
equation of the tangent plane
unconstrained optimization: critical points and the second derivative test
curves described by parametric equations 13, 14
the chain rule
extreme value theorem revisited
constrained optimization; Lagrange multipliers 17, 18

5. Integration Along Curves
e definition of the Riemann integral of a real function on a curve in R? and R3
vector fields in R? and R?® and the dot product
e line integrals
e Green’s theorem and path independence






ARBITRATING DISPUTES

Author: Philip Straffin, Beloit College, Beloit, WI 53511
Area, of Application: economics

Calculus needed: derivative of polynomials, maximization on a closed interval.

Related mathematics: utility theory, axiomatic systems in social science.

An Arbitration Problem

Management and Labor are negotiating over a new contract. Each side has concessions
it wishes to get from the other. Labor is asking for a one dollar per hour across-the-board
raise and a package of increased pension benefits. Management is concerned that the
fifteen minute morning coffee break is being abused—workers are straggling back late and
the assembly line is being disrupted—and would like to eliminate it. Management would
also like to automate one of the checkpoints on the line, which would eliminate eight union
jobs. '

Negotiations so far have failed to produce any agreement, and you have been brought
in as an outside arbitrator. How can you propose a fair settlement of these issues? Indeed,
what would “fair” mean in a context like this?

In this module, we will develop a classical arbitration scheme due to John Nash (1950)
which gives one solution to this kind of problem.

Utility Theory

We will eventually address Management and Labor’s problem, but to develop the
theory, let’s consider a much simpler example of arbitration. Suppose that Ellen and Frank
are trying to decide how to spend their 16-day summer vacation. They are considering
three alternatives: going to the mountains (M), going to the beach (B), or staying home
(5Q). The SQ stands for “status quo,” meaning that if they can’t reach agreement,
they’ll stay where they are, i.e. stay home. They have different preferences among these
alternatives, and they have called upon you, as a friend, to arbitrate.

The first thing you need to do is to find out how Ellen and Frank feel about the
alternatives. You ask each of them for their preference ordering, and get
Ellen: M SQ B
Frank: B SQ M

In other words, Ellen’s first choice is going to the mountains, her last choice is going to
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the beach, and Frank feels exactly the opposite.

To go further, you must find out something about the strength of Ellen’s and Frank’s
preferences. Most economists agree that it is not useful to try to compare the strength
of Ellen’s preferences to the strength of Frank’s. In other words, they refuse to become
involved in arguments of the type: “I want the mountains more than you want the beach!”
“No, I want the beach more than you want the mountains!” However, mathematician John
von Neumann and economist Oskar Morgenstern (1944) suggested that it can be mean-
ingful to ask about the relative strength of one person’s preferences among the different
alternatives. Their suggestion is the foundation of modern utility theory.

Here is the idea. Suppose Ellen can assign to each alternative a number in such a way
that
e her more preferred alternatives get higher numbers

o the gaps between the numbers correspond to the relative strengths of her preferences.

We call such numbers utilities, and use the notation ug for “Ellen’s utility function.” For
instance, we might have

up(B)=6 up(SQ) =17 up(M) = 10.

We interpret this as saying that Ellen’s preference for the mountains over staying home is
three times as strong as her preference for staying home over the beach, since

up(M) —up(SQ) = 3 (up(SQ) — up(B)).

But what does this really mean? Von Neumann and Morgenstern suggested a clever
operational interpretation: Ellen would have no preference (would be indifferent) between

(i) getting SQ for certain, or

(ii) leaving the outcome to a chance device which chooses either B or M, with B three
times as likely as M (i.e. the respective probabilities of choosing B and choosing M are
3/4 and 1/4).

The idea is that Ellen’s preference for M over S@Q, being three times as strong as her
preference for SQ over B, would be exactly balanced by B being three times as likely to
be chosen as M in (ii).

Von Neumann and Morgenstern called the kind of situation in (ii) a lottery, and built
the entire theory of utility around lotteries. Davis (1970) gives a nicely accessible discussion
of their theory. For our purposes, we will assume that Ellen and Frank, and Management
and Labor, can give us utilities which can be interpreted in terms of behavior in lottery
situations.

There is a point implicit in the above discussion which will be crucial to arbitration
theory. Suppose we add a constant b to all of Ellen’s utilities, to get a new utility function
vg = ug+b. Since all of the ratios of gaps between the utility differences remain the same,

for example
ve(M) —ve(SQ) = 3(ve(5Q) — ve(B)),
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vg gives exactly the same information about Ellen’s behavior in lotteries as ug. The same
thing happens if we multiply a utility function by a positive constant. We are led to the
following

Definition. Two utility functions u and v are equivalent if there are constants a > 0 and
b such that v = au + b.

For example, all of the following functions give exactly the same information about Ellen’s

preferences:
ug(B) =6 ug(SQ) =17 ug(M) =10

vg(B)=-1 vg(SQ)=0 wvg(M)=3
wE(B) = -100 wE(S’Q) =0 wE(M) = 300.
Mathematicians say utility functions are lknearly invarient.
It is now becoming clear why we can’t compare two different individuals’ strengths of
preferences. Suppose
uE(B)=6 uE(SQ)=7 uE(M)=10

up(B) =10 up(SQ) =3 up(M) = 2. (1)

Can we conclude that Frank’s preference for the beach over the mountains is stronger than

Ellen’s preference for the reverse, because 10 — 2 > 10 — 6?7 Certainly not, since exactly
the same preference information would be conveyed if we multiplied Ellen’s utilities by 10.

For the same reason, it does not make sense to add two different individuals’ utilities.
For instance, could we conclude that Ellen and Frank should go to the beach because B
has the largest sum of utilities (6 + 10 > 104+ 2 > 7 + 3)? If you think so, try multiplying
Ellen’s utilities by 10 and redoing the calculation.

Exercise

1. Which of the following utility functions is equivalent to ur in (1)? For the one which
is, find the a and b which give the equivalence.

vr(B) =10 vr(SQ) = —4 vr(M) = —6
‘wp(B) =20 wp(SQ) =2 wp(M) = -1

The Payoff Polygon

We will take advantage of the linear invariance of utility to add an appropriate constant
to each of our utility functions to make u(SQ) = 0. This is called normalizing the utility
functions. Thus for Ellen and Frank we will use the utility functions

uE(B)=—1 uE(SQ)=0 ‘U.E(M)=3
up(B) =17 up(SQ) =10 ur(M) = -1 (1)
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One way to picture this information is to plot the alternatives B, SQ and M on a
coordinate plane, with Ellen’s utility on the horizontal axis and Frank’s utility on the
vertical axis:

B=(-1,7) SQ=(0,0) M =(3,-1).

See Figure la. Our job would seem to be to choose one of those three points as the fairest
outcome. However, if those were the only choices, we would have no chance to propose a
compromise. The von Neumann-Morgenstern theory poses a way out: we can propose a
lottery as a solution. The utility of a lottery is easy to calculate.

Definition. Suppose a lottery L is between outcomes P and Q, with probability p of P
and probability 1 — p of Q. Then for any utility function u, the utility of the lottery is

u(L) = pu(P) + (1 - p)u(Q).

This follows directly from von Neumann and Morgenstern’s interpretation of utility
in terms of indifference between lotteries. In our coordinate plane representation for Ellen
and Frank, it has a nice interpretation. Suppose we propose the lottery L with probability
3/4of B,1/4 of M. Then

up(D) = S+ @) =0 and up(L)=3(N+3(-1=5

so in the coordinate plane L = (0,5). Geometrically, this point is on the line segment
between B and M, 3/4 of the way toward B. A little thought should convince you that
this result generalizes to any lottery between a pair of outcomes: the point corresponding
to it will lie on the line segment joining those outcomes, with the probabilities determining
the exact location. In Exercise 2 you are asked to consider a lottery among three out-
comes. You'll find that the corresponding point is inside the triangle determined by those
outcomes.

The result of this analysis is that if we are allowed to propose lotteries as outcomes,
we can propose any point in or on the boundary of the triangle M-SQ-B. This triangle is
called the payoff polygon for the problem. See Figure 1b.

Frank's utility Frank’s utility

B* T B

Ellen's Ellen's
S utility S utility
M M

a. Ellen and Frank’s outcome points. b. Ellen and Frank’s payoff polygon.
Figure 1.
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Definition. The payoff polygon for an arbitration problem with possible outcomes A, B,
..., SQ is the smallest convex polygon containing all of these points.

The polygon in the definition is sometimes called the convez hull of the outcome
points. It’s what you would get if you put pegs at each of the outcome points and let a
big rubber band close around the outside. Figure 2 shows an example.

G
Figure 2. A payoff polygon for 8 points.

Exercises

2. a) In Figure 1, find the coordinates of the points corresponding to the following lot-
teries:

L; : SQ with probability 1/3, M with probability 2/3.
L, : SQ with probability 1/2, M with probability 1/4, B with probability 1/4.
b) What lottery corresponds to the point (2.5,0) in Figure 17

3. Draw, carefully on graph paper, the payoff polygon for the arbitration problem with
outcomes

A=(4,2),B=(26),C=(0,7),D=(Q,5),E = (—4,2), F = (0,—2), SQ = (0,0).

The Nash Arbitration Scheme

Of course, we haven’t solved our arbitration problem yet, but we now have a geometric
picture of what we need to do. An arbitration situation can be modeled, as we have done,
as a convex polygon containing a status quo point. We have agreed to choose utility scales
for our agents so that the status quo point is (0,0). We must propose a particular point in
the polygon as a solution. We would like to have a method which tells us how to do this
systematically for any arbitration situation. The following definition is due to John Nash
(1950).
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Definition. An arbitration method is a rule which assigns to each convex polygon P
containing the origin (0,0), a unique point N = (z*,y*) in P.

Of course, we want to find not just any arbitration method, but one which has some
claim to being “good” and “fair.” Nash’s approach was to begin by writing down conditions
which a good arbitration scheme should satisfy. The first condition asks for a kind of
acceptability introduced by the Italian-Swiss economist Vilfredo Pareto at the beginning
of the 20th century. Pareto said that a group should not accept a given distribution of
wealth if some other possible distribution would make some people better off without
making anyone worse off.

Condition 1 (Pareto). The solution point N = (z*,y*) should be Pareto acceptable.
That is, there should not be any point (z,y) in P with z > z* and y > y*, or with z > z*
andy > y*.

Geometrically, this says that N should be a point on the “northeast” part of the boundary
of P. The next condition says that we should not ask either agent to accept less than he
or she has at the status quo.

Condition 2 (Rationality). The solution point N = (z*,y*) should have z* > 0 and
y* 2 0.

The third condition acknowledges that either or both agents’ utility scales may be multi-
plied by any positive constant, and this should not change the solution.

Condition 3 (Linear Invariance). Suppose that a and b are positive constants, and we
consider the transformation T(z,y) = (az,by), which multiplies z-coordinates by a and
y-coordinates by b. If the N is the solution for P, then the solution for T(P) should be
T(N).

See Figure 3a, which shows an example with @ > 1 and 0 < b < 1. Condition four embodies
the most elementary notion of fairness:

Condition 4 (Symmetry). If P is symmetric across the line ¢ =y, then N should be
on this line.

The last condition is a little more involved.

Condition 5 (Independence of Irrelevant Alternatives). Suppose that N is the
solution for Q, and P is a polygon which is completely contained in Q, and contains both

(0,0) and N. Then N should also be the solution for P.

See Figure 3b. The idea here is to suppose that our parties, when confronted with all of
the possible outcomes in @, have agreed that NV is the fairest outcome. Then they discover
that not all of the outcomes in Q were really available—only those in P were. They should
still agree that IV is fairest. Their perceptions should not have been affected by those

“Irrelevant” outcomes which are in @ but not in P.
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=\ )

a. Linear Invariance b. Independence of Irrelevant Alternatives
Figure 3.

I hope you agree that these conditions all do seem reasonable. If you do, there is a
wonderful surprise. Nash proved that there is one and onlv one arbitration method which
satisfies these axioms. Moreover, it is easy to compute, using just a little calculus.

Theorem (Nash, 1950). There is exactly one arbitration which satisfies Conditions 1
through 5. It is the following:

1) If there are no points in P withz > 0 or y > 0, let N = (0, 0), the status quo.

i) If there are no points in P with y > 0, but are points with y = 0 and ¢ > 0, then let
N be the point (z,0) which maximizes z. Handle the case with z and y interchanged
similarly.

iii) If there are points in P with both z > 0 and y > 0, let N be the point with z > 0

and y > 0 which maximizes the product zy.

Figure 4 shows pictures of the three cases. The first two cases are no surprise: the solution is
just what is required by Conditions 1 and 2. The third, and most useful, case is surprising,
and it is the one we will work on proving and calculating in examples. We have seen that
maximizing the sum of utilities wouldn’t make sense in the modern interpretation of utility.
Nash says maximize the product of utilities. However, this is not because the product has
some @ priori virtue, but because maximizing the product is the only way we can satisfy
Nash’s set of reasonable conditions. Doing the maximization is, of course, where calculus
comes in.

The proof of Nash’s Theorem involves just some elementary geometry, but we'll put
it off until the end. Right now, let’s use it to solve some arbitration problems.
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Figure 4. Cases of Nash’s Theorem.

Calculations

To get a feel for how the Nash method works in practice, we will work through some
examples.

I. Let’s start with Ellen and Frank’s problem, as shown in Figure 1b. The solution point
will be in the first quadrant on the northeast boundary, which is on the line y = 5 — 2z.
Our problem is

Maximize ry subjectto y=5-—2z on theinterval 0<z <5/2.
Substituting for y gives the problem
Maximize f(z) = z(5 — 2z) = 5z — 2z on [0,5/2].

Calculus tells us that the maximum must occur at either an endpoint of the interval, z =0
or r = 5/2, or at a critical pointin the interval, where f'(z) = 0. Solving f'(z) =5-4z =0
gives a unique critical point = = 5/4, which is in the interval [0,5/2]. We evaluate f(z) at
these points and get

Tvpeof point z  f(z)
endpoint 0 0
endpoint 5/2 0
critical point  5/4 25/8
The maximum is at z = 5/4. When z = 3/4, y =5—~2z = 5/2. Thus N = (5/4,5/2),
as in Figure 5a. Of course, we need to be able to tell Ellen and Frank what this means. It

is a point on the line segment between M and B, so corresponds to a lottery involving M
and B. Because the utility to Ellen is 5/4, we can find the probabilities by solving

5/4=p(-1)+ (1 - p)(3) (using the z-coordinates of N, M, B)
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for p, which gives p = 7/16. So N = (7/16)B + (9/16)M. We might propose that Ellen
and Frank put 7 red balls and 9 green balls in a jar and choose one ball at random: red

means “go to the beach,” and green means “go to the mountains.”

In practice, proposing a lottery as a solution may not be very feasible, and we should
try to use some flexibility and creativity in interpreting the Nash solution. For example,
recalling that Ellen and Frank had 16 days of vacation, we might propose that they spend
7 days at the beach and 9 in the mountains.

G

a. b. c.
Figure 5. Payoff Polygons for Calculational Examples.

II. Suppose Ellen and Frank have another option: going to a lake (L). Assume that, with
the normalized utility scales as above, L has coordinates (2,5). See Figure 5b. N could
now be on the line y = 19/3 — (2/3)z with z in {0,2}, or on the line y = 17 — 6z with z in
[2,17/6). For the first line we get, by the procedure above, the problem
. . 19 2
Maximize f(z) = x(-é— - -é-z) on [0, 2].

The only critical point z = 19/4 is not in the interval [0,2]. The maximum on the interval
is at the endpoint z = 2. You should check that the second line segment gives a critical
point z = 17/12 which is outside of [2,17/6], and the maximum is at the endpoint z = 2.
We conclude that N is the corner point (2,5). Ellen and Frank should go to the lake.

IT1. Let’s consider a more abstract problem, with alternatives
A=(4,9), B=(6,7), C=(8,8), D=(11,6), E = (13,3),
F = (14,-2), G = (-1,-2), H =(-2,6), SQ = (0,0).

Here it is really important to draw the payoff polygon, as in Figure 5c. We see, for instance,
that B is not Pareto acceptable, and that the solution could be on any of the line segments
AC, CD, DE or part of EF. We need not check them all. Compute the products of
coordinates at each corner:

A: 4-9=36 C:8.8=64 D: 11.-6=66 E: 13-3=39
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A little thought should convince you that the maximum must be on a line segment ad-
jacent to the highest corner value, which is D. So we only need to check CD and DE.
(Unfortunately, we cannot conclude that the maximum must be on CD just because C
has the second highest product of coordinates.) Checking CD first, the problem becomes

40 2
Maximize f(z)= x(-3— - §z) on [8,11].
The critical point z = 10 is in the interval (8, 11] and gives the maximum on the interval,

with value f(10) = 200/3 = 662.
For the line segment DE, we get the problem

45 3
Maximize g¢(z)= 2(3- - Ez) on [11,13].
For this problem the solution is at the endpoint z = 11, with g(z) = 66, which is less than

the 662 on CD. Hence the Nash solution is N = (10,20/3) = (1/3)C + (2/3)D.

Exercises

4. Use the Nash arbitration scheme to solve the following arbitration problems. If the
solution is not one of the given alternatives, express it as a lottery combination of two
of the given alternatives.

a. The arbitration problem in Exercise 3.

b. A = (526), B = (12,21), C = (14,19), D = (16,17), E = (20,7), F = (-5,0),
G = (0,-3), SQ = (0,0).

5. The English philosopher R.B. Braithwaite (1955) imagined the following situation:
Luke and Matthew are both bachelors and occupy adjacent apartments with a very
thin wall between them. They each have just one hour a day—between 9 and 10
p.m.—available for recreation. Luke likes to play classical music on his piano, while
Matthew enjoys improvising jazz on a trumpet. Currently, they both play, but this is
unpleasant for both. Can you suggest a fair compromise?

a. The choices are Luke plays alone (L), Matthew plays alone (M), both play (5Q),
or neither play (V). Utility questions elicit

ur($Q) =0 ur(N)=5 ur(M)=6 wur(L)=10
up(N)=0 up(SQ)=3 um(L)=7 upy(M)=10.

What do you recommend? [Note that Matthew’s utilities as given are not yet nor-
malized.]
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b. Suppose everything is the same, except that in Matthew’s preferences N and SQ
trade places (so that Matthew, like Luke, now prefers silence to cacophony).

What do you recommend now? Think about and comment on these results.

6. Kalai and Smorodinsky (1975) considered the following arbitration situations:
i) A=(0,1), B=(1,0), C =(.75,.75), SQ = (0,0).

i) A=(0,1), B=(1,0), C=(1,.7), SQ=(0,0).

Carefully draw the payoff polygons for these situations on the same axes. Explain why
the person whose utilities are on the y-axis should expect to do better in situation ii)
than in situation i). Then solve the two problems—no calculation should be necessary
for i)—and compare the results for the person whose utility is on the y-axis. Kalai
and Smorodinsky were upset enough by the results to propose an alternative to Nash’s
scheme.

Solution to the Management-Union Arbitration Problem

We’ll apply the Nash arbitration scheme to Management and Labor’s problem from
the first section. Recall that the individual items under discussion are

A: automation of the checkpoint
C': elimination of the coffee break
P: the pension benefit package
R: the one dollar raise

SQ: the status quo (no change from the present)

The outcome of the arbitration will either be SQ, or some combination of one or more of
the items. For example, one possible outcome could be denoted ACR: Labor agrees to

automating the checkpoint and eliminating the coffee break, and Management gives the
raise. There are 16 possible outcomes:

SQ,A,C,P,R,AC,AP,AR,CP,CR,PR,ACP,ACR,APR,CPR, ACPR.

It would be complicated to ask Management and Labor for their utilities for 16 outcomes.
Fortunately, a simplification is possible if Management, say, values the items A, C, P and
R independently. This means that the value of any item is independent of whether some
other item is obtained: giving the raise costs Management just as much, regardless of
whether or not the checkpoint is automated. In this case, Management’s utilities will be
additive, in the sense that

uM(AR) =up(A) + UM(R), and um(ACR) = upm(A) +um(C) + upm(R).
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For simplicity of the analysis, we will assume that both Management and Labor have
additive utilities. This is not completely unreasonable. When my student Phil Polgreen
(1991) asked the management of a division of Sundstrand Corporation to give their utilities
for issues in a labor dispute, they had an accounting firm’s cost estimate for every issue—
the bottom line was money, which is additive. Labor had a bit more trouble, but still gave
utilities which were close to additive.

If utilities are additive, we need only determine utilities for the basic items. Suppose
we find that they are (normalized):

umM(R)= -3 upm(P)=-2 um(SQ)=0 um(A)=um(C) =4, (2)

ur(A)=-2 ur(C)=-1 ur(SQ)=0 ur(P)=2 wur(R)=3. (3)

Thus Labor, for example, wants the raise more than the pension increase, and dislikes
automating the checkpoint more than giving up the coffee break. They would consider an
outcome of ACR as no better or worse than the status quo:

uL(ACR) = ur(A) + ur(C) + ur(R) = (-2)+ (-1) +3=0=ur(5Q).

Using the additivity of utilities, we can now calculate Management and Labor utilities
for all 16 possible outcomes, plot them in the plane, and draw the payoff polygon in Figure
6.

Labor Utility
GT

Management Utility

Figure 6. Management-Labor payoff polygon.

From the payoff polygon, we see that the solution must be on

CPR-ACPR: Maximize f(z)==z (% - %z) on [0, 3]

or ACPR-ACR: Maximize g(z)=z (5—2z) on [3,5)].
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The function f(z) has its maximum at the endpoint = = 3, and g(z) also has its maximum
at the endpoint z = 3. We conclude that N = (3,2) = ACPR. You as arbitrator, if you
use this method, should propose that each side yield both concessions asked by the other
side. The trade-off benefits both sides, and it is fair if we agree that Nash’s axioms capture
the idea of fairness.

Exercises

7. Carefully do the calculations to show that N = (3,2), as claimed above.

8. What would be the effect on the payoff polygon if up(R) = —1, i.e. Management
really didn’t mind very much giving the raise? Compute the new Nash outcome. Are
there any ways this outcome might be implemented without a lottery?

Proof of Nash’s Theorem

It is not hard to see that Nash’s method does satisfy Conditions 1 through 5. Condi-
tions 1 and 2 are easy. Condition 3 holds because if we have maximized zy, we have also
maximized abzry. Condition 5 holds because points in Q but not in P must have smaller
products of coordinates than N. For Condition 4, see Exercise 9.

The more surprising part of the theorem says that any arbitration method which
satisfies Conditions 1 through 5 must be Nash’s method. To show this, consider any
arbitration polygon P, which we will assume has points with z > 0 and y > 0 (so we
are in case iii)). Let N be the Nash point, which maximizes zy. We must show that any
arbitration method satisfying the Conditions must give N as its solution point for P.

First of all, we can use Condition 3 to change utility scales to move N to the point
(1,1)—if N had been at (z*,y*), just multiply the utility scales by ¢ = 1/z* and b =
1/y*. So we can assume that for all other points in P with z > 0 and y > 0, zy < 1.
Geometrically, this means that P lies entirely on or below the hyperbola zy = 1, and it
touches the hyperbola at (1,1). Since P is a convex polygon, it follows that P must lie
entirely on or below the tangent line to the hyperbola at (1,1), which is the line z +y = 2.
See Figure 7.

The rest of the proof is beautifully simple. Since P lies on or below z +y = 2, enclose
P in a large rectangle Q which has one side on this line and is symmetric about the line
z =y, as shown in Figure 7. By Conditions 1 and 4, the solution for Q must be at (1,1).
Then by Condition 5, the solution for P must also be at (1,1), and we are done!

That is one of the most elegant proofs I know. Notice the power of Condition 5, which
finishes the proof dramatically.
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X+y=2 \

Figure 7. Proof of Nash’s Theorem.

Exercise

9. Let’s show that Nash’s method satisfies Condition 4. If P is symmetric, then whenever
a point (a,b) is in P, so is (b,a). Since P is convex, the whole line segment from (a,b)
to (b, @) must also be in P. Show that on this line segment, the maximum value of zy
occurs at (%’—", 1‘%’—”), which is on the line z = y.

Further Reading

The suggestion that Nash’s arbitration theory could be applied to labor negotiations
was first made in (Allen, 1956), which contains a number of nicely worked out examples.
(Polgreen, 1992) applies the theory to an actual labor negotiation in California in 1989.
There are certainly some practical problems. For instance, it may be difficult to obtain
utilities from the parties involved. Another problem is honesty: there is no reason to expect
that a party will answer preference questions honestly if he sees that dishonest answers
could produce an arbitrated solution more favorable to him. I have argued in (Straffin,
1993) that lying is a tricky business in the Nash scheme. The obvious kinds of lies don’t
always produce an advantage, and when both parties lie, there is a good chance that both

parties will end up worse off than if they had both told the truth.
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While we’re talking about nasty behavior, there is the matter of threats. Not all labor
negotiations are amicable: Labor often mentions strikes, and Management sometimes talks
of lockouts. We can think of threats as attempts to move the status quo point downward
(Management threats) and to the left (Labor threats). When we consider how to “threaten
optimally,” we enter the fascinating area of mathematical game theory—see below for
general references. Nash presented his idea on optimal threats in (Nash, 1953).

On the other hand, thinking of arbitration as a cooperative endeavor, as the Nash
scheme does, has produced some ideas which are now widely used in arbitration. One is
to encourage both sides to make as many “demands”, and as many offers, as possible.
The more items are under consideration, the bigger the polygon P is likely to be, and the

more likely it is that there will be combinations of items which will give points in the first
quadrant—deals beneficial to both sides.

There have been several specific criticisms of the fairness of the Nash scheme. One was
based on the results of Exercise 6, which lead to the proposal of an alternate arbitration
scheme in (Kalai and Smorodinsky, 1975). There is a very thoughtful and thorough dis-
cussion of fairness and Nash’s conditions in Chapter 6 of (Luce and Raiffa, 1957). Chapter
16 of (Raiffa, 1982) discusses both the fairness and the practicality of Nash’s scheme in the
form of an imaginary dialogue between a practical Arbitrator and a mathematical Analyst.

References

Allen, Layman (1956), “Games bargaining: a proposed application of the theory of games
to collective bargaining,” Yale Law Journal 65: 660-693.

Braithwaite, R.B. (1955), Theory of Games as a Tool for the Moral Philosopher, Cambridge
University Press.

Davis, Morton (1970), Game Theory: A Non-Technical Introduction, Basic Books.

Kalai, E. and M. Smorodinsky (1975), “Other solutions to Nash’s bargaining problem,”
Econometrica 43: 513-518.

Luce, R.D. and Howard Raiffa (1957), Games and Decisions, John Wiley and Sons.
Nash, John (1950), “The bargaining problem,” Econometrica 18: 155-162.

Nash, John (1953), “Two-person cooperative games,” Econometrica 21: 128-140.
Owen, Guillermo (1982), Game Theory, second edition, Academic Press.

Polgreen, Philip (1992), “Nash’s arbitration scheme applied to a labor dispute,” The
UMAP Journal 13: 25-35.

Raiffa, Howard (1982), The Art and Science of Negotiation, Harvard University Press.
Straffin, Philip (1993), Game Theory and Strategy, Mathematical Association of America.

Von Neumann, John and Oskar Morgenstern (1944), Theory of Games and Economic
Behavior, Princeton University Press. Third edition by John Wiley and Sons, 1967.



22

Applications of Calculus

Answers to Exercises

1. vp =2up - 10.
. a) Ly = (1/3)(0,0) + (2/3)(3,-1) = (2, —(2/3)); L2 = (1/2)(0,0) + (1/4)(3,-1) +

(1/4)(-1,7) = (1/2,3/2).
b) (2.5,0) = (7/8)M + (1/8)B.

. D and SQ are in the interior of the pentagon ABCEF.
. a) N =(25,5)=(1/4)A + (3/4)B.

b) N = (16,17) = D.

. a) N =(7/12)M + (5/12) L. Matthew could play for 35 minutes, Luke for 25.

b) Now N = (1/12)M + (11/12)L, and Matthew gets only 5 minutes. Most of
Matthew’s bargaining strength came from the fact that he preferred cacophony to
silence.

. Symmetry and Pareto acceptability say that the solution to a) must be at C. The

solution to b) also turns out to be at C, and y is less than in a). The top boundary
of the polygon has been moved up—for every value of z there are larger values of
y available—and yet this has hurt the vertical party. Kalai and Smorodinsky think
that this is unfair.

. If ups(R) increases from —3 to —1, all of the points involving R will move 2 units to the

right. The new Nash outcome will still be on the line segment between CPR = (1,4)
and ACPR = (5,2), or on the segment between ACPR and ACR = (7,0). It works
out that N = (4.5,2.25) = (7/8)ACPR + (1/8)CPR. This time, the union should
give up only 7/8 of A. If you remember that A would cost eight union jobs, perhaps
management could hire one union member back to supervise the checkpoint!

. The equation of the line segment from (a, b) to (b,a) is y = a+ b— z. The maximum

of zy along this line segment between z = a and z = b is indeed at z = (a + b)/2.
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Author: Thomas L. Moore, Grinnell College, Grinnell, IA 50112
Calculus Needed: Derivatives to find local extrema, logarithm and exponential functions.

Area of Application: Statistics

Comments: Students should use computer software or a graphics calculator to do the
calculations and make scatterplots for exercises marked *. Pro-Matlab was used to make
the plots in this document. Other exercises can be done by hand or calculator. Data sets
not in the main text are in the Appendix.

A Problem: Estimating the Amount of Lumber in a Woodlot

A forester wishes to estimate the amount of black cherry tree timber in woodlots in the
Allegheny National Forest. By choosing a sample of trees of a given species on a woodlot
and measuring the volume of wood in each tree the forester can estimate the total volume
of lumber for that species in that woodlot.

Unfortunately it is difficult to measure the volume of a tree. Imagine trying to do so.
Could you do it without cutting down the tree? Since the tree is very irregularly shaped,
many measurements would be required to calculate its volume accurately. Measuring the
volume of a single tree would require much time and effort and this process would be
required for every tree in the sample.

A different strategy for solving the problem is to use a procedure called regression
analysis. The data in Table 1 give diameter, height, and volume measurements on a
representative sample of 31 black cherry trees. The diameter is the diameter in inches
measured at a height of 4.5 feet above ground level (the so-called breast-height diam-
eter). The height is in feet and the volume in cubic feet. Someone worked hard to
figure the volumes of these 31 trees with the hope that through regression analysis we
wouldn’t have to figure the volumes of any other trees.

While it is difficult to measure the volume of a tree in the field, measuring its height
or its diameter is much easier. We can imagine measuring the diameter readily in a few
seconds. The height is not as accessible, but with the help of some right triangle geometry
it can be measured with fair accuracy. In fact, people measuring woodlots—“cruising
timber” as it is called—often use a cruising stick that allows quick measurements of both
diameter and height.

23
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Diameter Height Volume
8.3 70 10.3
8.6 65 10.3
8.8 63 10.2

10.5 72 16.4
10.7 81 18.8
10.8 83 19.7
11.0 66 15.6
11.0 75 18.2
11.1 80 22.6
11.2 75 19.9
11.3 79 24.2
114 76 21.0
114 76 214
11.7 69 21.3
12.0 75 19.1
12.9 74 22.2
12.9 85 33.8
13.3 86 274
13.7 71 25.7
13.8 64 24.9
14.0 78 34.5
14.2 80 31.7
14.5 74 36.3
16.0 72 38.3
16.3 77 42.6
17.3 81 55.4
17.5 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0
20.6 87 _ 77.0

Table 1. Diameter, height, and weight for a sample of black cherry trees from the Al-
legheny National Forest, Pennsylvania. Source: [RJR], p. 328.

For the moment let’s ignore the height measurements. Figure 1 shows a scatterplot
of volume versus diameter for our 31 trees. It consists of each of the 31 ordered pairs
(diameter,volume) plotted in z-y fashion. For example, the first tree in Table 1 is plotted
as the point (8.3,10.3) in the scatterplot. Note how closely related volume is to diameter.
Trees with small diameter have small volume and as we look at trees with increasingly
larger diameter the volumes become progressively larger in a fairly predictable way. In

fact, the relationship is nearly linear. That is, we can draw a line through the data that
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“fits” the data well as in Figure 1. The equation of the line shown is

Volume = —37 + 5 * Diameter.

Now if you give me the diameter of a black cherry tree and I use the equation to predict the
volume, I will probably not be far off, provided that this sample of trees is representative
of the forest. For example, if a tree has a diameter of 15 inches, we will estimate its volume
to be

Volume = —37 4 5% 15 = 38 cubic feet.

Armed with this simple equation, the forester can now easily estimate the amount of
lumber in his or her woodlot.

Our estimates will depend on which line we fit to the data. To find out how to fit
lines to data, we need to investigate the area of statistics called regression analysis. We
will find that this method can be a useful tool for analyzing not only linear relationships
between variables, but non-linear ones as well.

Volume vs. Diameter for Black Cherry Trees
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Figure 1.

Regression

Regression analysis is a collection of tools for exploring relationships between variables.
In the timber example above, we have three variables (or measurements) made on each
of the 31 trees in the sample. The variable of interest is volume, but volume is hard to
measure. So we are interested in predicting volume from either or both of the more easily
measureable variables, diameter and height.

Relationship between two variables refers to the degree to which values of one variable
rise or fall with values of the second variable. For example, we say there is a positive
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relationship between the volume of a tree and its diameter. In our data set, as diameter
increases so does volume. As indicated in section 1, we can imagine an underlying straight
line relationship between volume and diameter. Because of extraneous factors beyond our
control our data does not precisely follow a straight line. These “random” deviations off
of our hypothesized straight line we call statistical error or simply error. The term error
is conventional and should not be confused with error in the sense of a mistake. It simply
means unknown and random deviations from some underlying model.

Figure 2 shows volume versus height for black cherry trees. Here again we have
a positive relationship between y and z and again we can imagine the relationship as
basically linear. But in this case the deviations of the actual data from the line are larger,
so we say the relationship between volume and height is weaker than that between volume
and diameter.

Volume vs. Height for Black Cherry Trees

80 . -
70+
&- L]
E. )
g %
F=3
3
£ s
2
o
>
30~
20+
10
&0
Height (fect)
Figure 2.

Figure 3 shows the population size over time of a colony of mammary cancer cells.
Here there is also a positive relationship between y (population size) and z (time) in that as
time increases the population clearly increases. However, in this case, one would probably
not consider a straight line as the best description of the underlying relationship. A better
description would have to be a more complicated curve, perhaps an exponential curve.

In regression analysis we try to describe the relationship using a so-called model A
model is simply a mathematical description of the relationship between y and z. We
usually write a model in the form

y = f(z)+ error

where f(z) is some simple mathematical function (e.g. a linear function for Figure 1 or
an exponential function for Figure 3) and error represents random deviations from f(z).
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The choice for f(z) may be guided by theoretical considerations. For example, we know
from experience that exponentials are often good for describing population growth.

Growth of Mammary Cancer Cells
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In this module we will restrict our attention to the straight line model. Having seen
Figure 3, you may feel that this is too narrow a focus, but in fact, the straight line is more
powerful than it first appears for the following reasons:

¢ Many relationships are linear or nearly so.

¢ Even non-linear relationships are close to linear over a limited range of the = variable.
In some cases, especially when the actual form of the non-linear relationship is un-
known, a practical solution might be to fit a straight line to the range of z of primary
interest, if that range is small.

¢ Transformations: a non-linear relationship can often be transformed to a linear rela-
tionship. We will see several examples at the end of this module,

Best Fit Lines

Given a scatterplot and a line through the plot we need a measure of fit in order to
compare the fit of different lines to a given set of data. By a measure of fit we mean a single
number that summarizes how well a given line fits a given scatterplot. Smaller values will
indicate better fit. If the data fall exactly on a straight line, the measure of fit between
the line and the data will be zero. Having chosen a measure of fit, we can use it to find the
line that minimizes this measure for a given scatterplot and this will provide an objective
algorithm for choosing the best fit line to a scatterplot.
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Let’s use a simple example to illustrate. Table 2 contains data for four (z,y) points.
Two lines are drawn through the data:

y=34.75+.3z and y=.50+ .4z

z ¥ fitl residl fit 2 resid 2
Norway 250 95 109.75 -—14.75 100.5 -5.5
Sweden 300 120 124.75 —4.75  120.5 —0.5
Denmark 350 165  139.75 25.25 140.5 24.5
Australia 470 170 175.75 -5.75 188.5 -18.5

r = cigarette consumption (per capita) y = lung cancer deaths (per million males)

Table 2. Data from “Smoking and Health”, Report of the Advisory Committee to the
Surgeon General of the Public Health Service, U.S. Department of Health, Education, and
Welfare, Washington, D.C., Public Health Service Publication No. 1103, p. 176.

In Table 2, Columns 3 and 5 give the y values fitted by these two lines. Columns 4 and 6
give the differences between the actual y and the fitted y. For example, for the point (250,
95) and the first line, the fitted y is

109.75 = 34.75 + (.3)(250)

and the difference is 95 — 109.75 or —14.75. The difference between an actual value and a
fitted value is called a residual. Figure 4 shows the scatterplot with both lines.

Four points — Two Lines
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Any line through the data provides us with four residuals. In assessing how well a
particular line fits the data we would like these residuals (ignoring sign) to be collectively
as small as possible. In general a line might make certain residuals very small (even zero
if the line passes through that data point) but at the expense of increasing others. For
example, line 1 is close to points 2 and 4 but farther from points 1 and 3, while line 2 is
close to 1 and 2 but farther from 3 and 4. Overall, which line fits better?

We need a measure of fit that summarizes the four residuals into a single number.

There are several ways we could define such a measure, but the most commonly used is
called the root mean square error (RMSE). It is defined as the square root of the average
of the squared residuals, e.g. for line 1 in our example,

—_ 2 — 2 2 — 2
RMSE = \/( 14.75)2 + (—4.75) 4+(25.25) +(=5.75)2 _ 15.08.

For line 2, RMSE = 15.80. Based upon this measure of fit, line 1 fits the data better.

Our strategy now is to find that line that will minimize the RMSE. That is, of all
possible lines through the scatterplot, which one has the smallest possible RMSE? This
line is called the least squares line or the regression line.

Derivation of the Regression Line

We will find the line that minimizes the RMSE for a given data set. The first ob-
servation to make is that minimizing the RMSE is equivalent to minimizing the sum of
the squared residuals. That is, if we have data (z1,y1),(z2,¥2),...,(Zn,¥n), then we are
searching for values a and b that minimize

1 - (a+bx1)]2+[y2 —(atbog)] +.o ot v (at bea)|

n 2
= Z[y,- —(a+ b:v.')] .
=1
Notice that in this minimization problem, the z;’s and y;’s are constants, the given data
points. On the other hand, a and b are the variables, the quantities we are free to manip-
ulate to minimize the sum of squared residuals.

One can approach this minimization problem in two ways. One could consider the
quantity-to-be-minimized as a function of two variables denoted by, say, G(a, b), and then
use techniques for minimizing such functions. Instead we will restrict ourselves here to
techniques of one-variable calculus by solving the problem in two stages.

First, we consider lines of a fixed slope, b. We want to find the value of a that
minimizes

g(a) = Z[ye — (a+ bz
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If you think about this as a function of a, remembering that all of the other letters represent
fixed numbers, you’ll see that it is a quadratic polynomial in a, in which the coefficient of
a? is positive. Hence it has a unique critical point, which is a global minimum. To find

the critical point, we calculate g'(a):

g'(a) = —Z[y,—a ba:,] —Zd_[y'_a ba:,]2

=1 =1

—22[y,—a—bm.]( 1)——-2[Zy,—na—bz ]

=1 i=1
If you are not used to working with the summation notation, the trickiest part of this
n

calculation is to realize that Z a means we are adding up n terms, each of which is g, so
i=1
the result is na. When we set g’(a) = 0 to find the critical point, the result is

Finally, recall that when we add n numbers and divide by n, we have found the average
of those numbers. It is traditional to use the notation 7 for the average of the y;’s, and T
for the average of the z;'s. Hence we can write our result as a =y — 7.

We have found that of all lines with a given slope b, the unique line which minimizes
the RMSE is the line
y=(7—-0%)+ bz =7+ b(z —%). (1)

Notice that this is the unique line with slope b which passes through the point (Z,7). The
point (T,¥) is sometimes called the center of mass of the scatterplot.

Now we know that we only need consider lines of the form (1). Among those lines,
we’ll find the value of b that minimizes the RMSE. We wish to find the minimum of

F(8) =) i~ T+ b(zi - D))~

=1

Again, if you think about this as a function of b, remembering that all of the other symbols
represent fixed numbers, you'll see that it is a quadratic polynomial in b, in which the
coefficient of b? is positive. Hence it has a unique critical point, which is a global minimum.

To find that point, we set the derivative equal to zero and solve for b:

f'(b) = Z?ly. (7 + b(zi — D))(=1)(i —F) = 0

n

Y Ei-@i=T)=b) (si-7)

=1 i=1
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2.(zi —T)(vi — V)
b= - . (2)
2(zi —7)?
This formula enables us to calculate the slope b for the regression line through any set of

data points. We can then use a = 7 — b7 to find the y-intercept a, and the regression line
is determined.

Here is an example of how the calculation works, using the data in Table 2:

T yi 2i-T -7 @i-Dwi-7 (-3
Norway 250 95 —92.5 —42.5 3931.25 8556.3
Sweden 300 120 —-42.5 -17.5 743.75 1806.3
Denmark 350 165 7.5 27.5 206.25 56.3
Australia 470 170 127.5 32.5 4143.75 16256.2
T =2342.5 y=137.5 sum = 9025 26675

b= 20250 _ 338 0 =137.5(.338)(342.5) = 21.6

T 26675

Thus our regression line is given by

y=21.6 + 338z.

Example. Let’s find the regression lines for volume on diameter and volume on height for
the cherry tree data. For diameter:

T =13.248, 7 =30.171
Z(z‘.‘ —7)(yi — Y) = 1496.6

Y (@i —7)* = 295.44

1496.6
= 59544 5.07 a=30.17—(5.07)(13.25) = —36.9.
; — )2
The regression line is y = —36.9 + 5.07z, with RMSE = \/E(y: (a + bz;)) 1950,
n

Similarly, the regression line for volume on height is y = —87.1 4+ 1.54z with RMSE
= 13.40.

The scatterplots in Figures 1 and 2 indicated that volume was more strongly related
to diameter than to height. The RMSE’s of the respective lines quantify this difference in
strength of relationship, since they estimate the average size of residuals from the lines. If
we predict the volume of a tree using diameter, for a value of the diameter in the range
we used to do the regression, we are likely to be off by an amount of about 4.25 cubic feet,
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while if we predict the volume using height we are likely to be off by about 13.40 cubic

feet.

*4.

Exercises

Write out carefully and justify the intermediate steps in the derivation of formula (2).

Suppose a tree is found with diameter of 15 inches and height of 80 feet. Estimate its
volume twice, using first the diameter and then the height. Which estimate is more

accurate? Why?

Find the RMSE for the regression line for the smoking-lung cancer data, and verify
that it is smaller than the RMSE for lines 1 and 2 in Figure 4.

Using the data in the Appendix, find the regression line for estimating the delivery
weights of mothers from their weights at conception. What would you estimate the
delivery weight to be for a mother who weighs 142 pounds at conception? [Note: This
estimate is chancy if the new mother is unlike the mothers in the sample in some

fundamental way.]

On January 28, 1986, the twenty-fifth flight of the U.S. Space Shuttle program ended
in disaster when one of the rocket boosters of the Shuttle Challenger exploded shortly
afier lift-off, killing all seven crew members. The Presidential Commission that in-
vestigated the accident concluded that it was caused by the failure of an O-ring in a
field joint on the rocket booster, and that this failure was due to a faulty design that
made the O-ring unacceptably sensitive to a number of factors, including temperature.
The Commission learned that O-rings had been damaged on many of the 24 previous
flights. The data on this damage are given in the Appendix. The missing data are
from the fourth flight in which the hardware was lost at sea.

(a) Plot ‘Number of Damage Incidents’ (y) against ‘Temperature’ (z). Describe any
relationship that may exist between temperature and damage to O-rings. Would
this relationship help you in deciding whether to trust the O-rings on a launch
on a morning when the temperature was 31° F (the temperature on the morning
of January 28, 1986)?

(b) Unfortunately, when managers discussed the possible effects of cold weather, they
only considered the data for the 7 flights for which the thermal distress of O-
rings had occurred. Look at the scatterplot for these data and consider again the

question in part (a).

*(c) Even though a straight line model is only a crude approximation in this case,
find the least squares lines in both (a) and (b). Estimate the number of incidents
for 31 degree weather in each case. [Note: Extrapolation in a model beyond the
range of x values upon which the model was derived is always risky business!]
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Residual plots

When we fit a line y = a + bz to our data, recall that the difference e; = y; — (a + bz;)
between an actual y and a y predicted by the line, is called a residual. We think of the
residuals ey, €3, ..., €, as estimates of error terms. If our model is adequate these residuals
will appear random or patternless when plotted against the z; values. Such a plot is called a
residual plot. Figure 5a shows a scatterplot of delivery weight versus weight at conception
for a sample of mothers. Figure 5b shows the residuals plotted against z. There is no
particular pattern to this plot. This is characteristic of a residual plot where the straight
line model is appropriate for the data.
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Figure 5.

Suppose, on the other hand, that there is a clear pattern in the residual plot. Figure
6a shows a scatterplot for experimentally determined measurements on the period of a
swinging pendulum compared to its length. A regression is performed. Clearly the fit is
very good: the RMSE is only 0.025. However, the residual plot in Figure 6b shows a clear
pattern of increasing and then decreasing residuals, indicating a downward concavity in
the scatterplot. Yet this concavity is not so visible in the scatterplot. The residual plot
accentuates the discrepancies between data and a model. This pattern in the residuals
tells us the straight line model doesn’t fully capture the relationship between y and z.

Of course, physics tells us that we shouldn’t expect a straight line to fit the pendulum
data. A better model (still approximate) derived from physical theory is that
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where y = period (seconds), 'z = length (cm) and g = gravitational acceleration ~ 980
cm/sec?. Of course, if we knew the theory, we wouldn’t be using regression to predict
period from length. But we could be using the regression either to check the theory or to

estimate the gravitational constant g. We will discuss fitting such a non-linear model in
the next section.
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Figure 6.

Transformations

Sometimes theory will tell you that y is not linearly dependent upon z. Sometimes
you will reach this conclusion, not from theory, but empirically by using a residual plot.
In either case we need methods for fitting more complicated models to data. One such
method involves transforming either y or z to linearize the data. Transforming a variable
simply means taking a function of it. We will consider some representative examples.

From the data on the number of mammary cancer cells in an experimental culture in
Figure 3, we suspected that the underlying relationship might be of the form

y = ae
for some unknown a and b. If so, then it will be true that
logy = loga + bz = a’ + bz.

This suggests that we transform y via y’ =logy. (We consistently use natural logarithms
in this module. Also, y’ is the traditional name for the new variable introduced by trans-

forming y—the ! here does not indicate a derivative.) Figure 7 shows the log of population
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versus time and its residual plot. Notice that the log transformation has linearized the
data. Both the scatterplot and the residual plot show this.

Growth of Mammary Cancer Cells ~ logged data Residual Plot
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Figure 7.

To find a good-fitting exponential curve y = aeb® to the data in Figure 3, we find a
and b by fitting a straight line y’ = a’ + bz to the data in Figure 7 and then take

a=¢c¢ .

The best fit line for Figure 7 turns out to be logy = 2.64 4+ .0410z. Hence we have
a = e2® = 14.0, so that the best fit exponential function becomes

y= 148.0410:.

You are asked to do another simple transform, this time of z, in Exercise 6. For an
example of a more complicated transform, consider the growth of the American intercon-
tinental ballistic missile force during the 1960’s (Figure 8). This data has the S shape
characteristic of the logistic model for constrained growth of a population.

The logistic curve is y = L/(1 + e*t%%), where y = population at time z, and L, a and
b are constants. L is called the carrying capacity of the environment. Note that

§_=1+ea+bz
£_.1=L_:_2=e°+bz
y 14
L -
log( yy) =a+ bz
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ICBMs vs, Year
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Hence, if one can estimate L, the transformation y' = log(
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relationship. For this data, the estimate of L = 1060 seems to provide a good fit. Figure
9 gives the transformed data and the residuals from regression on the transformed data,
showing the good fit of the logistic model. The final estimated model for this growth data
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Exercises

6. Transform the pendulum data (in the Appendix) to linearity by considering the trans-
form that physical theory suggests: z' = /. Compute the least squares line on the
transformed data: y = a-+bz'. Plot the residuals. Do they appear reasonably random?

From the data, what is your estimate of the gravitational constant?

*7. Use L = 1100 in the logistic transform for the ICBM’s in Figure 10 (data in the
appendix). Find the regression line for the tranformed data. Plot the residuals against
time. Does this model fit as well as with L = 1060?
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Weight at
Conception
(pounds)
115
112
125
108
112
115
99
140
115
135
103
191

Source of data: [GW], p. 48.

Source: {LM]

Data Appendix

Pregnancy Weight Data

Weight at Weight at
Delivery Conception
(pounds) (pounds)
140 120
126 140
145 133
146 92
133 165
137 125
135 118
178 135
150 127
172 87
138 165
215 112
ICBM Data
Year, z Number of ICBM'’s, y
1960 18
1961 63
1962 294
1963 424
1964 834
1965 854
1966 904
1967 1054
1968 1054
1969 1054

Weight at
Delivery
(pounds)

155
182
164
117
224
148
161
173
148
163
187
138
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Flight
STS-1

STS-2
STS-3
STS—4
STS-5
STS-6
STS-7
STS-8
STS-9
STS 41-B
STS 41-C
STS 41-D
STS 41-G
STS 51-A
STS 51-C
STS 51-D
STS 51-B
STS 51-G
STS 51-F
STS 51-1
STS 51-]
STS 61-A
STS 61-B
STS 61-C
STS 51-L

Date
4/12/81
11/12/81
3/22/82
6/27/82
1/11/82

4/4/83
6/18/83
8/30/83
11/28/83

2/3/84

4/6/84
8/30/84
10/5/84
11/8/84
1/24/85
4/12/85
4/29/85
6/17/85
7/29/85
8/27/85
10/3/85
10/30/85
11/26/85
1/12/86
1/28/86

Challenger Data

Temperature
66

70
69
80
68

67
72
73
70
o7
63
70
78
67
53
67
75
70
81
76
79
75
76
58
31

Number of Damage Incidents
0

1
0
(data not available)

ONOOC O OO0 WOOHMHMFHOOOO O

1
(Challenger accident)

Source: “The Report of the Presidential Commission on the Space Shuttle Challenger
Accident,” 1986.

Pendulum Data

Length Period
175.2 2.650
151.5 2.468
126.4 2.256
101.7 2.024

77.0 1.764

Length = length of pendulum in centimeters.

Period = period of the pendulum based upon the average of 50 cycles (in seconds).

Source: [RIR], p. 253.
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Answers to Exercises

An estimate from the diameter is 39 £4 cubic feet; from the height, 36 £ 13 cubic feet.
RMSE = 14.76.

The regression line is y = 40 + .944z, where z = weight at conception and y = weight
at delivery. When z = 142,y = 174.

The data is plotted below. There is a clear upward trend to the left: the O-rings are
more likely to fail at lower temperatures. Ignoring the points at height zero almost
completely veils this trend. With all the points, the regression line is y = 4.8 —-.0627z,
which predicts y = 2.85 when z = 31. Without the points at height zero, the regression
line is y = 3.05—.0254z, showing the much weaker dependence on temperature. When
z = 31, y = 2.26, not significantly higher at the lower temperature.

Challenger Data
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g
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The regression line for the transformed data is y = .02 +.199z' = .02 + .199/z. The
residuals do look fairly random (although it is always possible to see some pattern in
just 5 points). To estimate g,

2
2_7r =b=.199, sog = (—?1-) = 997 cm/secz,

/9 199

which compares fairly well to the value g = 980 cm/sec?.

The regression line after transformation is y' = 1587 — .808z, so the fitted logistic
equation is

1100
Y= 11 clss7—s08z"
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However, the residual plot for the transformed data, given below, shows a definite
concave-up pattern, indicating that L = 1100 is not a good choice for L.

1CBMs -- ransformed, L. = 1100

transformed ICBMs

1970

Residvat Plot - L = 1100

1960 1962 1964 1966 1963 1970

Year



SOMEWHERE WITHIN THE RAINBOW

Author: Steven Janke, Colorado College, Colorado Springs, CO 80903
Calculus Needed: Derivatives of trigonometric functions, finding maxima and minima.

Area of Application: Optics, Meteorology.

The Problem: Explaining the Rainbow
My heart leaps up when I behold a rainbow in the sky...— Wordsworth

Whether it has been raining for just a few hours or for forty days and forty nights,
if the sun appears and raindrops are still in the air, the world is treated to one of nature’s
most vivid spectacles, the rainbow. Imagine the mixture of fear and wonder that ancient
people must have felt on seeing such a sight. These days the wonder is still there, but
certainly the fear has lessened as we understand more of the physics involved in producing
such a display of color in the sky. After setting aside the awe, our curiosity produces
question after question. Why is the rainbow a circular arc? What determines how high it
is in the sky? Why are there colors? Why is there a special order to the colors? Why is
there occasionally a second rainbow above the first? Exactly where is the pot of gold?

Some Early History

The early explanations of the rainbow were understandably mythological in origin.
The Greek goddess Iris was said to use the rainbow as a sign both of warning and of hope.
The word “iridescent” probably comes from the connection to Iris. In African mythology,
the rainbow was a large snake coming out to graze after the storm. Here again the event is
both a sign of hope and one of fear, for the snake could gobble children that were too close
to the ends of the bow. The ends do appear to touch the earth leading some to claim that
great treasure was buried there. Yet in a less capitalistic vein, many American Indians
saw the bow as a bridge anchored in this world and leading to the next.

In 578 B.C., Anaximenes, a Greek scholar, noted the relation between the rainbow
and the sun. Rather than attributing the bow to celestial powers, he suggested that clouds
bent the sun’s light to produce the arc of colors. Aristotle used careful geometry, but
faulty reflection laws, to establish the circular shape of the bow. Gradually, scholars began
to see that both reflection and refraction of light had something to do with the rainbow
phenomenon. In the fourteenth century, Theodoric of Frieburg and the Persian scholar
Kamal al-Din al Farisi independently decided that drops of rain were the key. They looked
closely at the way a globe of water affected light and were able to give correct qualitative

explanations for the bow.
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The rainbow has piqued the interest of many scholars in each of the last several cen-
turies. The sixteenth century seems to have produced the most books on the subject, but
few of them were of major importance. As you might expect, seventeenth century scholars
like Kepler, Descartes, Fermat, and Newton all made significant contributions to the study
of the rainbow. Even today, physicists continue to tidy up the theory. Understanding the
rainbow is so tied with understanding the nature of light that until theories of light are
complete, there will be open questions about the rainbow.

Reflection

Light from the sun, refracted and reflected by water droplets in the atmosphere, forms
the rainbow, so the first step in explaining the phenomenon is to understand how light is
bent by various substances. In 1657, the extraordinary mathematician Pierre de Fermat
turned his attention to the bending of light and proved the main results by postulating
a simple principle. Fermat suggested that in traveling from point P to Q, light follows a
path which minimizes the total travel time.

Fermat’s Principle. Light follows a path which minimizes the total travel time.

Consider first the reflection of light. It helps when discussing geometric problems
with light to imagine that light travels along rays. So suppose we have a source of light
rays at point P in Figure 1. Imagine that we detect one of the rays passing through point
Q after reflecting off a surface. At what point R does the ray reflect off the surface?

X
Y

Figure 1.

Fermat’s principle claims the ray follows a path that minimizes the time necessary
to travel from P to Q while reflecting off the surface. Assuming the speed of light in our
example is constant, the point R should be positioned so the path PRQ has minimum
length. Considering the triangles in the figure, we get the following expression for the path
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length as a function of z:

L(z) = VP T2 + V@ T (@ )

To find the minimum path length, we find the derivative L'(z) and set it equal to zero.

L(z) = 5 +2%)4(22) + 5(¢ + (@~ 2)) 7} - 2(d = 2) - (-1)
(d-z)

T
/o P+(d-z)2

2 ___ld-z)
Vei+a? Ve +(d-2)?

. . . T .. . d—z
Now referring again to the figure, sina = \/;TT? . Similarly, sin 8 = —:1-2—;-\/__—(_‘1—__-;—:)2
So L'(z) = 0 when sin a = sin . We should verify that this is a minimum by taking the
second derivative (see the exercises). Rather than actually solve for the distance z, it is
more useful to note that the minimum occurs when the sines of the two angles are the
same. Since the angles are both between 0 and 7 /2, we conclude that the two angles are
equal. For convenience call a the angle of incidence and S the angle of reflection.

so that

Law of Reflection. For reflection, the angle of incidence is equal to the angle of reflection.

Note that we have deduced the Law of Reflection from Fermat’s principle of least
time. We have not proved Fermat’s principle, but it does make sense in light of other results
in physics. And in fact, careful experiments have concluded that the Law of Reflection

does hold.

Exercises
1. Determine the value of z that minimizes L(z) in the derivation of the Law of Reflec-
tion.
2. Compute the second derivative and use it to show that we indeed found a minimum

for L(z).

Refraction

When dealing with reflection, we assumed that the light rays were traveling only in
air and therefore mamntained a constant speed. However, to attack the rainbow questions,
we need to also understand what happens when light travels through water. It turns out
that the speed of light in water is less than the speed in air. Our derivation of the reflection
law would be identical for a mirror and light source submerged in water since the speed of
light would again be constant, but what happens if part of the light’s path is in water and

part is in air?
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Figure 2 shows a new setup where point P is again a source of light rays in air. Now,
however, point Q is in water. We are interested in the path of a light ray that leaves P
and passes through Q. It crosses the air/water interface at the point R. The angle the
path PR makes with the line perpendicular to the water’s surface is called the angle of
incidence and is represented by a. The corresponding angle between the path RQ and the
perpendicular is called the angle of refraction and is represented by 8. Fermat’s principle
claims that the point R is positioned so as to make the total time of travel a minimum.
Since the speed changes when the light crosses into water, we need to consider both speeds
in our analysis.

~3

Figure 2.

Let c, be the speed of light in air and let ¢,, be the speed of light in water. Re-
membering that time is distance divided by speed, we calculate that the light ray spends

/o2 + 22 e 5 T
Vet T units of time traveling from P to R and ¢ +(d—3)

Ca Cw
from R to Q. Thus the total time is

/o + 22 C+(d—2)°
T(z) = p” + c( ) .

units of time traveling

Again to find the minimum, we take the derivative of T(z) :

T'(z)=l.__‘f_____1_.. d—

Setting T'(z) = 0 gives
sina _ sinf8 sina ¢,
Ca  Cw | sinff~ ¢y
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In other words the ratio of the sines is a constant. Note again that in order to verify that
we have found the minimum we should take the second derivative.

This constant ¢,/c, is the ratio of the speed of light in air to the speed of light in
water. In order to calculate it, tables have been compiled that give the ratio of the speed
of light in a vacuum to the speed of light in various media. For example, the ratio of the
speed in a vacuum to the speed in water is about 1.33 and is called the indez of refraction
for water. The index of refraction for air is very close to 1 so the ratio ¢, /¢, is very close

to 1.33.

Law of Refraction. The ratio of the sine of the angle of incidence to the sine of the
angle of refraction is a constant.

In our derivation, there was no dependence on direction, so our result would be the
same if we assumed that the source of light was at Q instead of at P. With this observation
we notice that if light travels from one medium to one of higher refractive index, the light
ray bends toward the perpendicular to the surface between the media. (This perpendicular
is often called the normal.) When light travels from one medium to one of lower refractive
index, the ray is bent away from the normal.

Fermat supplied the principle from which we mathematically deduce the Law of Re-
fraction, but it was earlier, in 1621, that a Dutch scientist Willebrord Snell experimentally
discovered the result. Today the Law of Refraction is often called Snell’s law.

Exercise

3. Verify that we found a minimum for T{z) in the derivation of the Law of Refraction.

The Rainbow Angle

Rainbows form when raindrops both reflect and refract light from the sun. When
light traveling through the air strikes a drop, some of the light is reflected and some is
refracted as it enters the drop. Part of the light inside the drop is reflected when it strikes
the other side of the drop and part is refracted as it again passes into the air. In general,
when light travels from one medium to another, part of the light is reflected at the interface
and part continues into the second medium where it is refracted. To understand how the
rainbow forms, we need to keep track of the reflections and refractions caused by a drop
of rain.

The shape of a raindrop depends on several factors, but for a good approximation,
it is fairly safe to assume that it is spherical. Look then at Figure 3. Here we see the
cross-section of a drop as a light ray enters it at point A. Some of the light ray will be
reflected, but the figure shows the part that enters the drop. The Law of Refraction says
that this ray will be bent toward the normal since the refractive index of water is larger
than that of air. From geometry, we know that the tangent to the circle at point A is
perpendicular to the radius of the circle through A. Hence, the radius through A is the
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normal at A. In the figure, a is the angle of incidence and 3 is the angle of refraction.

Figure 3.

The ray continues through the drop and strikes the other side at point B. Here again,
part of the ray is reflected and part continues into the air where it is refracted. In the
figure, we follow the reflected part. At B, the ray is reflzcted so that the angle of incidence
equals the angle of reflection. Here the angle of incidence is the angle between the ray and
the tangent at B. Notice that this implies that angle ABO equals angle OBC. When the
ray hits the drop’s surface at C, part is reflected, but let’s follow the part that enters the
air and is refracted. Since the ray moves into a medium of lower refractive index, it is bent
away from the normal.

Figure 3 traces parts of one particular ray that strikes the drop. At each interface,
another part is either refracted or reflected, and consequently there are many paths a ray
could take in interacting with the drop. In fact, you can imagine a ray that enters the drop
and is repeatedly reflected around inside it. Since at each interface between air and water
part of the ray is reflected and part refracted, when we choose to follow one part we are
following a ray that has less intensity than the original ray. Each time an interface is hit,
the light intensity decreases. We are therefore interested in rays that strike the interface
only a few times, for this will be the brightest light.

Again looking at the figure, a ray that strikes the drop at A and is simply reflected
will be fairly bright, but as we will see, such a ray does not add to the essential features
of the rainbow since it doesn’t interact with the water. Similarly, a ray that hits at A and
then travels through the drop to exit at B will also be fairly bright, but we would have to
be on the righthand side of the drop to see this light. Rainbows are formed when the sun
is behind us and light from it is reflected in various ways from the raindrops. So the ray
drawn in the figure is the simplest ray involved in rainbow formation.

Notice that the point A could be anywhere on the left half of the circle. If it is on the
upper half of the circle then the ray exits the drop in the lower half. We are interested in
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how much the ray is deflected once it exits the drop. For example, if the ray comes in the
drop along the diameter of the circle, then the angle of incidence is zero and therefore the
angle of refraction is zero. The ray will reflect off the back of the drop and exit the drop
along the same diameter that it entered on. The total deflection would be 180 degrees
in a clockwise direction. The ray drawn in the figure has been deflected by less than 180
degrees. As the point A moves on the circle, the deflection angle changes. So the angle of
deflection is a function of the angle of incidence. If a is the angle of incidence, let D{a)
represent the angle of deflection.

Because of the symmetry between the upper and lower halves of the the circle, we
might as well focus only on those points A on the upper-left quarter of the circle. For these
points, a varies from 0 to 90 degrees. To determine the total deflection, first consider how
the ray is deflected at the point A. It is rotated clockwise by a — B degrees. At B, it is
again rotated clockwise by 180 — 23 degrees. Finally at C the deflection is again a — 3
degrees. Hence

D(a)=a—B+180-20 + a— =180+ 2a — 45.

Notice that D is a function of both a and 3. However, we know from the Law of Refraction
that 8 can be expressed as a function of a. We will need to keep this in mind when we
take the derivative.

Now D(C) = 180 and as « increases, D(a) at first decreases. But what is interesting
is that D has a minimum. It only decreases so far and then it increases. To find this
minimum, we take the derivative (recalling the chain rule) and get

dB

! — —— ] c—
D'(a)=2-4-.

Remember that, from the Law of Refraction,

sin a c
- = k where k = 2.
sin 8 Cw

If we differentiate this with respect to a we get

a8
da’
Solving for df/da and substituting into the expression for D'(«a) gives

cosa=kcosf-

cosa
D'(a)=2-4 .
(a) kcosf
Setting the derivative equal to zero we have,
4 cosa
D'(a)=2— .22 _
() =2 k cosf
cos &
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We want the value of a which satisfies this equation, so we eliminate 3. Squaring both
sides gives

K costa cos?
4

T cos?f T 1-sin?B

But sin =.% sin @, so

COS2 (44

- 1-— sin? o
k2
2 2

cos’ a cos’ a
k2 —sin’a k% —(1 - cos?a)
k*~1+4 cos’a =4cos’a
k2 -1
cosa = \[ ——.

3

Wl "‘I?:a

Finally we have an expression for the cosine of the incidence angle with minimum deflection.
Since raindrops are water, k = 1.33, so cosa = 0.5063 and a = 59.56°. At this incidence
angle, the deflection is D(59.56) ~ 137.5°. To establish that this is a minimum we can
check the sign of the second derivative (see the exercises).

We have found the incidence angle, a & 59.58°, that gives the minimum deflection.
Since the derivative of the deflection function is zero at this special angle, we know that
the change in deflection angle divided by the change in incidence angle is nearly zero near
a = 59.58°. In other words, many rays with incidence angle near 59.58° get deflected by
about the same amount. Rays further away from this critical angle get spread out more.
So if we are looking at the deflected light, then rays coming from the direction of minimum
deflection should appear the brightest since they are spread out the least. This is where
the rainbow appears. The ray whose incidence angle is a & 59.58° is called the rainbow
ray and 42.5° (= 180 — 137.5) is called the rainbow angle. The rainbow angle is the angle
from the horizontal at which an observer should see the rainbow, if the rays of sunlight
are horizontal. Figure 4 shows how the rainbow angle is related to the sun, observer, and
the raindrops.

drop
sun —>» O==~==
7/
7/ 137.5°
7/
7/
/
/
/
7/
7/
/ﬂ
7/
7/
/ L]
,/ 45
observer
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Drops inclined 42.5° from an observer appear brighter than those with less inclination.
For drops higher in the sky, the deflection angle would have to be less than 137.5° and
since we discovered this angle is a minimum, no rays of the type we have been tracing
come from drops higher in the sky. Any light coming from high in the sky must come from
rays that have more than one (or none) internal reflections.

In the early part of the seventeenth century, Descartes carried out an analysis leading
to discovery of the rainbow angle. Since the techniques of calculus were not available to
him, he had to calculate the deflection of many different rays and even then did not have
a nice expression for the incidence angle of minimum deflection.

Now that we know that light scattered by a drop is brighter at a certain angle of
observation, any drop in the sky at the correct angle will show some brightness. Imagine
the observer at the vertex of a cone with vertex angle equal to twice the rainbow angle.
Cutting the cone with a plane perpendicular to its axis gives a circular cross-section and
every raindrop on this circle forms the rainbow angle with the observer. Consequently,
the observer should see a bright circular arc in the sky. This is the rainbow. Notice that
the rainbow may be higher or lower in the sky depending on how high the sun is. To an
observer on the ground, the rainbow is at most one half of a circle. However, to an observer
flying in a plane, the rainbow may form an entire circle.

Exercises

4. Verify that we found a minimum deflection angle by checking the second derivative.
(Hint: You can find the second derivative by first finding the second derivative of 8
with respect to a. The trigonometric formula for sin(f ~ a) will be helpful.)

5. Sketch the function D(a) for a between 0 and 90 degrees.

6. If an observer sees the rainbow at an angle of 25 degrees from the horizontal, what
is the sun’s angle of inclination?

Colors

The geometry of light rays that we have considered so far accounts for a circular arc
of brighter light in the sky. But where are the colors? Actually the answer is quite simple
now. Light is really an electromagnetic wave and therefore we can talk about its frequency
and wavelength. There is a wide spectrum of wavelengths, but our eyes are sensitive only to
wavelengths in the range from about 7000 angstroms to about 4240 angstroms. Light with
a wavelength of about 6470 to 7000 angstroms is perceived as red, and light in the 4000 to
4240 range is violet. Other colors fall between these two. Since the wave characteristic of
these two colors are different, the refractive index of water varies depending on which color
of light is passing through it. When red light with wavelength 6563 angstroms travels from
air to water, the refractive index is about 1.3318. With violet light (4047 angstroms), the
index increases to about 1.3435.

Sunlight is really a wide range of wavelengths. When it strikes a raindrop, wave-
lengths in the red range are refracted differently from those in the violet range. The other
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colors like blue and yellow fall between these two ranges and are refracted to various degrees
between the two extremes. Consequently the light is actually spread into its constituent
colors.

Now we need to repeat the calculation done to find the minimum angle of deflection.
For red light, the minimum deflection is 137.7° and for violet light it is 139.4°. These
values give rainbow angles of 42.3° and 40.6° respectively. In other words, when looking
in the sky, the observer will see a circular arc of red light at a slightly higher inclination
than the circular arc of violet light. The other wavelengths that we recognize as colors will

form bows between these two. The order is red, orange, yellow, green, blue, indigo, and
violet. (Taking the first letters gives a mnemonic: ROY G. BIV).

Newton was the first to make these careful calculations that explain the colors in the
rainbow. By subtracting the rainbow angles for red and violet light it looks like the width
of the bow is 1.7 degrees. Actually all these results assume that the rays from the sun are
all parallel. To correct for the fact that the rays are not quite parallel, Newton allowed 0.5
degrees for the angular diameter of the sun and concluded that the rainbow width should
be 2.2 degrees. This is in good agreement with actual observation although as we shall see
later, the width of the bow does vary.

The Secondary Bow

Recall that the rainbow ray we traced was reflected once by the back of the raindrop.
Other rays are reflected several times inside the drop. Each reflection reduces the intensity
of the ray, but it is worth tracking at least those rays that have two internal reflections.
To do this, look at Figure 5.

Figure 5.

This time we will follow rays incident on the bottom half of the drop since these
rays are the ones that reach the observer. Keeping track of the deflections, we notice that
the ray is rotated counter-clockwise at each of the points A, B, C, and D. The amount of
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rotation is similar to the analysis we did before, so this time we get

Total deflection = (a — 8) + (180 — 283) + (180 — 283) + (a — B)
= 360 + 2a — 65.

Since a 360 degree deflection means the ray continues in the same direction it started in,
we can disregard the 360 and consider the deflection to be 2a — 63. However, this is a
counter-clockwise deflection and in order to compare it to the deflection for the rays with
single internal reflections, we need to change this to a clockwise deflection. This is easily
done by multiplying by —1. This gives us a new deflection function, D3, for rays with two

internal reflections:
Dy(a) =68 — 2a.

Notice that D3(0) = 0 and that D, begins to increase as a increases. In order to
determine if this trend continues, we find any critical points by taking the derivative and
setting it equal to zero. This time the critical point satisfies

k2-1
cosa = .

8

With k = 1.33, we obtain the critical point @ = 71.94°, and D»(71.94) = 129.9°. At this
new critical point, D, is actually a maximum.

Hence for rays with two internal reflections, the maximum deflection angle is about
130°. In other words, raindrops that are inclined about 50°(i.e. 180° — 130°) from the
observer will appear bright, although not as bright as those at 42°. This secondary arc of
brightness is another bow which is dimmer that the primary bow and, unless conditions
are right, is often too dim to see. Moreover, since D is concave down, when we compare
the maximum deflection for red light with that for violet light, we find that red light is
deflected the most so the colors in the secondary bow appear in reverse order from those
in the primary bow.

Notice also that the maximum of D5 is about 130° while the minimum of D is about
138°. In other words, none of the rays with one or two internal reflections are deflected
in the range 130 to 138 degrees. This means that the region between the primary and
secondary bows is darker than the surrounding sky. It isn’t totally black since light comes
from rays that are reflected and refracted in many other ways. This darkened band is
called Alexander’s band after Alexander of Aphrodisias, a follower of Aristotle. Alexander
deduced from Aristotle’s theory of the rainbow that the region between the bows should
be particularly bright. Since it wasn’t, Alexander saw the need for a revised theory even
though he couldn’t supply one.

Exercises

. k2 -1
7. Verify that the critical point for D2 does occur at the point where cosa = .

8
8. Sketch the graph of Ds.
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9. Determine the maximum deflection angle for red light and violet light.

10. Using the same procedure as above, find the deflection function D, for rays that have
n internal reflections. Find the critical point for this function. Theoretically, each of
these classes of rays gives rise to another rainbow. They are rarely seen in the sky
because they are so dim, but often one can see the first few bows in a laboratory
set-up.
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Answers to Exercises
pd
T =——-.
q+p
2. L"(z) = p*(p® + %)~ % + ¢®(¢® + (d — )?)~% > 0. Notice that all terms are positive.
3. T"(z) is just L"(z) with 1/c, and 1/c,, put in front of the terms.
d?

4. D"(a) = —4- ——ﬂ- Since sin a = ksin 8, we have

da?’
dp

cosa = k cos f—
da
... .dp 8
—sma——ks1nﬁd—a+kcosﬂza—2-.
d’8 _ sin(f —a)
da? = kcos2f

Simplification gives

Hence, D"(a) > 0.

< 0 since B < a and 0 < (o — B) < 90 degrees.

5.
D(a)
A
180 ‘\_/
100 = T > O
0 59.6 90

6. Angle of the highest point on the bow plus the angle of the sun equals the rainbow
angle 42.5°. Hence the sun is at 17.5°.

dp dp cos & )
! =0 =2 = —_—= .
7. D'(a) = 6da 2 = 0. Also, Ja ~ Feosh Hence by squaring,
1 _ cos’ a _ cos’a
9 k2cos?fB k2 —k?sin?f
cos?a cos? a

k? —sin?a k2—1+4cos?a’

Solving for cos & gives the result.
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8.
Dz(a)
A

1125

0 729 90

9. Red gives 129.424° and violet gives 126.395°. Violet appears higher in the sky.

10. The exact form of D,(a) depends on whether you choose to count deflections as being
clockwise or counter clockwise. One form gives

D,(a) =180n + 2a — 2(n + 1)4.

2 _
The critical point occurs when cosa = —k——l——
n(n +2)



THREE OPTIMIZATION PROBLEMS IN COMPUTING

Author: Paul J. Campbell, Beloit College, 700 College St., Beloit, WI 53511-5595
Area of application: computer science

Calculus needed: optimization by determining and testing critical points; the derivative of
Inz.

Related mathematics: mathematical modeling

Suggestions for use: the exercises require a scientific-functions calculator

In this module we will consider three optimization problems in the design of computer
hardware and software:

o How can a computer disk be formatted to store the maximum amount of data?
¢ How can data best be stored in “blocks” so as to minimize wasted space?

o How can we minimize time for transferring data between computers, while still check-
ing for accuracy?

We will study the setting of each problem, construct a mathematical model to solve the
problem, and compare the results of the theoretical solution to what is actually done.
A common theme is that, although the problems are discrete (the solutions need to be
integers), our models will be continuous (allowing real numbers as solutions) so that we
can use the techniques of differential calculus.

Maximizing Storage on a Disk

The Problem

As manufactured, computer disks, both floppy diskettes and the platters in hard-disk
drives, are just flat surfaces coated uniformly with a magnetic medium. To be used in
a particular computer, they must be formatted in accordance with that machine’s disk
operating system. The formatting places little magnetic markers on the disk to divide it
into fixed numbers of sectors and tracks. A sector is analogous to a sector of a circle,
and a track is a thin circular ring (see Figure 1). The po\i'tion of a track within a single
sector is called a block; a block is further subdivided into bytes, with each byte made up
of eight bits. Each bit is a single small region that is either magnetized or not, according
to whether it represents a 1 or a 0.

The number of tracks per inch is limited by mechanical considerations (how accurately
the disk controller can position the read/write head of the disk drive), while the maximum

56
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density of bits along a track is limited by magnetic considerations (the need to be able to
distinguish two adjacent bits). The density of bits along a track is considerably greater
than the density of tracks across the surface of the disk. For design reasons, every block
on a disk contains exactly the same number of bytes. Hence each track contains as many
bytes as the innermost track.

Our problem is: For the disk to hold as much data as possible, where should the
innermost track be located?

Figure 1. Schematic diagram of organization of data on a disk
for which each track has the same number of sectors.

The Mathematical Model

We will build a continuous model for the problem. Suppose the maximum feasible
density for tracks is p; tracks per inch (tpi) and the maximum density of bytes along a
track is pp bytes per inch. Let the innermost track be at distance r (in inches) from the
center of the disk, and let the outermost data track be at (fixed) distance R. Then the
number of tracks is (R — r)p;.

The innermost track (and hence every track) contains 27rps bytes. Then the total
number of bytes that the disk can store is

B(r) = (number of tracks) x (number of bytes per track)
=(R—r)p: x 27rps
=Cr(R-r),
where C is the constant 27p,p;. The domain of B(r) is [ro, R], where ry is the distance

from the center of the disk to the outer edge of the timing hole (see Figure 1). Using
calculus, we find that the maximum of B(r) occurs at r* = R/2 (Exercise 1).
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Comparison with Reality

To see how well theory agrees with reality, you can either make measurements on
microcomputer diskettes (at the cost of destroying a diskette by opening it up) or else
consult the standards for disk formats. We will consider a double-sided, double-density 3.5-
inch diskette, which holds 720K bytes (= 720 kilobytes = 720,000 bytes) when formatted
for use in an IBM AT-compatible computer.

The formatted disk has 135 tracks per inch, with a maximum density of about 700
bytes per inch. The mylar of the diskette is about 3.36 inches across, so R = 1.68 inches.
If we format the disk with the innermost track at r* = R/2 = .84 inches, then one side
holds

B = .84 x 135 x 27 x .84 x 700 = 419,000 bytes.

Hence the two-sided disk could hold as many as 838K bytes, more than the 720K required.

The actual format uses 80 tracks, with 4.5K bytes per track, spaced from an inner
radius at about .93 inches to an outer radius at about 1.53 inches.

Exercises

1. Verify that r* = R/2 is an absolute maximum of B(r) on its domain. (Assume that
T < R/2)

2. For a high-density double-sided 5.25-inch diskette R = 2.56 inches, p; = 96 tpi, and
ps = 912 bytes per inch. What would be its capacity if it were formatted optimally?
(It is designed to hold 1200K bytes.)

Optimizing Dynamic Storage

The Problem

Both the main memory of a computer and its secondary storage (usually a disk) are
often called upon by the operating system to store data files whose lengths are not known
in advance. Ideally, the data should be stored in contiguous memory locations, to enable
fastest retrieval of the data. However, a large enough block of contiguous memory may
not be available.

One conventional solution to this problem is to store the data in a linked list, each
of whose nodes has associated to it some fixed amount of storage, a “block”, which is the
same for each node. Part of the block is used for the address of the next block in the list,
and possibly additional information. The rest of a block is available for the data. The
data file is broken into chunks, each of which—except the last—fits exactly into the data
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area of a block, and the data file is stored in blocks corresponding to successive nodes of
the linked list (see Figure 2).

Any unused part of the last block is wasted: the larger the block size, the greater
potential waste. But if the block size is quite small, then a disproportionate amount of
storage is taken up (“wasted”) by control information. Qur problem is to determine the
optimal size for a file storage block, to minimize the average amount of wasted space.

data portion

-t
S S ——p-
ke ¢ » address of
beginning of next block
| . N 77
> %
end of data

Figure 2. Storage of d=ta in a linked list of blocks.

The Mathematical Model

Following the notation of Wolman [1965], let us take b to be the (fixed) size of the
control information in each block, and ¢ to be the size of the data portion of a block. The
optimal value of c is to be determined. As in our other models, we will consider ¢ as a
continuous quantity, so that we can use calculus in our analysis.

Suppose that on average our data files are L units long. Then we will need

H

blocks, where the brackets denote the ceiling function: [z] = the least integer greater than
or equal to z. A reasonable assumption is that the average amount of waste in the last
block of the data storage is ¢/2. Then the average number of blocks that a file of length L
will occupy is just

L,
c 2

Hence the average amount of wasted space is
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where the final “1” counts a segment of b bytes of control information in the directory
table that indexes the contents of the entire memory. We find that

c bL 3b
W(c) = -2-+‘?+?.

Using calculus (Exercise 3), we find that the minimum of W occurs at ¢c* = v2bL.

Comparison with Reality

On a double-sided double-density 720K diskette formatted for an IBM compatible
personal computer, each block consists of two 512-byte sectors and has a 12-bit entry in
the “file allocation table.” In units of bytes, we have ¢ = 1024 and b = 1.5. Since the
average length of a file stored on a diskette is probably 5K to 10K bytes, less waste would
be produced with a smaller value for ¢. Exercise 5 asks you to estimate how inefficient the
storage is on a PC diskette.

Exercises
3. Verify that ¢* = v/2bL is an absolute minimum of W(c) on its domain.

4. Show that if ¢ = ¢* and b is small compared with L, then the fraction of storage
wasted is approximately 1/2b/L.

5. How inefficient is the storage on a 720K PC diskette? Assume L = 10,000 bytes.

Maximizing Throughput on a Noisy Channel

The Problem

Communication within a computer, and between computers, must in many cases be
perfect to be effective: if a copy of a program has even one bit miscopied, the copy may
not run at all. Some computer memories feature an extra check (or parity) bit for each
eight-bit byte; the check bit is set to 1 if there is an odd number of 1s in the byte, and to 0
if there is an even number. When the computer processes a byte, it also checks the check
bit. If the check bit is not what it should be, then the data have become corrupted—either
the check bit itself, or more likely one or more of the bits of the byte, is faulty. We don’t
know exactly where the defect is, but the data in the byte should not be used.

We will concentrate here, though, on communication by modem between computers.
The bits of a file being transmitted are converted by the modem to audible tones (one pitch
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for a 1, another for a 0). Such communication often takes place over ordinary voice-grade
long-distance telephone lines and is subject to “noise.”

One way to check whether the data arrive as sent is for the communication to take
place under a “protocol” that features some form of error-detection through calculation of
a “check” quantity by the receiving computer. If an error is detected, then the part of the
file that is affected must be re-sent. How complicated we make the check quantity depends
on how sure we want to be to detect any errors. A single check bit will suffice to detect if
a single error (or an odd number of errors) has occurred but will miss any even number of
errors.

Both checking and resending slow down throughput, the volume of data that can be
sent per unit time. If we were to wait until the end of the transmission to do a check, we
might find that we have to re-transmit the entire file (and conceivably have to repeat it
more than once!). On the other hand, sending a check bit with every byte of the file will
slow down the rate of transmission of the file in two ways: we have nine-eighths as much to
transmit, and the receiving computer must spend time checking each byte and signalling
back whether it checks out.

We would like to minimize the average total amount of time needed to send a file,
including all re-transmissions of parts in which errors are detected. We will send the data
in packets of b bits. After each packet is sent, a check quantity is sent; if an error is
detected, the packet is re-sent. We want to determine the optimal size for b.

The Mathematical Model

We assume that the original file consists of N bits, hence is sent as N/b packets
(actually [N/b], but we are building a continuous model). Let

p = probability that a bit is received correctly.

If we assume that errors are statistically independent, then the probability that an entire
packet is received correctly is p®, and the probability of a “bad packet” is 1 — pb. A
result from probability theory says that the average number of packets that need to be
sent to achieve N /b successes (error-free packet transmissions) is N/bp® . So, on average,
transmitting the file will take

N
i’;; X (time to send a packet, including the check quantity).

We must also include in the time to send a packet the time to send control informa-
tion (start-of-packet character, packet length, packet sequence number), send the check
information, process the check information, and respond whether the check is successful.

t This is the mean of the negative binomial distribution for the the k'* success, with
k = N/b and probability of success p* [Larsen and Marx 1986, 222-224].
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We will assume that this time does not depend on the length of the packet: that is, we use
a single check digit or a small number of check digits, the same regardless of the length b
of the packet. With this assumption, the average time to complete a correct transmission
of our message is

£(b) = 3%[5 KB+ N),

where k is the time it takes to send one bit and A is the number of bits in the check
quantity. We want to minimize f(b) for values of b between 1 and N, inclusive. Figure 3
shows graphs of f for a typical value A = 8 and varying values of p.

time time
3 4
p=.99
p=.9

10 20 b 100 b

1 time time

= .99
p=.999 p = 9999
| .
Tooo 2000 3060 4000 b 1000 2000 3060 4000}
. N

Figure 3. Graphs of f(b) = Z;k(b-i- A) for A =8 and p=.9, .99, .999, and .9999.

We can analyze f for its extreme values by finding its derivative (Exercise 6):

£b) = ;f;  [(mp)e? + (Al p)s+ X].
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For the special case p = 1 (perfect transmission), we have Inp = 0 and the derivative
simplifies to —Nk\/b?, which is always negative; so the extreme values are at the endpoints
(b = N to minimize f, and b = 1 to maximize f). Otherwise, by using the quadratic
formula, we find that the derivative is zero at

- 7 _ - 2
b = Alnp £ /(Alnp) 4/\lnp=_/\i _/\___i_=:\_ 14 1+L
2Inp 2 4 Inp 2 Allnp|
where we have used that |Inp| = —Inp since p < 1. Under normal circumstances, p will

be close to 1, so |1np| will be close to 0. Hence 4/A|1n p| will be much larger than 1, and

~—14 Nt 2
AIlnivl /\Ilnp /\Ilnpl vAnp|

We will be interested in only the positive value. Substituting the approximation into the
expression for b*, we get

[Inp|

To make this formula meaningful, we can examine some numerical instances, as in
Table 1. (Note that for values of p near 1, we have |Inp| = 1 — p.)

Comparison with Reality

To compare our model with reality, we offer data from the use of the FORMAC
protocol for transfers between an IBM mainframe and a Macintosh II [Simware 1989]. The
packet size for this protocol is 1,905 bytes, or 8 x 1905 = 15,240 bits, and it takes about
10 seconds to transfer one such packet over a 2400 bps (bits per second) modem.

We transferred a file of length 105K bytes, which was sent by the protocol as 60
packets (including check information). Of the 60, 35 got through correctly the first time,
about a 60% rate. We recorded that 15 of the 25 erroneous packets were re-sent once, 6
were re-sent twice, 1 was re-sent 6 times, 1 was re-sent 15 times, 1 was re-sent 19 times,
and 1 was re-sent 23 times. The entire transmission took about 23 minutes.
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Table 1. Results for a check function consisting of a A check bits.

Aop 1-p b* = \/A|Inp| P=p"

1 .9 1 3 729
.99 .01 10 904
999 .001 32 968
.9999 .0001 100 .990
99999  .00001 316 997
.999999  .000001 1,000 999
8 9 1 9 387
.99 .01 28 155
999 .001 89 915
.9999 .0001 283 972
99999  .00001 894 991
.999999  .000001 2,828 997
16 .9 1 12 282
.99 .01 40 .669
999 .001 126 .882
.9999 .0001 400 961
99999  .00001 1,265 987
.999999  .000001 4,000 .996

Since about 60% of the transmissions got through the first time, we would expect about
60% of the first retries to get through, and 15 of 25 did. We would expect about 60% of
the second retries to get through, and 6 of 10 did. But we wouldn’t expect needing up
to 23 re-transmissions! One explanation may be that the mainframe is heavily burdened
at certain times, and transmission attempts at those times suffer long delays. Another
explanation is that the communications line may be very noisy for certain intervals, so
that errors are more likely and more frequent during those times (so that our assumption
that errors are independent does not hold). The result cited above from probability theory
shows that, without any overburdening of the mainframe or any noisy intervals, it should
have taken on average about N/bp® = (N/b)/p® = 60/0.60 = 100 packet attempts, or 17
minutes, to transmit the file.

The probability P = p® of successful transmission of a packet in this case is about
60%; with b = 15,240, we arrive at the estimate p = .9999665. For such a value of p, the
optimal packet length is b* = v/A/|Inp| ~ 173v/X. We do not know the value of A that is
used by the FORMAC protocol {, but we can evaluate the expression for 4* with different
possible values of A. In particular, for A = 8 (the common situation of a check byte), we

I There is no information about it in the manual [Simware 1989}, and the vendor did
not respond to a letter requesting more information.
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get b* = 490; for A = 1024—a huge amount of checking—we get b* = 5500. Both of these
values are far short of the block size 15,240 used by the protocol.

Sensitivity Analysis

The difference between the optimal packet size and the packet size used by the protocol
raises a question relevant in most real-world modeling situations: just how sharp is the
optimum? How much does it matter if we use a packet that is twice as long, or half as
long, as the optimal size? This is certainly a concern here, as there is no way of knowing
in advance how noisy the communications channel will be, that is, the value of p.

In fact, the minimum is fairly broad, as you can see from Figure 3. Exercise 8 asks you
do do some relevant calculations. On the other hand, Exercise 8 also shows that in this
example the large block size used by the protocol seems to result in significant inefficiency.

Exercises
6. Verify the calculation of f'(b).

7. Use the linear approximation property of the derivative t> show that Inp =~ p — 1 for

p close to 1.
8. With p = .9999665 and A = 8 we found that the optimal packet size is b* = 490.
Investigate the sharpness of this optimum by computing the ratio _]{((bb")) for

a) b= 256 (about half optimal size),
b) b = 1024 (about twice optimal size),
¢) b = 15240 (the size used in the protocol).

9. Assuming that the FORMAC protocol uses a single check byte, for what value of p is
its block size the optimal block size?
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Answers to Exercises

1. B'(r) = C(R —2r), so r* = R/2 is the only critical point. Since B"(r*) = —2C < 0,
the critical point is a local maximum. Since it is the only critical point, it must be a
global maximum.

2. With r = 1.28 inches, one side could hold over 900,000 bytes, so the disk could hold
1800K.

3. We have
bL

c?’

Wi(e) = 5 -

so that c* is the only critical point in the domain (0,00). Since W"(c) = 2bL/c® is
positive for ¢ = ¢*, ¢* is the global minimum.

W(e*) 1/VBL . bL | 3b\ _
¢—f——L(2 +V%Z+E}MMWL

5. ¢* = 173 bytes, with W(c*) =~ 175 bytes. On the other hand, W(1024) = 529 bytes.
Thus, under our assumption that L = 10,000 bytes, the PC diskette wastes about 5%
of its space, when it could waste less than 2%.

i [P = bp’lnp N
fo)=N ( o ) Kb+ )+ 35 (8)

_ bpb -(b+ /\)pb(l + blnp)
‘Nk( (op)? )

[(Inp)b* + (Alnp)b + A].

_ —Nk
- b2pb

7. In general, f(p) = f(po)+f'(po)(p—po) for p close to pg. Applying this with f(p) =Inp
and po = 1 gives the result.

8. The ratios are a) 1.0068, b) 1.0095, c) 1.6141. While a packet size half or double the
optimal size increases the transmission time by less than 1%, the very large size in
the protocol increases the transmission time by more than 60%.

9. Solve b* = y/A\/|Inp| for p, getting p = exp{—A/(b*)?}. For A = 8 and b* = 15,240,
we get p = .999999966.



NEWTON’S METHOD AND FRACTAL PATTERNS
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Area of application: mathematics

Calculus needed: derivatives of polynomials and rational functions, definition of the deriva-
tive, the derivative as a linear approximation.

Related mathematics: complex functions, fractals, chaotic dynamics.

Suggestions on use: a computer with appropriate software, or at least a calculator, will be
helpful for doing the exercises.

The Problem: How does Newton’s Method Behave in the Large?

Some of the oldest problems in mathematics involve finding solutions to equations
of the form f(z) = 0. Such solutions are called zeros of f, or sometimes roots of f. For
polynomials of degree one or two, general methods of finding zeros were known before 2000
B.C. In the sixteenth century, Italian mathematicians developed methods to find zeros of
polynomials of degrees three and four. However, the Norwegian mathematician Niels Abel
showed in 1826 that there is no general method for solving polynomial equations of degree
greater than four. When f is not a polynomial function, f(z) = 0 can be solved exactly
only in very special cases.

In cases where we cannot solve f(z) = 0 exactly, we need an efficient method of
approximating solutions to any desired degree of accuracy. (Indeed, such a method is
valuable even when we can solve the equation, but the solution involves, say, calculating
cube roots. How can we calculate cube roots efficiently?) Isaac Newton found just such a
method, based on his newly developed differential calculus, in 1669. In an improved form
due to Joseph Raphson in 1690, this method is now taught in beginning calculus courses as
“Newton’s method.” We will present it in the next section. It involves choosing an “initial
guess” zy, and finding iteratively a sequence of numbers z,, 3, z3,... which converge to a
solution.

When the function f has several zeros, the zero found by Newton’s method will depend
on where we choose the initial guess zo. The pattern of which initial guesses lead to
which zeros—the behavior of Newton’s method “in the large”—turns out to be surprisingly
complicated and interesting even for polynomials. When we generalize slightly and apply
Newton’s method to polynomials f(z) where the variable z is a complex number, pictured
as a point in the complex plane, the behavior of Newton’s method in the large produces
pictures which are infinitely complicated and astonishingly beautiful. A sample is shown at
the end of this module. Understanding the mathematics behind these pictures is a subject
of current research, with strong ties to the study of general chaotic systems. The goal of
this module is to guide you along this surprisingly short road from beginning calculus to
a research frontier of mathematics.

68
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Newton’s Method

Suppose we have a differentiable function f(z), for which we wish to find a zero. We
start with an initial point zy, and determine a new point z; by beginning at the point
(9, f(z0)) on the graph of f and following the tangent line from this point to where it
intersects the z-axis. See Figure 1. Since the slope of the tangent line is f'(z), we have

that F(z0)
To !
To—z1 f'(zo),
so that F(z0)
- JATO)
T1=2T¢ f’(Io).

We then use z; as the starting point for the next iteration of this procedure, to get z,.
Thus we generate a sequence of points z, by the rule

Tn4l1 =Tn — '}%1::))",

If we choose the initial point zo close to the zero z, we are trying to locate, the z,’s will
converge to z, quite rapidly.

n=0,1,2...

A=)

flxg)

slope = f'(xp)

X

Figure 1. The geometry of Newton’s method.

For the purposes of this module, it will be convenient to have a more compact notation
for the Newton iteration. Given a differentiable function f, define the Newton function for
f by

N(iEz)=z - @
fi(=z)
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Notice that N(z) is not defined if f'(z) = 0. Recall that in calculus such a point is called
a critical point of f. Critical points of f are not in the domain of the Newton function for
f.

With this notation z; = N(zy), 3 = N(z;) = N(N(zo)) = N?%(z,), and in general

In = Nn(:vO)’
where the notation N means “/N applied n times.” We will call the sequence z¢,z;,2Z2...

the Newton sequence beginning at z,.

As an example of Newton’s method, let us approximate a solution to z* —z -1 =0.
A quick graph of f(z) = 23 — z — 1 shows that it has just one zero, between 1 and 2. The
Newton function for f is

22—z -1 _23:3+1
3z2 -1 ~ 322-1"

N(z)=z -

Starting with zo = 1, the results of the Newton calculations are

=1

1= 1.5
T,=134...
zg = 1.3252...

r4 = 1.3247181...

zs5 = 1.324717957244789...

ze = 1.32471795724474602596091 ...
z7 = 1.32471795724474602596091 . ..

Since z¢ and z; agree to the shown accuracy, we conclude that we have found the solution
to this accuracy. Notice how quickly the sequence converged once we got close to the zero.
The number of correct decimal places roughly doubled with each iteration: z2 was correct
to 1 decimal place, z3 to 2 places, z4 to 5 places, z5 to 13 places, and z¢ to at least 23
places. This kind of convergence is called quadratic convergence by numerical analysts,
since the error at the (n + 1)* stage is proportional to the square of the error at the n'®
stage. It is characteristic of Newton’s method.

We can understand why Newton’s method usually works so well by using some calculus
on the Newton function. First of all, from the definition of N(z) we see that z, is a zero
of f if and only if N(z,) = z,, i.e. z, is a fized point of N. Next, consider the distance
from z, to the fixed point z,. If z, is close to z,,

Tpt1 — Za = N(z,) — N(z.,) = N'(z,)(zn — z.).

by the linear approximation property of the derivative. Hence if z, is close to z,, then
Tp4y Will be even closer if |[N'(z,)| < 1. In this case z, is called an attracting fized point
of N. To use this information, we should compute the derivative of N.
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By the quotient rule,

o P@FE - f@FE) @R
N(z)=1 Ok = TFEE

Thus, if z. is a zero of f, we see that N'(z,) = 0. This is certainly less than one, and
it means that z,,.; — z, will be much smaller than z, — z,. In this case, we say that z,
is a super-atiracting fized point of N. In fact, with a little closer analysis, it is possible
to show that when N'(z,) =0, z,41 — z. is approximately proportional to the square of
Tn — T4, Which is exactly quadratic convergence. What we have said is important enough
to summarize in a theorem.

Theorem. Suppose f is a differentiable function. Then a number z,, which is not a
critical point of f, is a zero of f if and only if it is a super-attracting fixed point of the
Newton function of f.

It is only fair to point out that Newton’s method does not always work so beautifully.
In fact, for some choices of the initial guess zo, Newton’s method may not converge at
all. In the example above, f(z) has critical points at ¢ = +1/4/3. If we should choose
zo to be one of those critical points, N(zo) will be undefined and Newton’s method will
fail. In fact it will fail if any z, is a critical point. Finally, there are cases where the
entire sequence of z,’s is defined, but does not converge to a zero of f. The simplest case
is when the sequence of z,’s becomes periodic. For instance, we will see a case shortly
where the sequence is periodic with period two: zq = 75 = z4 = .... It is also possible
for the Newton sequence to jump about chaotically, never settling down to any regular
behavior. Exercises 3 through 6 ask you to think about some of these difficulties. The
moral for practical users of Newton’s method is clear. Choose your initial guess wisely,
close to where you know there is a zero.

Exercises

1. Explain why, if [zp41 — 2] = (24 — 4)?, the number of correct decimal places in z,
should approximately double with each iteration.

2. For the following functions, calculate the Newton function and iterate it starting at
the given initial point. Look for quadratic convergence to a zero of f.

a. f(z)=z2-2,z9=1

b. f(z)=2%~2z; 20 =1
c. f(z)=2%-2z;29=.7
d. f(z)=2%~2z;20=.5

3. Use the “follow the tangent line” description of Newton’s method to explain geomet-
rically why the method fails when f'(z,) = 0 for some n.

4. Sketch the graph of a function f, an initial point z(, and tangent lines giving =, and
z2 with z5 = z¢, so that the Newton sequence is periodic with period two.
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5. Calculate the Newton function for f(z) = 12::_ T

starting at 7o = .57 What happens when you iterate it starting at zp = 2? Draw the
graph of f(z) and explain these behaviors geometrically.

6. Calculate the Newton function for f(z) = z2? + 1. Iterate it starting at z¢ = .5 for as
long as you have patience. Do you see any patterns or tendency to converge in the
Newton sequence? Why should we expect trouble here?

What happens when you iterate it

Newton’s Method in the Large: An Example on the Real Line

In Exercise 2b,c,d you saw that when f has several zeros, different initial points zg
can lead to different zeros. The pattern of which initial points lead to which zeros is not
simple. Exercise 2c, for example, shows that Newton’s method need not converge to the
zero which is closest to zg. In this section we will study the pattern of convergence to
zeros for a slightly simpler polynomial, f(z) = z3 — z. This function clearly has zeros at
z = —1,0,1. Finding the zeros is no problem! Rather, we will be concerned with which
initial points lead to which of the zeros.

Definition. If z, is a zero of f, the basin of attraction of z, is the set of all numbers zg
such that the Newton sequence starting at zo converges to z,. We will denote the basin
of attraction of z, by B(z,).

We want to calculate the basins of attraction of —1,0 and 1. Since these points are
all attracting fixed points (in fact super-attracting fixed points) of N, we know that some
open interval around each one is contained in its basin of attraction. The largest such
interval is called the local basin of attraction. We will start by finding the local basins.

From the graph of f in Figure 2, it should be clear that if z¢9 > 1, , will converge
to 1. (Try sketching the first few iterates.) In other words, [1,00) is in B(1). Moreover,
if z¢ is between the critical point 1/\/3- and 1, it will be true that £; > 1, so that z,, will
still converge to 1. Hence (1/+/3,00) is in B(1). If zo = 1/v/3, Newton’s method fails, so
this is the largest open interval about 1 which is contained in B(1): it is the local basin of
attraction for 1. Similarly, (—c0,—1/ \/3-) is the local basin of attraction of —1.

Now consider the local basin of attraction of 0. A little experimentation, or a careful
look at the graph in Figure 2, shows that close to 0, points oscillate around 0: if z > 0
then N(z) < 0, and vice versa. This suggests that we might look for a point of period two
for N, i.e. a point z for which N(N(z)) = z. To do this, we first calculate

A 23
N(z)=1z— = .
A v s
Notice that N is an odd function: N(—z) = —N(z). Henceif N(z) = —z, then N(N(z)) =
N(—z) = —N(z) = z, so that z will be a point of period two. Using this observation, we
solve

23

3
—$=3_$2———T’ oz —-:l:'—‘o, :E=O,:t

1
75
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Hence +1/+/5 are points of period two for N. Furthermore, it is not too hard to check that
if |z] < 1/v/5, then |N(z)| < |z|. This implies that the local basin for 0 is (—1/v/5, 1/v/5).

The local basins of attraction are shown in Figure 2.

! \ L /
"1 :l T :1\ 1 T 1 j X
V3 V5 vs| |V3

Y

N/ NV N/
Local Basin of -1 ? Local Basin of 0 ? Local Basin of 1

Figure 2. Local basins for Newton’s method.

The interesting behavior of Newton’s method for this example occurs in the interval
(1/v5,1/v/3) and the symmetric negative interval. Let’s look at these intervals. It should
be clear from Figure 2 that if z moves slightly to the left of 1/v/3, N(z) will be large and
negative, so that z will be in B(—1). As z continues to decrease , it will stay in B(—1)
until N(z) = —1/v/3. We can solve the equation

N(z) = —— = —— = —.577350
z —

to find £ ~ .465601. Thus the interval (.465601,.577350) is in B(~1), and by symmetry
the interval (—.577350, —.465601) is in B(1).

As z moves to the left of .465601, N(z) moves to the right of —.577350 into B(1), so
z is in B(1). It stays in B(1) until

2 3
N(z) = z5— = —-465601,

which happens at z ~ .450202. In general, we find a sequence of numbers by = 1/V/3 >
by ~ .465601 > by ~ .450202 > b3 > ... such that

(bi,b;—1) is in B(—1) when 1 is odd,
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and

(bi, bi—1) is in B(1) when ¢ is even.

The numbers b; can be determined by successively solving equations N(b;) = —b;_;.

B(®) B(-1) B(D B(-1) 51\)
N Ny ~ %

J ] i i !
bo=1 by by by bo=_1

75 73

Figure 3. Basin structure in (1/v/5,1/v/3) (distances are not to scale).

The values of the first few b;’s are given in Table 1, along with the lengths of the
intervals (b;,b;—1) and the ratios of lengths of successive intervals. Notice the interesting
behavior. Each of B(—1) and B(1l) consists of infinitely many intervals, whose lengths
decrease approximately geometrically. An arbitrarily small movement of zq to the right of
1//5 will cause convergence to shift between 1 and —1 infinitely often.

i b; bi — bi_1 (bi = bi—1)/(bi+1 — bi)
0 577350

1 465601 .111749 7.26

2 .4502020 .015399 6.18

3 4477096 .0024924 6.03

4 4472962 .0004134 6.01

5 44722736  .00006884 6.00

6 44721589 .00001147 6.00

7 44721398 .00000191

o0 447213595

Table 1.

Exercises
7. What happens to Newton’s method for f(z) = z3 — z if we choose z¢ = b; for some i?

8. Verify that b, =~ .465601 by using Newton’s method (!) to approximate the real
solution to 2z3 + .577350(3z%) — .577350 = 0. (See where this comes from?)

9. Let’s see why the ratios of lengths of successive intervals in Table 1 approach 6.
a. Verify that N'(1/v/3) = —6.
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From the definition of the derivative, this means that if 2’ and z'’ are any two points
close to 1/4/5, we will have

N@) = N@")

! — g

6.

b. Now use the fact that N(b;) = —b;_;, and the fact that b; is close to 1/\/5 for
large :, to show that for large 1,

bi — bi_y
—bi+1 s ~ 6.

10. What are the Newton’s method basins of attraction for the roots of z2 — 2? What
about for the roots of 2 — 4z 4 3? Justify your answers.

Newton’s Method in the Complex Plane

We have seen that the global behavior of Newton’s method can be interesting on the
line of real numbers. However, it is in the plane of complex numbers that we see the true
intricacy and beauty of the patterns the method can generate. You might want to look
ahead at the pictures in this section.

Recall that a complex number z has the form z = z + iy, where z and y are real
numbers and 7 is a symbol having the property that 12 = —1. We call z the real part of z,
and y the imaginary part of 2. We represent the complex number z = z + iy as the point
(z,y) on a coordinate plane which we call the complez plane. The z-axis is called the real
azis; the y-axis the imaginary azis. The norm of a complex number is the non-negative real
number |z| = 1/22 4 y2. Geometrically, it is the distance from z to the origin 0 = 0 + 0.

Addition and subtraction of complex numbers is done componentwise, so that if z =
z +1y and w = u + v, then

z+w=(z+u)+i(y+v)
z—w=(z-u)+i(y—v).

Note that |z — w| is the geometric distance between z and w. Multiplication is done
using the distributive laws and the property that i = —1:

aw = (z +ay)(u +iv) = zu +i(zv + yu) + *(yv) = (zu — yv) +i(zv + yu).

To divide complex numbers, we use the standard method of “rationalizing the denomina-

tor”:
z TH+iyu—1w (zuty)+i(yu—zv) Tudyv yu-—zU
—_— = et 1

w  u4ivu-—iv u? 4 02 u? + v? u? 4+ 02’
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Derivatives of functions of a complex variable behave computationally just like deriva-
tives of functions of a real variable. For example, if f(z) = 23 — 2, then f'(z) = 322 — 1.
Moreover, Newton’s method generalizes directly to the complex plane: if N(z) = z —
f(z)/f'(2), and zg is a complex number, then the iterates N*(z) will in general converge
quadratically, in norm, to a zero of f(z).

For a first example of Newton’s method in the complex plane, let’s consider f(z) =
22 + 1. The corresponding real function f(z) = z? 4+ 1 has no real roots, and you saw
in Exercise 6 that Newton’s method responded to this situation by jumping chaotically
around the real line. However, 22 + 1 = 0 has two solutions, at z = 7 and z = —i. If
we choose zg on the real axis, the Newton iterates will do exactly as they did in Exercise
6, since on the real axis, complex arithmetic reduces to real arithmetic. However, if we
choose zg not on the real axis, Newton’s method converges nicely. For example:

Z2p = 1+5Z Zp = S—1

zy = .1000 + .4500: zy = .0500 — .9000:
z9 = —.1853 4+ 1.2838: z9 = —.0058 —1.0038:
z3 = -.0376 + 1.0234: 23 = —1

zyg = —.0009 4 .9996:

25 = 1

where the calculations are carried to four decimal places.

If we apply Newton’s method to f(z) = 2% — z with initial points not on the real axis,
we notice that global behavior can be delicate and not easily predictable. For example:

zp = .60 + .45¢ zg = .65 + .45: zg = .70 4+ .45:
zy = 4947 + .0222: z) = .5520 + .0301: zy = .6067 + .0429:
29 = —.8207 — .3249: 2z = —1.3527 — 2.1411z zg = 1.7051 — 1.7393:
z3 = —.7866 + .0200: z3 = —.9442 — 1.352T: z3 = 1.1967 — 1.0911:
zg = —1.1320 — .0381: zg =  —.6910 — .7892: z4 = .8870 — .6224:
z5 = —1.0190 — .0103: zg =  —.5437 — .3489%: zs = .T267 — .2445
26 = -1 —.0006: 2 =  —.4224 4 .1111: z¢ =  .7689 4 .1833:
z7 = -1 77 = 0823 — .277T: z7 = .8965 — .1785:
2g = 0272 — .0291: zg = 9371 + .0383:
zg = .0001 + .0001z zg = 1.0034 — .0088:
Z1p = 0 z10 = .9999 — .0001:
211 = 1

This behavior is shown in Figure 4.

Can we make some sense out of this complicated behavior, and understand the global
behavior of Newton’s method in the complex plane? In particular, can we find the basins
of attraction of the different zeros of f(z), at least for simple functions f? This question
was first considered by the English mathematician Arthur Cayley in 1879. Cayley was able
to solve the problem completely for quadratic polynomials. He proved the result which
you might have guessed in the real case from Exercise 10.
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i4

.60 + .45:
+ 7
= 70 + .45¢

.65 + .45

4

Figure 4. Newton’s method for 23 — 2.

B(a)

Figure 5. Newton basins for a quadratic polynomial.
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Theorem (Cayley, 1879). Let the complex quadratic polynomial f(z) = az? + bz + ¢
have distinct zeros a and § in the complex plane. Let L be the perpendicular bisector of
the line segment from « to 3. Then, when Newton’s method is applied to f(z), the basins
of attraction B(a) and B(8) are exactly the half-planes into which L divides the complex
plane.

These basins are pictured in Figure 5. Another way to state the result is that Newton'’s
method starting at z; will converge to a precisely when z; is closer to « than it is to beta.
On the bisector L, the Newton function N(z) is chaotic: the iterates of a point 2 on L will
bounce around forever on L without converging or showing any pattern. This explains the
result of Exercise 6: the real axis is the perpendicular bisector of the line segment between
the two zeros ¢ and —i of 2% + 1.

%}
N4

s 4T

Figure 6. Newton basins for 23 — 2.
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Our example on the real line shows that the situation for cubic polynomials must be
more complicated: initial points will not always converge to the closest zero of f. Cayley
considered cubic polynomials, but he wrote that in this case “it is anything but obvious
what the division is, and the author has not succeeded in finding it.” In fact, even the
qualitative nature of the Newton basins for a cubic polynomial wasn’t understood until
the work of Fatou and Julia on “Julia sets” about 1918, and the first pictures of these
basins were drawn only in the 1980’s when powerful computer graphics became available.

Let’s consider the cubic polynomial f(z) = z* — z. To picture the global behavior of
Newton’s method in this example, we ask a computer to color each point zg in the complex
plane according to which zero of 2% —z Newton’s method will converge to, if we start at z.
Figure 6 shows the result, with B(—1) colored gray, B(0) colored black, and B(1) colored
white. Notice how the pattern we found on the real line extends to an intricate fractal
pattern in the complex plane. Figure 7 shows a blow-up of the gray bulb near 2y = .5.
Each gray bulb has infinitely many white bulbs attached densely along its boundary, all of
those white bulbs have infinitely many gray bulbs attached densely along their boundaries,
and so on ad infinitum. No wonder Cayley had trouble picturing the shapes of the basins!

Hsod2 .4¢S¢

Figure 7. Detail of a bulb.
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It turns out that at any point where two of the basins meet, the third basin does as
well. The infinitely loopy fractal set which is the common boundary is called a Julia set.
The Newton function N(z) = 2z3/(32z% — 1) takes the Julia set onto itself, and does so
chaotically. N also preserves each of the three colored regions, and transforms them in
interesting ways. For instance, N takes the gray bulb around z = .5 onto the main gray
region at the left. N takes three different bulbs onto the bulb around z = .5: the bulbs
around z = .6 +.45: (see Figure 4), z = .6 — .45¢ and z = —.46 (see Figure 3 and Table 1).

While Figure 6 would probably not win any beauty contests, Newton basins for other
cubic and higher order polynomials can have quite beautiful structures. Figure 8 shows
part of the basins for Newton’s method applied to the cubic polynomial z* —1. B(1) is in
white, and the other two basins are both colored black. The origin is at the center of the
picture.

Figure 8. Newton basins for 2% — 1.
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Exercises

11. We started our discussion with quadratic polynomials. What about linear polynomi-
als? For f(z) = az + b, compute N(z). What is the basin of attraction of the zero
—b/a?

12. If f(2) = 2% + 1, calculate the first three Newton iterates starting from zo = .5¢. Are
they behaving as Cayley’s Theorem says they should be?

13. If f(z) = 22+ 1 and z = z +1y, find the real and imaginary parts of N(z) as functions
of z and y. (This is what you need to do if you are going to program a computer to
carry out Newton’s method, and your computer does not support complex arithmetic.)

14. Use the formula for the imaginary component in Exercise 13 to show that N(z) maps
B(?) (the upper half plane) into itself.

15. If you have a computer, and succeeded well enough in Exercise 13 to want to try
something harder, program your computer to do Newton’s method on f(z) = z3—z—1.
Find the three complex zeros of f.

16. Program your computer to do Newton’s method on f(z) = 23 — 1 and find three
starting values 2, all with positive real part, which converge to the three different
zeros of f. (Figure 8 can help you.)

Further Directions

Chapter 6 of Peitgen and Richter’s The Beauty of Fractals and the article by Peitgen,
Saupe and von Haeseler have a number of other pictures of Newton’s method in the
complex plane, and there is also a discussion in James Gleick’s best-seller Chaos: Making
¢ New Science. Becker and Dorfler have a number of do-it-yourself computer experiments
involving Newton’s method and other ways of generating fractals. Strang shows a number
of interesting examples of Newton’s method, emphasizing chaotic behavior.

The global behavior of Newton’s method in the complex plane is an area of current
research in mathematics. For instance, in the examples we have seen, the initial points zg
for which Newton’s method fails to converge to any zero of f(z) are rare. They are points
on the the boundary between different basins, and you would have to be very unlucky to
choose one by chance. However, in 1983 Curry, Garnett and Sullivan discovered that there
are many cubic polynomials for which there are sets of starting values 2y with positive area
for which the sequence N"(z9) does not converge to any zero of f(z). The structure of
these kinds of areas is related to the famous Mandelbrot set in fascinating ways.

We seem to have come a long way from an approximation technique based on calculus.
Yet, of course, it isn’t really a long way at all. Perhaps the moral is that in mathematics,
there are simple questions (“What happens if we try different starting points for Newton’s
Method?”) which, if we pursue them, lead to surprising and sometimes beautiful answers
and new questions.
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Answers to Exercises

1. If z, — 7, = c- 10* is correct to k decimal places, then z,41 — z, ~ c* - 102* will be
correct to about 2k decimal places.

2. In each case the last figure is the zero correct to the shown accuracy:

1 1 T .9
1.5 2 -1.2%... -2
1.4166... 1.6 —-1.43322... +.0085...
1.4142156. .. 1.442... —1.41456... —.0000006165...
1.4142135623746. . . 1.4150... -1.41421370... .000000000000 ...
1.414213562373095.. . 1.4142142. .. —1.414213562373...

1.414213562373 . ..

3. The tangent line at (z,, f(z,)) is level, so never intersects the z-axis to give zp41.

4. See Figure 2 for an example.

2 3
5 N(z) = IZ:E_ T When zy = .5, ¢, converges to z, = 0. When zy = 2, z, goes to

infinity.
6. The Newton sequence jumps about chaotically and never converges:

0.5 -0.75  0.29167 -1.56845 —0.46544 0.84153 —0.17339 2.79697
1.21972 0.19993 -—-2.40088 —0.99218 0.00785 —63.7104 —31.8473

We would expect some kind of trouble because f(z) = 0 has no real solutions.

7. Newton’s method fails because the denominator of N(z) becomes undefined at the
(z + 1)** stage.

10. For 2% — 2, B(—v/?2) = (—0,0) and B(v/2) = (0,00). For z? — 4z + 3, B(1) = (—00,2)

and B(3) = (2,00). Argue from the geometry of the parabola. In the next section we

will generalize to the complex plane the principle that for quadratic polynomials, any
initial point is attracted to the root closest to it.

11. N(z) = =b/a. B(—b/a) is the entire complex plane.

12. .51 — 1.257 — 1.025: — 1.0003049: — ... — .

1 1 z 1 Y 1
v@=5(:-1) =3 ) + 3 (04 )

13.
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Yy 1
14. If y > 0, then 2(1+a:2+y2) > 0.

15. z = 1.32472, z = —.662359 £ .56228:. We found the first root in an earlier example.

16. For example, (1/2) % (1/2)i lead to —(1/2) £ (v/3/2)i.
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Calculus needed: solving y' = ky.

Related mathematics: mathematical modeling

Suggestions for use: the exercises require a scientific-functions calculator; optional exercises
involving least-squares line fitting require a computer program for that purpose.

Controversy over the Age of the Earth

How old is the earth? Estimates of the age of the earth have become larger with
time and the uncovering of more evidence. In 1650 Bishop Ussher, basing his calculation
on his theology, pinpointed the origin of the earth as occurring in 4004 B.C. Sedimentary
rocks—those made up of layers of sediment—he supposed to have resulted from sediments
deposited as the Great Flood (of Noah and his ark) receded. Scientists gradually realized
that natural processes could not have formed such rocks in so short an interval, and that
the earth must be much older. (For a summary of the history of attempts to date the
earth, see Badash [1989].)

In the late 19th century, considerations of the hypothesized cooling of the earth led
England’s leading physicist, Lord Kelvin, to suggest that the earth was 20 to 40 million
years old [Burchfield 1975]. But geologists already thought that it must be much older.
The discovery of radioactivity at the end of the 19th century at last provided the basis
for a reliable method to determine the age of the earth. In this module we explore the
method, its mathematical background, and its application to determining the ages of the
earth and the moon.

The idea for this module came from two students in Calculus II, who realized that
there must be a mathematical explanation behind the graphical procedure they were using

in their geology class to determine the age of rocks, and asked me to explore it and explain
it to them.

The Relevant Physics

All of the naturally occurring materials in our world are formed from combinations
of atoms of 92 basic chemical elements, such as hydrogen, oxygen, carbon, and iron. All
of the atoms of a particular element have the same number of protons in their nuclei, so

85
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that, for example, every hydrogen atom has 1 proton in its nucleus and every carbon atom
has 6 protons in its nucleus.

In addition, an atomic nucleus may include a variable number of neutrons, so that
there are different varieties, or isotopes, of an element. A hydrogen nucleus, for example,
can contain 0, 1, or 2 neutrons, corresponding to ordinary hydrogen, deuterium, and
tritium. The notations for these isotopes are 1H, 2H, and 3H, where H is the chemical
symbol for hydrogen, the lower number is the number of protons in the nucleus, and the
upper number is the total number of nuclides (protons plus neutrons) in the nucleus.
Similarly, a carbon atom can contain between 3 and 10 neutrons; but only the isotopes
with 6, 7, or 8 neutrons occur naturally: !2C, !3C, and '4C, where C is the chemical
symbol for carbon. We will omit the lower number when it will simplify notation, since
specifying both it and the chemical symbol is handy but redundant.

Different isotopes of the same element differ in weight but have largely the same
chemical properties in how they combine with other elements. For example, deuterium
(sometimes referred to as “heavy hydrogen”) combines with oxygen to form “heavy” water,
with properties similar to the ordinary water formed from ordinary hydrogen and oxygen.

Many isotopes are stable but some are not. Unstable isotopes are radioactive: they
emit radioactive particles and break down into either a different isotope of the same element
or into an isotope of a different element. For example, carbon-14 (15C) breaks down into
nitroger (!3N). The element rubidium (which is especially important in geological dating)
has two naturally-occurring isotopes, 53Rb, which is stable, and 87Rb, which breaks down
into strontium-87 (§7Sr).

For a given unit of time, an atom of a particular unstable isotope has a certain constant
probability of breaking down. Whether it does so or not is a random event, unaffected
by neighboring atoms. Provided there is a large enough number of atoms in the sample,
the statistical law of large numbers guarantees that roughly the same proportion of atoms
will break down in each time unit. Also, in each of two large-enough collections of atoms
of the same radioactive isotope, over a given span of time, the same proportion of atoms
will break down. Our calculations will assume that samples are sufficiently large and the
time interval sufficiently long for us not to have to worry about chance variation in the
proportion of atoms that break down.

Different isotopes break down at different rates. The standard way to measure how
fast an isotope breaks down is in terms of its half-life, which is the length of time that it
takes for one-half of the atoms in a sample to break down. Isotope half-lives vary greatly,
from millionths of a second to millions of years.

The Use of Isotopes in Geological Dating

For geologists to be able to date the formation of a rock or mineral, it must have
contained, at the time of its forming, an unstable isotope that decays directly into a stable
product. Provided we know accurately the half-life of the unstable isotope, we can calculate
the age of the rock from
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¢ the amount of stable product generated by decay since the rock was formed, and
¢ the amount of unstable isotope remaining in the rock now.

Later we will see that quite a few assumptions are involved in our model of this process,
including being able to determine these amounts accurately.

For a measurable amount of unstable isotope to remain now in a very old rock, the
isotope must have a fairly long half-life. A half-life on the order of a billion years is
about right for most geological purposes. Elements such as uranium and rhenium have
sufficiently long half-lives to be useful; but carbon-14, with a half-life of 5,730 years, is
not useful on a geologic scale of time. Table 1 lists the half-lives of some isotopes that are
useful in biological and geological dating. Isotopes of different elements lead to different
dating methods; we note the names of some of these in Table 1. (The decay constants in
the last column will be discussed shortly.)

Table 1. Half-lives of some isotopes useful in geological and biological dating.

Isotope Half-life Dating method Decay constant
(years) (proportion per year)
12C 5,730 carbon-14 1.209 x10~4
$TRb 48.6 x 10° rubidium-strontium 1.43 x10~1
2380 4.470 x 10° uranium-thorium 1.55125 x10~1°
234U 248,000 uranium-thorium 2.794 %10~
230Th 75,200 uranium-thorium 9.217  x107°
Exercises

1. Approximately how much remains today of 1,000 grams of uranium-238 formed five
billion years ago? ten billion years ago?

2. Approximately how much remains today of 1,000 grams of carbon-14 formed a million
years ago? a billion years ago? Hint: First solve the easier problems of how much
remains after 1 x 5,730 years, after 2 x 5,730 years, and 3 x 5,730 years, and then
generalize.

3. Given an initial amount NV of an isotope with a half-life of T, years, how much will
remain after ¥ years?
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A Mathematical Model of Radioactive Decay

In order to calculate the age of a rock, we need a mathematical model of the decay
process of an unstable isotope. At the level of the atom, radioactive decay is a discrete
stochastic process, meaning that it deals with individual units subject to chance. The
unstable isotope consists of a (large) finite number of atoms, which break down one by
one, at random times, into atoms of the stable product.

For calculus to be useful in our analysis, our mathematical model must be
e continuous (not involving individual entities) and
¢ deterministic (not subject to chance variation).

We will develop a continuous model by assuming that we can deal with the unstable isotope
and its stable product, with their large numbers of atoms, as if they were continuous
quantities. We will eliminate the role of chance by assuming that the isotope decays
continuously (not in bursts), at a constant rate that is directly proportional to the amount
of unstable isotope remaining. Thus, exactly half of the remaining quantity decays in each
half-life period.

We translate these ideas into mathematical expressions in terms of the following no-
tation, which is common in the literature of isotope geology:

t time, in years, t = 0 being the time of formation of the rock

N(t) the number of atoms of unstable isotope at time ¢

Ny  the number of atoms of unstable isotope at time ¢ = 0

D(t) the number of atoms of stable product at time ¢

Dy  the number of atoms of stable product at time t = 0

Tyj2 the half-life of the unstable isotope (usually in years)

A the decay constant, the proportion that decays per unit time (usually one year)

The rate of decay of the unstable isotope is simply dN/dt, and the assumption that
the rate of decay is proportional to the amount of unstable isotope remaining becomes the
differential equation

dN
& =M

in which the constant of proportionality is the negative of the decay constant.

A way to convince yourself that this equation agrees with our definition of the decay
constant is to consider what happens in a small interval of time dt. The amount of the
unstable isotope that will decay in one year is AN, so the amount that will decay in dt
years is AN dt. Hence the change dN in N is —AN dt, and this argument from differentials
produces the equation above.

We note that our model also has the initial condition

.IV(O) = .No.
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Since one atom of unstable isotope breaks down into one atom of stable product, we have
D(t) = Do + (No — N(t)),

or

D(t) + N(t) = Do + No,

which is constant throughout the process.

Exercises
4. Show that the solution to the differential equation for N(t), taking into account the

initial condition, is
N(t) = Noe-At.

Sketch the solution curve.
5. Derive the equation for converting between the decay constant and the half-life:

/\Tl /2 = 111 2.

6. Write a differential equation and an initial condition for D(t).
7. Use the solution for N(t) from Exercise 4 to solve the equation for D(t) to find that
D(t) = Do+ No (1 —e™),

and sketch the corresponding solution curve.

Solving a Simple Version of the Dating Problem

The predictions of the model of radioactive decay in the preceding section agree well
with data from experiments. In such experiments, the initial amount of a radioactive
substance (or of a stable product) is measured, and then the amount is measured again at
a known later time. The decay constant can be determined from the two measurements.

However, our original geological problem is an inverse problem—given the amount
present now, how much time has passed since the sample was formed? A moment’s reflec-
tion will convince you that we can’t answer this question just from knowing the amount of
the radioactive substance present now. The amount present now could have resulted from
a small amount decaying for a small length of time, or from a large amount decaying for
a long time. Similarly, knowing just the amount of stable product present now won'’t do;
some or all of it could have been there when the rock was formed.
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What will suffice is knowing—in addition to the decay constant—

¢ the amounts now present of both the radioactive substance and the stable product,
that is, N(t) and D(t), and

e the initial amount of the stable product, D,.

Using the last equation in the previous section, we can deduce Np; and using the results
of Exercises 4 or 7, we can find ¢.

Example. Suppose that 1% of the rubidium-87 in a sample, which originally con-
tained no strontium-87, has decayed to strontium-87. How old is the sample?

We have A = 1.43x 10! (from Table 1), N(¢) = 0.99Ny, Dy = 0, and D(¢) = 0.01Np.
From Exercise 4,
N(t) = Noe~** = 0.99N,,

e~143x107xt _ g g9
—1.43 x 107" x ¢t =1n0.99 = —0.01005,
t = 7.0 x 10® = 700 million years.

Exercises

8. For lead-214, a sample of 1.000 grams decays to 210 milligrams in 1 hour. Determine
the decay constant and the half-life in units of minutes.

9. Analysis of a piece of mica shows that 6.00% of the atoms in the rock are rubidium-
87 and 0.24% of the atoms are strontium. Of the strontium, 17% is strontium-87.
Assuming that all of the strontium-87 was produced by decay of rubidium-87 originally
present in the rock, how old is the rock?

10. Use the results of Exercises 4 and 7 to show that

D(t) — D,

At
N L

and solve for ¢.
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The Isochron Diagram

One major complicating factor in the solution outlined in the exercises of the preceding
section is that we cannot be sure that the rock in question did not originally contain, at
the time of its formation, some of the stable product.

Another major complication is that it is usually not possible to determine directly
the absolute amounts present of the unstable isotope or of the stable product. Instead,
mass spectrometer analysis measures relative amounts—the ratio of each to another stable
isotope.

Let’s be specific by considering the rubidium-strontium method of dating. Rubidium
occurs naturally as 8’Rb (unstable) and 8°Rb (stable). The radioactive ”Rb decays into
87Gr (stable). Strontium has four naturally-occurring isotopes, all of them stable: 34Sr,
86Gr, 87Sr, and 88Sr. (There is also a short-lived radioactive isotope, ?°Sr, which does
not occur naturally but is produced in explosions of atomic bombs.) The stable isotope
86Sr provides a good basis for comparisons and measurement of relative amounts of other
isotopes, as it is not produced by decay of any naturally-occurring unstable isotope.

Let 8"Rb, 87Sr, and 36Sr stand for the quantities present of each isotope. A mass spec-
trometer can measure the ratios 2"Rb/%6Sr and 87Sr/®¢Sr. In our decay model, therefore,
it makes sense to take

87Rb

N(t) = the ratio oS, at time ¢
87Sr

D(t) = the ratio %, at time ¢.

If there were no initial amount of 87Sr present (i.e. Dy = 0), we could proceed as
in the example in the previous section. If Dy were not zero, but were known, we could
proceed as in Exercise 10. But how can we incorporate into our calculation an unknown
initial concentration Dy of the stable product?

We can get around this problem for igneous rocks. These are formed by cooling and
solidification of molten magma. From the same magma, different minerals forming at the
same time—in the same melt—will contain different proportions of rubidium and stron-
tium. However, the same mixture of strontium isotopes will be present in both minerals;
in particular, both minerals have the same initial ratio of strontium-87 to strontium-86, so
that Dy will be the same for both minerals.

Recall from our discussion of the mathematical model for radioactive decay that the
combined total number of atoms of the unstable isotope and the stable product is con-
served: D(t) + N(t) = constant. We may represent the situation of a mineral on a graph
whose axes are labelled with the ratios D = 37Sr/®Sr and N = 3"Rb/#6Sr. (See Figure

1.)
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D =%5r /%5y

N =8 Rb/%6Sr

Figure 1. Trajectory of the radioactive decay of a mineral
containing rubidium-87.

Since the sum of these ratios stays constant, the point representing the mineral lies on a
line of slope —1. As the rubidium-87 decays, the amount of strontium-87 increases; and
the point representing the mineral moves upward and to the left. We take t = 0 as the
time of formation of the mineral. Ultimately, after an infinite amount of time, the point
will be on the vertical axis: all the rubidium will have decayed to strontium.

Different minerals from the same melt will start at different points in the N-D plane.
Over time, each will trace a straight line segment of slope —1. There are two important
features to their graphs. First, all minerals from the same melt begin with the same initial
ratio Dy of strontium-87 to strontium-86, so at time ¢ = 0 their points will all be on a

horizontal line of height Dg. At t = oo their points are all on the vertical axis. (See Figure
2.)

The second key feature is that at any time ¢, 0 < t < oo, the points for all minerals
from the same melt will lie on the same upward-sloping ray through (0,D;). In fact, by
Exercise 10, for any mineral in the melt, at any time ¢,

D(t) — Dy At
N D) =e" —1.

This says exactly that the slope of the ray from the point (0, D) to (N(t), D(t)) has slope

m = e* — 1, independent of the mineral. In other words, the points for minerals from the

same melt lie on the ray of slope m from (0, D). Such a ray is called an isochron (from

the Greek, “same time”), because the ray passes through points of the same age. Figure
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2 shows two isochrons, for ¢t = t; and ¢ = ;. A graph like Figure 2 showing the isochrons
is called an tsochron (or correlation) diagram. The isochron diagram provides us with a
picture of the quantitative aspects of the decay process.

D =3%"5r[%85y

= ™
-t
-

-
L
-

Figure 2. Trajectories for different minerals from the same melt
of an igneous rock, with isochrons shown.

Furthermore, and this is the key to dating igneous rocks, we can determine the age of

minerals in the rock from the slope of any isochron, since m = e** — 1 implies that

p= 23T (%)

What we must do is now clear. Take samples of two minerals from the same melt of an
igneous rock. use a mass spectrometer to determine

Ny(t) = the current value of ' Rb/3®Sr for mineral 1

Dy(t) = the current value of ¥ Sr/%%Sr for mineral 1

N,(t) = the current value of ** Rb/3®Sr for mineral 2

D,(t) = the current value of ¥ Sr/®¢Sr for mineral 2.
Calculate the slope of the current isochrone

_Dit) = Dy(t)
Ny(t) - Na(t)’

and the solve for the age of the rock containing the minerals using formula ().

Example [Rapp et al. 1967, 247, 276]. A hypothetical rock containing the minerals

feldspar, biotite, and muscovite was analyzed and produced the hypothetical data in Table
2. How long ago was this rock formed?
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Table 2. Analysis of hypothetical rock.
(from Rapp et al. (1967, page 247])

Isotope ratio Feldspar Biotite Muscovite
87G8r/®Sr 0.77 0.80 0.82
8TRb/%¢Sr 2.00 5.00 7.00

Since we do not directly know the original 87Sr/8¢Sr ratio, we must determine m by
using two minerals. Using any two, we find m = 0.01. Then we can determine the age of

the rock by
_In(l14+m)  Inl.01

A 143x10-1
The rock is about 700 million years old.

¢ ~ 7.0 x 108,

(Note that the three data points in this example lie ezactly on the isochron, so it
didn’t matter which pair of points we used to determine m. Such are the advantages of
artificial data! See the Exercises for similar problems with real data.)

Exercises

11. Table 3 gives real data for various minerals from an ancient granite. Calculate the
points for the isochron diagram for the four minerals in this rock. Why is it difficult
to plot the isochron? Use the data for biotite and apatite to determine the age of the
rock. Why is it a good idea to use those two minerals, rather than another pair?

Table 3. Rock analysis of an ancient granite.
(adapted from Hamilton [1968, page 441])

: S"Rb 57Sc
Mmera.l S B85y
Biotite 658.6 10.36
Muscovite 14.0 0.91
Feldspar 134 0.86
Apatite 0.07 0.71

12. (optional) For the isochron diagram in the previous exercise, use the slope of the
least-squares line of best fit to the data to determine the age of the rock.
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13. (adapted from Faure [1986]) Four samples of rocks from Northern Light Lake, Ontario,
were analyzed by Hanson et al. [1971] with the resulting data in Table 4.

Table 4. Analysis of whole-rock samples from Northern Light Lake, Ontario.
(from Faure [1986, page 176])

Sample f%Tb ;:—g{
21 0.1564 0.7068
22 0.0755 0.7037
23 0.216 0.7091
24 0.328 0.7133

Plot an isochron diagram for this rock. Use the data for Samples 22 and 24 to
determine the age of the rock.

14. (optional) For the isochron diagram in the previous exercise, use the slope of the
least-squares line of best fit to the data to determine the age of the rocks.

Critique: Limitations of the Dating Process

Accurate dating of rocks or other objects by comparing isotope ratios rests on several
key assumptions. First, we have the model assumptions:

¢ The isotope ratio has changed only by radioactive decay. The relative amounts
of the isotopes involved have not changed for any other reason, such as metamorphism
(physical change) of the rock, exposure to air or other potential contaminant, or fractiona-
tion (migration) of atoms within the rock. All of these events are distinctly possible under
some conditions.

o The decay constant has not changed over time. This appears to be a very sound
assumption for the long-lived isotopes used in dating. The decay constants of some ele-
ments increase slightly under very high pressure, but there is no evidence that elements in
the crust of the earth have been subjected to such pressures for any length of time [Faure
1986, page 41].

Second, we have the sampling assumption:

e The samples analyzed are representative of the rock, mineral, or formation to be
dated.

In addition, the accuracy of the dating is affected by measurement errors in deter-
mining:
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o the decay constant (or equivalently, the half-life) of the unstable isotope. The value
is known to three or more significant digits for some isotopes. For rubidium-87, the decay
constant is known with an uncertainty of about 2% [Dalrymple, 1991].

¢ the amounts and relative quantities of the isotopes present in the sample. “Isotope
ratios [of the same element] can be measured routinely with a precision of £0.05% or better,
and quantities of Rb and Sr to 1 to 2%” [Long and Giletti 1972, p. 1052]. The main
exception is for very young or very small samples. Over a short interval of time—short,
that is, compared to the half-life of the unstable isotope—only a very small quantity of
the stable isotope is formed by decay. Such a small quantity may be difficult to measure
accurately, particularly if it is swamped by a large amount of the stable isotope present
initially.

The major source of uncertainty in our calculated value for t, therefore, comes from
the uncertainties of 1% to 2% in the amounts of strontium and rubidium and hence in
the values of the ratio 8”Rb/®Sr that are used in calculating m. Except in cases where
samples are small, we can expect the value of ¢ to have an uncertainty of 1% to 2%. Using
a greater number of samples and the least-squares to find m can reduce this uncertainty.

How Old Is the Earth? And What about the Moon?

The techniques we have explored in this Module are part of geochronology, the study
of the ages of rocks. Their main applications are the establishment of an accurate timeline
for fossils and extending the timeline beyond the earliest fossils.

So how far back do fossils and rocks go? The oldest known fossils, from the Warra-
woona Group in Western Australia, date from 3.3 to 3.5 billion years ago. An intriguing
isotopic argument suggests that there may have been life on earth even earlier. There
are two stable isotopes of carbon, carbon-12 and carbon-13; but plants preferentially use
carbon-12 for building organic compounds in photosynthesis. Thus, sediments with high
ratios of carbon-12 to carbon-13 may have been formed from material that had once been
part of early plants. Such sediments have been found in rocks from western Greenland
which were deposited about 3.8 billion years ago. The oldest dated rocks are 3.96 billion
years old. The oldest dated minerals are 4.2-billion-year-old zircon crystals from Australia,
for which we do not know the source rock.

The Apollo 17 astronauts brought back from the moon samples of surface soil con-
taining orange glass. Scientists initially anticipated that this material represented recent
volcanic eruptions, but the glass turned out to be unexpectedly ancient. Husain and Scha-
effer [1973] determined its age by comparing ratios of isotopes of argon, arriving at 3.7
billion years. Various isotopic methods lead to the conclusions that the earth, the moon,
and most meteorites formed about 4.5 billion years ago.
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Exercises

15. Moorbath et al. [1972] performed rubidium-strontium age determinations of rocks
in West Greenland, finding that the rocks were older than any other terrestrial rocks
dated up to the time of their study. For 25 rocks from the Narssaq area, their isochron
gives an initial 87Sr/%¢Sr ratio of 0.7015 + 0.00008. This information determines the
vertical intercept of the isochron line. They do not give the slope of the isochron, but
we can get a good approximation by calculating the slope from the vertical intercept
to one other point lying very close to the isochron line. Such a point is their sample
125523, which has a 8"Rb/#Sr ratio of 2.630 and a ®7Sr/®¢Sr ratio of 0.8424. From
this information, calculate the age of the rocks.

16. (optional) Here are the complete data from Moorbath et al. [1972, 80] for rocks from
the Qilangarssuit area:

Sample No. 87Rb/%6Sr 87Sr/86Sr
155733 0.200 0.7109
155735 1.926 0.8065
155736 1.053 0.7545
155737 0.223 0.7129
155739 3.262 0.8739
155740 2.612 0.8374
110870 0.802 0.7462

Plot these points on an isochron diagram. Use the slope of the least-squares line of
best fit to the data to determine the age of the rocks.
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8.

9.

Answers to Exercises

The table shows that the half-life of uranium-238 is 4.470 x 10° years. After five billion
years, slightly less than one-half of the original amount will remain; after ten billion
years, slightly less than one-fourth.

After n x 5,730 years, (%)n x 1,000 grams remain. Since 1,000,000/5,730 = 174.5,
the amount remaining is less than (-;—)174 % 1,000 = 4.2 x 10~°° grams and more than

(%)175 x 1,000 = 2.1 x 10759 grams. For comparison, there are 6.02 x 10~2% atoms
in 14 grams of carbon-14. So we can be sure that there is no measurable amount of
carbon-14 remaining after a million years, much less after a billion years! Hence, the
dating of traces of organisms that lived that long ago must be based on elements other
than carbon.

Y/Ty/a
1
N (5) .

dD/dt = AN(t) = ANge~*, D(0) = Ds,.

D

D(0)+N(0)fecvevervonconcaccea..

D(0)

va t
No = 1.000 grams, N(60) = 0.210 grams, N(t) = Noe~*!. Solving, we find A = 0.026.
From Exercise 5, Ty /2 = In2/) = 26.6 minutes.

4.7 x 10® = 470 million years.
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10.

(= i (14 20=20)

11. The four data points are (658.6,10.36,) (biotite), (14.0, 0.91) (muscovite), (13.4, 0.86)
(feldspar), and (0.07, 0.71) (apatite). The isochron diagram is difficult to plot because
the point for biotite is so far from the others. The other points are relatively close
together, so using a pair of them is unlikely to lead to a reliable line. The biotite and

apatite points are the two points farthest apart. They lead to an age of the rock of 1
billion years.

12. m = 0.0147, giving an age of 1 billion years. The biotite point exerts a great deal of
influence on the slope; the slope for the least-square line for the other three points is
m = 0.01294, leading to an age of 900 million years.

13. m = 0.038, leading to an age of 2.6 billion years.

14. m = 0.03803, leading to an age of 2.6 billion years.

15. 3.65 billion years.

16. m = 0.05291, leading to an age of 3.6 billion years.

0.9
878r /% Sr
0.85]

0.9]

0.75
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FALLING RAINDROPS

Author: Walter J. Meyer, Adelphi University, Garden City, NY 11530
Area of Application: physics.

Calculus needed: exposure to differential equations. For certain exercises, integrating to
solve separable differential equations.

Related mathematics: mathematical modeling.
The Problem: How Fast does a Raindrop Fall?

Our experience tells us some things about how raindrops fall. For instance, large
raindrops during a thunderstorm fall faster than small raindrops during a drizzle. The
tiny raindrops in fog seem not to be falling at all. Even the largest raindrops do not fall
fast enough to do us damage when we walk in the rain.

If we want to understand more closely how objects fall, we build mathematical mod-
els. Although a mathematical model can be powerful and helpful, it usually describes only
limited aspects of the phenomenon we are trying to understand; hence it will give predic-
tions which are only approximately correct. Often the limitations and approximations are
acceptable for our purposes. If they are not, we can sometimes build a new and better
model by adding certain refinements. In this module we illustrate these ideas by examining
the limitations of Galileo’s model of gravity. We study a number of replacements. Each of
these alternatives is useful in some circumstances but inappropriate in others.

Our notation for studying falling bodies will be as follows. We use ¢ to measure time,
in seconds, and z to measure distance, in feet. The distance axis is vertical and its positive
direction points toward the earth, so that as a body falls z increases. Since z is a function
of t, it will often be written z(t). Likewise, the velocity of a body v varies with time and
we may denote it v(t).

Model 1 (Galileo’s Model)

Historians of science often assert that the first truly modern scientific mind belonged
to a brilliant (but allegedly cantankerous) Italian professor of mathematics named Galileo
(1564-1642). He devised the first good mathematical model of gravity, based on the
following assumption:

An object, falling to the earth from a moderate height and subjected only to the force
of gravity, gains an extra 32 feet/second in velocity for each second in which it falls.
In other words, its acceleration is a constant value of 32 feet/second?. This is true no
matter what the weight of the object is.

The italicized phrases are escape clauses, and we shall soon see their significance.

101
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We can express Galileo’s assumption with any one of the following equivalent equa-
tions:

v(t) = v(0) + 32¢ (1)
%:;i = v(0) + 32t (2)
% = 32 (3)

where v(0) denotes the initial velocity.

Example 1

A golf ball is at rest at ¢t = 0 and is dropped to earth at that instant. The experimenter
times its fall and discovers that it takes 1.5 seconds to reach the earth. How fast is it going
when it lands? In this problem v(0) = 0. Therefore, (1) implies

v(1.5) = 0 + (32)(1.5) = 48 feet/second.

Can we check the prediction of this example experimentally? It’s possible but not easy
because measuring the velocity of a golf ball when it hits the earth is difficult. Fortunately,
we can derive some consequences of our model which are easier to test. Integrating both
sides of (2) gives

z(t) = v(0)t + 16t% + (4)

where ¢ is a constant. To evaluate c, substitute ¢ = 0 and obtain ¢ = z(0), i.e., the distance
traveled after 0 seconds. This is 0. So ¢ = 0, and Equation (4) becomes

z(t) = v(0)t + 16¢%. (4"

Example 2

How far has the golf ball of Example 1 traveled after 1.5 seconds? Using Equation (4')
and recalling that v(0) = 0, we immediately obtain z(1.5) = 16(1.5)2 = 36 feet. This
conclusion is testable with relatively simple equipment—a tape measure and stopwatch. A
fancier way to do this experiment involves flash photography. Beginning when the ball is
dropped, the camera shutter clicks at equal time intervals, but always on the same frame
of the film. The various positions of the ball are frozen on the same photograph. Figure 1
shows a drawing of what such a photo might look like. Measurements on the photo can be
converted to actual distances by multiplying by a suitable scaling factor. Table 1 shows
data collected and scaled this way from a photograph where the camera clicked every 516
second. If you convert centimeters to feet (2.54 centimeters = 1 inch), you will see that
these data agree pretty well with model 1.
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Table 1

Distance fallen,
Ball position centimeters

7.70
16.45
26.25
37.10
49.09
62.18 °
76.36
91.58 o

107.89
125.34

Pt
O WO 00 ~1 O U QN

Figure 1

The next example, however, shows an experiment we could do that would contradict
model 1.

Example 3

A raindrop, beginning at rest, falls from a cloud 1024 feet above the ground. How long

does it take to reach the ground? If we set z(¢) = 1024 in Equation (4') and solve for t,
we obtain
1024 = 16¢

t = 8 seconds.

However, if we actually performed the experiment on a number of raindrops, we would
discover two things that contradict model 1: first, that the weight of the raindrop makes
an important difference in the time it takes to fall and, second, that the fastest time (for

the largest raindrop) is about 40 seconds—>5 times as long as predicted by model 1 in the
above calculation.

What has gone wrong? The problem is that model 1 is only valid if the object is
subjected only to the force of gravity. (Recall that this was one of our escape clauses.) In
the case of raindrops, the force of gravity is opposed by a significant amount of air drag—a
lucky thing for us or we might be killed by falling raindrops. Air drag is also present when
we drop a golf ball, but it is smaller in relation to the force of gravity because of the greater
density of the golf ball and the shorter distance of the fall.

The previous example shows that we need a new model to cope with raindrops. Ac-
tually we will develop two in detail: one for very small drops and another for large ones.
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Exercises

l.a. How far will a golf ball, starting from rest, fall in 5 seconds?
b. How many seconds will it take a golf ball to fall 64 feet if it starts from rest?

c. How many seconds will it take a golf ball, starting from rest, to attain a velocity of
160 feet/second?

2.a. Suppose an object, beginning with a velocity of 0 at t = 0, falls in accordance with
model 1. How fast is it going after falling 16 feet? 100 feet? [Hint: First find the time
elapsed. Use Equations (4') and (1).]

b. Find a formula expressing v(t) as a function of z(t) for objects obeying model 1.

3. Table 1 contains observed values. Write a computer program to compute the theo-
retical distances according to model 1. The method is shown in Example 2. Use the
program to compute distances at multiples of 315 second and compare them to the
actual values in the table. (Be sure to convert your theoretical values to centimeters
for comparison with the table.)

Model 2 (Stokes’ Law)

For spherical drops falling in motionless air and having a diameter D < 0.00025 feet,
the acceleration g due to gravity (the 32 in Equation (3)) is opposed by an amount pro-
portional to the velocity of the raindrop, specifically by an amount equal to (C/D?)dz/dt,
where C is an experimentally determined constant, equal to 0.329 x 1075 feet?/second.
Thus,

d’z C dz

ar ~ 9T DT d
Instead of trying to solve this differential equation (see Exercise 5 for a method of solving
it), we shall show that it predicts something drastically different from the predictions of
model 1: the existence of a terminal velocity, that is, an upper bound which the velocity
approaches ever more closely as time proceeds.

C ~0.329 x 107°. (5)

Theorem 1. Model 2 implies a terminal velocity vVierm-

Proof: By setting the right side of Equation (5) equal to zero, we discover that d®z/dt? =
0 when dz/dt = (g/C)D?. If the drop ever achieved this velocity, then d?z/dt?, the rate
of change of the velocity, would be zero and the body would continue at this velocity. As
long as dr/dt < (g/C)D?, d%z/dt? is positive, which means that the velocity increases
toward (¢g/C)D?%. Hence

Vterm = £_D2

C

Although a drop falling according to equation (5) never quite reaches its terminal
velocity, its velocity eventually becomes so close to v¢erm that, for practical purposes, it
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is equal to vierm. Furthermore, clouds are sufficiently high and a raindrop gets close to
its terminal velocity so quickly that it is not a bad assumption to suppose that the drop
travels at its terminal velocity for its whole trip. See Exercise 6.

Example 4

Find the terminal velocity of a drizzle drop with diameter D = 0.00025 feet. Compare it
to the terminal velocity of a fog droplet with one-tenth of that diameter (D = 0.000025).
We substitute the value of D in the expression for verm. For g, we will use the slightly
more accurate value of 32.2 feet/second?. For the drizzle drop,

. _32.2(0.00025)?
ferm = 0.329

a bit more than 7 inches/second. For the fog droplet,

x 10° = 0.612 feet/second,

_32.2(0.000025)?
Vterm = 0.329

This is one one-hundredth the velocity of the drizzle drop. At this slow rate, drops need
about 165 seconds to fall 1 foot. This, of course, corresponds exactly to our experience of
fog: it hardly seems to be falling at all; mostly it just appears to hang around. Indeed we
often notice fog lifting. This is because its rate of fall is so slow that the slightest updraft
will overcome it.

x 10° = 0.00612 feet/second.

Exercises

4. Calculate terminal velocities for drops with the following diameters: D = 0.00005,
0.00010, 0.00015, and 0.00020. Use these calculations to make a graph of vse,m plotted
against diameter. What kind of curve do these points lie on?

5. In model 2 (Stokes’ law), if we set v = dz/dt, the differential equation becomes
dv/dt =g — —C—v. Integrating, we get

D2
/______dvc =/dt.
g — prV¥

. . D .
a. Perform the integrations and show that v = g———(l —e~CYD 2). In evaluating the
constant of integration, assume v = 0 when ¢ = 0.

b. An approximation sometimes used for e*, when z is small, is e* &~ 1 + z. Substitute
this in the formula found in (2) and show that model 1 results.

c. Replace v by dz/dt in the formula found in (a) and then solve for z as a function of ¢.

6.a. Let t = oo in the formula found in Exercise 5a to find a formula for vepr,. How does
it compare with the one in the text? Show that we may write the formula for v as
v/vterm = 1 - e_Ct/D .
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b. Use the formula for v/v¢erm to calculate the time at which a raindrop with diameter
0.00025 feet reaches 99 percent of its terminal velocity.

c. Repeat part (b) for diameter 0.000025 feet.

Model 3 (Velocity-Squared Model)

In order to study the effects of gravity on larger raindrops, we now introduce another
model. For spherical raindrops falling in still air and having diameter D > 0.004 feet,
the acceleration due to gravity is opposed by an amount proportional to the square of
its velocity, specifically an amount equal to (k/D)(dz/dt)?, where k is an experimentally
determined dimensionless constant equal to 0.00046. Thus Equation (3) is replaced by

d%z k (da:

D\ dt

2
=95 ) k = 0.00046. (6)

This model, like model 2, predicts a terminal velocity which we can obtain by setting
d%z/dt? = 0 and solving for dz/dt. The result is

Vierm = _k_ (7)

Example 5
For a raindrop of diameter 0.004 feet, find the terminal velocity. Also, find how long it
takes to reach the ground if it starts its descent in a cloud 3000 feet high. From (7),

Vierm = §g—§-—m = 16.7 feet/second. Observe how much faster this is than the

terminal velocities of the drizzle drop and fog droplet in Example 4.

To find how long it takes the drop to fall 3000 feet, we make the assumption that
it reaches its terminal velocity nearly instantaneously. If we suppose it goes at 16.7
feet /second for the whole distance, the time is 3000/16.7 = 180 seconds, or 3 minutes.

Exercises

7.  Calculate terminal velocities of raindrops with the following diameters: 0.005, 0.006,
0.007, 0.008, 0.009, and 0.010. Use these calculations to make a graph of vierm plotted
against diameter. What kind of curve do these points lie on?

8. Set v = dz/dt in the differential equation for model 3 and show by integration that

de gDeb -1
a - 'TVFE e
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where b = 2y/kg/D. Use the initial condition v = 0 when ¢ = 0 to evaluate the
constant of integration.

9.a. Let t — oo in the formula for v found in Exercise 8 to find a formula for vyepm. Use
this to find a formula for v/vierm.

b. Use the formula for v/vierm to find the time at which v is 99 percent of vierm, if
D = .004 feet.

Model 4 (General Air-Drag Model)

The reader may have noticed that although we have given models for small (D <
0.00025) and big (D > 0.004) drops, we have given no model for medium-sized (0.00025 <
D < 0.004) drops. There is a more general model, which applies to drops of any diameter
and incorporates both models 2 and 3. However, as we shall see, the general model is
inconvenient to use. Here is a brief description of it.

For a spherical raindrop of diameter D the differential equation describing the fall

function z(t) is

d’z 0.00092

@ 7" D
The notation F(D dz/dt) means that F is a function of the product Ddz/dt. We will
call this experimentally determined function the drag coefficient function. A glance at
Figure 2 shows that the function is not a simple one which could be expressed by a
convenient formula. Note that the figure actually shows the graph of log F' plotted against
log(D dz/dt).

F(D dz/dt) (dz/dt)?. (8)

log F

log F + log [D‘;—z]

= log[0.00358]

F=05
log [D -‘% =0
- g [ D22
\V—/ N Ve — \ \/ 7 \ \/ 7 dt
Range | Range 2 Range 3 Range 4

Figure 2
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In studying the general air-drag model, it is convenient to distinguish four separate
ranges of values for D dz/dt.

Range 1 (small values of D dz/dt). Here the plot of log F' versus log(D dz/dt) is approxi-
mately linear, with equation

d
log F + log (D-&%) = log 0.00358.

From the laws of logarithms, we obtain the equivalent equation

Fe 0.00358
" Ddz/dt’

Substituting this into (8) gives (5). Theory and experiment both show that, when
D < 0.00025 feet, the raindrop spends all its time in range 1, so that (5) applies to
its entire fall.

Range 2. In this range there is no convenient equation for the function F'. For this reason,
we cannot simplify (8) to get a convenient differential equation. We could find an
inconvenient one, but for our present purposes there would be little learned in doing
this.

Range 3. Here log F' is approximately constant, which means F' is approximately constant,
with a value about 0.5. Substituting this in (8) gives (6). Theory and experiment
show that, when D > 0.004 feet, the raindrop spends nearly all its time in range 3, so
that (6) can be assumed to apply to its entire fall.

Range 4. Here again we can’t obtain a convenient formula for F'. However, it can be shown
that this range never applies to raindrops. The reason is that a raindrop would have
to be very large to fall in range 4 and raindrops never get that large because they split
when their diameters reach about 0.02 feet.

The general drag coeflicient function in Figure 2 gives terminal velocities for raindrops
which agree well with experimentally determined terminal velocities, as given in Table 2.

Exercises

10. a. Suppose a raindrop spends its entire fall in range 1 of Figure 2 and reaches its
terminal velocity so soon after starting its fall that we are willing to assume that it
spends its entire fall at this velocity. Under these assumptions, what is the formula
for z(¢), the distance covered after ¢ seconds of fall? (Your formula can involve D as
well as t).

b. Do the same problem under the assumption that the drop spends practically its
entire fall in range 3 and at its terminal velocity.




Falling Raindrops 109

Table 2. Experimentally determined terminal velocities for raindrops of various
sizes.

Drop diameter Terminal velocity Drop diameter Terminal velocity
(feet) (feet/second) (feet) (feet /second)
0.00033 0.89 0.00852 24.82
0.00066 2.36 0.00918 25.64
0.00098 3.84 0.00984 26.43
0.00131 5.31 0.01049 27.08
0.00164 6.75 0.01115 27.67
0.00196 8.10 0.01180 28.20
0.00230 9.41 0.01246 28.59
0.00262 10.72 0.01311 28.95
0.00295 12.03 0.01377 29.25
0.00328 13.21 0.01443 29.44
0.00393 15.21 0.01508 29.61
0.00459 16.95 0.01574 29.73
0.00525 18.52 0.01639 29.80
0.00590 19.96 0.01705 29.90
0.00656 21.28 0.01770 29.96
0.00721 22.62 0.01836 30.03
0.00787 23.84 0.01902 30.06
Discussion

Our discussion of models 2, 3, and 4 is meant to show how important air drag can be
and how far wrong one can go if one uses model 1, which assumes air drag is not present,
in cases where it is substantial. However, it would be wrong to think that air drag is all
that prevents equation (3) of model 1 from being exactly correct. Even for objects falling
in a vacuum, where there is no drag of any sort, equation (3) is false. The reason is that
the acceleration which the earth’s gravitation causes in a raindrop or other object is not
a constant, but varies with the distance between the object and the earth. The model
of variable acceleration, due to Isaac Newton, is known as Newton’s Law of Gravitation.
Raindrops fall from close enough to the surface of the earth so that the error in assuming
that gravitational acceleration is constant is less than the uncertainties in the empirical
model 4. Hence we may safely ignore this additional complication. On the other hand,
Newton’s model becomes critical if we wish to analyze the flight of rockets.

Why not build a completely general model, which would take air drag, variable gravi-
tational acceleration and all other factors into account? Then, instead of choosing a model
to fit the particular circumstances, we could use the general model for any situation. Such
models have been devised, but they are unwieldy because they require a great deal of
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calculation. Whenever possible, scientists prefer something simple.

Unfortunately, not all scientific problems can be made simple. A case in point is the
calculation of the trajectories of artillery shells and rockets. Here one often needs to use
both Newton’s law and calculation of air drag. Furthermore, models 2, 3, and 4 for air
drag are not adequate since they assume a spherical object traveling through air which has
uniform density and no wind currents. We need new and more complex equations that take
into account the shape of the object, wind patterns, density of the air at various altitudes,
and so on. The situation became so complicated that, during and after World War II,
a large number of American mathematicians worked on ballistics for the U.S. Army and
produced books of firing tables for every combination of atmospheric factors and types of
guns and shells. Often a single trajectory would involve about 12 hours of calculation if
done by a human being. The automation of this process became the immediate motivation
for, and the initial task of, the world’s first electronic digital computer.

When we use mathematics to model natural phenomena, it is usually true that a
collection of models of varying degrees of inclusiveness and complication is more helpful
than a single model which attempts to be all-inclusive. We can answer some questions with
simple models, and save difficult calculations for situations where a simple model fails to
capture essential aspects of the problem.
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AN ol

Answers to Exercises

a) 400 feet b) 2 seconds c¢) 5 seconds

a) 32 ft/sec, 80 ft/sec b) v =8y

(.00005,.024), (.00010,.098), (.00015,.220) and (.00020,.391) lie on a parabola.
©)

DY1Ct  _cup?
z(t) = z(0) + gcz [— + e~ Ct/D" _ 1]

6. b) .087 seconds c) .00087 seconds

10.

(.005,18.67), (.006,20.45), (.007,22.08), (.008,23.61), (.009,25.05) and (.010,26.40) lie

on a sideways parabola.

The differential equation is

If we substitute w = y/k/gDv, we get the integration problem

1_w2 /\/kg dt.

Use integration by partial fractions on the lefthand integral.
1.38 seconds
a) z(t) = 9.79 x 10°D%  b) z(t) = 264VD ¢




MEASURING VOTING POWER
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Calculus needed: average value of a function, integration of polynomials; mathematical
induction.

Related mathematics: elementary probability.

The Problem: Amending the Canadian Constitution

In 1971 the Premiers of the ten provinces of Canada met in Victoria, British Columbia,
to negotiate an amendment procedure for the Canadian constitution. The history is in-
teresting. The constitution of Canada was contained in the British North America Act
of 1867, by which Britain granted independence to Canada. However, no procedure had
been given by which Canadians could amend their constitution, other than by petition-
ing the British Parliament to enact the amendment. This was a strange situation, and
“patriation of the constitution”-—bringing the constitution under Canadian control—had
been a patriotic issue in Canada since the 1920’s. In order to patriate the constitution,
the Canadian provinces had to agree on an amending procedure, and this problem was to
be addressed by the Victoria Conference.

The problem is complicated by the diversity of the Canadian provinces, in size as
well as in politics and culture. The second column of Table 1 shows that in 1970 the two
largest provinces, Ontario and Quebec, contained 64% of the Canadian population. Any
scheme which treated all provinces equally (as in the United States, where a constitutional
amendment must be approved by 3/4 of the states, with large and small states treated
equally) would surely be unfair to residents of these provinces.

The amending procedure proposed by the Victoria Conference recognized provincial
disparity. A constitutional amendment would have to be approved by

1. Ontario
and 2. Quebec
and 3. British Columbia and one prairie province, or all three prairie provinces
and 4. at least two of the four Atlantic provinces.

Notice that both Ontario and Quebec have veto power over constitutional amendments.
British Columbia also seems to have considerable power. The “prairie provinces” are
Alberta, Saskatchewan and Manitoba; the “Atlantic provinces” are New Brunswick, Nova
Scotia, Prince Edward Island and Newfoundland.

How fair is this scheme? Does the unequal power of the provinces mirror, at least
roughly, their relative populations? To answer questions like these, we need to formalize

112
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and quantify the notion of the power of a voter in a voting body. In this module we will
use elementary probability and calculus to develop such a power indez. The index we will
define has seen wide use in many areas of political science.

Percentage of Population Percentage of Power under
Province 1970 1981 Victoria  Lougheed 1982 Act
Ontario 34.9 35.5 31.5 29.1 14.4
Quebec 28.9 26.5 31.5 29.1 12.9
British Columbia 9.4 11.3 12.5 10.0 10.3
Alberta 7.3 9.2 4.2 10.0 9.1
Saskatchewan 4.8 4.0 4.2 5.9 9.1
Manitoba 4.8 4.2 4.2 5.9 9.1
New Brunswick 3.1 2.9 3.0 2.5 8.7
Nova Scotia 3.8 3.5 3.0 2.5 9.1
Prince Edward Island 0.5 0.5 3.0 2.5 8.7
Newfoundland 2.5 2.3 3.0 2.5 8.7

Table 1. Power under Canadian Constitutional Amendment Schemes.

Voting Bodies

A mathematical model of a voting body strips away all personalities and ideologies,
and considers only which groups of voters can pass bills (or constitutional amendments in
the above case). Those subsets of voters which can pass bills are called winning coalitions.

Perhaps the most common kind of voting situation is one in which each voter casts
one vote, and a majority of votes is necessary to pass a bill. In other words, the winning
coalitions are exactly those which contain more than half of the voters. However, there
are voting bodies in which members cast different numbers of votes. Such a body is called
a weighted voting body, and is described by the symbol {¢; w1, w2, ..., w,]. Here there are n
voters, the ith voter casts w; votes, and a quota of ¢ votes is needed to pass a bill. For
example, the symbol

7, 4, 3, 2, 1] (1)
A B C D

represents a body in which there are four voters (call them A, B, C, D) casting 4, 3, 2,1
votes respectively, and 7 votes are necessary to pass a bill.

Weighted voting bodies are fairly common. Most familiar to Americans is the United
States Electoral College,

[270; 47, 36, ..., 3, 3 5
CA NY VT WY (2)
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Other classic examples include the Council of Ministers of the European Community, the
World Bank, several United Nations organizations, and many county boards in New York
state. See (Lucas, 1983) for a wealth of other examples. A legislature in which there
are representatives of several parties, who vote under strict party discipline, can also be
thought of as a weighted voting body. In this interpretation, example (1) might represent
a legislature of 10 members, with 4 belonging to Party A, 3 to Party B, 2 to Party C, and
1 to Party D, with the requirement that a 2/3 majority (7 votes of 10) is needed to pass
a bill.

The Victoria Scheme is not a weighted voting scheme. However, its rules do exactly
specify the winning coalitions.

Exercise

1. Write out all the winning coalitions in Example (1).

Measuring Power in Voting Bodies

The naive way to think of the distribution of power in a weighted voting body like
that of (1) would be to suppose that power is in strict proportion to the number of votes.
Thus, A has 40% of the votes and hence should have 40% of the power. A little reflection
should convince you that this is not reasonable. For instance, note that in (1) A has veto
power: even if B, C and D all favor a bill, it cannot pass without A’s approval. This should
lead us to believe that A might well have more than 40% of the voting power in this game.
Two even more compelling examples are

6 7, 1, 1, 1]
A B C D (3)

6 3, 3, 3, 1]
A B CD @

In (3) A has 70% of the votes, but she clearly has all of the power. A is a dictator, in the
sense that a bill passes if and only if A votes for it. In (4) D has 10% of the votes, but no
power. D’s vote can never make any difference to the outcome, and D is called a dummy.

In (3) B, C and D are all dummies.

If voting power in a weighted voting body is not proportional to numbers of votes,
how can we define and measure it precisely? We will start by thinking of the voting power
of a voter as the probability that that voter’s vote will make a difference to the outcome of
a vote on a bill. In other words, voter :’s power will be the probability that a bill will pass
if voter 1 votes for it, but would fail if voter : votes against it.

To calculate this probability, we will need to remember the following properties of
probability:
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i) The probability p of an event £ happening is a number in [0,1]. If £ can never happen,
p =0; if £ is certain to happen, p = 1.
ii) If p is the probability of £, then the probability that £ will not happen is 1 — p.
iii) (Sum law) Suppose that p is the probability of £, and ¢ is the probability of F, and
€ and F are disjoint events—if one happens, the other cannot. Then the probability
that either £ or F happens is p +g.

iv) (Product law) Suppose that p is the probability of £, and ¢ is the probability of F,
and £ and F are independent events—whether £ happens has no effect on whether F
happens. Then the probability that both £ and F happen is pgq.

Our idea of voting power as the probability a voter’s vote will .nake a difference
assures, by property 1), that a dictator will have voting power 1, a dummy will have voting
power 0, and all other voters will have power between 0 and 1. To go farther, we need
to make some assumptions about how voters vote. Let us suppose that each voter will
vote “yes” on a bill with some probability p (0 < p £ 1), independently of how other
voters vote. We can then use properties ii)-iv) to calculate each voter’s voting power, as
a function of p. Let’s start with a simple example:

%5

A’s vote will make a difference to the outcome of a vote by this body if either B or C, or
both, vote yes. (If both B and C vote no, the bill will fail regardless of how A votes.) If
all voters vote yes with probability p, the probability that this will happen is

fa)= p(1-p) + (@Q=-pp + p° =2p-p.
B yes, C no B no, C yes B,C yes

Similarly, B’s vote will make a difference to the outcome if A votes yes and C votes no. (If
A votes no, the bill will fail regardless of how B votes; if A and C both vote yes, the bill
will pass regardless of how B votes.) Thus

fep)= p(l-p) =p-p’

A yes, C no

By symmetry, we also have fc(p) = p — p2.

For a general voting body, the polynomial f;(p) is called the power polynomial for
voter ¢, and it contains interesting information about the ability of voter i to influence
the outcome of a vote. However, it might be more useful to have a single number as our
measure of voter :’s power. One reasonable way to get such a number would be to take
the average value of fi(p) over all values of p between 0 and 1. Of course, this is where
calculus enters the picture, since you will remember from calculus

1
b—a

Definition. The average value of a continuous function f(x) on [a,b] is

/abf(:z:) dz.

We are led to make the following
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1
Definition. The voting power of voter i is given by ¢; = / fi(p) dp.
0

Use of the Greek letter ¢ to denote this measure of voting power is traditional. Hence in
example (5),

1 1
¢A=_/o fa(p) dp=/o (2p-p*) dp=2/3

1
¢B=¢C=‘/o (p-p*) dp=1/6.

See Figure 1. Notice that the voting power of the three voters in this body adds to 1. This
will always happen, though it is not at all obvious from the definition. We will see why
after we do some more examples.

£ (p] }

1 A 1
0.8 0.8

--------------------- 2/3
0.6 0.6
0.4 0.4 £ [p]

B
0.2 0.2 e e T ———1/6
p p
0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

Figure 1. Power polynomials and their average values on [0,1].

For a second example, let’s compute the power of the voters in example (1). First,
note that A’s vote will matter if B votes yes, for then the bill will pass if A votes yes and
fail if A votes no, regardless of what C and D do. If B votes no, the bill cannot pass unless
both C and D vote yes, and if they do, A’s vote will decide the outcome. Hence

fap)= p + (1-p)-p =p+p’-p’
B yes B no, C and D yes

and .
$a= / (p+p*—p*)dp =17/12.
0
Similarly, you should check that

felp)=p-p’, ¢p=3/12
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fe(®) = fo(p) =p* —p*,  ¢c=¢p=1/12.

Thus A, with 40% of the votes, has 58% of the power. C and D, with different numbers
of votes, have the same power. This simply reflects the fact that C and D play symmetric
roles in this voting body: C’s two votes are no more likely to be decisive to the outcome
than D’s one vote.

Exercises

2. In the Nassau County (NY) Board of Supervisors in 1964, votes were assigned to
representatives of six towns in proportion to the populations of the towns. The result
was a weighted voting body

[58; 31, 31,21, 28,2, 2].

Comment on the fairness of this system. You shouldn’t need to calculate power
polynomials to do this. See (Banzhaf, 1965).

3. Calculate the power polynomials and the power of voters in

a. [3; 2, 1, 1, 1] b. [4 3, 1, 1, 1]
A B C D A B C D

You can check your answers by remembering that the voters’ powers must add to 1.

4. Calculate the power polynomials and the power of voters in

a. [51; 31, 27, 22, 20] b. [67; 55, 17, 15, 13]
A B (C D A B (C D

c. [67; 45, 25, 15, 15]
A B C D

The answers you get should look familiar. What’s going on here? Formulate a defini-
tion for when two weighted voting bodies should be considered “equivalent.”

5. Can changing the quota of a voting body change the power of the members? Calculate

the power of voters in
[6; 4’ 3, 2’ 1]
A B C D

and compare to example (1). What about [9;4,3,2,1] and [10;4,3,2,1]? (For these two
bodies you shouldn’t need to do any calculating.)
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Power in the Victoria Amendment Scheme

To see how fairly the Victoria scheme would distribute power among the Canadian
provinces, we will compute the power of Ontario (O)—Quebec (Q) would be the same—
British Columbia (B), a prairie province (P), and an Atlantic province (A). First, we note
that Ontario’s vote will make a difference to the outcome if

i) Q votes yes
and i) B votes yes and at least one P votes yes, or B votes no and all 3 P’s vote yes
and iii) at least two A’s vote yes.

Translated into probabilities, this gives us the power polynomial for Ontario:

fop)= p-lP(1-1-p° + (1-pP] - [BP°Q-p)?+4°1~p)+p']
Q yes and [B yes, not 3 P’s no or B no, 3 P’s yes] and [at least two A’s yes]

= p [3p* ~ 2p°] [6p® — 8p° + 3p*] =18p® — 36p° + 25p" — 6p°.

This is harder than the derivations in the last section, but it is still based on the basic
probability laws. Perhaps least transparent are the coefficients “6” and “4” in the Atlantic
provinces term. The probability that exactly two A’s will vote yes (and the other two no)

is p?(1 — p)? times the number of ways we can choose which two of the four A’s will vote
yes. This number is the binomial coefficient (;) = %—g— =6 (see Exercise 6). Similarly
the coefficient “4” is the binomial coefficient (g ), the number of ways of choosing three

of the four A’s to vote yes.

Hence

18p8 3 36p” 25p° B 6p°

1 1
36 25 2 33
bo= [ o) dp= - - TP+ B - 2| - -

The calculations for B and P are given below. Notice that fp(p) is the probability
that one given prairie province, say Manitoba, will make a difference. I'd recommend
examining the polynomials closely, being sure you see where each term comes from. In
Exercise 7, you are asked do the calculations for an Atlantic province.

fe(p)= p* - [3p(1 - p)*+3p*(1~p)] - [6p” — 8p° + 3p*]
0,Q yes and [l or 2 P’s yes] and [at least 2 A’s yes (see above)]
=3 (6p° — 14p® + 11p" — 3p%)
14 11 3

1
6 1
¢B—/O fB(p)dp“3(6"7_+—8"'§)"8'“‘1250
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fee)= p* - [PQ-p* + (A-p)p] - [6p* -8’ +3pf
0,Q yes and [B yes, other P’s no or B no, other P’s yes| and [at least 2 A’s yes]
= 6p°® — 14p% + 11p7 — 3p® (notice this is 1/3 of fg(p))
1 1 1
¢p—§"8'—ﬁ—.0417

The results of our calculations are shown in column 4 of Table 1. Notice how re-
markably well the distribution of power under the Victoria scheme matches the relative
population of the provinces in 1970. The most serious discrepancy was the underrepresen-
tation of Alberta. During the 1970’s Alberta was the fastest growing province in Canada,
and the discrepancy would be even more serious by the 1981 census. One method of
addressing the problem would be to change condition 3. of the amendment scheme to

3'. British Columbia and Alberta, or one of these together with the other two prairie
provinces.

A scheme like this was proposed by Premier Peter Lougheed of Alberta. The power
distribution under the Lougheed scheme is shown in column 5 of Table 1. It is an improve-
ment.

Alas, I have to report that neither the Victoria nor the Lougheed scheme was adopted
by Canada. Because of considerations unrelated to the constitutional amendment scheme,
patriation of the constitution was not accomplished until 1982. The amendment scheme
included in the 1982 Constitution Act required approval by at least 7 provinces which
together contain at least 50% of the Canadian population. Notice that this scheme does
not give veto power to either Ontario or Quebec. Its distribution of power is shown in
column 6 of Table 1. It treats the provinces close to equally, and hence seems quite unfair
to the large provinces. Sometimes politics just isn’t rational.

Exercises

6. Write out the ways to choose two provinces from NB, NS, PEI, NFD. Explain why

4
the number of ways is given by -—3—

1.2
7. Show that fa(p) = 3 (3p® — 8p® + 7p” — 2p®) and ¢4 = .0298. (Notice that the
derivation in the text of fo(p) shows how to handle the western provinces, and that
for an A’s vote to matter, exactly one of the other three A’s must vote yes.)

8. Derive the power polynomial and check the power calculation for one province of your
choice, under the Lougheed scheme.
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The Combinatorial Shapley-Shubik Power Index

The voting power index calculated as in the last section has an interesting history. It
was first defined by Lloyd Shapley and Martin Shubik in purely combinatorial terms:

There is a group of individuals all willing to vote for some bill. They vote in order.
As soon as a [quota] has voted for it, it is declared passed, and the member who
voted last is given credit for having passed it. Let us choose the voting order
randomly. Then we may compute the frequency with which an individual ... is
pivotal. This latter number serves to give us our index. (Shapley and Shubik,

1954)

The calculation would be as follows for example (6). Write down all 3! orders in which
the voters could vote for a bill, and in each order underline the voter who is pivotal (i.e.
whose vote passes the bill):

ABC ACB BAC BCA CAB (CBA

For example, in ordering BCA, A is pivotal since B and C together have just two votes,
and A brings in the third vote necessary to pass the bill. To calculate the power of a voter,
count the number of times that voter is pivotal (underlined) and divide by the number of
orderings. Let us temporarily denote this power index for voter ¢ by S.S;. Thus SS4 = 4/6,
and SSp = SS¢ = 1/6. Notice that these are exactly the same numbers that we obtained
by the completely different approach of integrating power polynomials. In fact, we will
show below that SS; = ¢;.

The equivalence of the Shapley-Shubik approach and the power polynomial approach
was shown in (Straffin, 1977), which introduced the power polynomial. It was important
because the Shapley-Shubik power index, although widely used, was thought to depend
upon the voters voting in order, or at least joining a coalition supporting a bill in order.
The power polynomial approach shows that the index can be defined with no reference to
orderings. On the other hand, it is obvious from the Shapley-Shubik definition that the
powers of the voters add to 1, which is not obvious from the power polynomial definition.
The two approaches complement each other. The proof of equivalence is given in the next
section.

Exercise

9. Use the Shapley-Shubik definition to calculate the Shapley-Shubik power indices for
the voting bodies in Exercise 3.




Measuring Voting Power 121

Proof of Equivalence (Optional)

Theorem. For a voter ¢ in any voting game, ¢; = SS;.

Start of Proof: We will start by deriving a general expression for fi(p).

Suppose that in a vote for some bill, S is the set of yes voters, and assume that z votes
yes, so that ¢ is in S. Now #’s vote will matter exactly if S is a winning coalition, but S —:
is not (so that the bill passes when 7 votes for it, but would fail if ¢ switched his vote). If
this happens, we say ¢ is a swing vote in S, or (for short) “z swings in S.”

Now let n be the total number of voters, s be the size of S, and suppose that all voters
vote yes with probability p. The probability that the set of voters who vote yes will be
exactly S is p*~1(1 — p)™~*, since the s — 1 other voters in S would all have to vote yes
(we already know that ¢ is voting yes), and the n — s voters not in S would all have to vote
no. We thus get that

fly= Y, pPa-p"
i swings in §
The notation means that the sum is to be taken over all coalitions S in which ¢ is a swing
vote. Averaging over [0,1] gives
1 1

$i = Yoo P A-pmtdp= ) / p*~H(1—p)"* dp.

i swings in § i swings in s °

To proceed further we need to evaluate the integrals. Definite integrals of this type have
a nice form related to a function from higher analysis known as the “Beta function”:

1
Lemma. B(a,b) = / 2%(1—z)t dz =a! b!/(a+b+1)
0

(Here the notation a! means “a factorial”: a! =a(a—1)(a—-2)...3-2-1.)
Proof of Lemma: Our proof will be by mathematical induction on b.

If b = 0, direct integration shows that B(a,0) = 1/(a + 1), so the lemma is true in
this case. (Recall that 0! = 1.)

Now assume that the lemma is true whenever the second index is b. We will show
that it is true when the second index is b + 1. This will complete the induction proof.

B(a,b+1) = /1 2%(1—z)¥ dz = /1 z%(1 —2)b1 — z] dz

1 1
= / (1 —-z)0 dz — / £°*1(1 — 2)® dz = B(a,b) — B(a +1,b)
0 0

'b! 1)! !
= (a -:b T ((aa-:-b _)'_ o by the induction assumption
a! b! _al (b+ 1)

[(a+8+2)—(at+1)]

T a+b+2) T (a+b+2)
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Since this is what the lemma says should happen when the second index is b+ 1, the proof
of the lemma is complete.

Continuation of Proof of Theorem: Using the result of the lemma, we have

-1 —s)
S = ST I S R
i SWings in S i swings In S

The n! in the denominator is just the total number of orderings of n voters. I claim that
the sum is exactly the number of orderings in which voter 7 is pivotal. Indeed, voter z will
be pivotal in an ordering exactly when : and the voters who precede him form a swing
coalition for 7, so that ¢ brings in the winning vote. The number of orderings which give
rise to a particular swing coalition S is exactly (s — 1)! (the number of ways to arrange the
s — 1 voters who precede i) times (n — s)! (the number of ways to arrange the n — s voters
who follow ).

Hence we have shown that ¢; = SS;.

Exercise

1
10. Evalua.te/ z*(1 - z)° dz.
0

Further Reading

For many examples of voting bodies and powerful methods for calculating the Shapley-
Shubik power index, see (Lucas, 1983) and (Lambert, 1988). For discussions of the Cana-
dian constitutional amendment schemes, see (Straffin, 1977) and (Kilgour and Levesque,
1984). A power analysis of the United States Electoral College is given in (Owen, 1975).
(Brams, 1976) gives interesting examples of paradoxes of voting power. (Straffin, 1977,
1983) give comparative discussions of the Shapley-Shubik index and other proposed indices
of voting power. (Straffin, 1983) also has a table of the power polynomials of all voting
games with four or fewer voters.
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Answers to Exercises

1. AB, ABC, ABD, ACD, ABCD.

The vote on any issue is decided by the largest three voters. The representative with
21 votes and the two representatives with 2 are all dummies: the towns they represent
have no power at all. In 1965, John Banzhaf, who lived in one of these towns, sued
Nassau County and won, establishing the legal precedent that a voting scheme must
apportion voting power fairly.

a.
falp)= 3p(1-p)’ +3p*(1-p) felp)= p1-p* + (A-pp
1or 2 of B,C,D yes A yes; C,Dno or A no; C,D yes
= 3p — 3p? = p—p?
$a=1/2 ¢p=1/6
b.
fap)=  1-(1-p)’ fep)=  p(1-p)*
not all of B,C,D no A yes; C,D no
= 3p-3p*+p’ = p-—2p*+p’
¢a=3/4 ¢p =1/12
These bodies have the same winning coalitions, hence the same power indices, as

the bodies in Exercises 3a, 3b, and 1 respectively. Two voting bodies with the same
players are equivalent if they have exactly the same winning coalitions.

. [6;4,3,2,1] has power indices 5/12, 3/12, 3/12, 1/12. [9;4,3,2,1] has power indices 1/3,

1/3,1/3, 0. [10;4,3,2,1) has power indices 1/4, 1/4, 1/4, 1/4. Yes, changing the quota
can seriously change the distribution of power.

NB,NS; NB,PEI; NB,NFD; NS,PEIL; NS,NFD; PEL,NFD. There are 4 ways to choose
the first province, then three ways to choose the second. However, this counts each
pair twice (e.g. NB,NS and NS,NB), so we need to devide by two to get the number
of pairs.

fap= p* - B*-2" - 3p(1-p)
0,Q yes. See the derivation of fo(p). Exactly one other A yes.

Call British Columbia and Alberta “mountain provinces” (M). Then

fo(p) = p [p* +2p(1 — p)p?)[6p* — 8p° + 3p*] = 6p° + 4p® — 25p" + 22p° — 6p°
Fu(p) = p*[p(1 — p*) + (1 — p)p?}(6p® — 8p® + 3p*] = 6p° — 2p°® — 17p” + 19p* — 6p°
fe(p) = p*[2p(1 - p)p)[6p* — 8p* + 3p*] = 2 (6p° — 14p” + 11p® — 3p°)

Fa(p) = p*[p* + 2p(1 — p)p*1(3p(1 — p)?] = 3 (p° — 5p” + 6p° — 2p°)
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9. a. You could write out 24 orderings and underline the pivot in each one. An easier
way is to note that A will pivot when she votes 2nd or 3rd, hence in 12 orderings.
By symmetry, the other 12 orderings will have pivots split equally among B, C and
D.

b. Here A pivots when she votes 2nd, 3rd or 4th, hence for 18 orderings, and again
the other 6 are divided equally.

10. 4!5!/10! = 1/1260.



HOW TO TUNE A RADIO

Author: Clark Benson, University of Arizona and the National Security Agency.
Area of application: signal analysis.
Calculus needed: differentiation and integration of sines and cosines.

Remarks on using the module: It is desirable to have access to a computer with a simple
plotting routine. Exercises requiring a plotter are marked with an asterisk (*).

The Problem: Tuning A Radio

If you want to listen to WBBM, a Chicago radio station, you tune your radio to
“780 on your AM dial.” Somehow, that picks out WBBM’s signal from the signals of all
other radio stations in the Chicago area. The selection process is based on a mathematical
problem which can be formulated in terms of functions and solved by calculus.

The signal produced by a radio station can be represented by a function f(t). Here
t represents time and f(t) is some kind of time-varying voltage. We will not concern
ourselves with the physics—it is enough to know that f(t) can be measured and plotted.
Now suppose that we have m stations S;,S2,...,Sn. Each S; produces a signal f;(t). By
the time the signals enter our radio, they have been superimposed and the radio receives
fi(®) + fa(t) + ... + fm(t). We only want to receive one of the signals, say fi(t). How do

we get rid of f2(t)a f3(t)a v ,fm(t)?

For general functions, if
f(&) = f(t) + f2(®),

it is impossible to recover f;(t) and f5(t), knowing only f(t). After all, we cannot even solve
this kind of problem for numbers: if z + y = 10, what are £ and y? The fact that we can
solve the problem for radio signals is based on the fact that radio signal functions involve
sines and cosines in a special way, and the answer involves some very interesting properties
of sines and cosines. You will see that a lot goes on when you “turn the dial”! Moreover,
in this module you will be introduced to an amazing discovery of Joseph Fourier, made in
about 1807—namely that most functions can be written in terms of sines and cosines.

126
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A Partial Solution

We begin with the fact that [ cosntdt =0 for n # 0.

Exercises

1. Compute [ cosntdt and show that if n # 0 then fq cosntdt =0.

2. Graph cosnt and sinnt for n = 1,2, and 3. Can you tell that f(;r cos ntdt = 0 directly
from the graph? How? Which of these curves oscillate most rapidly?

We next show that

/sinntsinmtdt:O and /cosntcosmtdt:O for n # +tm. (1)
0 0

You may not have evaluated integrals like these in your class, but they are easy to do if
the right trigonometric identities are used. Recall that

cos(A — B) = cos Acos B + sin Asin B

2
cos(A + B) = cos A cos B — sin Asin B. 2)

Subtracting the second equation from the first gives
cos(A — B) — cos(A + B) = 2sin Asin B
or .
sin AsinB = 5 [cos(A — B) — cos(A + B)). (3)

Thus,

/ sinntsinmtdt = %/ [cos(n — m)t — cos(n + m)t]dt =0
0 0

if n # +m by Exercise 1. Similarly, if we add the equations in (2) and proceed as above,
we see that [ cosmt cosnt dt = 0 for n # £m.

Exercise

3. Use the identities sin® 4 = 3(1 - cos24) and cos? A = (1 + cos 24) to show that

T™ "
/sinzntdt=w/2 and /coszntdtzﬂ'/2, for n=1,2,...
0 0
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Getting back to our radio problem, we must realize that stations cannot send out
any signal that they wish. A station’s signal must be designed as follows: every station is
assigned a function sinnt. This determines the station’s frequency, which is what WBBM’s
“780” on the dial refers to. The station can then send out a signal of the form g(t) sinnt.
In practice n is quite large (near a million) and thus sinnt oscillates very rapidly. The
function ¢(t), which represents the talk, music, etc. that the station is sending varies much
more slowly than sinnt. (Actually, cosines as well as sines are used and n need not be an
integer, but to keep things simple we will stick with sine curves and integral n.) We will
illustrate the principles involved by taking n around 20.

Exercise

*4. Plot tsin20t, t?sin 20t, and sintsin20t. Can you find the functions ¢, ¢?, and sint
hidden in the graphs? Explain.

Exercise 4 shows that if g(t) is slowly varying in comparison to sinnt, then the graph
of g(t)sinnt looks like sin nt except that the amplitude varies depending on ¢(t), forming
an “envelope” that looks like +¢(¢). This kind of signal is called an aemplitude modulated
signal, or AM signal. The information g(t) is “carried” by the rapidly oscillating function
sinnt. Thus sinnt is called the carrier s.gnal.

Now let’s consider an example of the radio problem. For the “slowly varying” signals
g(t) we will use combinations of sint and sin2t. Suppose that station S; wants to send
3sint — 2sin 2, station S; wants to send 5sint + 6sin2¢, and station S3 wants to send
4sint + Tsin2t. Suppose further that the carrier signals of S;, Si, and S; are sin8t,
sin 16¢, and sin 24¢, respectively. Thus, S; sends (3sint — 2sin 2¢) sin 8¢, S; sends (5sint +
6sin 2t) sin 16¢, and S3 sends (4sint + 7sin2t)sin 24¢. These signals are superimposed on
one another and the signal reaching our radio is

f(t) = (3sint — 2sin2t)sin 8t + (5sint + 6sin 2t) sin 16t + (4sint + 7sin 2t) sin 24¢.

See Figure 1 for a graph of the individual signals and also for the composite signal
reaching the receiving radio. How can we “tune” to, say, station S; and recover the function
5sint + 6sin 2t which represents the signal being sent from station S,?

To solve the problem, we use equation (3) to rewrite f(t) as
3 2
fit) = §[cos Tt — cos 9t} — -2-[cos 6t — cos 10t]
5 6
+ -2—[cos 15t — cos 1Tt} + -‘;[cos 14t — cos 18t]

4 7
+ -2—[cos 23t — cos 25t] + E[cos 22t — cos 26t].
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i & i

y = (5sint + 6sin2t) sin 16¢

f

y = (4sint + 7sin 2t) sin 24¢ y = (3sint — 2sin 2¢) sin 8¢

+ (5sint + 6sin 2t)sin 16¢
+ (4sint + 7sin 2¢) sin 24¢
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We then form the integrals

/ f(t)cos1Ttdt and / f(t) cos 18t dt.
0 0

All but one of the terms in each of the integrals vanish by equation (1). Thus, we have

/0 f(t)cosl?tdt:—--g-/0 cos? 1Tt dt = —--;-g
and . 6 /v .
/; f(t) cos18tdt = —§A cos? 18t dt = —-2-%,

where the 7/2 comes from Exercise 3. Multiplying by —4/r recovers the coefficients 5 and
6 of sint and sin 2t, respectively, and so we have recovered S,’s signal. (We could just as
easily have used cos 15t and cos 14t to recover these same coefficients.)

The technique illustrated in this example will work whenever the stations have carrier
signals of the form sinnt and wish to broadcast signals of the form g¢(t) = a;sint +
azsin2t + ... + a,, sinmt, where m is smaller than half the minimum difference between
the assigned frequencies n of the different stations. To recover the coefficient aj from the
received signal f(t), we calculate

/" f(t) cos(n + k)t dt

and multiply by —4/7. We will not discuss here the question of how the circuits in a radio
can be designed to integrate and multiply, but that is indeed possible.

We have seen that if our signal is made up of a sum of sine curves that vary much
more slowly than the carrier signal, then we can separate it from other signals “riding” on
different carrier signals. However, we have only a partial solution to our tuning problem
if only a few functions can be expressed in terms of sine functions. Can all the talk and
music be expressed in this way? We take up this question in the next section.

Exercises

5. Perform the necessary integrations to recover S3’s signal.

6. a. Suppose that S,’s signal were g(t) = 5sint + 6sin2¢ + 7sin3t. Write the new
form of f(t). What integral would you calculate to recover the coefficient “7” in S;’s
signal?

b. Suppose that Sy’s signal were g(t) = 5sint + 6sin 2t + 7sin6¢t. Explain why we
then could not recover the coeficient “7” by doing an integration.
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Fourier Analysis

It may seem that a signal made up of sine curves is very special. However, almost
two hundred years ago Joseph Fourier astounded the mathematical world by claiming that
he could write “any function” in terms of sines and cosines. Again, for simplicity, we will
illustrate his ideas by using only sine curves. Fourier claimed that given g(t) defined on
(0,7), he could write

g(t) = a;sint + aysin2t + azsin 3t + ... (4)
Such a sum is called a Fourier sine series. There are also Fourier cosine series and series
involving both cosines and sines (complete Fourier series).

Working formally with (4), we multiply both sides by sinnt and integrate from 0 to
m. We obtain

i3 ™ ™ ™
/ g(t)sinntdt:/ alsintsinntdt—l-/ agsin2tsinntdt+/ assin3tsinntdt +....
0 0 0 0

Using equation (1), we see that all the integrals except one vanish on the right hand side
and we obtain

T ™
/ g(t)sinntdt = an/ sin?ntdt = a,7/2.
0

0

Thus the coefficients a, are given by

ap =— /0" g(t)sinnt dt. (5)

As an example let us take g(t) = 1 for ¢ between 0 and 7. We have

T™

2 [T 2 [T -2
an = —-/ g(t)sinntdt = —/ sinntdt = — cosnt
T Jo 0

T ™

0

4 - .
= if nisodd.

_{0 if niseven

Thus, we are saying that

in 3¢ in 5t in 7t
4 [sint sin3t sinbt sin7 +} (6)

1=~

T 3 + 5 + 7
for t between 0 and . It is interesting to see how a function g(t) is approximated by the
first few terms of its Fourier series. Figure 2 shows the graph of the first three terms of
the series in (6) and Figure 3 shows the graph of the first six terms of the series.
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Note that although we are approximating the function g(t) = 1 only on the interval
(0,7), the sine terms are defined everywhere. Since sin(—nt) = —sinnt, the sum of the
sine terms represents an odd function. Thus on the interval (—m, ), the sum of the sine
terms approximates the function given by

-1 if -r<t<0
0 if t=90
+1 if O<t<nw

on the interval (—m, 7). Since sinnt is periodic, we get this pattern over and over. Even-
tually, as the number of sine terms becomes greater and greater, their sum gets closer and
closer to the “square wave” in Figure 4.

Returning to the radio problem, we can see the general solution. A station broadcasts
a signal g(t) by broadcasting enough terms in the Fourier series for g(t) to give a good
approximation, and our radios sort out those Fourier coefficients. Radio is an application
of trigonometric integrals.

Exercises

7. Compute the a,’s for the function g(t) given by

_Jo if O0<t<
gm"{lif§5t<m

*8. Plot the first three terms and the first six terms of the Fourier sine series approximation

to the g(t) of Exercise 7.

9. Substitute t = 7/2 in equation (6) and solve for 7, to obtain a famous infinite series
formula for 7 derived by Leibniz in 1673.

10. If you know integration by parts, use it to compute the a,’s for the function

ht)=t, 0<t<m.

*11. Plot the first three terms and the first six terms of the Fourier sine series approximation
to h(t) of Exercise 10.

Historical Comment

Fourier developed his theory of writing arbitrary functions as infinite sums of sines and
cosines as a technique for solving the equations which describe how heat flows. His theory
had nothing to do with radio, which wasn’t invented until the end of the nineteenth century.
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Hence it might seem remarkable that Fourier’s analysis turned out to be exactly what was
needed to sort out radio signals, except that this phenomenon has been extremely common
in the history of science and mathematics. It seems to be in the nature of mathematics that
powerful techniques developed for one purpose will solve other problems which haven’t yet
arisen.

Fourier’s work was also a stimulus to pure mathematics. What does it mean to sum
an infinite number of sines and cosines? Exactly which functions can be represented by
a Fourier series? Does a Fourier series represent its function g(t) everywhere, or only at
some places? (The examples and exercises above show that we should expect trouble,
for example, at places where g(t) is discontinuous.) The first of these questions will be
clarified when you study the theory of infinite series. The others led to many of the most
important mathematical developments of the nineteenth century.
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Answers to Exercises

A
L m i ,.l\\ n
T

y = sin ¢ sin 20¢

L T™
6. a. / f(t)cos 19t dt or / f(t)cos 13t dt.
0 0

b. The signal would overlap the signals from stations 1 and 3.

2 .. . -4 .. .
an=— ifnisodd, — ifniseven.
™ mn

2 . . 1. 1. 1. 1.
f(t):;[s1nt-—-s1n2t+§s1n3t—§sm4t+—551n5t—§mn6t+...].
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10.
—_ g w
ay, = -2— [-—t cosnt +—1-/ cosnt dt]
mTLn 0 N 0
= 2 if n is odd, =2 if n is even.
n n

g(t) = 2[sint — -;-sin2t+ %sin3t — l—]i-sin4t +...}



VOLUMES AND HYPERVOLUMES

Author: Philip Straffin, Beloit College, Beloit, WI 53511
Area of application: geometry

Calculus needed: Riemann sums, definite integrals, integration by substitution. Multiple
integrals are not used.

Suggestions for use: This could be used in place of standard sections on Solids of Revolu-
tion. I have tried to focus on the geometric problem of volume in some of its interesting
incarnations.

The Problem: Computing Volumes

Any student of calculus is familiar with the use of integrals to compute areas of
planar regions. Indeed, we usually picture a definite integral fab f(z)dz as the area under
the curve y = f(z) between z = a and =z = b, at least as long as f(z) > 0 on [a,b)].
However, computing areas has been less important in history, and is less important today,
than the harder problem of computing volumes of solid figures. Atcer all, we live in a
three dimensional space, keep our belongings in three dimensional containers, and build
three dimensional structures. This module explores the power of integrals in calculating
volumes, via a fundamental principle we will call the slicing principle.

We will start by considering simple geometrical shapes whose volumes are given by
formulas often taught in elementary school. Those formulas were not as easy to derive and
prove as they are to state. Each was a triumph of mathematical intuition and argument
when it was first discovered. Integral calculus and the slicing principle give a straight-
forward way of deriving all of them, and also enable us to calculate more complicated
volumes.

Having seen the power of integrals in three dimensions, we’ll then ask what they can
do in higher dimensions. What is the hypervolume of a hypersphere in four dimensional
space? Five dimensional space? The slicing principle supplies the answers.

The Slicing Principle

The easiest kind of volume to compute is that of a cylindrical solid, one with a constant
cross-section (Figure 1). If the area of its base is 4 and its height is A, then its volume is
V = Ah. This follows directly from what we mean by volume. If the base could be filled
by A unit squares, then the solid could be filled by Ah unit cubes stacked on those squares.

137
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e - -

Figure 1. The volume of a cylindrical solid is V = Ah.

To compute the volume of a solid with variable cross-section, imagine it positioned
along the z-axis, say from z = a to £ = b, as in Figure 2. The cross-section of the solid
at any particular value of z has an area A(z). The slicing principle says that if we know
A(z) for all z between a and b, then we can compute the volume by integrating A(z) from
z=ator=0b

e
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Figure 2. Slices of a volume. Figure 3. Approximating a volume.

The Slicing Principle. If the cross-sectional area A(z) varies continuously with z on
[a,b], then the volume of the solid pictured in Figure 2 is given by

V= /;b A(z) dz.

Proof: We partition the interval [a,d] into n subintervals by points a = zo < z; < 22 <
oo K Tpoy <z, =b. Let Az; = z; — z;.; be the length of the :th subinterval. In each
interval, choose an arbitrary point z;.; < ¢; < z;. Approximate the volume above the
ith subinterval by a cylindrical solid (on its side) with base area A(¢;) and height Az;,
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as shown in Figure 3. The volume of this solid is the area of its base times its height,
A(ci)Az;. Hence the total volume of the object is approximated by the sum

ZA(C.-)AE,-,

which has the form of a Riemann sum. Since A(z) is continuous, as n — oo and all
Az; — 0 the approximation approaches the true volume, and the Riemann sum approaches

the integral
b
/ A(z) dz,

and the proof is complete.

We will see how powerful a tool the slicing principle can be. One easy consequence of
it is called Cavalieri’s principle, after the 17th century Italian mathematician Bonaventura
Cavalieri, who used it to compute a number of volumes in the years immediately before
the development of calculus.

Cavalieri’s Principle. Suppose two solids extend along the z-axis from z = a to ¢ = b.
Let the area of the cross-section above z be A;(z) for the first solid, Ay(z) for the second
solid. If Ay(z) = A,(z) for all z between a and b, then the two solids have the same
volume.

Two solids which satisfy the condition of Cavalieri’s principle are called Cavaliers congru-
ent.

Pyramids, Cones and Spheres

Let us use the slicing principle to verify some of those elementary school formulas.
First, consider a pyramid of height h on a base which is a square of side s. To calculate
its volume, put the origin at its vertex, and let the z-axis point down through its base, as
in Figure 4. (Are you used to having the z-axis point “right”? Well, of course, we can put
it anywhere it is useful!) The cross-sections perpendicular to the z-axis are all squares. If
u is the side of the square at z, similar triangles (Figure 4) give

h
s,

ey

so that u = zs/h. Hence the area of the cross-section is (zs/h)?, and the slicing principle
says that the volume is

I3 2 2 k 2 3.k 2 p3 1
= zs =3 2gp = [T =2 Dol 1
V_/o(h) dz h2/omd"‘ h2[3]o B3T3 ()
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which is, I trust, the formula you learned in elementary school. You probably didn’t learn,

though, a derivation of it. Did you ever wonder where the 1/3 comes from? It comes from

integrating z2. o

T T
x
L
u
h

v
b

8 Lx-axis I s

Figure 4. A pyramid, and a view through its axis.

The pyramid volume formula is one of the oldest in mathematics. It was known in
Egypt by 2000 B.C. In fact, the “Moscow papyrus” of 1850 B.C. gives a formula for a more
complicated shape, a truncated pyramid of height k¥ with square “bases” of sides s and ¢
(Figure 5). The Egyptian formula is

V= -§ (s + st +t2). (2)

Did you know that one? Try deriving it in Exercise 1.

A ’
2 '
Figure 5. A truncated pyramid. Figure 6. A cone inscribed in a pyramid.

The volume of a cone with base radius r and height A is given by
1
V= 377 h. (3)

This formula was discovered and proved by the Greek mathematician Eudoxus of Cnidos
about 375 B.C. It follows by the same method we used for the pyramid (Exercise 2). An
alternative derivation uses an argument based on Cavalieri’s principle. Inscribe the cone
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in a pyramid whose base is a square of side 2r (Figure 6). The ratio of areas of any cross-
section of the cone to the corresponding cross-section of the pyramid is /4. Hence the
ratio of their volumes must be 7/4, so the volume of the cone is

_ 1oz o1 2
V=730 = grr’h. (4)

The most difficult volume problem studied by the mathematicians of Greece was
determining the volume of the most “perfect” solid of all—the sphere. It was solved by
the greatest of Greek mathematicians, Archimedes of Syracuse (287-212 B.C.) Let us solve
the problem using calculus, and then look at what Archimedes did.

Position a sphere of radius r with its center at the origin. It lies along the z-axis from
z = —r to £ = r. The cross-sections are all circles. Using the Pythagorean theorem in
Figure Ta, we see that the radius of the circular cross-section at z is y = v/r?2 — z2. Hence
A(z) = my? = 7(r? — 22) and the volume of the sphere is

r r 3.,
V= m(r? —z?) dz = 27r/ (r? —z?) dr =27 [rza: - %—] = :4-7rr3. (5)

-7 0

Figure 7. Finding the volume of a sphere

a. by calculus. b. as Archimedes did it.

Archimedes proved this result by the Greek “method of exhaustion” in his book On
the Sphere and the Cylinder. It is interesting, though, that until 1906 we did not know
how he discovered the result. In 1906 a copy of a previously unknown book of Archimedes,
The Method, was discovered in Istanbul. In it, Archimedes explained that he found the
volume of a sphere by something very like Cavalieri’s principle. In essence, he showed
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that a hemisphere and a cone, positioned as in Figure 7b, are together Cavalieri congruent
to a cylinder. You are asked to fill in the details in Exercise 4. In using this argument,
Archimedes was 1900 years ahead of his time.

Exercises

1. Derive the Egyptian formula (2) by thinking of the truncated pyramid in Figure 5 as
the difference between a large pyramid of height 2+ k and a smaller, similar, pyramid
of height h. (Draw a picture of this.) You will need to find k. Use a similar triangle

argument to show that
s

] >

t—s’

2. Use an argument similar to our argument for a pyramid. to derive the formula for the
volume of a cone with base radius r and height A.

3. What is the volume of a truncated cone (sometimes called the frustrum of a cone)
with height k, bases with radii r and s? Justify your answer.

4. Show that a hemisphere and cone together, positioned as in Figure 7b, are Cavalieri
congruent to a cylinder of radius 7 and height r. Hence the sum of their volumes must
equal the volumre of the cylinder. Using the formulas for the volume of the cylinder
and cone, derive the formula for the volume of a sphere.

5. If the area under a graph y = f(z) between z = a i =f{x)
and z = b is revolved about the z-axis, the resulting M
solid is called a solid of revolution. Use the slicing : : :
principle to give a general formula, in terms of an w X
integral, for the volume of a solid of revolution. . ~—

6. The area under y = /7 between £ = 0 and z = 4 is revolved about the z-axis, to get
a solid of revolution called a paraboloid. Use the formula you derived in Exercise § to
find the volume of this paraboloid. Archimedes proved, in his book On Conoids and
Spheroids, the volume of a paraboloid is exactly one half the volume of a cylinder in
which it is inscribed. Check his result for this paraboloid.

-

v -

A Modern Instance

Modern technology has produced a number of interesting shapes for which we might
wish to find volumes. I bought one recently. It is a “pop-up” tent, shown in Figure 8. The
base is a regular hexagon which measures 8 2/3 feet from corner to corner. Flexible exterior
poles extend between opposite corners in curves that we will assume are semi-circles, to
hold up the roof. How much volume does the tent enclose?
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Top View

Figure 8. A pop-up tent.

To calculate the volume, we need to slice the tent (figuratively speaking) in a nice
way. Slicing it vertically, either parallel to a side or parallel to a diagonal, gives interesting
shapes (can you picture them?) whose areas are not easy to find. Slicing it horizontally,
though, gives regular hexagons (see Figure 9). So let us start by calculating the area of
a regular hexagon of “circumradius” s (see Figure 10). s is the length of hypotenuse of a
30-60-90 right triangle, whose legs must therefore have lengths s/2 and v/3s/2. The area

of this triangle is then
1s v3s V34
2 2 2 8

(6)

The hexagon consists of 12 of these triangles, so its area must be

33 s?

Area of hexagon = . (7)

2

S

¥3s|
2
s/2

Figure 9. Slicing the tent. Figure 10. Area of a hexagon.

Finally, from Figure 9, if the circumradius of the base hexagon is r, the square of the

circumradius of the hexagon at height z is s2 = r? —z2. Hence we can compute the volume
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of the tent,
_ T 3\/§ 2 2 _ Bﬁ 2 $3 z=r _ 3
Volme—AT(r —:r)dx——z—-[r:r—-é-]z=0— 3re. (8)

If we had taken as our base a circle of radius r, and erected over it a hemisphere, the
enclosed volume would have been %m’“. The ratio of the volume of the tent to the volume
of this enclosing hemisphere is v/3/ Zr ~ .827. The tent encloses about 83% of what the
hemisphere would have enclosed. On the other hand, one can make the tent out of pieces of
nonstretchable fabric, which one cannot do for a hemisphere. In fact, the tent is designed
to be efficient at enclosing volume, given that it is to be made out of nonstretchable fabric.

The answer to our original problem, by the way, is that the volume of my new tent
is v/3(13/3)® ~ 141 cubic feet. That’s pretty good for something which weighs only seven
pounds. The exercises give you a chance to try computing some other interesting volumes.

Exercises

7. a) Compute the volume of the ring which remains after a
hole of radius b is bored through a sphere of radius r.

b) Show the the volume depends only on the height A of
the ring, not on the specific values of b and r.

8. Compute the volume of the perpendicular intersection of two
cylindrical pipes of radius r. [Hint: if you slice it right, the
cross-sections are squares.] This volume was computed by
Archimedes, and also by the Chinese mathematician Tsu
Ch’ung-Chih.

Volumes in Higher Dimensions

To a mathematician, higher dimensional spaces are not mysterious, at least in their
definition. Three dimensional space R? can be thought of as the set of all triples (z,y, 2)
of real numbers. To measure the distance between two points (z,y, z) and (z',y’,2'), we
use the Pythagorean theorem:

diSt((xayv z)v (xl’y,’zl)) = \/(:1: - J:l)z + (y - yl)z + (z - 21)2.

In an exactly analogous way, 4-dimensional space R* can be thought of as the set of all
4-tuples (z,vy, z,w) of real numbers, with

dist((z,y, z,w), (¢, 4, 2", w')) = V(@ =)+ (y — )2 + (z = 22 + (w —w))% (9
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Five and higher dimensional spaces are handled in exactly the same way. For a while,
though, let’s stay in four dimensions. In four dimensions, just like in three, a sphere of
radius r about the origin O = (0, 0,0, 0) is the set of all points at distance r from O. Hence,
given the definition of distance in R*, the equation of a sphere is

2+ yt + 22+ w? =12 (10)

Science fiction writers often call spheres in higher dimensions hyperspheres, and talk
about their hypervolume. In fact, I used that terminology in the title of this module,
thinking that you might have heard it. However, mathematicians usually omit the “hyper”,
and just talk about spheres and volume in higher dimensional spaces. Mathematicians also
use terminology which may be slightly different from colloquial usage when they distinguish
between the sphere 22 +y? + 22+ w? = r? and the 4-dimensional ball 2% +y%+ 22 +w? < r2.
Thus, what we are about to do is find the volume of a 4-dimensional ball.

I will use the notation V,(r) for the n-dimensional volume of a ball of radius r in
n-dimensional space. For example, V3(r) = nr?, the 2-dimensional volume (i.e. area) of a

ball (i.e. disk) of radius r in 2-dimensional space. We have seen that V3(r) = $7r®.

What is the volume, V4(r), of a 4-dimensional ball of r? We will find the answer
by using the slicing principle, one dimension up. (Should we call it the “hyperslicing
principle”?). The 4-D ball of radius r is laid out along the z-axis between z = —r and
z = r. For a fixed value of z, the slice above z is the set of all (z,y,z,w) with that valuc
of z, and y% + 22 + w? < r? — z2. This is a 3-dimensional ball of radius v/r2 — z2, and its

volume is 4 3 4
Va(v/r2 - 22) = §7"(V7‘2 —-332) =§”("2“$2)3/2- (11)

Thus by the slicing principle, the volume of the 4-dimensional ball of radius r is

Va(r) = / i;-ﬂ'(r2 — z2)3/%dz

-T

= §‘lr'/‘ (r? = 22)3/? dg. (12)
3 Jo

There is a standard method for attacking integrals involving v/r2 — z2, which is to intro-
duce a new variable by writing z = rsiné. Then

V2 =22 =711 —sin?6 = rcosé
dz =rcos8 db
whenz =0, =0

whenz =r, 6=mx/2.

With this substitution, we get

8 7l'/2
Vi(r) = 7rr4/ cos* 6 db. (13)
0

3
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The nicest way I know to do that integral is by using an integral reduction formula which
says that

n

w2 n—1 w/2
/ cos™ 8 df = / cos" %0 dd (n > 2). (14)
0 0

If you know the technique called “integration by parts,” you are invited to prove this
elegant formula in Exercise 10. Using it, we get

/2 /2 1 [7/? 3

/ cos49d9=-§/ c0329d9=§-—/ cos°9d9=§-l--"£=—z (15)
0 4 Jo 4 2/,

and hence our answer for the volume of a 4-dimensional ball of radius r is

Var) = —— 7z =57 - (16)

Would you have guessed it? I catch myself wishing that Archimedes might be brought
back just for a moment, for the pleasure of seeing this calculation. '

Of course, there is no reason to stop at dimension four. The slicing formula
Via(r) =/ Vit (\/7‘2 —-a:2) do (17)

works in general, so that having calculated the volume of an (n — 1)-dimensional ball, we
can proceed to calculate the volume of an n-dimensional ball. Let’s follow the argument a
little further, because something interesting emerges.

The volume of an n-dimensional ball of radius r has the form
Va(r) = unr™

where u,, is the volume of a ball of unit radius. You already know the first few u,’s:

uy =2 (A 1-dimensional ball is a line segment, right?)
Up =T
_4rm
Uz = —é—
2
U= 5

The slicing formula and the kind of work we did above enable us to use u,_; to find uy:
/2
Up = 2un._1/ cos™ 8 db, n=12... (18)
0

Furthermore, using the integral reduction formula repeatedly, as we did in (15), yields

x/2 (n=1)(r-3)...3-1
/ cos™ 6 df = {
0

m
n(n—2)-4.2 2
-1

(rn—1)(n—3)-.-4.2
n(n—2)--53

if n is even

19
if n is odd. ( )
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Using (18) and (19), you can check that

u_87r2 u__lrj u_167r3
T 576 T 7105

and continue as far as you want. If you are ambitious, you can even derive a general
formula for u, (Exercise 11).

The interesting facts I want to point out emerge when we tabulate the u,’s numerically:

n U, up/2"
1 2.000 T1.000
2 3.142 0.785
3 4.189 0.524
4 4.935 0.308
5 5264 0.164
6 5.168 0.081
7 4.725 0.037
8 4.059 0.016
9 3.299 0.006

10 2.550 0.002

First, notice that the n-dimensional volume of a unit ball increases up through dimension
5, but then begins to decrease, and in fact approaches 0 as n approaches co. It makes you
wonder: why should a unit ball be biggest in dimension 5?7 Second, consider u, /2", which
is the ratio of the volume of a unit ball and the smallest cubical box (side 2) which would
enclose it. That ratio goes to zero monotonically and rapidly as n increases. As dimension
increases, a ball gets curved in more directions, and takes up an ever smaller percentage
of the volume of a box in which it is tightly packed. A 10-dimensional ball only takes up
about 1/400 of the smallest 10-dimensional cube which contains it.

Exercises

9. Carry out in detail the calculation for the volume of a 5-dimensional ball of radius r,
as we did above for a 4-dimensional ball.

10. If you know the integration by parts formula

b b b
/ udv=uv —/ v du,
a a a

use it with u = cos®™1 6, dv = cosf df to verify the reduction formula (14). [You will
also need to use the identity sin®f = 1 — cos® 4]

11. a) Use (18) and (19) to verify the values given for us, ug¢ and us.
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*b) Use (18) and (19) twice to get an expression for u, in terms of u,_2. Use that
expression to derive the following formulas for the u,’s:

U2k = P"
2k+17rk

u2k+1=1.3_5“_(2k+1).

Uses of Higher Dimensions

I hope you enjoyed our excursion into volume in higher dimensions, perhaps even
enough that you never asked, “What good is it?” But what good is it, when we live in
a space of only three dimensions? It turns out that higher dimensional models appear
regularly in all areas of modern science. Here are three simple illustrative examples.

1) The state of a particle moving in three dimensional space can be described by six
numbers (zi,z2,3,v1,v2,v3), the first three giving its location in space and the last
three giving its velocity in each of the three coordinate directions. In other words, the
state is a point in R®. If we confine the particle to a bounded region in R? and also
restrict its velocity, the state is confined to a bounded region in R®. Sometimes it is
important to know the volume of that region.

2) Suppose I give you four line segments whose lengths z,y, z,w are randomly chosen
from [0,1]. What is the probability that you will be able to make a quadrilateral from
the segments? This probability question can be answered by computing the volume
of the set of points (,y,z,w) in the unit cube in R* which satisfy the constraints

r+y+z2w z+ytw2z T+z+w2y y+z4+w2z.

Probability questions often reduce to questions of volumes in high dimensions. (By
the way, the above probability turns out to be 5/6.)

3) In satellite communication, information is sent in binary words, strings of energy
pulses indicating zeros and ones, such as 10010. Because of interfering “noise”, what
is received may look like a;azaszaqas, where each a; is a real number between 0 and 1.
Suppose we agree to decode such a string as the binary word e;ezeseqes if and only if

dist((ay, az, as,as,as), (€1, €2, €3, e4,€5)) < 1/2

in R3. Decoding will then be non-ambiguous. On the other hand, since the points
within distance 1/2 of a corner of the unit 5-cube fit together to make a 5-dimensional
ball of radius 1/2, we will only be able to decode 16.4% of possible received words. If
our codewords had length 10, we would be able to decode 0.2% of possible received
words.

Banchoff [1990] contains many examples of real uses of higher dimensional volumes. It
also contains beautiful computer generated pictures of higher dimensional objects—highly
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recommended! If you like working with higher dimensional spheres, Fraser [1984] does
more of it, in context of a light-hearted problem.
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Answers to Exercises

" V= %ﬁ(h +E) - %s%
=31’;[t2(tk—ss +k) _s2tk—ss]
- 3(tk_s)[t2(s+(t—s))——s3]
—%-%{é:%[tuswﬁ]

> hozry2 1
V=/0 W(T) d = zrr’h.

3. V= 1"35(7'2 + 15 + s?). The easy way to justify this is to compare the truncated cone
in a truncated pyramid, whose volume you know by the Egyptian formula, appealing
to Cavalieri’s principle as we did for the cone.

4.
A(z) = (slice of cone) + (slice of hemisphere) = 722 + n(r? — 22) = =r?
= (slice of cylinder).
9.
b
V= / (f(2))? da.
6.
4 I2 4
V=/ 1r:1:da:=1r-—-‘ = 8.
0 2 o
The volume of the circumscribing cylinder is 722 - 4 = 16.
7.
] 31
V= 2/ (n(r? — 2?) —nb?) dz = 2r [(7‘2 - ) — =
0 3o
3 3
=2m(s® - %) = 47!; since r — b% = 2
3
= % since h = %

8. If we slice horizontally, the cross-sections are squares. The square at height has side

2v/r?2 — 2. Hence
r T 3
V=/ (272 - 22)? dz =8/ (r? —z?) dz = 16; .

- 0




Volumes and Hypervolumes 151

9.
r__2 4 r
V5(r)=2/(; Z-rz—(\/rz—:vz) d:z:=7r2/0 (rt - 2rz? + z*) do

2 5yr  8r?

24, 423 T} _°T

—n[ra: 31':1:-}-5]0 5
10.

w/2

w/2
- / sind-(n —1)cos" 2 4(—sin§) db
0

/2
/ cos™ 18 cosh df = cos™ ! 9siné
0 0

~/2 /2
=(n-— 1)/ cos" 28 df — (n — 1)/ cos™ § db
0 0

since the non-integral term evaluates to zero when n > 2, and using sin?§ = 1 —cos? 6.
Now bring the last term to the left side of the equation, and divide both sides by n.

11. a) For example

"/2 724.2  8r?
- 5 o2 _om
u5—2u4/(; cos 0d0—225.3 TE
b)
_(n=Dn=3)-- (n—-2)(n-4)--- « _ 27
Un =2 n(n—2)--- (n=1)(n-3)--- gUn-2 = e
The formula for odd n follows directly. The formula for even n requires observing
that
2k 1



RELIABILITY AND THE COST OF GUARANTEES

Author: Kevin J. Hastings, Knox College, Galesburg, IL 61401
Areas of Application: business, manufacturing

Calculus needed: definition of derivative, techniques of differentiation, Fundamental The-
orem of Calculus, integration by parts and substitution, Riemann sums, exponential func-
tions.

Related mathematics: continuous probability distributions

Satisfaction Guaranteed...Or Your Money Back!

Frequently we buy items that come with guarantees. Your video cassette recorder carries
a year of free repairs, your new car has 30,000 miles on the drive train, that incredible food
processor you ordered from the late night television ad will give total satisfaction “or your
money back.” The companies that offer these guarantees are on occasion forced to pay
for their promises. Since they are in business to make money, they will have to raise the
price of the item in order to balance the risk they are taking by issving such contracts on
imperfectly reliable equipment. In this module we are interested in determining how they
can decide on an appropriate pricing scheme in the presence of the possible costs when the
piece of equipment fails.

To state a particular problem, the author recently purchased a set of steel-belted
radial tires from Sears, Roebuck for $75 each. The tires came with a limited warranty that
included the following rule about tread wearout.

“Until 50,000 miles of usage...Sears will, at its option, either replace the tire
charging the proportion of the current price that represents the ratio of miles
usage actually received to the number of miles covered by the warranty or give a
refund to the proportion off the purchase price that represents the ratio of miles
remaining to the number of miles covered by the warranty if wearout of the tread
(2/32") occurs. (Sears Passenger and Light Truck Tire Warranty 14875 Rev.
9/87)”

This is stated in a way that is not easy to read, but what it seems to say is this: if my tread
fails at a mileage T' (in thousands of miles) prior to 50 thousand miles, the company must
give to me material or cash equivalent that is worth a certain proportion of the original
price p. This proportion depends on the unused part of my 50 thousand miles. Specifically,
they refund to me a total of

5 —T T
% -—p(l'—gﬁ (1)

D
dollars, in case the tread failure mileage T is less than 50, and nothing otherwise.

152
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Let p; be the total revenue the company would like to receive from selling this tire.
That is, p; is the cost of making the tire, plus the desired profit margin. Let w be the
surcharge that will be necessary to compensate for the warranty. Then the total price of
the tire will be set at p = p; + w. Taking the role of the company, we assume that we
know p;, and we want to determine w. Then

p1 = selling price — average refund due to warranty

2
= (p1 4+ w) — (p1 +w) - (average of 1 — T/50 when T < 50). @

We would like to solve for w, but here we run into a difficulty which we will explore in
detail in this module. What do we mean by the “average of 1 — T/50 when T < 50”, and
how do we compute it? There is inherent randomness in the quantity T', the mileage at
tread failure. There is no way of predicting perfectly how long a given tire will survive.

A representative sample of 25 tire lifetimes, sorted into increasing order, is below:

Tire Lifetimes (in thousands of miles)

21.39 33.19 37.91 44.98 58.32
24.16 33.34 38.63 45.19 58.52
26.37 33.37 39.06 45.83 59.00
29.49 35.82 41.20 49.94 59.98
31.94 36.70 43.32 56.43 65.29

Most of the tires do fail before the 50 thousand mile mark, but this causes no great problem
for the company if they set a high enough surcharge. The goal is to take the data set,
form a model of the random behavior of failures, and compute the average value mentioned
above so as to determine the proper surcharge.

Probability Distributions

To make progress toward formulating mathematical models for reliability problems,
we must discuss some definitions and concepts from elementary probability. In this section
you will learn about (a) randomness; (b) probability; (c) random variables; (d) probability
distributions; and (e) conditional probability.

A probabilist who uses the word ‘random’ in reference to some experiment or phe-
nomenon means that there may be one, several, countably many, or even a continuum of
possible outcomes, and that the exact outcome will not be known until the experiment is
performed or the phenomenon is observed. In English, the word ‘random’ is occasionally
used casually with the unfortunate connotation of ‘utterly unknown.’ This is not the case
in probability, where we usually assume that we know something about the likelihood of
occurrence of outcomes. For example, if we roll two dice, there are 36 possible outcomes,
only one of which is the combination (1,1). Hence, if we are willing to assume that the
dice are fairly weighted, the likelihood that both faces will come up as 1is 1/36. Similarly,
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the likelihood that the sum of the up faces is 3 should be 2/36, since the two outcomes
(1,2) and (2,1) which produce this event each have likelihood 1/36. The likelihood that
the sum of the faces will be less than or equal to 12 is 1 or 100%, since all 36 possible
outcomes result in the occurrence of this event. The likelihood that the sum is 14 is 0,
since no outcomes permit this to happen.

The preceding illustration introduces the idea of probability of outcomes, and of sets of
outcomes, which are called events. We will denote the probability that an event A occurs
by P[A]. The reader may consult any of the references on probability listed at the end
for more detail, but for our purposes the following are the most important, and intuitively
obvious properties of probability:

0< PlA] <1, (3)
P[A or B] = P[A] + P[B] if A and B have no outcomes in common, (4)
P[A] + P[A®] =1, where A€ is the event “not A.” (5)

The first property says that probabilities, as measures of likelihood, should be between 0%
and 100%. The probability of the entire set of possible outcomes is one, and the probability
of an empty set of outcomes is zero. The second property says that the total probability
of an event is the sum of the probabilities of the disjoint events of which it is composed.
The third property says that it is certain that either A will occur or it will not occur .

Frequently in applications of probability theory, the events of interest involve random
numerical-valued quantities called random variables. For instance, consider a device such
as a battery which functions during a certain interval of time, and then fails. The time
T of failure is a random variable, whose possible values are real numbers in the interval
[0,00). We might be interested in probabilities such as P[T < t] , i.e. the probability that
the failure time of the battery occurs at time ¢ or before.

If T is a random variable, then the function
F(t) = P[T <] (6)

is called the cumulative distribution function (c.df.) of T. From the cumulative distribu-
tion function, probabilities such as the following can be calculated:

PIT >t =1-F(t), (7)

Pla<T <b=P[T <b - P[T £La]=F(b) - F(a). (8)

The first line uses property (5) of probability, and the second line follows from property
(4).
In the context of the tire example, one way of statistically estimating the c.d.f. of tire

lifetime T is to test some number N of tires, order their failure times (say T3, T3, ... ,Tn),
and plot a step function which for each time gives the proportion of tires that have failed
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by that time. This function, called an empirical c.d.f., takes the value 0 at ¢ = 0, and
jumps up by 1/N at each failure time, that is:

0 if t < Ty;
Fn(t) = {k/N Ty <t <Trp,k=1,...,N-1; (9)
1 ift>Tn.

A typical graph of an empirical distribution function, together with the c.d.f. for
which it is an estimate, is shown in Figure 1. It is based on a sample of five random
observations (following the exponential distribution with parameter 1, described below),
whose ordered values are .419, .570, 1.08, 1.15, and 1.64.

c.d.£f.
13

0.8t

0.2t —

(24

0.5 1 1.5 2 2.5 3
Figure 1
Another perspective is often taken on the calculation of probabilities such as those in

(6), (7), and (8). Suppose that the c.df. F is differentiable with derivative F'(t) = f(t).
Then for small At,

F(t+ At) — F(t)

= =~ f(t). (10)
Moving At to the right, and using formula (8),
Plt < T <t+ At] = F(t + At) — F(t) = f(t)At. (11)

The function f(2) is called the probability density function (p.d.f.) of the random variable
T, and we see from the above equation that it measures the rate at which probability
is accumulating at the point . A typical cumulative distribution function F' and its
derivative, the density function f, are pictured below. Because f = F', the distribution
function will be concave up when the density function is increasing and concave down
when the density function is decreasing,.
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probability

14
c.d.f. F

0.81

0.6

0.4
0.2 p.d.f. £

+—t

0.5 1 1.5 2 2.5
Figure 2

By the Fundamental Theorem of Calculus, probabilities can be calculated by comput-
ing areas under the density function:

Pla < T < b= F(b) — F(a) = / b () dt. (12)

For instance, if T has the density shown as the light curve in Figure 2, the probability
that T lies in the interval [.5,1.5] is the area under the light curve and above the x-axis
between .5 and 1.5.

Two particular distributions studied in reliability theory and other applications of
probability are:

1. Exponential distribution with parameter A > 0 :

p.df. f(t) = {/\e‘“ if t > 0; (13)

0 otherwise.

2. Weibull distribution, parameters A >0 and § > 0:

_(anf .
cdf F(t) = {1 —emOT it >0 (14)
0 otherwise.

The exponential distribution has been known to be a good model for the distribution of
lifetimes of electrical components (Davis, 1952) and other objects that do not age appre-
ciably, but are subject to rare catastrophic events. The Weibull distribution is probably
the most frequently used of all distributions in modelling lifetimes of mechanical devices,
partly because the empirical distribution functions of samples of device lifetimes tend to fit
the c.d.f. (14) (see, e.g. (Barlow and Proschan, 1975, p. 73) on ball bearings and vacuum
tubes). There are theoretical reasons to choose this distribution as well. A standard result
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in reliability theory (Gertsbakh, 1989, p. 26) implies that a system of many highly reliable
components with exponential lifetimes possesses a system lifetime which has approximately
the Weibull distribution.

Exercises
1. Show that the c.d.f. of the exponential distribution is

- : .
0 otherwise.

2. Show that the p.d.f. of the Weibull distribution with parameters A and 3 is

f(t) — {/\ﬂﬂtﬂ—le—(z\t)ﬂ if£> 0 (16)

0 otherwise.
Why does it not matter from a probabilistic point of view how f is defined at ¢t = 07

3. Suppose that a microprocessor has a lifetime which is exponentially distributed with

parameter A = .001. Find in two ways the probability that the processor survives at least
until time 1000.

4. Another p.d.f. that arises in reliability theory as the distribution of the lifetime of a
system with an exponential component that has several backups is the gamma distribution.
One instance of it is the following density function:

f(t) — {4t6_2t if t > 0; (17)

0 otherwise.

Show that the c.d.f. of this density is:

c.df. F(t) = {(1)“ e™2 —2te™? ift >0 (18)

otherwise.

Compute the probability that a device with this lifetime distribution fails in the time
interval [1, 5].

*5. If you have a graphics package available, do the following. Plot the exponential p.d.f.
and its c.d.f. for A = %, %, 1, 2, and 3. How does the shape change as A increases? What
is the significance of this to the lifetime of devices? Repeat the exercise for the Weibull
p.d.f. and its c.d.f. for the same values of A, and each of the values 8 = -;- and g = 2.
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The last background item that we need to introduce is the idea of conditional prob-
ability. If one event is known to have occurred, this fact might influence the probability
of occurrence of another, since it is no longer the complete set of outcomes that matters,
but only those in the known event. For example, if it is known that a device has already
lasted until time .5, then the probability that the device works until time 1.5 should be
calculated as if the space of possible outcomes were the set of times ¢ > .5. Viewing these
probabilities as areas under the density curve f(t), the conditional probability that T' > 1.5
given that T > .5 should be defined as the ratio of the area to the right of 1.5 to the entire
area lying to the right of the point ¢ = .5 (see Figure 3). In other words,

S f(B)dt 1— F(1.5)
[ f(tdt  1-F(5)°

PT>15|T> .5 = (19)

where the symbol “|”

is read “given that.”

£(t)

0.

t

0.5 1 1.5 2 2.5 3
Figure 3

In this special case, the event T' > 1.5 happens to be a subset of the event T' > .5, so
that all its outcomes also belong to the event that is known. In the general definition of the
conditional probability of an event B listed below, we explicitly require that the outcomes
which B may have that lie outside the known event do not contribute to its conditional
probability.

Definition. The conditional probability of an event B, given an event A, denoted by
P[B|A] , is defined by
P[A and B]

PIBIA) = ~ 5

(20)

when the denominator is not zero.

Thus, B is given probability according to its relative likelihood within the event A.
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Exercise

6. For the microprocessor in Exercise 3, find P[T > 1000 | T > 500].

Reliability and Failure Rate

We consider systems which work initially, and fail at some random time T". The reliability
of the system is the function of ¢ which gives the probability that the system still works at
time ¢, i.e. its lifetime exceeds ¢: ‘

R(t) = P[T > t] = 1 - F(2). (21)

Formula (14) implies that
R(t) = e~ (22)

is the reliability function for the Weibull distribution. Several instances of this function,
with A = 2, and 8 = .5,1, 1.5 are illustrated in Figure 4, in which the dashed line is the case
B = .5, the solid line is the case 8 = 1, and the bold line is the case # = 1.5. The rise in the
B value does produce a fall in reliability after some time elapses, but the real qualitative
differences between these distributions are not yet clear. We will better understand these
differences shortly, when we define the idea of failure rate.

reliability

0.5 1 1.5 2 2.5 3
Figure 4

Just as the c.d.f. of a distribution can be estimated by a sample empirical distribution
function, the reliability function can be estimated by the empirical reliability function. The
value of this function at time ¢ is the proportion of items in the sample that lived beyond
t; hence it must equal one minus the value of the empirical c.d.f. at time t. Figure 5 shows
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the empirical reliability function for the tire data set. The horizontal axis is in units of
thousands of miles.

proportion good
1

10 20 30 40 50 60 70

Figure 5

Intuitively, one would think that most physical devices are subject to wear, and that
as they age, they become more and more likely to fail. To form a mathematical model for
this aging process, we introduce the following definition.

Definition. The failure rate of a distribution F with density f is defined by:

f(t) f(t)
M) =1"Fw = RE) (23)

A distribution has increasing failure rate if its failure rate h, defined by (23), is an increasing
function of t.

To see the motivation for this definition, consider the conditional probability that a
component fails during the time interval (¢,t + At] given that it has survived until time ¢:

Pit<T <t+A{]
P[T > {]
_ F(t+ At) — F(t)
T 1-F(Q) (24)
_ fH)at
T 1-F(t)
= h(t)At.

PE<T<t+At|T>t]=

Dividing both sides by At and letting At — 0 shows that h(t) is indeed the rate at which
failure probability accumulates at time ¢, given that the device has survived until time ¢.
The IFR property may be interpreted as an aging condition as follows: the longer a device
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survives, the greater is its probability of failure in the next infinitesimally small interval of
time.

For example, consider the Weibull distribution with A =1 and # = 2. From (16) and
(22) we can find the failure rate function:
2te~t’
Hence this distribution has increasing failure rate. As a second example, consider the

exponential distribution with parameter A = 5. By formulas (13) and (15) this distribution

has failure rate
56—5t

e—5t

h(t) = = 5.

Hence the exponential distribution has constant failure rate. Devices with this lifetime
distribution do not age in the sense of having a higher likelihood of impending failure in a
short interval when they are older than when they are younger.

Exercise

7. Show that, regardless of the value of the parameter A, the Weibull distribution has
increasing failure rate if 8 > 1, constant failure rate if # = 1, and decreasing failure rate if
B <1

The failure rate and the result of Exercise 7 allow us to distinguish better among
members of the Weibull family. Figure 6 shows sketches of the examples considered in
Figure 4, with A = 2, and values of # = .5,1,1.5. One sees clearly that 8 = 1 (the case of
the exponential distribution) is a boundary between the cases of increasing and decreasing
failure rate.

failﬁfe rate

(3]

beta 1.5

N o

beta 1

-
~~~~~
-
................

—time

Figure 6
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It is possible to check the increasing failure rate condition empirically from a data set
of failure times. In the data set of tire lifetimes, we have broken the interval in which data
lies into subintervals of size At = 5 thousand. We refer to the points of the partition as
to, t1,t2,. .., which have the values 20, 25, 30, .... Consider a general interval [t;,t;41],
where t;41 = t;+At. Recall that h(t) = f(t)/(1—F(t)) and f(t) = F'(t). If we approximate
f(t) by the difference quotient of F' at t with increment At, we obtain

1 F(t + At) — F(¢)
At 1-F()

h(t) = (25)
Since At is just a positive constant, to judge whether & is an increasing function, we can
plot the following as a function of t;:

Fn(ti + At) = Fy(ti) _ Fn(tiva1) — Fn(t)

1— Fn(t) T 1-=-Fn(t) (26)

where Fy is the empirical distribution function. But notice that this ratio is just the
proportion of tires surviving through time ¢; which failed in the next At = 5 time units
(which, if divided by At, is an intuitive approximation of the failure rate function). The
function given in (26) is plotted for our data in Figure 7. For instance, the value of the
function at 20 is 2/25, which is the ratio of the number of failures in [20, 25] to the number
surviving through time 20. The randomness inevitably results in occasional decreases, but
Figure 7 suggests a general upward trend, so we have some empirical support to claim that
the distribution of tire lifetimes has increasing failure rate.

empirical failure rate
1 - ————
8-- S——
61
4L
.2-- ——
I———
— - + + ' + thousands
20 30 40 50 60 of miles
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Solution of Tire Problem

The tire life data indicate that the distribution of lifetimes has increasing failure rate.
We know a family of distributions, namely the Weibull family with 8§ > 1, which has
increasing failure rate and is frequently a good model for life distributions. Moreover, the
empirical reliability function of the tire data (Figure 5) is a good fit to reliability functions
of the Weibull family. Hence it is reasonable to suppose that tire lifetimes follow a Weibull
distribution.

To specify the probabilistic model, we need only find the parameters A and . In
the field of statistics, parameter estimation is one of the major problems, but we have no
time for a full development here. For a discussion of this particular estimation problem,
see (Devore, 1987, p. 243). For our purposes, let us say that a friendly genie familiar
with statistics has told us that the parameters are A = .02 and 8 = 4. (These are in fact
the parameters used by the author to simulate the data, chosen to have an average life of
around 45 thousand, with modest variability.)

Consider again equation (2) and the “average value of 1 — T'/50 when T < 50.” In
light of our new knowledge about probability distributions, what could that mean? We
are averaging the continuum of possible values of 1 —7'/50, and as you have probably seen
in your study o! calculus, a continuous average is taken to be a limit of discrete averages,
which gives rise to a definite integral. We must give higher weight in our averaging process
to values which are more likely. If we imagine dividing the interval of interest [0, 50] into
many equally sized subintervals [to,?:1],[t1,%2],-- ., [tn—1,tn] Of size At, then if T takes its
value in the i** subinterval [t;_;,t;] the value of 1 —T/50 is roughly 1—¢;_;/50. This event
happens with likelihood F(¢;) — F(ti—1) = f(?i-1)At, by formula (11). So an approximate
average of 1 — T'/50 using likelihoods of subintervals as weights is

‘2 (1 - 115_?1) F(tio1)Ad. (27)

t=1
As the partition becomes finer, this sum converges to a continuous version of the average,
which is the first definite integral below.

T 50 ¢
f1— — - —-
average of 1 55 °° [0, 50] /0 (1 50) f(t)dt

= f(t)dt~516 /0 t f(t) dt (28)

0
50
= F(50) — 51—0 /0 t £(t) dt.

Using formulas (14) and (16) for the Weibull c.d.f. and density gives the expression

1 50

avg. of 1 — 526 on [0,50] = 1 — ¢=((0(GN* _ =0 t (.02)%4t3e~(COD* g4 (29)
0
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Some simple manipulations can be done. By first employing 'Ehe substitution s = .02¢, and
then using integration by parts with u = s and dv = 4s%e~* ds, the preceding expression
simplifies to

T 1 4
avg. of 1 — — on [0,50] = 1 —/ e’ ds. (30)
50 A

The last integral, which we will call I, is not expressible in closed form, but it can be
approximated using numerical methods like the trapezoidal rule or Simpson’s rule. One
finds that I =~ .8448. Hence, from equation (2), to offset risk of loss, the warranty surcharge
w must satisfy

1—-1
p=((@E+w)(l1-(1-1)), sothat w= pi—g— (31)
If the tire life distribution that we have been using is the true one, the fact that the total
price was p; + w = 75 implies that [I/(1 — I)Jlw + w = [1/(1 — I)]w = 75, and therefore I
paid w = (1 — I)75 = $11.64 for the warranty.

Exercises
8. Derive equation (30) from equation (29).

9. Use Simpson’s rule with n = 6 to verify that

1
/ e~ ds ~~ .8448.
0

Further Reading

(Gertsbakh, 1989) is a well-written introduction to the subject of reliability. In addition
to the material on life distributions which we have extracted for this note, there is much
interesting material on replacement and inspection schemes, designed to improve reliability.
The reader is advised to study calculus-based probability thoroughly before attempting
these things, however. Some references are (Hogg and Tanis, 1988), (Hoel et al, 1971),
and at a higher level (Parzen, 1960). Another interesting area of study is structural
reliability, which studies how the reliability of a system depends on the organization of the
components from which the system is built. A good discussion of structural reliability can
be found in (Kaufmann et al, 1977). To comprehend this the reader only needs a small
amount of elementary probability, including the idea of independence, and perhaps some
experience in discrete mathematics. The veritable bible of reliability theory is (Barlow
and Proschan, 1975). Several papers which discuss applicability of the life distributions
that we have discussed are (Davis, 1952), (Epstein, 1958), (Harter and Moore, 1976) and
(Weibull, 1951). The last is widely recognized as a seminal work in the area.
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Answers to Exercises
1. F(t) = [ de™%ds = e~

2. fit) = F'(t) = —e‘(’\‘)ﬂ(—ﬂ(z\t)ﬂ‘lz\). Probabilities found by integrating f are not
changed if the value of f is changed at a point.

3. P[T > 1000] = 1 — F(1000) = ~(:000)(1000) — -1 Alternatively, P[T > 1000] =

Ji00(-001)e (001Gt = —e=(0ONY™ = =1  3679.

4. Use integration by parts with u = 2¢, dv = 2¢~2%'dt.

P[1<T<5]=F(5)—-F(1)
=1-e 10— 10e™1 -~ (1 -e"2~2e7?)

=3¢ 2 -11e7 1% ~ .4055.

1 ~1000 -1
P[T >1000] e & . 60BS.

P[T > 1000|T > 500] = P[T > 500] - e—500A e—~5

7. h(t) = BAPEA-Y RI(t) = B(B — 1)A\PtA-2,

9. Simpson’s rule with n = 6 gives I = .8449.



QUEUEING SYSTEMS

Author: Kevin J. Hastings, Knox College, Galesburg, IL 61401.
Area of application: business, manufacturing, computer science

Calculus needed: limits, definition of derivative, optimization, differential equations, geo-
metric series, L’Hopital’s rule.

Related mathematics: probability, differential equations, recurrence relations.

The Problem: Maximizing Profit for Drive-Up Windows at Burger King

The Burger King corporation has been a leader in the restaurant industry in the use
of mathematical models to plan production and service systems. The models which they
have built have led to such changes as a redesign of the sandwich preparation board to be
perpendicular to the counter, and a move to self-service drinks, in both cases to reduce
customer service time at the counter, to speed the customer flow, and hence to increase
profit (Swart and Donno, 1981). The model that we will discuss is a modified version of a
study undertaken in the late 1970’s.

Like most fast food franchises, Burger King operates drive-up windows at all of its
restaurants. According to the Swart and Donno article, the average service time at the
drive-up window in the 1970’s was about 45 seconds. It was normal procedure for one
clerk to receive the order, fill the order, and check out the customer. A typical restaurant
would be limited to at most 80 cars per hour. An average purchase amount at that time
was $2.44, which produced a maximum possible revenue of ($2.44)(80) = $195 per hour.

The Burger King corporation set a goal of reducing the average service time to 30
seconds. If this goal could be reached, about 120 cars could be served per hour, producing
a maximum revenue of about ($2.44)(120) = $292 per hour. Even if only half of the extra
capacity were actually realized, this translates to a $35,000 increase in yearly revenue
capacity per restaurant, and potentially $52,000,000 in increased sales for the corporation.
The importance of reducing service time is plain to see. The goal of 30-second average
service times was eventually achieved by dividing labor: the tasks of order-taking, order-
assembly, and check-out were given to three different individuals. Note, however, that
this analysis has not included the cost of hiring more or better employees to give the extra
service, nor has it explicitly considered customers lost due to limited waiting space. Taking
these things into account, was the Burger King goal a wise one? We will build a model
answer this question.

First we need to specify some assumptions and introduce some notation. Suppose
that a particular restaurant has a parking area which can accommodate at most K = 10
cars in the drive-up lane (see Figure 1). Cars wanting to enter the lane arrive in a random
way, at a rate of 1.5 per minute on the average, but when the lane is full they drive away
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and are lost as customers. Once in line they are served on a first-come, first-served basis.
Service time also varies randomly, with average service rate of p cars per minute. Assume
that the average bill per car is $3.

Also, suppose that every time we speed up service to serve one more car per minute,
we incur an extra cost of $.25 per car, from needing to hire more or better workers. Thus,
increasing the service rate should permit more cars to enter the drive-up lane, yielding
more revenue, but unfortunately it also increases costs. The question becomes: what value
of the service rate 4 maximizes the average profit per minute?

The main problem we face is to determine how varying the service rate will affect the
number of cars entering the drive-up lane. Since cars which arrive when the lane is full
will not enter, we want to compute the probability of having 10 cars in the drive-up lane
at any particular time, as a function of the service rate.

/‘
OO N

DG

= (

—7

Figure 1

Queueing Theory

A queue is a waiting line, and queueing theory, the study of waiting lines and other
characteristics of service systems, has been one of the most active applications of mathe-
matics in the last several decades. In a queueing system, there are one or more servers,
who give service to arriving customers. The customers come at random times, and service
of a customer takes a random amount of time. A customer who seeks service from a server
who is already occupied must wait in a queue. On completion of service, the customer
either proceeds to another service station in the system, or leaves the system.
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In our application, we have a very simple configuration of one service station (the
drive-up window). Customers (cars) are served on a first-come, first-served basis, and they
leave the system when their service is complete. There is a finite amount of waiting space
for customers in the queue. We wish to understand how the length of the queue varies
with time, since we need to find out how likely it is that the queue for the drive-up window
will be full.

The queue length at any time ¢ could be calculated if we knew (1) exactly when each
customer would arrive, and (2) exactly how long it would take to serve each customer.
Unfortunately, in a real application one cannot expect these times to be known before the
actual run of the queueing process. For example, if customers are airplanes arriving at a
busy airport like Chicago O’Hare, even though they may be scheduled to land at certain
times, random fluctuations invariably occur (mostly in the direction of lateness rather than
otherwise). We must assume that arrival times and service times are random variables,
whose probability laws are known or can be estimated from data.

One probabilistic assumption which is often made is that there is a number A, called
the arrival rate, such that the probability that a new customer will arrive in any short
time interval of length At is A - At.I The corresponding assumption for service times is
that there is a number g, called the service rate, such that if a customer is being served at
the beginning of a short time interval of length At, the probability that the service will be
completed within the interval is p - At. If these assumptions hold, it can be shown that A
is the average number of customers arriving per unit time, and p is the average number of
customers served per unit time when the server is busy. Hence the names “arrival rate” and
“service rate” are appropriate. We will assume that A and p exist with these properties.

To solve the Burger King problem, we need to understand the probability distribution
of the queue length. Accordingly, we will define, for n = 0,1,2,...,

P,(t) = the probability that there are n customers in the system at time ¢t. (1)

We will try to calculate the functions P,(t).

Formulation of Differential Equations; Long-Run Probabilities

Calculus enters the problem because our assumptions about arrival times and service
times give us information about how the queue length changes in time. We will use this
information to set up differential equations for the functions P,(t). It will be hard to
solve the equations explicitly, but we will compute the limiting value of P,(t) as t — oo,
i.e. the long-run probability of n customers being in the system. Once we have finished
these computations, we will solve a one-variable optimization problem by the methods of
differential calculus.

{ The assumption is actually that the probability is approximately A- At, and that the
approximation approaches equality as At — 0. (For the experts, we are assuming that the
inter-arrival times have an exponential distribution.)
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We start by calculating P,(t + At), the probability that there are n customers in
system at time t 4+ At, in preparation for writing an equation for P/(t). Our approach is
to envision how the system could have n customers at time ¢ + At, in light of what the
situation was a short time earlier at time ¢. First consider the case n = 0, i.e. think about
the problem of finding the probability of no customers in the system at time ¢ 4+ At. There
are three cases:

(a) At time t there were no customers in the system, and no one came during the
period (¢,t + At];

(b) At time ¢ there was one customer, who was served during time interval (¢,t+ At],
and no other customers arrived in that period,;

(c) There were two or more arrivals or departures during (¢,¢ + At], resulting in no

customers at time ¢t + At.
If At is small, events of type (c) can be shown, under our assumptions, to have probability
on the order of (At)?. Later we will divide the probability of events by At, and then
let At approach zero; hence these terms from case (c) will not contribute to the eventual
expression for Pj(t). Thus, we will ignore them completely and pretend that there are only
two simple ways, namely (a) and (b), of having no customers in the system at time ¢ + At.
The tree in Figure 2 illustrates the possible situations.

1—-A-At none in
System
P(t)
0 none
in
system
A-At one in
system
—-ﬁ
1 —p-At one in
P (1) System
1 one
in
system
B At none in
system
State at time ¢t State at time ¢ + At

Figure 2
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By definition, the quantities Py(t) and P (t) respectively are the probabilities of having
0 or 1 customer in the system at time ¢. Two of the paths in the tree lead to a system
size of 0 at ¢t + At. The total probability Py(t + At) is the sum of the probabilities of the
paths which lead to this state. Since each path requires each of two steps to occur, its
probability is the product of the probabilities of the steps on the path. Hence the tree in
Figure 2 gives the approximate equation

Py(t + At) = Po(t) (1= X+ At) + Py(t) p- At (2)

The error in approximation on the right involves only terms of order (At)%. Subtracting
Py(t) from both sides of the above yields

Po(t + At) - Po(t) ~ —/\Po(t)At + pPl(t)At, SO

Po(t + At) — Py(t) _
At =

In the limit as At — 0, the neglected terms on the right side vanish, the approximation
becomes equality, and we obtain the differential equation

—APo(t) + pPi(2)

Py(t) = =X Po(t) + p Pa(2). (3)

Next, we can get differential equations for P,(t),1 < n < K in a similar way (recall
that K is the capacity of the system). First, we argue as in the n = 0 case to derive

Pt +At) = Py y(8) A- At + Po(t)(1 = XA At)(1 — p- At) + Ppya(t) p- At. (4)
The Au(At)? term arising from the second term in the sum may be safely ignored. Rear-

ranging terms to find an expression for the difference quotient, and passing to the limit,
we get the equation

Pr(t) = APn_1(t) = (A + p)Pa(t) + #Pnya(t), 1<n<K (5)

Exercise

1. Give a plausibility argument for equation (4) above, and do the algebraic details leading
to equation (5). (Hint: The only non-negligible events permit the system size at time t to
be n—1, n, or n+1. What must happen, given each of these, in order to have n customers
in the system at time t + At?)

Finally, in the case n = K it is not possible to have K + 1 customers in the system,
so that the rightmost term of (4) does not appear, and arrivals are forbidden when the
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system size is K, so that in the middle term of (4) the quantity (1 — A At) is replaced by
1. The resulting approximation is therefore

Pr(t+ At) ~ Pr_1(t) A - At 4+ Pr(t)(1 — p - At), (6)
which leads to the differential equation
Pie(t) = APx—1(t) — uP(t). (M)

Equations (3),(5) and (7) together form a system of first order differential equations
for the unknown functions P,(t),0 < n < K. They can be solved (see Saaty, 1961, Chapter
5), but it is difficult, and it requires some sophisticated linear algebra and analysis. We
will not treat this here, but we can investigate the limiting behavior of P,(t) ast — oo.
For the original application, this means that we will assume that the system has run for
a long enough time to have approached an equilibrium condition, where the probability
distribution of the queue length no longer varies in time.

Denote the long-term probability that n customers are in the system by my:
o = lm Pu(?). (8)
t—o0

We take for granted the (true) fact that this limit exists and hence that P,(t) approaches
0 as t — co. Passing to the limit in equations (3), (5) and (7) then produces the equations

0= -Amo + um 9
0=Arp_1 — (A + @)mn + pTnga, 1<n< K (10)
0=Arg_y — prk, (11)
which imply '
pmy = AT (12)
Uner = (A + p)mp = ATpoi, 1<n< K (13)
UK = ATk 1. (14)
Exercise

2. Use equations (12)-(14) above to show that when K > 3:

: </\>2 (/\>3
™ = — Ty, T2 = | — | T, T3 =4 — | To.
© © H

3. Use mathematical induction to prove that

Tp = (é> 70, 1<n<K, (15)
L
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The sum of all of the probabilities m, for values of n from 0 to K must be 1, since
that sum represents the probability that in the long run the system size takes on at least
one of its possible values. Using this together with the result of Exercise 3 gives

1=W0+§(A)"m,
£

n:

1 K+1 A
_ -G o, if = #1
1'-; M
1— K+1

where we use p to denote the quotient A/u. The quantity p is thus a measure of the rate of
arrivals compared to the service rate. It is called the traffic intensity. In the third line of
the calculation we have used the formula for the finite sum of a geometric series. Equation
(16) implies that mp = (1 — p)/(1 — p¥*?!). Combining this with equation (15) gives our
final result for the long-run distribution of the number of customers in the system:

M= — P _ " 0<n<K. (17)

A graph of this distribution is given in Figure 3, for the values p = .8 and K = 10.

probability

“-customers

Figure 3



174 Applications of Calculus

Exercises

4. Show that in the case p = % = 1, all of the limiting probabilities m, must equal

K+1

5. Consider the special case K = 1. Then at any given time there are only two possibilities:
the number of customers in the system is 1 or 0, according to whether the server is busy
or not. Working as in the derivation of this section, show that a system of two differential
equations for the quantities

P,(t) = probability that the server is busy at time ¢
Py(t) = probability that the server unengaged at time ¢
1s
Pi(t) = APo(t) — ph(t)
Py(t) = =APo(t) + pPi(t)
Since Py(t) and P;(t) are probabilities of complementary events, Po(t) = 1 — Py(t). In

light of this, find a single differential equation for the function P;(t) alone, and show that
the following function satisfies the equation:

A A
Atp Atp

An interesting consequence is that the probability that the server is busy at time ¢ quickly
approaches a limiting value of A/(A + i) as t — oo.

Pi(t) = e~ (A+H)

6. In the Burger King problem, A = 3/2. If the average service time is 45 seconds = 3/4
minute, ¢ = 4/3. For these rates, what is the long-run probability that there will be no
customers in the system? (This can be interpreted as the percentage of the time the server
will be idle.) Recalculate the probability that there will be no one in the system if the
average service time is reduced to 30 seconds, so that p = 2.

Solution of Burger King Problem

We are to find a service rate g which maximizes profit per unit time at the drive-up
window. Since the arrival rate A = 1.5 is given, we may as well express the problem in
terms of the traffic intensity p = A/u. According to the conditions of the problem, there
is an overhead cost of ¢; = .25 per unit of p, giving a total cost of cop = caA/p. Revenue
is earned at a rate equal to the rate at which customers join the system, times the average
bill per customer. The latter was given to be ¢; = 3, and the former is the arrival rate A
times the proportion of cars 1 — wx which actually enter the drive-up lane. From equation
(17), in the case that p # 1, this quantity is

1-p K 1-p¥
l—WKzl—mR-;—l'p =-]T—_'—pT{—_ﬁ. (18)
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The company’s profit to be maximized as a function of p is revenue minus cost, i.e.

1—pK c2A
P(p)=c1A1_pK+1 - ; . (19)

For our choice of constants, ¢; = 3,¢c; = .25, K = 10, A = 1.5 the profit function becomes

- p® 375

P(p) = 4.51

The result of Exercise 4 implies that in the case p = 1 the profit is

1 C2A
P(1) =M1 - =) - ; -
=4.5- 1—(1-)- - .375 = 3.716.

Figure 4 contains a sketch of this function.

profit per minute

Figure 4

Exercise

7. Show that the profit function P is continuous at p = 1. (Hint: Use formulas (19) and
(21), and apply L’Hopital’s rule to the ratio in (19).)
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The graph in Figure 4 seems to indicate a maximum at about p = .75. We can attempt
to find the exact value by setting the derivative of P equal to zero. Applying the quotient
rule to (19) yields

(1= pKH)(=KpF ) = (1= pFY=(K + 1p5) | &

P'(p) = Ajes (1= ki) 22|

(22)

The reader should check (Exercise 8) that setting this derivative equal to zero results in
the polynomial equation in p

(e1 — c2)p* K+ — ) (K + 1)pX*2 4 (1 K 4 2¢5)pK ¥ — ¢y = 0. (23)
For our data, the critical point which achieves maximum profit is a solution to the equation

2.75p%% — 33p'2 + 30.5p' — .25 = 0. (24)

We have encountered a frequent situation in real applications of mathematics: an
equation has been derived for the solution, but we do not know how to solve it exactly.
However, calculus has by no means failed us, for there are numerical methods (like Newton’s
method, discussed in most calculus texts) for approximating the desired solution arbitrarily
closely. We leave the details to the reader, but applying numerical techniques to find the
solution of (24) gives p = .750962. Since A = 1.5 and p = A/p, this gives an optimal service
rate of p = A/p = A/.750962 = 1.99744 per minute, which is very nearly the 30-second
goal arrived at by the company. The optimal value of the profit rate works out to about
$3.93 per minute, or $236.03 per hour. It is by methods such as these that companies like
Burger King are able to set operational goals to improve the workings of their organization.

Exercises

8. Simplify expression (22) for P'(p) and show that setting it equal to zero yields the
polynomial equation (23).

9. Apply Newton’s method (I'd suggest starting with the initial approximation .75) or
equation-solving software to verify that .750962 is a solution to (24).

10. If you have a graphics device such as Mathematica, MasterGrapher, or a hand-held
calculator available, study the sensitivity of the optimal solution of this problem to changes
in the parameters ¢y, cz, A, K. Specifically, as each parameter is allowed to increase while
the rest are held fixed, what happens to the maximum profit and to the optimal service
rate?

Discussion

Analytical calculations of important characteristics of queues can be difficult, even in
a relatively simple queueing system. In fact, the class of problems in the real world that
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are amenable to exact solution is fairly small, because many queueing systems consist of
large networks with complicated physical restrictions and interdependencies, and some of
the ingredients of the basic model that we have assumed constant, like the arrival rate,
may well vary with time.

However, the situation is not hopeless. When exact solution is impossible, the queue-
ing system can still usually be simulated on a computer, and approximate numerical results
can be obtained. To simulate, all we need to do is instruct the computer to produce a
sequence of random arrival times, and a sequence of random service times, having the
statistical characteristics we observe in the system we want to study. This is easier than it
sounds, due to the existence of special purpose languages like GPSS, SLAM, and SIMAN
for simulation of service systems. Animation packages are now becoming available in which
the modeller can actually watch how the system is behaving. An instructional program
called GASP (Fisch and Griffeath, 1988) has a module in which you schedule servers at a
fast food restaurant to maximize the daily profit. Once you select a schedule, you can watch
an animation of the restaurant’s operation, and based on this, guess a better schedule.

Our description of queues suggests familiar applications to serving human customers
in retail stores and banks, but queueing theory is certainly not limited to this. Planes
(customers) waiting to use runways (servers) illustrate one possible application. Recently,
American Airlines used queueing theory to help decide whether it was worth a billion dollar
investment to build a new terminal on the west side of Dallas-Fort Worth airport, and also
to convince regional authorities of the necessity for two new turbojet runways (Cook, 1989).
Queueing models are frequently used in manufacturing, specifically in modelling flows of
goods (customers) through assembly stations, warehouses, and shipping areas (servers)
(Law and McComas, 1988). Perhaps the most active uses of queueing theory today involve
telecommunications, in which messages (customers) are switched from station (server) to
station, and computer networks, in which jobs (customers) share a network of processors
and input-output devices (servers). The second volume of (Kleinrock, 1976) is filled with
examples of this sort.

You would need a thorough grounding in probability theory to make a serious study
of queueing systems. Two places to start are (Hogg and Tanis, 1988) and (Hoel et al,
1971). A gentle introduction to queueing may be found in (Hillier and Lieberman, 1990).
Three nice expositions, at a higher level, of classical queueing theory are (Gross and Harris,
1985), (Kleinrock, 1975) and (Saaty, 1961). New applications and theory appear regularly
in the journals Operations Research and Management Science. (Solomon, 1983) is a good
introduction to simulation of queues, and also contains a reprint of the Swart and Donno
article on the Burger King studies, as well as other applications.
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Answers to Exercises

3. Exercise 2 starts the induction. Assume that the formula holds up to n, and use (13)

to calculate
1 /\ n /\ n-—1 /\ nt1
e oo e ] - G
7 © Iz 7

4. Since mp = (A/p)"no for 1 < n < K, in this case it follows that all 7, are equal to mo.
In order for K + 1 such identical probabilities to sum to 1, each must equal 1/(K + 1).

1-p —.125
6. If pu= = Au=9/8. = = = .047. = =3
Ifu=4/3,p /= 9/8. Then mg T, = “56532 047. H u=2,p /4,
2
and my = 22 3 = .261. One cost of decreasing the service time is that the percentage

of “idle time” of the employees paid to serve increases from about 5% to about 26%.



MOVING A PLANAR ROBOT ARM

Author: Walter Meyer, Adelphi University, Garden City, NY 11530. Adapted by Philip
Straffin, Beloit College, Beloit, WI 53511

Area of application: robotics, industry

Calculus needed: derivatives of trigonometric functions, chain rule, parametric representa-
tion of motion in the plane. Students also need to solve 2x2 systems of linear equations.

The Problem: Controlling a Robot Arm

Many industrial processes are now carried out by computer-controlled robots. The
design and control of robots is the subject of a new intellectual discipline called robotics,
which makes heavy use of mathematics, including calculus. In this module we will discuss
controlling the motion of a very simple two-dimensional, two-joint robot arm. Figure 1
shows the simplified robot arm we have in mind. There are few, if any, robot mechanisms
of this type. However, the concepts we will develop in this simple context are quite similar
to the concepts one must wrestle with for more realistic robots such as the one shown in
Figure 2.

D
E
nd effector [® ° Forearm
Y e
o Upper arm{ o
. ot 93
link 2 ’,’ - e
P e Yy End effector
2 ,°
. dl Torso
link 1 o
_/}91
91 \—/
B ¥ Base
Base
Figure 1. Our Simple Robot. Figure 2. A More Realistic Robot.

180
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The planar robot has two links, each of which is a line segment. Point B, the base
of the robot, is fixed. The first link rotates around point B, and the second link rotates
with respect to the first around point C. The entire motion of the robot takes place in the
plane. In this plane, we will choose a coordinate system whose origin is at B, and whose
positive z-axis points to the right, as in Figure 1. The angle §; between the positive z-axis
and link 1, and the angle 8; between links 1 and 2, are both controlled by the robot’s
computer.

The part of the robot which does useful work is at the tip, called the end effector.
One might imagine a drill or gripper or paint sprayer attached there. Usually, a particular
point on the end effector is singled out for attention. In the case of a gripper, this might
be the point halfway between the jaws—point D in Figure 1. A key question in robotics
is “How can we move the end effector about in its work area?” The problem is that we
can’t control the end effector directly; instead we must control the angles §; and 6, so as
to create the desired motion at the end effector. This is a problem for calculus.

The Kinematic Equations

Although we will eventually study the motion of the robot, we need to start with a
static problem: given particular values for 8, and ;, what are the resulting values for zp
and yp, the coordinates of the end effector point D? This is called the forward kinematic
problem.

In thinking about this, it is helpful to keep in mind that the angles made by the links
are measured in the counterclockwise direction and can be positive or negative. Figure 3
shows some possibilities.

N

Figure 3. Positive and Negative Angles.

Let us suppose that the lengths of links 1 and 2 are !, and I, respectively. Figure 4
shows how to derive the kinematic equations. We first find the coordinates z¢ and yc of



182 Applications of Calculus

point C by using the right triangle whose hypotenuse is link 1. Thus
zc = lycosby, yc =l sin ;. (1)

The coordinates of D are obtained by adding to z¢ and y¢ the lengths of the appropriate
legs of the right triangle whose hypotenuse is link 2:

zp =1y cosby + Iy cos(6y + 62), yp = ly sin 8, + I sin(6; + 62). (2)

Although Figure 4 is drawn with 6, and 6, positive, these equations are true for both
positive and negative values of either angle.

(ID7yD) N
Y ;
i
Iy !
o
92/ ‘ 9 E
.7 91+ 2 ]
(zc,yc) :\.?1..- e cceemaclan
l S lgCOS(€1+92) '
1 }
-
(0,0) kAL X
1 lycosé;

Figure 4. Deriving the Forward Kinematic Equations.

Robots usually have measuring devices to measure the angles at the joints. From these
angles, and knowing [, and l,, the robot’s computer can use equations (2) to calculate the
position of the end effector at any given instant. However, if great accuracy is required this
can be unreliable. The measurement of angles is imperfect. It is hard even to know !, and
l; accurately because manufacturing inaccuracies cause them to come out differently from
the manufacturer’s published specifications. In addition, the lengths of links can change
slightly due to temperature fluctuations in the robot’s work environment. Despite all this,
equations (2), called the forward kinematic equations, are among the most heavily used in
robotics.

Often we want to turn the forward kinematic thought process around: given a point

(z,y) in the robot’s work area, what joint angle values ¢; and 6, are required to put the
end effector at, or approximately at, (z,y)? In other words, we specify the left hand sides
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of equations (2) and solve for the angles 8; and 2. If you try this in Exercise 2, it will
challenge your trigonometry and algebra. Knowledge of the resulting inverse kinematic
equations is not needed to understand this module, although we do need to know that such
formulas exist. Note by examining Figure 5 that there are normally two possible solutions,
one called elbow regular with 8, > 0, and the other called elbow irregular with 8, < 0. We
can find formulas to describe each solution.

.

T

C

Figure 5. Elbow Regular and Elbow Irregular Inverse Kinematic Solutions.

Exercises

1. Describ: the work area, i.e. the region of the plane which can be rezched by the end

effector,
a. when l; >l b. when I} < I,.

2. Derive the inverse kinematic equations. Here’s a suggested path.

a. In (2), solve for cos(8, + 6,) and sin(f; + 6,), substitute the solutions into sin?(6; +
8,) + cos?(8; + 8;) = 1, and simplify to get

2y 213
2l )

ysind; + zcosb) = A, where A =

b. Solve this equation along with sin%#; + cos?6;, =1 for cos6;, getting

Az +y\/z?2 +y? — A?

12+y2

cosb; =

Note that because cos §; = cos(—¥8,) this usually gives four possible values for 8;. One
corresponds to the elbow regular position, one to the elbow irregular position, and
two are extraneous roots. Once 6, is determined, it is easy to find 6, using equations

(2)-
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Velocity Control

Suppose we have a point T = (z,y) in mind and we wish the end effector to pass
through it with certain horizontal and vertical velocities. The way to think about this
mathematically is to imagine the end effector moving along a curve parameterized by time
t. In other words, the curve v is specified by two functions z(t) and y(t), which give the
coordinates of the end effector at time t. A familiar result from calculus is that the velocity
vector of the end effector at time ¢ is then the tangent vector ' = (z'(t), y'(t)), as shown

in Figure 6.

7 = (2'(8),¥' (1)

o 7= (2(8),y(®))

Figure 6. Velocity of the End Effector.

For example, suppose we are washing a vertical window (Figure 7a). We would like
there to be no motion in the z direction, i.e. z'(t) = 0. We want to be sure the vertical
velocity is not too fast, so the window really gets clean, and not too slow so the job doesn’t
take longer than it has to. For the sake of the example, suppose we want to be moving
upward at one foot per second, i.e. y'(¢t) = 1. If we wanted to move along a tilted window,
as in Figure 7b, we would need non-zero velocities in both the z and y directions.

a. Washing a Vertical Window b. Washing Tilted Surface
Figure 7.
With z,y,6; and 8> written as functions of time, the forward kinematic equations are

z(t) = 11 cos(8,(t)) + 2 cos(8;(t) + 02(t)) (3)
y(t) = I3 sin(6;1(¢)) + l2sin(6,(2) + 62(t)).
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Using the chain rule, we can differentiate each of these equations with respect to t:

z'(t) = —lysin(61(£))61 (t) — 2 sin(81(2) + 62(2)) [61(2) + 62(2)] (4)
y'(t) = licos(81(2))01(t) + l2 cos(81(t) + 82(2)) [63(2) + 65(2)).

Doing a little algebra, and suppressing t from the notation for simplicity, we obtain

z' = —[l; sin8; + Iy sin(8; + 62)] 8] — [I2 sin(8; + 62)] 6, (5)
y' = [ljcosf; + Iy cos(8; + 83)] 67 + [I2 cos(8; + 62)] 65.

By using (2), this can be further simplified to

z' = -—y9'1 - 12 sin(91 + 92) 0; (6)
y'= z6) 413 cos(8; + 62) 65.

In our window-washing example, z’ and y' have been chosen to be 0 and 1. The point
(z,y) is known, so we can apply the inverse kinematic equations to find 6; and 6,. Hence
the only unknowns in (6) are 8} and 8, and we will be able to solve for them. For example,
if

[, =30 I, =20 z = 4.0531 y = 1.6037

then the inverse kinematic equations would give (Exercise 3)
6, = 0.7854 radians (45 degrees) 62 = —1.0472 radians (—60 degrees).
(Notice that this is the “elbow irregular” configuration.) Then
I sin(6; + 6;) = —.5176 la cos(6; + 6;) = 1.9318.

Making these substitutions, we obtain the following system of equations for the angle
velocities:

0 = —1.6037 6 + 0.5176 6, (7)
1= 4.0531 6+ 1.9318 6.

Solving this systems gives
67 = 0.0996 radians per second 6; = 0.3086 radians per second.

This tells us how fast the robot joints must be turning at the instant when 6, = 0.7854
radians and 6, = —1.0472 radians in order to have the right velocity for the end effector.

An interesting feature of the solution is that we have to think about time, and intro-
duce it into the notation, in order to do the analysis, but it is not necessary to specify
what value time has at the instant when the end effector passes through (z,y). Nor can
we solve for time in the equations.
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Let’s consider briefly a second example, where we want the end effector to move not
vertically, but along a line of slope m = 8/5. In this case, the y and z velocities of the end
effector must have m as their ratio: ' g

Y

z 5
If we want a total speed of 0.8 feet per second, we must have

JE+ ()R =08

From these equations we can solve for z' and y', determining z' = 0.4240 and y' = 0.6784.

Suppose that the point (z,y) is the same as in the previous example, (4.0531, 1.6037).
Then the angles will be the same as well, and indeed the whole right side of (7) will be the
same. The equations for the angular velocities are

0.4240 = —1.6037 6; + 0.5176 6, (8)
0.6784 = 4.0531 6; + 1.9318 65,
so 6 = —.0901 radians per second and 85 = .5401 radians per second.
Exercises

3.a. Use the result of Exercise 2 to verify the values of 8; and 6, for the elbow irregular
position in the vertical window-washing example.

b. Use the result of Exercise 2 to find the values of 8, and 6, for the elbow regular position
for the same example. [Drawing a careful picture will help pick out the correct value
for ;. You should find that it is a little bit negative.] Solve for the values of 6] and
6’ needed to get the motion z’ =0, y' =1 in the elbow regular position.

4. Inthe vertical window-washing example, suppose the robot links move for 1/10 second
at the angular velocities in the solution to (7). Use the forward kinematic equations
to find the new location of the end effector. Notice that the new z-coordinate should
be close to the same value of 4.0531, while the new y-coordinate should be close to
1.6037 + 0.1. Are they?

5. Suppose, using the same data l; = 3, I; = 2, r = 4.0531, y = 1.6037, that we want
the end effector to move leftward along a line of slope —1/2, at a speed of 1 foot per
second. What values of 6] and 6}, will accomplish this?

Teleoperation

Sometimes robotic mechanisms are used as remote control devices with human beings
providing continuous “steering” to control the movement of the end effector. This is called
teleoperation, because the human controller is often far from the robot and watches what is
going on at the worksite on a television monitor whose camera is mounted near the robot
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(Figure 8). This would not be very efficient for manufacturing, where the idea is to replace
repetitive human labor. However, it is useful in jobs which would be hazardous for humans,
such as maintenance in nuclear power plants and tasks under the sea, including repair of oil
 rigs, exploration, and salvage operations. NASA has proposed using teleoperated robots to
help construct the Space Station in the 1990’s. In these kinds of applications, the tasks and
movements the robot must perform are not repetitive, but are often unexpected and novel,
where it is beyond the capability of current robotics software to determine appropriate
robot actions and carry them out. This is the reason for “putting a human in the loop.”

nuclear plan:\
space

underwater Computer

Figure 8. Teleoperation.

The basic strategy in teleoperation is to give the human teleoperator control over the
velocity of the end effector (what we have been denoting z’ and y' for our planar robot)
using a “joystick” or similar device (see Figure 9). Note that the joystick controls velocity,
not position. This is similar to the way we drive a car: our foot on the accelerator controls
the velocity of the car. Thus, positioning the joystick to the left of center commands
a negative value of horizontal velocity (z' < 0), the magnitude of the velocity being
proportional to how far to the left the joystick is. A deflection of the joystick up or down
signals either an upward velocity (y' > 0) or a downward velocity (y' < 0) of the end
effector. Joystick positions combining forward and lateral deflections yield combinations
of ' and y'. Leaving the joystick in its “zero” position (pointing straight up) leaves the
end effector exactly where it is (z' =y’ = 0).

The basic scheme of computation carried out by the robot’s computer is this. First,
the joystick position is read and turned into numerical values for z' and y'. (Figure 9
suggests how this might be done.) Then, using the current values of §; and §, which are
read from the robot, the computer gets §] and 6; just as we did in the examples above.
The motors at the two joints then change the angles at the computed angular velocities
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for a short time (typically a fraction of a second). Then the new values for the joystick are
read and the process starts over.

;
/
9/ 62
‘o, @)

Figure 9. Controlling Velocity with a Joystick.

Singularities

One of the obstacles to teleoperation, and other forms of robot control as well, is the
fact that in some configurations of the robot there are some joystick commands which
cannot be carried out. This is not because of any shortcoming in the joystick or the
computer, but a difficulty inherent in the basic geometric structure of the robot.

Let’s look at an example of one of these situations. Suppose the robot is in the
configuration shown in Figure 10, with the second link folded completely over onto the
first one. Suppose we ask for a motion of the end effector directly away from the point B,
say ' = 0.5, y' = 0.5. This motion appears to be impossible with rigid robot links. If our
joystick deflection commands this, something will go wrong somewhere. In order to see
what goes wrong, we try to solve for ] and ;. We have

I]"—-=3 12=2 T

=l
@
Il
-~

Substituting into (6) yields

1

o.5=--—\/§9;+\/§9'2 (9)
1

05= —= 8} ~ V26,

/5

These equations are inconsistent: the lefthand sides are the same and non-zero, but the
righthand sides are negatives of each other. It is not possible to solve these equations for
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61 and ;. No computer code we write, no matter how clever, will be able to find solutions,
because there are none to be found.

Indeed, because the righthand sides of equations (9) are negatives of each other, a
solution will not exist unless the requested motion has y' = —z’. Geometrically, this
corresponds to a motion orthogonal to the aligned links of the robot in Figure 10, which
we should be able to attain by changing either 6; or §; (see Exercise 6). What the equations
say is allowed agrees nicely with our geometric intuition.

c
6y x 170"

p=(x%.7x)

6= 45°
Bo---—---

Figure 10. A Singular Configuration.

In general, a robot configuration in which some end effector velocities are impossible
to achieve is called a singular configuration. Singular configurations are so disruptive that
it would be valuable to have a complete understanding of when they occur. In the case of
our simple two-link planar robot, this is not difficult. To work out the answer, we will try
to find a general solution to equations (6). Multiply the top equation by cos(8; + ;) and
the bottom by sin(6; + 6;) and add to eliminate 8;. This yields

[zsin(6; + 82) — y cos(81 + 62)] 6] = [z'sin(8; + 62) + y' sin(4; + ;)]

The next step would be to solve for 8} by dividing by [z sin(§; + 6;) — y cos(6; + 62)]. The
only case in which we can’t solve for #; occurs when this term is zero. Exactly the same
difficulty arises if we try to solve for ;. We conclude

Theorem. The only singular configurations of the two-link planar robot are those in
which z sin(8; + 6;) — y cos(6; + 62) = 0.

For a geometric interpretation of these singular configurations, see Exercise 7.

Unfortunately, for actual three-dimensional robots such as the one shown in Figure 2,
the singularity problem is harder. Given a configuration of the robot, i.e. a specification of
all the joint angles, it is possible to determine whether the configuration is singular or not.
However, it is not always easy for teleoperators to recognize such configurations by eye.
Consequently, they might inadvertently steer the robot into a singular configuration where
its mobility is restricted and control becomes unpredictable or breaks down. Gauging the
extent of this difficulty and finding ways of overcoming it are important topics in current
research. The reference by Baker gives an interesting discussion of the singularity problem.
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One common method for alleviating, although not curing, the problem is to add more links
to the robot, which designers call “adding redundancy.” This is explored in Exercise 8.

Exercises

6. Solve the analogue of equations (9) when z’ = 0.5, y’' = —0.5. You should find that
the solution is not unique: many different joint rotations will achieve this motion of
the end effector. Find a solution with

a. 6 =0 b. 6, =0 c. 8, =0.1.

7.a. Show that the condition in the singular configuration Theorem is equivalent to saying
that 8, = 0 or 7. Interpret this geometrically. [Notice that the resulting locations of
the end effector are all on the boundary of the work area you found in Exercise 1.]

b. Suppose z sin(6; + 02) — y cos(f; + 82) is not zero, but is close to zero. This could still
be unfortunate. Explain why. In other words, what difficulties could arise if the robot
just got close to a singular configuration?

8. Consider a planar three-link robot, based at the origin, with link lengths I} =4, I, =
3, I3=2.

a. Describe the work area of this robot.

b. Find and draw a singular configuration of this robot in which the end effector is not
on the boundary of the work area. In your configuration, which motions of the end
effector are not possible? Which motions are possible? [You don’t need to work out
the kinematic equations. Just reason geometrically.]

c. Draw a non-singular configuration in which the end effector is at the same location as
in your singular configuration.

d. In general, for a given point (z,y), how many solutions do you think the inverse kine-
matic equations will have? In other words, how many different robot configurations
will put the end effector at (z,y)? [For the two-link robot, there were two.]

9. Building on your answers to Exercise 8, discuss some of the new opportunities and
new problems which arise from adding a third link to the planar robot.

References
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Paul, Richard (1981), Robot Manipulators, MIT Press.
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l.a.
b.
3.b.

Answers to Exercises

An annulus with outer radius {; + I; and inner radius {; — Is.

Same except inner radius is l2 — [;.
8, = —.0319 radians, §, = 1.0472 radians. The equations are

0 = —1.60376) — 1.69936,
1= 4.05316, + 1.05476}

This gives 6] = .3274 radians/second, 65 = —.3101 radians/second.

6, = .7854 +.00996 = .7954; 6, = —1.0472+.03086 = —1.0163. The new z-coordinate
is 4.0514, close to 4.0531. The new y-coordinate is 1.7042, close to 1.7037.

o'=-8944 y' =.4472 0, =.377T1 6, = —.5596.

.0 = —-1/y/2 = -.7071.

8, = 1/2\/2 = .3536.

. 6, = -.5071.
. In the -ondition from the theorem, substitute for z and y using equations (2). Terms

cancel, leaving
=l cos 6, sin(8, + 62) — l; sin 6; cos(8; + 62)
= l;sin(6; + 02 — 6;) by the angle difference formula
= 11 sin 02.
Thus 6; = 0 or 7. The second link is either stretched out completely, or folded back

over the first link.

If we divide by a term close to 0, we may get large angular velocities. Near a singularity,
the computer may tell a joint to move faster than it physically can. Hence the motion
will not be as expected.

A disk about the origin of radius 9.

Any example where the three links are folded over each other, for instance

S—W

For instance

B
Except on the boundary of the work area, there will be infinitely many solutions.
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Applications of Calculus

An advantage is the freedom to avoid singular configurations. A new problem arises
from the indeterminacy of the inverse kinematic equation: from infinitely many pos-
sible solutions, we need to pick one. Naturally, we would like to do this in a way
which avoids ever moving near singular configurations. There are many interesting
mathematical problems here, even for planar robots. For 3-D robots, topology gives
some elegant impossibility results—see [Baker, 1990].
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Author: Steven Janke, Colorado College, Colorado Springs, Colorado 80903

Calculus Needed: derivatives, chain rule. Parametric curves are introduced in the module.

Area of Application: Computer Aided Design

Comments: Software to graph functions and parametric curves is helpful. Software which
can use control points to draw Bezier curves would enable students to experiment with the
ideas introduced in the module.

The Problem: Designing with a Computer

Before widespread use of computers, design drawings had to be sketched by hand.
Any straight lines are easy to draw using a ruler, but the curves are a different matter.
An artist can do freehand sketches with sleek, smooth curves, and a draftsperson can
use various plastic templates to form curves. But then how do we give the factory exact
specifications for such curves?

With powerful new computer aided design systerms, it is much more efficient for the
designers to work interactively with a computer to visualize and improve their designs.
However, the computer needs a careful description of any curves before they can be dis-
played on the screen. Look at the car profile in Figure 1. The nose of the car looks like a
piece of a parabola. If it is, then we simply describe the curve with a quadratic function
such as z = y2. But if it is not quite a parabola, perhaps flatter on one side than another,

how do we describe it?

Figure 1.

The problem, then, is to find some system for describing a wide variety of curves.
Once we have the description of a particular curve, we need an easy way to alter the curve
slightly as we continue to improve the design. If we can mathematically describe what we
are doing, then the computer can help in the process and when we are done, there will be
nice mathematical descriptions that can control the machines on the factory floor.

193
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Parametric Curves

The most flexible way to represent curves in the plane is by parametric description.
We introduce a parameter, say t, and then give both coordinates £ and y as functions of
t. Specifying a finite interval for ¢ gives just a piece of the whole curve. For example, the
description
r=1t, y=t? 0<t<1

gives the same curve segment as the description y = z2 for 0 < z < 1. (We can verify this
by simply noting that the first equation says t = z and by plugging this into the second
equation we get y = z2.) There doesn’t seem to be any advantage for the parametric
description in this case. However, consider this description:

T =2cos(t), y =2sin(t) 0< t<2m.

This parametric description gives the circle 72 + y? = 4. (Again we can verify this by
noting that z2 + y2 = 4 cos® t +4sin’ ¢ = 4.) The computer can easily find points by looping
through the t values and calculating sines and cosines. So the parametric description is
nice for computer applications.

Notice that parametric descriptions are not unique. The description
T =2t y=4t? 0<t<1/2
gives the same parabolic segment as above. The description
z=2cos(2r —t), y=2sin(2r —1) 0< t<2r

gives the same circle we saw before. Note, however, that the parabolic segment is traced
twice as quickly, and the circle is traced in the opposite direction.

Parametric descriptions give direct algorithms for calculating the coordinates of
points on the curve, and at the same time that they allow us to describe closed curves
and curves that intersect themselves. These two attributes make parametric descriptions
particularly useful in computer design systems.

Exercises

1. Show that the equations z(t) = 2cost, y(t) = 3sint describe an ellipse.

2. Graph the curve z(t) = #(1 — 1), y(t) = t(1 — ¢2) for —.1 < ¢t < 1.1. Notice that this
curve intersects itself.

3. Show that the description z(t) = 2, y(¢t) = t*, 0 <t < 1 gives the same curve segment
as z(t) = t, y(t) = t2, 0 < ¢t < 1 but that the segments are traced out at different rates as

t goes from 0 to 1. If the interval were —1 <t < 1, would the curve segments still be the
same?
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Combinations of Points

Suppose we have two points Py = (1,3) and P, = (8,7). It might be necessary in
the middle of some design to find a curve from Py to Py. If the curve is a straight line
segment, a parametric description is easy to find. Think of ¢ as representing the fraction
of the distance from Py to P, sot runs from 0 to 1. If t = %, for example, ¢ is one-fourth
of the way from 1 to 3, and y is one-fourth of the way from 3to 7. Soz =1+ $(3-1)
and y =3 + %(7 —3). In general,

t=1+#3-1)=¢t-3+(1—-1)-1
y=3+t7-3)=t-7+(1—1¢)-3.

We can simplify this parametric description by noting that the expressions for both
the z and y coordinates have the same form: 1 — ¢ times the coordinate from P, plus t
times the coordinate from P;. Hence if we let P(t) be a point on the line segment, then

P(t)=(1—-t)-Py+t- P 0<t<l,

This single equation gives the entire parametric description of the line segment. We say
that P(t) is a combination of the points Py and P,. (This combination is sometimes called
a “barycentric” combination or a “convex” combination.)

An easy generalization comes to mind. Let Py, Py,..., P, be points in the -y plane
and ao(t), a1(t),. .., an(t) be functions of ¢. Define P(t) by

P(t) = Clo(t)Po + Cll(t)Pl + -4 a,,(t)P,,.

The point P(t) is a combination of n + 1 given points. This compact description represents
the parametric expressions

z(t) = ap(t)zo + ar(t)zy + -+ + an(t)zy
y(t) = ao(t)yo + a1(t)yr + - + an(t)yn.

Here we have used the notation z(¢) and y(t) to emphasize that the coordinates are func-
tions of the parameter t. This method of forming parametric descriptions by taking com-
binations of points is useful to us since, as we will see, by picking the a;(t) carefully we
can get a variety of curves that either go through or get close to the points Py, P, ... ,
P,. The functions a;(t) are often called “blending” functions since they determine how
the given points are blended together to give points on the curve. The points themselves
are called “control” points since they control the shape of the curve.

Exercise

4. In the line segment example, ao(t) + a1(t) = 1. Show that if this property is true, then
P(t) = ag(t)Py + a1(t)P, lies on a straight line through the points Py and P;. What if

ap(t) + an(t) #17
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Interpolation

One of the easiest ways of designing a curve is to specify a few control points and
then find a curve that goes through those points. We saw in the previous section that if
we specify two points then it is easy to describe the straight line that goes through them.
Finding curves that go through points is not always easy, but if we concentrate on curves
described by polynomials, the problem is tractable.

Recall from algebra that there is a unique straight line that goes through two control
points and there is a unique parabola (quadratic curve) of the form y = az? + bz + ¢ that
goes through three control points. Be careful here. There can be other parabolas through
the three points, but there is a unique one of the given form. In general, if we are given
n + 1 points, we can find an n** degree polynomial that goes through the points. When a
curve goes through the control points, we say it interpolates those points.

Let’s quickly recall how to find these interpolating polynomials. Suppose we wish
to find a quadratic curve that goes through the points Py = (~1,9), P, = (2,3), and
P, = (3,5). There is such a curve with explicit description y = az? + bz + ¢. The problem
is to determine a, b, ¢. Since the three points are on the curve, we have the following

9=a—-b+c
3=4a+2b+c
5=9a+3b+c¢

Now the problem is to solve these three simultaneous equations. Techniques from elemen-
tary algebra or linear algebra (matrices) readily give the result. Unfortunately, if we have
many points, there are many simultaneous equations and the calculations become tedious.

Another method of finding a polynomial curve through given points is due to the
mathematician Lagrange and has advantages from the computational point of view. La-
grange used the combination of points approach to find a parametric description for the
curve. Using the three points given above, we want to find blending functions ag(t), a1(t),
and a;(t) so that

P(t) = ao(t)Po + al(t)Pl + az(t)Pz
In order for the curve P(t) to go through P, there must be some value of ¢ that makes
P(t) = Py. Let’s arbitrarily decide that the curve should go through Py when ¢t = 0. So
P(0) = P,. Similarly, we can decide that when ¢t = 1 the curve passes through P;, and
when ¢ = 2 the curve passes through P;, so P(1) = P; and P(2) = P,.

Now we need to pick the blending functions a;(t), ¢ = 1,2,3. Since P(0) = P, we
would like a¢(0) = 1, @1(0) = 0, and a2(0) = 0. After taking the similar conditions for P,
and P, into account, it is clear that we would like ag(t) to satisfy

ao(O) = 1, ao(l) = 0, 00(2) = 0.

If we assume that ao(t) is zero only when ¢t = 1 or ¢t = 2, then we know that ao(t) =
K(t - 1)(t — 2), for some constant A. Since ao(0) = 1, we must have K =1/2. So

(t=1)(t-2)

ao(t) = )
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Using the same procedure, we find
al(t) = —-t(t - 2),

as®) = t(t;l).

Now we have the parametric description of the curve,
t(t—1)

P,.
D) 2

P(t) = &ZMPO —t(t-2)P, +

If we substitute the particular points given above, we get

z(t) = —t* + 4t -1

y(t) = 4¢* ~ 10t + 9.
This curve is a parabola (see Exercise 6), but it is a different parabola than the one of the
form y = az? + bz + ¢. The axis of the Lagrange parabola is not parallel to the y-axis.

The two parabolas are sketched in Figure 2. If we just want the curve segment that starts
at Py, passes through P;, and ends at P, then we can restrict ¢ to the interval [0, 2).

Figure 2.

Using Lagrange interpolation, we can quickly write down the parametric description
of a polynomial curve which passes through any number of given points. The method
is usually easy and fast for a computer to execute. To review, the method singles out
integer values for ¢ (0,1,2,---,n), and then picks blending functions so that a;(z) = 1 and
a;(t) = O for the other selected integer values. This means that for: =0,.--,n

n
(t—k)
a;(t) = —_—
' LIO (i — k)
ks
where the symbol [[ means product. The product is taken over integers k from £ = 0 up
to k = n, skipping over k = :. For instance, in the example we just did,

(t-0)(t—2)
1-0)(1-2) —Ht - 2).

al(t) =
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It might seem that interpolation is all we need for our design system. However,
there is an unfortunate problem. The more points we specify, the higher the degree of the
polynomials in the parametric description, and hence the more “wiggles” there may be in
the curve. For example, if we specify ten points, then the resulting parametric description
will involve ninth degree polynomials. Calculus helps determine just how wiggly these
polynomials can be. We find the local maxima and minima of a function by finding zeroes
of the first derivative. For a ninth degree polynomial, the first derivative is a polynomial
of degree eight. From the Fundamental Theorem of Algebra we know that a polynomial
of degree eight can have as many as eight real zeroes. This implies that if the parametric
description involves ninth degree polynomials, there can be as many as eight maxima and
minima for both the z and y coordinates—a rather wiggly curve!

To see this wiggle problem in action, look at Figure 3. In Figure 3a, there are five
control points and a dotted line indicating the desired design curve through them. Figure
3b shows the actual fourth degree polynomial that interpolates the five points. It is too
wiggly to be useful for design here.

N /
~ /
o.\\. .
a. ~— b "

Figure 3.

Exercises

5. Solve for g, b, ¢ to find the explicit description of the quadratic polynomial whose graph
goes through the points (-1, 9), (2, 3) and (3, 5).

6. Suppose a curve is given implicitly as
Az?+ Bry+ Cy® + Dz + Ey+F =0

It is shown in analytic geometry that if B2—4AC = 0 then this curve is a parabola. Starting
from the parametric equations we derived for the Lagrange curve through (-1,9), (2,3)
and (3, 5), simplify by combining the equations to eliminate ¢t?> and then solve for ¢t in terms
of r and y. Substitute this into the expression for y(t) to get an implicit form like the one
above. Then show that the curve is indeed a parabola.

7. Use the Lagrange interpolation method to find the polynomial curve through (0,4),
(1,2), (3,-1), (5,5).
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Smoothness

One way around the “wiggle” problem is to avoid interpolating many points and
instead only pick a few at a time. For example, if we have points Py through Pg, then we
need a sixth degree polynomial to interpolate all the points. Suppose now that we take
only the first four points Py through P;, and interpolate them with a segment of a cubic
polynomial. Then take P; through Pg, and interpolate again with a cubic segment. Since
the two segments both go through P3, we can simply patch the two segments together to
interpolate all the points. It sounds easy, but there is a catch. The resulting patched-
together curve may not be very smooth at the point P;. Figure 4 shows what can happen.
The slope of the first segment at Pj is different than the slope of the second segment there.
For smoothness, the derivatives should match at the junction point.

o¥

w?Y

Figure 4.

Incidentally, we can patch together curves in a variety of ways. Taking two points at
a time gives a curve that is just a sequence of line segments (called piecewise linear), and
using three points at a time means we put together parabolic segments. In turns out from
experience that cubic curve segments tend to be flexible enough for artistic concerns and
yet of low enough degree to avoid too much wiggle. Because of this, cubic segments are
most often used in computer design systems.

Calculus is essential in understanding what it means for the patched-together curve
segments to form a smooth curve. First, since the end point of one segment is the initial
point of the next, the curve is at least continuous. We call this zero-order smoothness. Now
if there is a corner at the junction of two segments, then the slope of the curve has jumped
at the junction point. This means that the derivative of our patched-together curve is not
continuous at the junction point. To avoid corners, we need to insure that the derivative
is continuous. This is called first-order smoothness.

It is possible that the first derivative is continuous, but the second derivative is not
continuous. In this case the curve will look fairly smooth, but there will be sections where
it bends a little too awkwardly. To avoid this, we could try to guarantee that the second
derivative is continuous at all junction points in our patched-together curve. This is called
second-order smoothness. Second-order smoothness is very important in designing ship
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hulls where abrupt bends can cause excessive water drag on the ship, and in designing parts
of a car where air drag is a factor. In most design tasks, however, first-order smoothness
is the prime concern, so we will concentrate on it.

Our first task is to make certain we can calculate the derivative. Since the computer.
screen effectively works with the z-y coordinate system, the derivative we need is usually
dy/dz (sometimes we may prefer dz/dy). From the chain rule, we have

Hence we find that if dz/dt # 0, then

dy _ dy/dt
dz ~ dz/dt’

For example, suppose we have the parametric curve
(t) =t - 3t, y(t)=1t3+1.

Then
dy 3?41

dr ~ 2t-3°
When t = 0, we have z = 0 and y = 0, so the point (0,0) is on the curve. At this point,

the slope is —1/3. Notice that dz/dt = 0 at the point £ = 3/2. At this point the tangent
line is vertical.

Exercises

8. Consider the parametric description we developed for a line segment: P(t) = (1—%)Py+
tP;. Find the derivative using this description and show that it is indeed the slope of the
line between the two points.

9. The curve segment given in Exercise 2 forms a loop as ¢t goes from 0 to 1. This means
that the tangent line must be vertical at some point. Find this point.

10. Suppose we build a curve by taking pieces of the graphs of two functions. For z <0,
let y = 2% 42z, and for z > 0, let y = 22+ 2z. Show that the resulting curve has zero-order
smoothness and first-order smoothness, but not second-order smoothness.

Bézier Curves

In the early 1960’s, two engineers working in the French automotive industry, P.
Bézier and P. de Casteljau, independently developed a method for designing curves that
solved most of the wiggle and smoothness problems with which engineers had wrestled.
Bézier worked for Renault and de Casteljau worked for Citroén, so at first their results
were considered manufacturing secrets. The work of de Casteljau was slightly earlier
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than Bézier’s, but since it was never widely published-——and Bézier’s work was—the curves
produced with this technique are now called Bézier curves.

The method developed by these two designers relies on taking a combination of the
control points. Unlike the Lagrange interpolation method, where the blending functions
are chosen so the curve goes through all the control points, the Bézier method chooses
blending functions in a different way. To understand the motivation for the particular
choices, it helps to look first at a geometric construction due to de Casteljau.

Figure 5a shows three initial control points labeled P,, P;, P,. Experience with
drafting led to the following construction of a curve. For any 0 < ¢ <1, plot the points
Bo(t) == (1 - t)Po + tPl,
By(t)=(1—-¢t)P, + tP;.

Notice that as t goes from 0 to 1, By(t) goes from P, to P;, and Bj (t) goes from P; to P;.
Now construct the point B(%) on the line between By(t) and B;(t) by

As t goes from 0 to 1, B(t) goes from By(t) to B;(t). The Bézier curve B(t) is shown
in Figure 5b. It is not hard to imagine a mechanical linkage which would produce this

construction.

R
a. b.

Figure 5.

The geometric construction is fine for a draftsperson, but is awkward for use on the
computer. However, to derive the parametric description, all we need to do is substitute
the expressions for By(t) and B;(t) into the expression for B(t). The result is

= (1 - t)2P0 + Qt(l e t)P1 + t2P2

The Bézier curve is a combination of the three control points, and in fact B(0) = Py
and B(1) = P, so the curve interpolates the first and last control point. Notice that the
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coordinate functions z(t) and y(t) for the curve are both quadratic functions of t. The
curve is actually a parabola.

Consider the same type of geometric construction done this time with four initial
control points. Figure 6 shows the construction. Again, for ¢ in the interval [0,1], we
proceed to find intermediate points and line segments. This time we must go one more
step before we find the single point B(t). First we place B}(t), Bi(t), and B}(t) on the line
segments between the control points. Then we place B2(t) and B?(t) on the line segments
between the points first placed. We have

Blt)=Q1-t)Py +tP,
Bi(t)= (1 —t)P, +tP,
Bit)=(1-t)P, + tP
B3(t) = (1 - t)By(t) + tBi(2)
B}(t) = (1 - t)B;(t) + tB3(2),

and finally,
B(t) = (1 — t)BZ(t) + tB%(2).

Figure 6.

Again we can simplify the expression, but it is a little easier if we recognize the
recurrence relation

BI(t) = (1 - )B{ (1) + tBI ().

Now notice that B(t) is really the Bézier curve with control points Py, P;, P, and B3(t) is
the Bézier curve with control points Py, P,, P3. Since we previously derived the expression
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for three control points, we can use it now to get the expression for four points.

B(t) = (1 — t)B(t) + tB%(t)
=(1-t)[(1-1)%Py +2¢(1 ~ t)P; + t*Py] + t[(1 — t)*Py + 2t(1 — t) P, + t*P3]
=(1-1)°Py+ 3t(1 — t)°P; + 3t*(1 — t)P, + t3P;.

There is no need to stop at four points. If we have any number of points, we can use
the recursive technique to write down the Bézier curve as a combination of all the points.
You may have already seen the pattern in the blending functions. The general formula for
the Bezier curve given by the n + 1 control points Py,..., Py, is

B(t) = i (?)t‘(l —t)=ip; 0<t<1,

i=0

n n! ) . . .

where ( z') = K] is a binomial coefficient. The blending functions (n t(1-t)"
(n=2)! i

which give us Bézier curves occurred earlier in mathematical literature, and are called

Bernstein polynomials.

Figure 7 shows several Bézier curves and their control points.

w0

Y
o0

-0
O

Pyl

(M)
e’

c. d.

Figure 7.
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Exercises

11. Using the recurrence relation, derive the blending functions for a Bézier curve with
five control points (i.e. Bernstein polynomials of degree 4). Verify that the formula given
for B(t) is correct in this case.

12. Consider the i** Bernstein polynomial of degree n, displaystyle(';.')ti(l —t)"=%, Show
that the unique maximum for this polynomial in the interval 0 <t < 1 occurs at t = i/n.
13. If you have access to computer software for drawing Bezier curves, experiment with

drawing Bezier curves with five or six control points. In particular, study how the curves
change as some of the control points are moved. Turn in your most interesting experiment.

Properties of Bézier Curves

Bézier curves have a number of very nice properties. From the definition of B(t), it
is clear that B(0) = Py and B(1) = P,.

Property 1. The Bézier curve interpolates the first and last control points.

This property implies that if we set Py = P;, then the resulting curve is a closed
curve. See Figure 7c.

The polygon indicated by the dotted line in Figure 7d encloses all of the control
points for the Bézier curve. This polygon is convex, meaning that there are no corners
that point in. In fact the polygon is the smallest convex polygon which includes all the
control points, and we refer to it as the convez hull of the control points.

The de Casteljau algorithm for producing the Bézier curve picks points on line seg-
ments between control points or previously constructed points. Because of this procedure,
points on the Bézier curve are always inside the convex hull of the control points. This is a
nice property from the designer’s standpoint since it guarantees that the curve is contained
in a region that can be specified with the control points.

Property 2. The Bézier curve lies entirely within the convex hull of the control points.

Bézier curves solve the wiggle problem to a certain degree. Since the curve can be
constructed by picking points on line segments between existing points, it doesn’t tend to
wiggle very much. It turns out that the Bézier curve cannot intersect a given straight line
any more times than the polygonal curve formed by connecting the control points in order.
Figure 8 shows an example; the curve is less wiggly than the polygon. For a proof of this
fact, see Farin (1988).

Property 3. The Bézier curve is less wiggly than the polygon formed by the control
points.
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In a complex design, we usually want to patch together several curve segments to get
the final curve. Our design system should insure that we have first-order smoothness at
the junction points. To see how the Bézier curve addresses this problem, first notice that
taking the derivative and setting t = 0 gives

B’(O) = ——TZP() -+ nP1 = n(P1 - Po)

(see Exercise 14). This means that if the coordinates of Py are (o, ¥o) and the coordinates
of Py are (z1, y1) then

z'(0) = n(z; — z9), ¥'(0) =n(y1 — vo)-
Hence the value of the derivative at t =0 is

v'(0) _y1—%
z'(0) =z;—z¢

This is just the slope of the line segment from Py to P;. When t = 0, the curve is at the
point Py, so the slope of the curve at the first control point is the same as the slope of
the line segment PyP;. Similarly, the slope of the curve at the last control point P, is the
same as the slope of the line segment P,_, P,.

Property 4. The slope of the Bézier curve at Py is the same as the slope of the line
segment Py Py, and the slope of the curve at P, is the same as the slope of the line segment
P,_1P,.

This property of the slopes is very convenient for the designer. For example, suppose
we have two curve segments with control points Py, Py, Pz, P3, and Qq, Q1, @2, @3. To
make certain the segments meet, we set P3 = @o. To insure that the junction is first order
smooth, we simply make sure that P, Py (= Qy), and @, are all on the same line. This
guarantees that the slopes match up. Figure 9 shows the situation.
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R

kS

Figure 9.

There is one other property of Bézier curves that guarantees they are fairly well-
behaved. If all our control points lie on a straight line, we expect the Bézier curve to be
on the same straight line. This is indeed the case. In fact, it follows from Property 2.

Property 5. If all the control points lie on a straight line, then the Bézier curve is on the
same straight line.

Exercises

14. Write out the first few terms of B(t). Differentiate, and verify that B'(0) = —nPy+nh;.

15. Show that the Bézier curve with control points (1,2), (2,4), (5,10) is on the straight
line through these points.

The Final Design System

It should be clear now that if we have a computer design system that allows us
to do Lagrange interpolation and Bézier curves, we can certainly design car bodies. The
resulting curves have a compact mathematical description so there should be little problem
in communicating the design to the manufacturing engineers.

Most computer-aided design (CAD) systems include some curve sketching facility,
usually Bézier curves. With the more sophisticated systems, the user can place control
points, look at the resulting curve, and then alter individual control points until the curve
looks right. This interactive approach to design is invaluable. In addition to widespread
use 1n industrial design, CAD systems are valuable in many other areas. For example,
commercial animators can use CAD to help make films if they can describe the motion
curves for their characters, and meteorologists use CAD to draw isobars on weather maps.
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Answers to Exercises
2 y?  4cos’t 9sin’t
—_—t == + =1.
4 9 4 9

1.
2.

3. In both cases, y = 2% for 0 < z < 1. However, in the first case, when t = 1/2, we get
the point (1/4,1/16), whereas in the second case we are at the point (1/2,1/4). For
the larger interval, the first segment is only half of the second.

4. We have a;(t) = 1 — ao(t). Therefore, P(t) = ao(t)Py + (1 — ao(t))P;. This gives
z(t) = ao(t)zo + (1 — ag(t))z; and y(t) = ao(t)yo + (1 — ao(t))y1. Now solving for
ao(t) in the expression for z(t) and substituting into the expression for y(t) gives

r -2 T —T
y = L yo+(1- Yy
Tg — I Io— I
_ (Yo~ . Yoo
—(zo_I)I'i'(yl T3 $o—$1)
=mz+b

5. a=1,b==-3,¢c=5
= 1(y + 4z — 5). This gives 4 =1/36, B = 8/36, C = 16/36.

1. Py = 45 1)(t__52)(t =3 p MDY p W 1_):(; — 3 p, M 15);“ ~p,.
This gives - 1
o lg a1
z(t) = —t’ + 87 4 5t

5 11 11
$) = =13 — =2 + =t + 4.
y(t) 3 5 + 5 +
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8. z'(t) = —zo +z; and y'(t) = —yo + y1. Hence dy/dz = Y0 Thisis the slope of
T1 — Xy
the line between Py and P;.
9. z'(t) = 1 — 2t. Therefore the tangent is vertical when t = 1/2 . This occurs at the
point (1/4,3/8).

10. The problem point is at the junction: (0,0). The first segment’s slope here is 2 and
second derivative is equal to 0. The second segment’s slope is also 2, but the second
derivative is 2.

12. If i is not 0 or n, the derivative is (7)[i#*~1(1 —¢)"~* — ti(n — 2)(1 — )" ~*~1]. Setting
this equal to zero gives t =0 ort =1or ¢t =t¢/n. Note that ¢ = 0 and ¢t = 1 give

values of zero, but t = i/n gives a positive value; hence it is the maximum. The cases
¢ =0 and ¢ = n must be checked separately.

14. B(t) = (l—t)"Po+nt(1—t)""1P1+ﬂz—2———}lt2(1—t)"'2P2+. .. When we differentiate,

the only terms which don’t contain ¢ are —n(1 —¢)" 1Py + n(1 —¢)" "1 P;.
15. z(t) = 2t2 + 2¢ + 1 and y(t) = 4t2 + 4¢ + 1. Hence y = 2z.



MODELING THE AIDS EPIDEMIC

Author: Steven Janke, Colorado College, Colorado Springs, CO 80903

Calculus Needed: Separable differential equations, exponential and logarithm functions,
integral as a limit of Riemann sums, integration by partial fractions, improper integrals.

Areas of Application: Biology, medicine.

The Problem: Understanding the Growth of AIDS

Acquired Immune Deficiency Syndrome (AIDS) has cast a pall on all our lives. The
first cases were observed in the early 1980’s, and by the end of 1991 about 200,000 people in
the United States had been diagnosed with this terrible disease.t It is frightening because
it is deadly, and we have no cure. While medical researchers struggle to stop the spread of
the virus, the Centers for Disease Control (CDC) carefully record the number of diagnosed
cases. With these data, researchers can look at the progress of the disease and search for
important patterns. Is the epidemic growing like epidemics in the past? Will it eventually
die out on its own? How many cases will be diagnosed next year, so that we can plan for
adequate medical care? How can we tell whether the massive information campaign about
AIDS is having an affect on the spread of the disease?

Epidemics of the Past

The first major epidemic for which we have records was the “Plague of Justinian.” In
541 A.D. the Byzantine empire was attacked by what was probably a mixture of plague,
smallpox, and measles. The epidemic lasted for more than fifty years. The notorious
“Black Death” (bubonic plague) spread through Central Asia and Europe starting in 1338.
This epidemic killed more people in four years than the Plague of Justinian killed in fifty
years. Plague devastated London in 1665, spread through England and closed Cambridge
University, sending Isaac Newton home to discover the law of gravity.

In this century, there have been several epidemics. One of the worst was the 1918 in-
fluenza epidemic, which spread nearly everywhere and killed 22 million people. Poliomyeli-
tis held the attention of medical researchers throughout the first half of this century until

T There is also a serious worldwide epidemic of AIDS. However, because of behavioral
and health care differences, the pattern of the epidemic is quite different in Africa, say,
from in the United States. In this module we will focus on modeling the AIDS epidemic
in the U.S. A good introduction to models of the global epidemic is Anderson and May
(1992).
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a vaccine in 1955 finally stopped the epidemic. In the last decade we have finally seen
smallpox, which was responsible for many epidemics in the past, effectively eradicated.

In 1760, when smallpox was epidemic in Europe, Daniel Bernoulli produced the first
mathematical model of epidemics. Bernoulli was interested in modeling smallpox in order
to assess whether the new technique of innoculating people with weaker or dead viruses
would halt its spread. In some of his work, he investigated the logistic growth curve, which
we will see in the next section.

AIDS is the current horror, but is not the first sexually transmitted disease to become
epidemic. Syphilis and gonorrhea among others have been epidemic in the past and remain
endemic (i.e. present, but in control) today. As we will see, there has been a surprise with
AIDS. Unlike classic epidemics, the number of cases has not been growing exponentially.

The Logistic Model

As a first step toward understanding the growth of the AIDS epidemic, let us consider
the simplest mathematical model of the growth of an epidemic. We are interested in the
number of infected people at time ¢, call it R(¢). In this first model, we assume that the
growth rate of the number of infected people is proportional to the current number of
infected people: ®

dR(t

—-at— = kR(t) (1)
Here k is a constant of proportionality and represents how readily the disease can be spread.
This differential equation can be easily solved to get

R(t) = Rye! (2)

where Ry is the number of infected people at time zero. Remember that there are infinitely
many solutions to the differential equation (1) above. It requires an initial condition (in
this case the initial number of infecteds) to determine the unique solution.

Our model has led to a simple function giving the number of infected people at time
t. We can apply the model to predict how many people will have the disease at various
times. It turns out that if we consider, for example, the spread of influenza in a small town,
our function gives fairly accurate values for small values of . However, as time goes on,
the model makes steadily worse predictions. The reason is clear: as more people become
infected, it is harder to find people to infect.

Hence our first model must be altered. This time we argue that the rate of growth
depends not only on how many are currently infected, but also on how many are uninfected
(susceptible). If R(?) is again the total number of infected people at time ¢ and if there is
a total of N people in the population, then the number of susceptible people is N — R(%).
The number of possible contacts between infecteds and susceptibles is R(¢)(N — R(t)), so
we now assume that the epidemic’s rate of growth is proportional to this product. The
differential equation becomes

4R(t)

=~ = kR(t)(NV - R(2)). (3)
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The constant of proportionality k depends on the likelihood of contact and the probability
that contact leads to transmission of the disease.

This differential equation is a little more difficult to solve. Start by separating the
variables: dR()

=k dt. 4a

RO - R(D) (42)

Now integrate both sides. The right-hand side is easy to integrate, but the left-hand side
requires using partial fractions (See Exercise 2). The result is

R(t)

b YR

= Nkt + C, (4b)

where C is a constant. Applying the exponential function to both sides gives

R(t)

m = UCNH. (5)

In this equation, C = €€ is currently an unknown constant. However, if we know how
many people are infected at time zero, say Ry, then by setting ¢t = 0, we can solve for C.

Then a little more algebra allows us to solve for R(t). The result is

NRy

RO = B v &V = Ba)e—rvt" (©)

This type of growth is called logistic growth. The term kN in the exponent is the parameter
that determines how quickly this curve initially rises. We will call this term the growth
factor for the curve. There are two important facts about the behavior of R(t) that we
need to note.

Small t: If Ry and ¢ are small, then (N — Rp) is close to NV and e~ kNt is not close to zero.
This makes (N — Ry)e~*N* much bigger than Ry, so we have

NR,

. kNt
Ne-kNt — Roe

R(t) =~
For small ¢, logistic growth looks like exponential growth.

Large t: lim,_.., R(t) = N, so that R(t) does not grow indefinitely, but rather approaches
the size of the population. This makes sense since the most infecteds we can ever have is

N.

The graph of R(t) is shown in Figure 1. The graph of the derivative R'(t) (see
Exercise 4) is often called the epidemic curve. This curve tells us how fast the epidemic
is growing at any particular time. For logistic growth, the epidemic curve increases to a
maximum value and then decreases to zero.
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Time(t)

Figure 1. The Logistic Curve.

Exercises

1. Assume that we have exponential growth as in equation (2). Suppose that 50 people
are initially infected, and that after one week, 70 people are infected. How long is
it before 100 people are infected? How much longer will it be until 200 people are
infected? The time interval you are seeking is called the doubling time. Show that
no matter where we start on the growth curve, the doubling time is constant.

2. Integrate both sides of equation (4a) to get equation (4b). (The lefthand integral
requires a partial fraction decomposition.)

3. Derive equation (6) from equation (5).

4. Find the equation for the epidemic curve and determine when it reaches its maximum.
Use a computer to graph the epidemic curve and the logistic curve on the same axes.

5. Consider a small town of 5000 residents. Ten residents get a cold after a trip to
another town. Compare the exponential model for viral infection growth with the
logistic model. Assume the growth factor for both models is 1.2 (i.e. k in the
exponential model and kN in the logistic model). Use both models to calculate how
many people will have a cold at time 1 week and at time 4 weeks. (We are assuming
that no one recovers.)

6. What happens if the growth factor for the logistic model is negative?
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Assumptions in the Logistic Model

The logistic model is a simple model for the growth of an epidemic—probably too
simple to apply to AIDS. Let us list the main simplifying assumptions in the logistic growth
model, and mention some possible criticisms of those assumptions.

1. We have assumed that R(t) is a continuous function. Since we are counting people,
this is not strictly true. However, if the population is fairly large, assuming continuity is
reasonable.

2. We have assumed that the growth rate is proportional to the product of the
numbers of infecteds and susceptibles. This makes sense if we think of the product as
representing the number of possible contacts between infecteds and susceptibles. However,
we must be aware that there may be some other relationship between growth rate and the
number of infecteds.

3. We have assumed that there are only two categories for people: infecteds and
susceptibles. It is possible that some are immune, that some die, or that once people
recover from the disease they become immune.

4. We have assumed that once a contact results in an infection, the newly infected
person immediately develops the disease. However, there may be a latency period between
the time of infection and the onset of the disease. This will be especially important for

AIDS.

5. We have assumed that any person can infect any other person. This implies that
all people behave in the same way and there is homogeneous mixing in the population.
This is a critical assumption and we will refer to it as the homogeneous assumption. Clearly
in real populations there are vastly different behaviors. The differences are particularly
important in modeling sexually transmitted diseases like AIDS.

A Portrait of AIDS

In order to be more specific in our modeling effort, we need to understand a lit-
tle about the development of AIDS. AIDS is caused by the HIV virus which is usually
transmitted in adults by one of three methods: blood transfusions, needle-sharing by drug
users, and sexual contact. Since careful testing has increased the safety of the blood sup-
ply, transmission by blood transfusions has decreased considerably. The model in the next
section will concentrate on transmission by sexual contact.

‘Once a person has been infected, it takes from two to six months for antibodies
to appear in the bloodstream. At this point, the patient has an HIV infection. During
this time, the amount of free virus in the bloodstream peaks dramatically. The amount
of free virus then subsides as the virus hides in other cells and carries on its relentless
destruction of immune system cells. The patient moves into a latent period that can last
as little as 2 years, or up to 15 years or perhaps even longer. Then the free virus begins
increasing again, and because of natural selection it tends to be much more virulent. At
some stage the patient begins to suffer from fever and other symptoms. This stage is
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referred to as AIDS Related Complex (ARC). Finally, as the immune system begins to
fail, opportunistic infections take over. The patient usually contracts pneumonia, Kaposi’s
sarcoma (a cancer), or a variety of other diseases that gradually take away life. At this
final stage the patient has full-blown AIDS.

For our modeling effort, first note that we would expect sexual behavior to be a critical
factor. Since behavior varies widely, the homogeneous assumption—number 5 above—is
probably not warranted. Secondly, note that there is a considerable latency period with
HIV infection, so that assumption 4 does not hold. Furthermore, not everyone develops
AIDS at the same time after infection. This is important, since it is not clear that we know
how many infective people there are at a given time. In fact we do not have good estimates
of how many people are infected with HIV. The data we have chronicles full blown AIDS.

The CDC keeps track of the diagnosed cases of AIDS. These are people that have
entered the last stage of the disease. Table 1 gives the data as of the end of August 1991.
As you might suspect, data are not reported promptly to the Centers, so there are constant
updates and the table will undoubtedly change slightly over time.

Using statistical techniques, we can determine which kind of function best fits the
data. It turns out that a cubic function fits better than an exponential function. Specif-
ically, R(t) = 187(t — 1981)% — 274 fits the data well. Since we are near the beginning of
the epidemic, we would expect R(t) to be approximately exponential if the logistic model
were a good model for AIDS growth. Since a cubic function fits better, we will need to
develop a better model.

Note that the data are subject to all the pitfalls of real life data collection. There
are delays and some cases are not reported. Even so, the growth of AIDS is sufficiently
different from exponential growth to cause us to improve our model.

Exercise

7. If the growth of AIDS were exponential, then we saw in Exercise 1 that the doubling
time would be constant. Look at the data in Table 1 and see what is happening to
the doubling time.
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Table 1. The AIDS Epidemic.

The following data were reported in the August 1991 issue of HIV/AIDS Surveillance
published by the Centers for Disease Control. The Cases column gives the number of AIDS

cases diagnosed in the designated interval. (Remember that these are AIDS cases, not just
HIV infections.)

Half-Year Cases Cumulative
1981 Jan-June 92 92
July-Dec 203 295
1982 Jan-June 390 685
July-Dec 689 1,374
1983 Jan-June 1,277 2,651
July-Dec 1,642 4,293
1984 Jan-June 2,550 6,843
July-Dec 3,368 10,211
1985 Jan-June 4,842 15,053
July-Dec 6,225 21,278
1986 Jan-June 8,215 29,493
July-Dec 9,860 39,353
1987 Jan-June 12,764 52,117
July-Dec 14,173 66,290
1988 Jan-June 16,113 82,403
July-Dec 16,507 98,910
1989 Jan-June 18,452 117,362
July-Dec 18,252 135,614
1990 Jan-June 18,601 154,215
July-Dec 16,636 170,851
1991 Jan-June 12,620 183,471
Notes:

1. This table includes only adults and adolescents. There have been 3199 cases reported
among children less than 13 years old.

2. 85 cases were reported before 1981.

3. The table gives the number of AIDS cases diagnosed, not the number of deaths. The
August issue reports that 118,411 individuals (adults, adolescents, and children) have
died from AIDS.

4. The last two numbers in the Cases column are almost certainly too low, due to
delayed reporting. They are omitted in the curve-fitting.

5. Both an exponential curve and a cubic curve give decent fits to the data, but the cubic
curve explains 99.8 percent of the variance whereas the exponential curve explains
92.8 percent. It can also be argued from the pattern of residuals that the cubic fits
better.
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The Saturation Wave Model

The most important properties which prevent the logistic model from describing the
growth of AIDS are the variable latency period for AIDS and the lack of homogeneous
mixing in the population. Models which include both non-homogeneous mixing and an
uncertain latency period usually lead to complicated systems of differential equations which
cannot be solved exactly, so that solutions must be approximated numerically. However,
a group of researchers at Los Alamos [Colgate et al., 1989] was able to avoid most of this
complexity by making suitable simplifying assumptions, while still including the latency
period and heterogeneous behavior in their AIDS model. The resulting differential equation
is not only solvable, but also predicts cubic growth. We will sketch the development of this
remarkable model in six steps. It is a good illustration of the interplay between complexity
and simplifying assumptions in modeling.

Let

H(t) = the cumulative number of HIV infections up to time £,
A(t) = the cumulative number of AIDS cases up to time ¢.

STEP 1: Latency period. We will describe the variable latency period for AIDS
by a probability density function L(t). This is a function such that the probability that
the latency period for an HIV infected individual is between time 7 and time 7 + A7 is
f:+AT L(t) dt. Figure 2 shows that this probability is approximately L(7)Ar when A7 is
small. ,

Current evidence indicates that the AIDS latency period is always between 2 and 18 years.
This means that L(¢) =0 for t <2 or ¢t > 18, and fzw L(t)dt = 1. Later, we will assume
a specific form for L(t), subject to these constraints.

L(z)

Y

2 T T+ AT 18 tin years

Figure 2. A Probability Density Function for the Latency Period.
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STEP 2: Formula for A'(t). Partition the time interval [2,18] into a large number of
small subintervals [r;,7; + A7], 1 = 1,...,n. Individuals will develop AIDS between time ¢
and time ¢ + AT if they were infected between time ¢t — 7; — A7 and time ¢ — 7;, and their
latency period was between 7; and 7; + Ar. Hence we get the approximation

Alt+ AT)— A(t) ~ Y [H(t— ) — H(t — i — AT)|L(m:) Ar. (7

i=1

Now divide both sides by Ar and let A7 — 0. The difference quotients approach deriva-
tives, the Riemann sum approaches an integral, and we get

A't) = /2 H'(t — 7)L(r)dr. 8)

STEP 3: Heterogeneous behavior. The Los Alamos group dealt with heterogeneous
behavior by assuming the the population is divided into different risk classes, and people
within each class tend to interact mostly with other people in that class.

They looked at studies of sexual behavior and found that if proportion of people is plotted
versus number of sexual partners (p) per year, the function k/p?® fits the data fairly well
for p > 1. This means, as we might expect, that most people have about 1 partner per
year and fewer people have 2 partners per year. Many fewer people have, say, 20 partners
per year.

The Los Alamos group concluded that if there is a measure of risky sexual behavior, then
the number of individuals with risk r, call it N(r), should be inversely proportional to the

cube of r. That is,

Ny~ ©

where Ny is some constant.

STEP 4: Growth in single risk group. Consider all individuals of risk 7. We assume
now that the HIV infection grows exponentially in this group with a growth rate that is
proportional to r. Hence the HIV infection spreads faster among individuals who engage
in riskier sexual behavior. If we let the proportionality constant be 7, and if we let H.(t)
be the number of individuals with risk r that have the HIV infection, then

H(t) = H,(0)e™™ (10)

where H,(0) is the number of infected individuals when we start measuring time.

Since there are N(r) individuals in the group, the entire group will be infected when
N(r) = H.(0)e", which will happen at time

1 N(r)

We will call this time ¢ the saturation time. The group is saturated if everyone is infected.
The ratio N(r)/H.(0) is the number of people in a group divided by the number that are
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infected at the beginning of the epidemic. If we assume that this ratio is approximately
constant over all r, we can conclude that the saturation time is inversely proportional to
the risk r.

STEP 5: Saturation wave and HIV infection. Individuals who engage in riskier
behavior are more likely to become infected early in the epidemic. One by one, the high risk
groups become saturated before the lower risk groups: a saturation wave moves through
the population from high risk groups to low risk groups. To approximate the number
of individuals that have the HIV infection, we can add up all groups that are currently
saturated. Suppose that the group with risk r, just reached saturation. Then the number
infected is approximately

/ N(r)dr:/ %’- dr = o (12)

2r2

If we let t be the saturation time of group r,, we know from Step 4 that ¢ = k/r. where k
is some constant. Substituting this in the righthand side of equation (12) gives Kt? where
K = Ny/2k? is a constant. This is an approximation for H(t), the number of individuals
up to time ¢ that have the HIV infection:

H(t) ~ Kt*. (13)

In other words, the HIV infection grows quadratically.

STEP 6: Cubic growth of AIDS. If the AIDS latency period lasts at least 2 years and
not longer than 18 years, the simplest assumption is that the onset of AIDS is uniformly
distributed in this interval. Hence we set

0 ift <2,
L(t) = { Ty = 00625 if2<t <18, (14)
0 if t > 18.

This means that the probability that an individual develops AIDS from 2 to 3 years after
infection is 0.0625. The probability that AIDS begins from 2 to 4 years after infection is
2-0.0625 = 0.125.

Now return to equation (8) and use (13) and (14) to derive that, for 2 < t < 18,

Al(t) = /; H'(t —7) - L(7) dr

t
=/ 2K (t — ) - 0.0625 dr (15)
2

=0.0625 - K(t — 2)*.

It is estimated that the HIV infection began in 1979, so if we are interested in the number
of AIDS cases in the early 1990’s, we are justified in taking ¢ < 18.
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Now it is a simple matter to find A(?):

A(t)=/2 A'(s)ds

t
= / 0.0625 K(s — 2)ds (16)
2

=0.0625 K - %(t - 2)3.

Equation (16) predicts that the cumulative number of AIDS cases is a cubic function of
time.

You should note that this prediction comes at the end of a sequence of seemingly
heroic assumptions (Exercise 8). It is quite sensitive to the shape of the risk curve N(r)
(Exercise 11), the uniform probability distribution for L(t) (Exercise 10), and the restric-
tion that ¢ < 18 (Exercise 9). More importantly, it is grounded in a picture of HIV infection
spreading exponentially through high risk groups of the population and then moving on
to spread exponentially through lower risk groups. As such, the model is designed only for
the early stages of the epidemic, and is not useful for predicting long-term effects. That’s
good, because it would otherwise predict that AIDS would become universal.

One particularly useful feature of the saturation wave model is its clear connection
between A(t) (AIDS cases) and H(t) (HIV infections, which will become AIDS cases).
Knowledge of H(t) is crucial to estimating public health needs in the immediate future,
but the data on H(t) is so incomplete that our best hope for estimating it seems to be
from models like this. You should certainly do Exercise 12, which asks you to use the data
on A(t) to estimate the 1992 value of H(t). I think you will find the number sobering. On
the other hand, you should remember the assumptions in the model from which it comes.

Exercises

8. List the major assumptions made in the saturation wave model.

9. Show that for t > 18, A'(¢) = 0.0625 (H(t — 2) — H(t — 18)), and that this leads to
quadratic growth for A(t).

10. Suppose that L(t) = i—;—g(t —2) for 2 < 7 < 18. This means that as the latency period
becomes longer, the probability of developing AIDS becomes greater. Now calculate
A(t).

11. Determine what N(r) would have to be in order for AIDS to grow exponentially.

12. Notice that K in equation (16) is the same K that is in equation (13). Also, recall
that the curve 187(¢t — 1981)% — 274 fits the data in Table 1 and is hence an estimate
for A(t). Now estimate K by equating the coefficient of ¢ in the fitted curve to the
coefficient in equation (16). Assuming that the HIV infection began in 1979, find an
estimate for the cumulative number of HIV infections in 1992.
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Answers to Exercises

In2
1. 2.06 weeks. Roe F(tt%) = 2R % = ¢, = - Here t; is the doubling time and is

independent of .
2. It might help to substitute z = %

RokN?(N — Ry)e—*Nt
[Ro + (N . Ro)e—th]2 :

4. The epidemic curve is the graph of R'(t) = It reaches its

1 N-R
maximum at ¢ = In Ly

kN Ry

5. At 1 week exponential gives 33, logistic gives 33. At 4 weeks exponential gives 1215,
logistic gives 979.

6. lim;_, o R(t) = 0. The infection dies out.

7. Look at the Cumulative column. Notice, for example, that the numbers go from 685 to
1374 in one-half year. The doubling time is about one-half year. Later, numbers go from
66,290 to 135,614 in two years. The doubling time is increasing. It does not seem to be
exponential growth.

8. Some major assumptions:

e L is constant over the interval 2 to 18.

e N(r) is proportional to r~3.

e The growth of infection in a risk group is exponential.

e The growth rate in a risk group is proportional to r.

e The quantity N(r)/H.(0) is constant with respect to r.

¢ The infection spreads as a wave so that we can estimate the total infected by adding up
the groups that are currently saturated.

9. Substitute u = ¢ — 7 and use the Fundamental Theorem of Calculus. If A'(t) =
0.0625[K (t — 2)? — K(t — 18)?] = 0.0625K (32t — 320), then A(%) is quadratic.

10. A(t) = 5555(t* — 8t3 + 24t — 32t + 16]. Hence it is a quartic function of time.

11. If A(?) is exponential, then A'(t) is exponential and therefore H(t) is also. This means
the integral in (12) must be an exponential function of the form Ce®/T. From this it follows

that N(r) has the form —%e"/'.
r

12. 187 = 20825K gives K = 8976. For the year 1992, ¢t = 13 and H(13) ~ K(13)? =
1,516,944.



SPEEDY SORTING

Author: Steven Janke, Colorado College, Colorado Springs, CO 80903

Calculus Prerequisites: Limits at infinity, L’Hopital’s rule, integral of logarithm.
Area of Application: Computer science

New Mathematics Developed: Order of a function, approximation of N!

Note: Although not necessary, demonstration of sorting on a computer would add to the
material.

The Problem: Sorting Large Lists

Computers spend a large portion of their time sorting data. Business computers
keep mailing lists in order, college computers keep alumni records in order, and research
computers often order data when compiling summary statistics. Although the task of
putting 1000 test scores in numerical order may not be complicated, it certainly could
be time consuming if we had to do it by hand. Even a computer takes some time. The
following table lists the amount of time it took a microcomputer to put lists of random
numbers in order:

List Size Time (seconds)
1000 2.69
2000 11.78
4000 47.51
8000 190.70

Table 1. Sorting Times
(by Selection Sort on a 386 microprocessor running at 20 mHz).

One interesting feature of the data is that the time does not simply double when the
list size doubles—it increases about four-fold. A little arithmetic shows that the time to sort
64,000 numbers would be over 3 hours! Such a list size is not uncommon for computers at
the National Weather Service, the Center for Disease Control, or large insurance companies.
Hence it might pay to look closer at the sorting problem to see if we can reduce the time
and perhaps discover something about optimal sorting algorithms.

223
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Selection Sort

To sort numbers, the computer must have the numbers in memory. It is convenient
to think of memory locations as labeled boxes sitting in a row. A common way of denoting
the numbers in a list is to call the number in the first box LIST[1], the number in the
second box LIST[2], etc. The computer can compare the contents of two boxes and swap
the contents of two boxes. The task now is to put the numbers in increasing order by using
only these two operations: comparisons and swaps.

One intuitive way for putting the numbers in order is first to scan the list and put the
smallest number in the first position. Next, disregard the first number and consider the
rest. Find the smallest of these and put it in the second position. Continue in this fashion
until reaching the end of the list. This method for sorting a list of numbers is called the
Selection Sort.

Let us look at the details of this sorting method for a list of size ten. The numbers
are denoted LIST(1] through LIST{10]. Compare LIST(1] to LIST[2]. If LIST[1] is larger,
swap LIST[1] and LIST[2]; otherwise leave the numbers alone. If a swap was made, the
numbers in boxes 1 and 2 have changed places so now LIST[1] is the number that was
previously LIST[2], and LIST[2] is the number that was previously LIST[1]. Next compare
LIST[1] to LIST[3] and again swap if LIST[1] is the larger. Continue in this way until
LIST(1] is compared to LIST[10] and swapped if necessary. After this pass through the
list, the smallest number in the list is LIST[1] and it is in its correct position at the left of
the list.

Now begin with LIST[2] and compare it to LIST[3] through LIST[10], swapping when
necessary. After this pass through the list, LIST[2] is the second smallest number in the
entire list. Selection Sort continues by comparing LIST[3] to LIST[4] through LIST[10].
Each number is considered in turn until LIST[9] is compared to LIST[10]. After this stage,
the list is in order. Figure 1 shows the results of three passes of Selection Sort on an
original random list.

Original list: (6] 10][2] [9]
First pass: 1 @ @ 10 @
Second pass: 1 2 @ E] @ 10 @
Third pass: 1 2 3 @ 10 @

s

Figure 1. Selection Sort (three passes)

Let’s summarize Selection Sort. Suppose the list has size N. Then when using
Selection Sort, LIST(:] is compared to each of the numbers LIST[i + 1] through LIST[N].
Two numbers in a comparison are swapped if the first is larger than the second. Selection
Sort can be presented conveniently in the following pseudocode:
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Fori=1to N —1do
Forj=:7+4+1to N do
Compare LIST[:] to LIST(j] and swap if LIST[¢] is larger.

Finally, notice that the Selection Sort is not specific to numbers. Clearly, if we stored
words in the boxes and compared the contents of two boxes using alphabetic ordering, we
could put a list of words in alphabetical order.

Exercise

1. Refer to Figure 1 and show the result after the fourth and fifth passes.

Analysis of the Selection Sort

We will try to predict how long it will take a computer to perform Selection Sort on
a list of a given size. To begin with, we will simplify the problem slightly by assuming that
the computer spends time only on comparisons and swaps. There are other operations the
computer must perform, such as reading in the list, printing it out, and keeping track of
where it is in the list, but the dominant parts of the selection algorithm are the comparisons
and swaps. If we know how long the computer takes to perform one comparison and one
swap, then to find out the total time for the sorting process we coun* the total comparisons
and the total swaps. Multiplication will give us total time.

In Selection Sort, the first pass through the list compared LIST[1] to every other
number. Since we had ten numbers, there were 9 comparisons on the first pass. On the
second pass, LIST[2] was compared with each number to the right of it giving a total of
8 comparisons. Each successive pass makes one less comparison. The total number of
comparisons to perform Selection Sort on 10 numbers is therefore 9 +8 +7+6+5+4 +
3+24+1=45.

It isn’t hard to generalize to lists of arbitrary size. If the list has N numbers, the first
pass will need N-1 comparisons, the second pass will need N-2 comparisons, and the last
pass will need 1 comparison. The total number of comparisons is

N NV -1)
] = ——, 1
; 5 (1)

We also want to count the number of swaps necessary to perform Selection Sort.
However, the number of swaps depends on the particular list. The worst case occurs when
the list is in reverse order; the best case occurs when the list is already in order. What
would seem appropriate here is the average number of swaps. This takes a little work to
calculate and can be found in Knuth (1973). One thing we can say for sure is that there
are never more swaps than there are comparisons. Consequently, we can get a good idea

of how our algorithm performs on various lists by counting the number of comparisons.
N(N -1)

The result for Selection Sort given here is that it always takes comparisons.
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Exercise

2. Show that formula (1) is correct. (Hint: Add the first and last numbers, then add the
second and second from last, etc.)

Insertion Sort

We will look briefly at one more simple sorting algorithm. This one, called the
Insertion Sort, orders a list in the same way that we usually order a hand of playing cards.
Imagine that someone deals you a hand of playing cards. You pick up the cards one at a
time and insert them in the fan of cards held in your other hand. After you have picked
them all up, you have an ordered fan.

The same technique works in a computer. A row of memory boxes containing numbers
represents the dealt hand of cards. The number at the left, LIST[1], can be thought of
as an ordered list of size one. This starts the “fan” of ordered numbers. Next “pick up”
LIST[2] and compare it to LIST[1]. Swap if necessary. Now there is an ordered list of
size two at the left of the row. Consider LIST|[3] and compare it to LIST[2] swapping if
they are out of order. If it was not necessary to swap, then the numbers LIST{1], LIST[2],
LIST[3] are in order. If it was necessary to swap, then LIST[2] must be compared to
LIST(1] and swapped if necessary. In either case, there is now an ordered list of size three
at the left of the row. The algorithm continues by considering LIST[4] and “inserting” it
in the ordered list at the left by comparing and perhaps swapping. Remember that if a
swap is not necessary, then the partial list already is in order. Figure 2 shows the first
stages of Insertion Sort as it operates on a random list.

Original list: 5 10] 6] (1] [o] [7] [2]
First Stage: 3 5 10 (6] [1] [o] [7] [2]
Second Stage: 3 5 8 10 E Z E Z Z
Third Stage: 3 4 5 s [10][6] [1] [o] [7] [2]
Fourth Stage: 3 4 5 8 10 6] (1] |9 1] {2

Figure 2. Insertion Sort (first stages)

Here is the pseudocode for Insertion Sort on a list of size N:
Fori=2to N do
Set j =1.
While j > 0 and LIST[j]<LIST[j — 1] do
Swap LIST[;] and LIST[; — 1]. Subtract one from ;.
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Analysis of the Insertion Sort

One important feature of Insertion Sort is that sometimes further comparisons are
avoided. If a swap is not made after comparing two numbers, then Insertion Sort stops
further comparisons and goes on to consider the next unexamined number. To compare
Insertion Sort to Selection Sort, we will calculate the average number of comparisons for
Insertion Sort.

To do this, suppose that we are in the middle of an insertion sort, J numbers are in
order at the left of the list, and a new number is about to be inserted. The new number
could fit between any of the J numbers or it could fit at the beginning or end of the list.
There are J + 1 possible positions for the new number. If we assume that each position is
equally likely, then the probability that the number will be in any given position is 7_1‘_—1

If the new number comes at the beginning of the list, it must be compared with all
the J numbers before it is put where it belongs. That is, J comparisons are needed. The
new number must also be compared with all J numbers in order to discover that it belongs
between the first and second. If it comes between the second and third, there will be only
J — 1 comparisons. Between the third and fourth requires only J — 2 comparisons. If the
new number comes after all the numbers in the list, then only one comparison is necessary.
To calculate the average number of comparisons, we multiply the number of comparisons
necessary to put it in a particular position by the probability 'J—-lq—_f that it will be in that
position, and then sum:

1
Average comparisons, Jth stage = -j—+—-I(J +J+(J-1D)+(J=-2)+---+2+1)

J 1 <
=J+1+J+1;Z (2)
A
T J+1 2

To finish the calculation for the average number of comparisons in Insertion Sort, we sum

over all values of J:

N-1 4 7
Average comparisons = ;( + 5T 1 (3)
MY
N-—1
It is difficult to calculate the sum Z 71 directly, but we can get good upper and

lower bounds for it by using calculus. F1rst simplify the sum by notmg that
N-1 N-1

1
SR DS b ‘1—2? ®

J=1
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Hence we need to find upper and lower bounds for the sum of 1/: as ¢ runs from 2 to N.

In Figure 3, notice that this sum is the sum of rectangles under the curve y = 1/z from
N

1 to N. Hence an upper bound for the sum is —dz = In N. To find a lower bound,

again notice from the figure that the dotted recta.ngles include the area under the curve,
N +1 4

so the sum is greater than / —d:z = In(N 4+ 1) — In2. Thus

N—1-—1nN<Z—<N—1—1n(N+1)+1n2. (5)

These bounds will be useful in the next section.

Figure 3. Estimating E,_z 2

In formula (3) for the average number of comparisons in Insertion Sort, the first term
is the dominant one. For example, if N = 1000, the first term is 249,750 and the second
term is about 992.5. Therefore, when we compare (3) to (1), it appears that the average
number of comparisons for Insertion Sort is about half the average number for Selection
Sort. This suggests that Insertion Sort might run faster, and indeed it does, as Table 2
shows.
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List Size Time (Seconds)
1000 1.73
2000 7.46
4000 29.98
8000 73.47

Table 2. Insertion Sort Times

For both Table 1 and Table 2, the sorting algorithms were run on two random lists
of the given size and the average time was calculated. Insertion Sort is about twice as fast
as Selection Sort.

Exercises

3. Figure 2 shows a list of ten numbers. How many comparisons does it take Insertion
Sort to put this list in order? What is the average number of comparisons for Insertion
Sort on a list this size?

4. Use integrals to find upper and lower bounds for the following sums: E?:l 3 and
E?:l 3!. Compare your bounds to the actual sums.

The Order of an Algorithm

We have found functions that give the average number of comparisons necessary for
Selection Sort and Insertion Sort. If NV is the size of the list, they are:

Selection Sort: Cg(N) = %N2 - %N

1, 1. "=~ J
Insertion Sort: Cp(N) = ZN2 - ZN + Z —_—

We will call functions that count the average number of comparisons for a sort C-functions.
We have seen that the C-function for Insertion Sort is about half the C-function for
Selection Sort. The next goal is to determine some systematic way for comparing two
C-functions.

For small lists, the time for sorting—by any algorithm—is rather small, so how C-
functions compare is not of practical importance. However, for large lists the sorting time
becomes significant and hence the differences between algorithms can be crucial. Our
interest in large NV suggests that we consider the limits of C-functions as N approaches
infinity. Hence to compare two C-functions, we will consider their ratio, and look at the
limit of the ratio as NV approaches infinity.

Suppose, for example, that we have two other sorting algorithms, called A and B,
with C-functions C4(N) = 3N and C(N) = ;N?. We would compare them to Cs(NV)
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by calculating
. Cs(N) .. %(N2—N)_
N T~ AR,y T

Cs(N) _ i 3(N?2—N) -9

N Ta(N) ~ N IN?
Looking at the first limit, the ratio of the Selection Sort C-function to the C-function for
algorithm A gets arbitrarily large as N increases. This means that the two functions grow
at different rates, and in fact Cs grows much faster than C4. Consequently, Selection
Sort would run much slower on large lists. The second limit shows that the function Cg is
very close to twice Cg as N gets large. This indicates that the two C-functions grow at a

comparable rate, although one is always smaller than the other.

The limit of the ratio is a convenient way of comparing the growth of two functions.
However, since the limit may not always exist, we will use definitions that do not involve
limits. |

Definition. Let f and g be two positive functions. Function f is said to be “big-oh” of
g if there exist numbers ¢ and Ny with ¢ > 0 such that f(N) < cg(N) for all N > No. We
use the notation f = O(g).

In other words, if f = O(g), then f grows no faster than g. As examples, consider the
functions C4, Cp, and Cs. Since 3N < %(N2 — N) for N > 8 (see Exercise 5), we have
Ca = O(Cs). Further, since (N2 — N) < 2. $N?, it is also true than Cs = O(CB).

In order to indicate that two functions grow at the same rate, we introduce one more
definition.

Definition. Functions f and g have the same order if f = O(g) and g = O(f). We often
say that g has order f.

Above we showed that Cs = O(Cp). Now notice that if N > 4 then $N? < 1(N? — N).
Therefore, Cg = O(C5s), and hence Cs and Cp have the same order.

When the limit of the ratio of two C-functions does exist, we can use it to establish
the order of functions:
Proposition. If A}im —‘fg—:% =cand 0 < ¢ < oo, then f and g have the same order. If
— 00 g
c¢=0 or c =00, then f and g have different orders.

Proof: If 0 < ¢ < oo, then there exist k; and k2 with 0 < k3 < ¢ < k2 < 00. Since the
limit is c, there exists an Ny such that for N > Ny

f(N)
k1<m <k2,

so that k1g(N) < f(N) < k2g(N). This shows that f and g have the same order.
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If ¢ = 0, then for any € > 0, there is an N, such that for N > N,

S
9(N)

< e

1
Therefore, g(N) > < f(N). Since g is eventually larger than any constant times f, g #
O(f). Hence f and g do not have the same order.

Finally, if ¢ = oo, then hm gl )

= (0 and the previous case applies. Q.E.D.
NI ) P pplies. Q

The proposition shows that C4 and Cs have different orders and consequently, based
on the number of comparisons, algorithm A would be far better than Selection Sort.

For another example, consider the two functions 100N!-® and 5N%— 4N. Since the
limit as N — oo of the ratio of the first function to the second is 0, the two functions have
different orders. The second function grows faster than the first so we say it has higher
order and represents a slower algorithm.

Sometimes finding the limit of a ratio is not straightforward. Suppose the two C-

functions are In N and N. Then in order to find A}im lr;\er

we can recall L'Hopital’s rule

from calculus.

L’Hoépital’s Rule. Iflimy_ o f(N) = limy_ g(IN) = o0, and if f' and ¢' exist, then
R )
N=oo g(N) ~ N—oo g'(N)’

Applying the rule to the ratio of In N and N gives

Thus the two functions have different orders.

Now we are in a position to compare the C-functions for the Selection Sort and the
Insertion Sort. From (3) and (5),

1
%(NZ—N)+N—1—1nN <CHN) < Z(N*=N)+N—1—In(N+1)+In2. (6)

Consider first the function forming the lower bound. Notice

po Ny (VP -N)4N-1-laN

N Cs(N) ~ Noeo I(N? - N)
o 1 2(N-1) 2In N -
“A}‘_’.noo(’2'+N2—N "N'-'—N) (7)
/1 2 2N 1
Nh_’f‘w(z TN TN 1) 2
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Similarly, the ratio of the upper bound to Cs(N) also tends to 1/2 as N — oco. Hence, the
limit of the ratio of Cy to Cs is 1/2 and the two functions have the same order.

Exercises

5. Show that if N > 8 then CA(N) < Cs(N).
6. Show that C; and C's have the same order as f(N) = N2.
7. Show that f(N) = 10N° — 3N® 4+ N2 — 100 has the same order as g(N) = N° — 2N.

8. List the following functions in increasing order. Also indicate if two functions have the
same order.

N2 - N15 In N? (lnN)?
NlnN oN N +1n3N
log2 N N0.01 N100

Optimal Order for Sorting

Insertion Sort and Selection Sort both have order N? for the average number of
comparisons. Are there other algorithms that do better? Is order N? the best possible?
In fact, there are several algorithms that are better, and it is even possible to give a lower
bound on the order of the best possible C-furction.

To estimate the C-function for an optimal sorting algorithm, we will consider what
kind of work a sorting algorithm must do. If we have a list of N numbers, in how many
different ways can they be ordered? The first element can be any one of the N numbers.
Once the first element has been determined, there are N —1 choices for the second element,
N — 2 choices for the third element, etc. To count the total number of orderings, multiply
all these choices together. The total number is N(N — 1)(N — 2)(N ~3)---1= N! Any
sorting algorithm must be able to distinquish the N! different orderings of N numbers.

One way to diagram what a sorting algorithm does is to draw a comparison tree. The
diagram in Figure 4 shows how Selection Sort compares elements in a list of size three.

To read the diagram, let the numbers in the list be aj, a2, and a3. The circle at the
top of the tree indicates that Selection Sort first compares a; to a. If a; < a3, follow
the left branch of the tree, otherwise follow the right branch. For example, if a; < a,,
Selection Sort next compares a; to az. On the other hand if a; > a2 , then Selection Sort
compares a; to az. The rectangles at the bottom of the tree are called “leaves” (despite
the fact that they are at the bottom!), and indicate the correct increasing order for the
three numbers. Since there are 3! = 6 ways to order three numbers, there are six leaves in
this comparison tree.
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a;azasz ajaza, 433187 [328183 [@2a30) a3a2a

Figure 4. Comparison Tree.

The circle labeled a; : a; has only one branch, leading to the ordering azaja;. There
is no other possibility because at this stage in the tree we know that a; is larger than
a;, since these numbers were already compared at the root node of the tree. Thus the
circle a3 : a; is redundant, as is the circle a; : a; at the right edge of the tree. Since these
redundancies represent inefficiencies in Selection Sort, we can imagine a slightly better sort
where there are no redundant comparisons. For a best possible sorting algorithm, we can
assume that each circle in the comparison tree has two branches leading from it; that is,
there are no redundancies.

Comparison trees have a number of levels. In Figure 4, the tree has a single root
node at the top and three levels of nodes underneath. We say that this tree has depth
three. Any path traced from the root to a leaf indicates a possible set of comparisons that
Selection Sort might do when ordering a list of numbers. The number of comparisons in
the worst case is the number of circles on the longest path, and this is the depth of the
comparison tree.

If we could show that any comparison tree for a list of size NV must have a depth of
at least K, then we would know that even the best possible algorithm would require Ky
comparisons in the worst case. To find such a lower bound, we need the following result.

Proposition. A comparison tree which has M leaves has depth at least [log, M].

(The symbols [ and ] indicate the least integer greater than or equal to log, M. This is
read “ceiling of log, M.”)

Proof: A comparison tree has two branches out of every comparison node and none out of
the leaf nodes. If the tree has depth d, then the tree has at most 24 leaves. Hence M < 29,
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By taking logarithms to the base 2, we get log, M < d. Since d is an integer, d must be at
least as large as the least integer greater than or equal to log, M. Q.E.D.

Now we can give a lower bound on the number of comparisons that any algorithm
must do.

Proposition. On a list of size N, any sorting algorithm must do at least [log, N!] com-
parisons in the worst case.

Proof: If the list has size N, there are N! possible orderings and hence the comparison
tree has at least V! leaves. By the previous proposition, the depth of the tree must be at

least [log, N!]. Q.E.D.

This is a remarkable result. Without knowing very many sorting algorithms, we have
been able to prove that any sorting algorithm that sorts data by comparing elements must
do at least [log, N!] comparisons to sort some list of size N. Note that we have not proved
that there is any algorithm that is this good.

The function f(N) = [log, N!] is a lower bound for the worst case in sorting a list. In
order to find a lower bound for the average case (hence a lower bound for the best possible
C-function), we need to go back to the comparison tree and find the average length of a
path from the root to a leaf. This takes a little more effort, but it can be done.

Proposition. The best possible C-function must satisfy C(N) > |log, N!|. In other
words, the average number of comparisons done by any sorting algorithm on lists of size
N is at least |log, N!].

(The symbols | and | indicate the greatest integer less than or equal to log, N!. This is
read “floor of log, N!”.)

Proof: See Baase (1988).

The lower bound for the average case differs from the lower bound for the worst case,
but as you might suspect, they have the same order. In fact, since {log, N!| < log, N! <
[log, N!] and the two outer functions differ by at most 1, all three functions have the same
order. Is this optimal order close to the order for the Selection and Insertion Sorts? In
other words, does log, N! have the same order as N?? It turns out that it doesn’t.

Proposition. The function f(N) = log, N! has order N1n N.

Proof: There is one technical detail we must deal with first. The function f(NN) involves
a logarithm to the base 2. Recall that log,z = Inz/In2. Logarithms to the base 2 are
just constant multiples of natural logarithms. Therefore, log, N! and In N! have the same
order, and we can work with In V!

Now,InN!=InN(N-1)(N-2)---1= Efil In:. Once again we can use an integral
to estimate the sum. From Figure 5, we can see that

N N N+1
/ ln:cd:cSZIniS/ In z dz.
1

1 =1
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Since [Inzdz =zlnz —z + C, we get that

N
NIaN-N+1<Y mi<(N+1)In(N+1)— (N +1)+1. (8)

=]

./7".!.“‘

Figure 5. Estimating Efil Inz.

The sum is bounded above and below by two functions which both have order N In N,
since

lim NIhN-N+1 1
N—oo NInN -
) (N+1)1n(N+1)—N__
N NN =1
(L’Hépital’s Rule helps in establishing the second limit.)
: Ef—_1 g C gy . .
Hence Nh_x.noo Nov = 1 since this limit is squeezed between the previous two. This

shows that the sum has order NIn N. Q.E.D.

Exercises

9. Verify the inequalities involving Ef__l Inz, and then do the integration by parts to verify
the upper and lower bounds.

TTA et 1) ) . (N+1)In(N+1)—-N
10. Use L’Hopital’s rule to establish Nh_r.noo NI =1
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11. In the proof of the last proposition, we trapped In N! = ZfV:I Inz between two func-
tions. We could use the average of the upper and lower functions to estimate In N!, and
then use N! = ™ M to estimate N!. Use this technique to estimate 10! and compare it to
the correct value. (By being a little more careful about the estimate, we can derive what
is called Stirling’s Approximation.)

Quicksort

We know that the average number of comparisons done by the best possible sorting
algorithm sorting a list of size NV is at least |log, N'!|. It may be difficult to find an algorithm
whose C-function equals |log, N!|, but it is not too hard to discover algorithms whose C-
functions have the same order as |log, N!|. One such algorithm is called Quicksort, and
we will now explain how it works.

A good idea in designing an algorithm to solve a problem is to break the problem up
into smaller pieces. When faced with a large list to sort, it may prove efficient to work on
the list until we have two smaller lists where every number in the first list is smaller than
every number in the second list. Then the problem is to sort the two smaller lists.

This is the idea behind Quicksort. Split a list into two smaller ones with every
element in the first list less than every element in the second. Then split each smaller list
into two still smaller lists. Continue in this way until the small lists have only one or two
elements, and we can sort them with at most one comparison each.

To split a list into two smaller ones, Quicksort starts by selecting one of the numbers
as a pivot. Then it compares every other element in the list to the pivot in order to decide
whether it comes before pivot or after it. Thus it requires N — 1 comparisons to split a
list of size N; one number is the pivot, and all others are compared to it.

Counting the average number of comparisons that Quicksort needs to sort a list of
size N is a little complicated, but we can get a good idea how the analysis proceeds by
simplifying the problem. First, assume that N = 2¥ — 1. Also assume that every time we
split the list the pivot ends up right in the middle. For example, if N = 7, then after the
first split there will be two smaller lists of size 3 and the pivot will be in the middle. Each
smaller list will be split into two lists of size 1 with the pivot in the middle.

Let Cq(N) be the number of comparisons necessary to sort a list of size N. By our
assumptions, after the first split the two smaller lists each have size (N —1)/2, and therefore

N-1

Co(N) =2Cq( )+ N -1, (9)
since it takes NV —1 comparisons to split the list. Equation (9) is called a recurrence relation
since the function Cg is defined in terms of itself. Also note that since a list of size one
requires no comparisons to order, Co(1) = 0.

Since we have assumed that N = 2% — 1, it is easy to use the recurrence relation (9)
to calculate Cq(NV):
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Co(N)=Co(2* —1) =2Cq(2* 1 = 1)+ 2F -2
=2(2Co(2* 2 - 1) +25 1 —2) + 2k~ 2
=22Co(2F % -1)42.2F -2 -1
—... (10)
k—1

=251Co(1) + (k—1)- 2k = > " 2f

i=1

=(k—-1)-2F - (2k-2).

Now k = log,(N +1), s0 Co(N) = (N +1)log,(N +1)— 2N, which has has order N In N.
We have derived the function C¢ only in a special case, but it turns out that this special
case is indicative of the average case order of Quicksort.

Proposition. The average case order of Quicksort is Nln N.
Proof: See (Baase, 1988).
The data in Table 3 shows that Quicksort lives up to its name. The times in the

table were obtained by running Quicksort on the same lists used in compiling Tables 1 and
2.

List Size Selection Sort Insertion Sort Quicksort
1000 2.69 1.73 0.11
2000 11.78 7.46 0.22
4000 47.51 29.98 0.44
8000 190.70 73.47 0.96

Table 3. Selection Sort, Insertion Sort, and Quicksort Times (in seconds)

Exercise

12. Show that Cg(/V) derived above has order Nln N.
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Calculus in Computer Science

Computer science is a combination of designing algorithms and analyzing how well
they work. Sorting algorithms offer a good example of how calculus is an important tool
in determining how fast an algorithm will run.

In the analysis of algorithms, calculus is particularly useful in comparing functions
(e.g. the definition of order of a function), in estimating sums (e.g. Stirling’s approximation
in Exercise 11), and in solving recurrence relations (e.g. the relation derived for Quicksort).
Knuth (1973) has a wealth of results that use these calculus methods.
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Answers to Exercises

1. Fourth pass: 1234876105 9. Fifth pass: 12345871069

If N —11is even, there are Lz‘-l- pairs of numbers. Pair the first and last, then second

and next to last, etc. Each pair sums to V. Hence the total sum is .1‘_72:.1_N. fN-1

is odd, then there are -1% pairs that sum to N and one extra number in the middle

equal to N/2. Hence the total sum is 252N + & = M=l N, (This sum is also easily
established by induction.)

Comparisons for list: 30 comparisons. Average for 10 numbers: ~29.57 comparisons.

5 5 6 5
/ 3dz < Zia < / z3dz implies 156.25 < Zia < 323.75. The actual sum is
0 1

1=1 =1

225.

4 4 5 4
/ 3%dr < Z3i < / 3% dz implies 72.82 < 23‘ < 218.46. The actual sum is
0 i=1

1 i=1

120.

One approach: Cs(N) — C4(N) is increasing as long as N > 3.5. (Check the first
derivative.) Finally Cs(7) — C4(7) = 0, therefore the difference is positive for N > 8.

6. imy_.o is]églﬁ = % . Therefore Cs has order N2. Cr has the same order as Cs.

11.

12.

5 __ 3 N2_1 10 — 3 1 _ 100
lm 10N 3N° + 00 = lim ~z + -1;'73' N _ 10,

. log, N InN? - (InN)2 - N°® 5 N4+In3N - NInN — N2 - N3  N100

— 20,

InN!~ 3{(NlaN =N +1)+ (N +1)In(N + 1) — (N + 1) + 1)]. Therefore In 10! ~
15.20135. This gives 10! =~ 3,998,180. The actual value is 3,628,800.

Taking the limit of the ratio gives:

Co() _ . (N +1)log,(N +1) —2N

N NEN A, NInN
o L4 DI(N41) 2
N—ooIn2 NInN InN
) 1 In(N+1) In(N+1)
=g eyt Ve
.1 N 1
= lim

Newl2N+1 In2



HYDRO-TURBINE OPTIMIZATION

Author: adapted by Philip Straffin, Beloit College, Beloit, WI 53511

Source: Harry Bard, Great Northern Paper Company, Millinocket, Maine. This problem
was originally prepared by an MAA Workshop Group whose members were Walter Brady,
David Dimmock, Margaret Elliott, Ken Hamilton, Walter Jensen, Bruce Pyne and Dale
Skrien, in a series edited by Jeanne Agnew and Marvin Keener, Oklahoma State University.

Area of application: industry, engineering.
Calculus needed: Lagrange multipliers.

Suggestions on use: a calculator is necessary for numerical work in the exercises.

The Problem: Getting the Most Power from Turbines

The Great Northern Paper Company in Millinocket, Maine, produces newsprint, com-
puter paper, and many other kinds of paper goods. In order to ensure an adequate supply
of affordable power, it also operates six hydro-electric generating stations on the Penob-
scot River. In the present problem we are concerned with the power station on the West
Branch of the Penobscot River, which gets its water from a dam on Ripogenus Lake. A
pipe sixteen feet in diameter and three-quarters of a mile long carries water from the dam
to the power station, through an elevation drop of 170 feet. The rate at which water flows
through the pipe varies, depending on conditions in the watershed.

Once at the power station, manually controlled valves and gates distribute the water
to the station’s three hydro-electric turbines. These turbines have known, and different,
“power curves,” which give the amount of electric power generated as a function of the
water flow sent to the turbine. The problem, as presented to us by the power plant
supervisor, is to devise a plan for distributing water among the turbines which will get the
maximum energy production from the three turbines for any rate of water flow.

Modeling the Problem

Our plan will be to formulate the problem mathematically—build a mathematical
model of the problem. We will then solve the mathematical problem, and translate our
results into an operational plan for distributing water to the turbines. We start with some
background.

Commercial electricity is produced by turbines which turn mechanical energy into
electrical current. In some cases, coal, oil, gas or atomic fuel is used to make steam which
runs the turbines. Hydro-electric power stations use the energy of falling water to turn
the turbines. The energy comes both from the weight of the water and from the “head”
on it, that is, the vertical distance through which the water falls.

240
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The basic equation which relates water flow to energy production was published by
Daniel Bernoulli in 1738, and is called Bernoulli’s equation. It results from applying the
principle of conservation of energy to the flow between the lake surface and the turbine.
In our context, the equation states that

W =vQn(Zx — 2.~ f), (1)
where
W = power extracted by turbine (foot-pounds/second)

v = specific weight of water (pounds/foot®)
Q = flow rate of fluid (feet®/second, abbreviated cfs)

n = turbine efficiency, a function of @
elevation of the lake surface (feet)
Z; = elevation of the turbine (feet)

N
-
i

f = energy loss due to friction, a function of Q.

In our case, the difference between Z} and Z¢ is 170 feet. The main factor in f is the energy
lost as water flows through the pipe. Engineers derived from experiment the estimate
f=1.6-10"°% Q%, where Q7 is the total water flow in cubic feet per second (cfs).

The efficiency 7, which is a function of @, differs for the three turbines. Experimental
results suggested expressing YQn as a quadratic polynomial in @, for each turbine. Sta-
tistical curve fitting then gave the following equations for the power output of the three
turbines:

KW, = (—18.89 4 0.1277Q; — 0.408 - 10~* Q3)(170 - 1.6 - 107% Q%) 250 < @, < 1110
KW, = (=24.51 4+ 0.1358Q, — 0.469 - 10™* Q2)(170 — 1.6 - 10~° Q%) 250 < Q. < 1110
KW; = (~27.02 4 0.1380Q3 — 0.384 - 10™* Q2)(170 — 1.6 - 107° Q%) 250 < Q3 <1225

(2)
where
Q; = flow through turbine i (cfs)
KW, = power generated by turbine ¢ (kilowatts)

Q1 = total flow through the station (cfs).

The coefficients in the quadratic polynomials in (2) include a scaling factor to transform
units of mechanical power into units of kilowatts. The bounds on the @;’s represent the
fact that the turbines cannot operate with a flow below 250 cfs, or above a maximum flow
which is slightly higher for turbine 3 than for turbines 1 and 2.

If all three turbines are running, our problem of distributing water among the turbines
to obtain the maximum energy production can now be formulated as a mathematical
problem:

Maximize KW; + KW, + KW; (3)
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subject to

Q1+ Q:2+Q3=0Qr
and 250 <@Q; <1110, 250< @, <1110, 250 < @3 < 1225.

We must solve this problem for all feasible values of Q.
Lagrange Multipliers and a First Solution

The mathematical problem above is called a constrained mazimization problem for a
function of three variables. There is an elegant method for solving such problems, due to
Joseph-Louis Lagrange (1736-1813) and now taught in several-variable calculus courses. I
will present the method briefly here, and refer you to a calculus text for details.

Suppose we wish to maximize f(z,y,2) subject to a constraint g(z,y,z) = 0, where
f and g are differentiable functions. We observe that at a maximum (or minimum) point
(z0, Yo, 20), the gradient vector V f(zo, yo, 20) must be orthogonal to the surface g(z,y, 2) =
0. Since the gradient Vg(zo,yo, 20) is also orthogonal to g(z,y,z) = 0 at (zo,y0,20), We
see that we must have

V (20,90, 20) = A Vg(zo, Yo, 20) (4)

for some constant A\. Hence to find candidates for the desired maximum, we should solve
the following system equations, which come from considering the three coordinates of the
gradient vectors, together with the original constraint equation:

of _ 99

az(zayaz) —/\ax(zay’z)

of _ 9

ay(zayaz) - Aay(zaya Z) (5)

of _\ 99
62 (:c,y,z) - /\az(‘ray’z)
g(z,y,2) =0.

The auxiliary unknown A in this system is called the Lagrange multiplier for the problem.

Let us use the Lagrange multiplier method to solve the constrained maximization
problem (3). The variables for this problem are @;, @2, and Q3. The function we wish
to maximize is (KW + KW, + KW3)/(170 — 1.6 - 107° Q%.), where we have divided by
the constant factor for simplicity. The constraint is Q3 + Q2 + Q@3 — Q@1 = 0. Note that in
this maximization problem, Q7 is a constant (although we need to solve the problem for
different values of Q). Exercise 1 asks you to check that equations (5) become

0.1277 — 2(0.408-107* Q;) = A
0.1358 — 2(0.469- 10~* Q,) = A (6)
0.1380 ~ 2(0.384- 107 Q3) = A

Q1+ Q2+ Qs =0Qr
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Exercise 2 asks you to check that this system has a unique solution, which is

Q1 =0.3410 Qr — 75
Q2 = 0.2967 Qr + 21 (7)
Qs = 0.3623 Qr + 54

Because of the upper and lower bounds on @4, @2, @3, this solution can only be attained
for certain values of the total low Q7

250 < @; £ 1110 implies 953 < Q1 < 3475
9250 < Q; < 1110 implies 772 < Q1 < 3670
250 < Q3 < 1225 implies 541 < Qr < 3232

Hence our solution only works within the range 953 < Q7 < 3232 cubic feet per second.

Exercises
1. Check that applying the Lagrange method to the three turbine problem does yield
equations (6).

2. Solve the system of equations (6), and verify that the solution given in (7) is correct.
What is A?

3. For Q1 = 2500 cfs, how does the solution (7) tell us to divide the flow among the
three turbines? How much power is produced? Check that some nearby distributions
of the 2500 cfs flow produce less power, so that we do indeed have a maximum.

Other Configurations

The mathematical solution in the previous section is not a complete solution to the
original problem. For one thing, what should be done when the total flow Q7 is outside
the range [953, 3232]? For another, our solution assumes that we are running all three
turbines. Perhaps even within the range [953, 3232}, it might be better to run only one or
two turbines.

If we were going to run just one or two turbines, we would want them to be the most
efficient ones. The efficiency of a turbine is the number of kilowatts it produces per unit
of flow, KW/Q. Since we only need to compare the turbines to each other, we can ignore
the constant factor C = (170 — 1.6 - 10~ Q%). Figure 1 shows the graphs of the functions
KW/(Q - C). As the flow increases, each turbine rises to a peak efficiency (see Exercise
4), and then declines slightly in efficiency if the flow continues to increase. We also see
(Exercise §) that

In (250, 430] the efficiency order is turbine 1, turbine 2, turbine 3.
In [430, 680] the efficiency order is turbine 1, turbine 3, turbine 2.
In {680, 1110] the efficiency order is turbine 3, turbine 1, turbine 2.



244 Applications of Calculus

13

Kilowatts per cubio foot water

a
260 360 460 660 660 760 860 960 1060 1160
Water flow (feet3/secand)
Figure 1. Efficiancy of the Turbines.

If we run just one turbine, it should be turbine 1 in the flow range [250,680], and
turbine 3 in the flow range [680,1225]. If we run two turbines, they should be turbines 1
and 2 or turbines 1 and 3, but we need to solve a constrained maximization problem in two
variables to see how to divide the flow among the two turbines. It would be good practice
(Exercise 6) for you to do this, using the fact that the Lagrange equations for the problem

Maximize f(z,y) subject to g(z,y)=0 (8)
are
g—i(x,y) = f\%(w,y)
0 8
L =252 Q
g9(z,y) =0.

The results are, for turbines 1 and 2: Q1 = .5348 Qr — 46
Q2 = 4652 Q1 + 46
553 < Qr < 2162, (10)
for turbines 1 and 3: Q1= .4848 Q1 — 65
Q3 = .5152 Q1 + 65
650 < Q1 < 2252.
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The next step is to compare the power we can produce by using one, two or three turbines.
For instance, suppose the total flow is Q7 = 1000. If we use one turbine, it should be
turbine 3. If we use two, they should be turbines 1 and 2 or turbines 1 and 3. We compute
the kilowatts produced in each configuration, using equations (2), (7) and (10):

Turbine 3 only: 72.58 - 168.4 = 12222
Turbines 1 and 2: (33.78 + 32.66) - 168.4 = 11188
Turbines 1 and 3: (27.53 + 40.12) - 168.4 = 11392

Turbines 1, 2 and 3: (12.19 4+ 13.90 4 23.77) - 168.4 = 8396

We should use only turbine 3 for this value of Q7. Is that a surprise? Looking at Figure 1
gives some insight. A flow of 1000 cfs lets turbine 3 operate near its peak efficiency. If we
split the flow among two or three turbines, each has to operate significantly below peak
efficiency.

There is one last situation we need to consider. What if the total flow is larger than
3232 cfs, which is the upper bound for our three turbine solution? Beyond that value,
the solution would require that turbine 3 have flow above its maximum capacity of 1225
cfs. With a little thought, we see that we should use turbine 3 at full capacity, and then
use the solution for turbines 1 and 2 to apportion the remaining flow Qr — 1225. From
equation (10) we see that this is good up to Qr = 2162 + 1225 = 3387. Above that level,
we should use turbine 3 and turbine 1 (the next most efficient turbine) at full capacity, and
send the remaining flow to turbine 2. Of course, the plant cannot accept a flow greater
than 1110 + 1110 4 1225 = 3445 cfs.

Exercises

4. Find the flow @ which gives peak efficiency for each of turbines 1, 2 and 3.
5. Find the values of @ at which the graphs in Figure 1 cross.

6. Use the Lagrange method to solve the two turbine problem for turbines 1 and 2, and
for turbines 1 and 3, checking that you get the answers in (10).

7. For each of the flows Q1 = 600 and Q1 = 2200, say which turbine configurations we
need to check, and calculate the kilowatts which each of those configurations would
produce. In each case, which configuration should we use?

Presenting the Solution

At this point, we need to give some thought to how we should present our solution.
It must be in a form which can be used by the plant operator who controls flow to the
turbines by valves and gates. In this context, a table giving the suggested distribution of
flow for different values of Q7 would probably be more useful than mathematical formulas.
Consultation with the plant operator suggests that, given the accuracy of the flow gauges, a
table giving the distribution as Q7 increases in increments of 100 cfs would be satisfactory.
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Table 1. Distribution of Flow for Optimal Power Production

Total Flow to Flow to Flow to Electrical

Flow Turbinel  Turbine 2  Turbine 3 Output
(cfs) (cfs) (cfs) (cfs)  (kilowatts)

250 250 0 0 1780

300 300 0 0 2670

400 400 0 0 4360

500 500 0 0 5900

600 600 0 0 7290

700 0 0 700 8590

800 0 0 800 9940

900 0 0 900 11140
1000 0 0 1000 12220
1100 0 0 1100 13160
1200 517 0 683 14350
1300 565 0 735 15710
1400 614 0 786 17000
1500 662 0 838 18210
1600 711 0 889 19340
1700 759 0 941 20400
1800 808 0 992 21380
1900 856 0 1044 22290
2000 606 615 779 23220
2100 641 644 815 24380
2200 675 674 851 25480
2300 709 703 888 26520
2400 743 733 924 27500
2500 777 763 960 28410
2600 812 792 996 29270
2700 846 822 1032 30060
2800 880 851 1069 30800
2900 914 881 1105 31470
3000 948 911 1141 32090
3100 982 941 1177 32650
3200 1016 970 1214 33140
3300 1064 1011 1225 33570
3400 1110 1065 1225 33920

3445 1110 1110 1225 34040
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For values of Qr starting at 250 and increasing in increments of 100 up to 3445, we
need to compare the power produced by running one, two or three turbines according to our
optimal flow distribution. It is possible, though messy, to do this analytically. However,
it seems clear that this is a job for the computer. We can ask it to calculate the optimal
distributions and compare the power outputs for the relevant turbine configurations (as
we did in the previous section for @1 = 1000 and you did in Exercise 7), and print out
a table showing the distribution which produces the most power. The result is shown in
Table 1. The electrical output has been rounded to the nearest 10 kilowatts. Notice that
the final solution doesn’t use all three turbines until the total flow reaches 2000 cfs. It was
very important to realize that we should consider the possibility of using just one or two
turbines.

Analyzing the Solution

Once we have presented our solution, it is natural to wonder how good it is. If we,
as consultants, have been well paid for our work, the company may also be interested in
knowing what our work is worth. Without our advice, one natural thing to do might have
been to send equal flow to each turbine. Let us suppose that, without us, the company
would have used the following strategy:

— in [250,500], use turbine 1,
— in [500,750], divide the flow equally between turbines 1 and 2,
— above 750, divide the flow equally among all three turbines.

For instance, when the total flow is 1000 cfs, each turbine would get 333 cfs. Using
equations (2), we see that this would yield a power output of

(19.14 + 15.54 + 14.71)(168.4) = 7570 kilowatts.

Our output of 12220 kilowatts is a 61% improvement—certainly worth our pay!

On the other hand, when the total flow is 2400 cfs, equal apportionment would send
800 cfs to each turbine, and the power output would be

(57.16 + 54.11 + 58.80)(160.78) = 27340 kilowatts.

Our output of 27500 kilowatts is an improvement of less than 1%. Figure 2 compares the
power output of our solution with that of the equal distribution strategy for all levels of

Qr.

Our solution is clearly superior in the range [500, 2000]. This is, of course, exactly
the range where we use fewer turbines than we might, thereby allowing them to operate at
higher efficiency levels. Above 2000, where we use all three turbines, the Lagrange solution
is only slightly superior to the equal flow strategy. Figure 1 indicates the reason. For total
flows above 2000 cfs, all turbines will be operating with flows above 600 cfs, and in this
range the efficiency curves are both fairly level and fairly close together. There is only a
little to be gained by switching flow from one turbine to another. However—we should
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emphasize the positive—under low flow conditions, our analysis offers a very significant
improvement over a more naive strategy.

a6
34
a2
30
28
28
24
22
2y
i8
18
14
12
10

KILOWATTS
(Thousands)

e N » & o

" aa T v

260 460 660 860 1060 1260 1460 1650 1860 2060 2260 2460 2650 =860 3060 3260 3446
WATER FLOW, Qy

Figure 2. Optimal Distribution vs. Even Distribution.

Exercise

8. For the following flows, calculate the power which would be produced under the equal
flow strategy, and compare it to the power produced under the optimal strategy. What
is the percentage of improvement?

a. Qr = 600 b. Q1 = 3000.

A Discussion

The Lagrange multiplier technique used to solve this problem was developed by the
Italian-French mathematician Joseph-Louis Lagrange in 1755, when Lagrange was 19 years
old. Together with its generalizations to infinite dimensional problems in the “calculus of
variations”, due to Lagrange himself, and twentieth century generalizations to “optimal
control theory”, it is still the central technique for solving constrained optimization prob-
lems. The Tikhomirov reference is an extended tribute to its power.

However, the solution to Great Northern’s problem involves much more than just
applying a standard technique from calculus. This is typical of applied mathematics in
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industrial settings. First, we had to build a model—to formulate the problem mathemat-
ically. This required some background, in our case from the physics of fluid flow. It also
required some experimental work to determine the loss of power due to friction in the
supply tunnel (the term f in equation (1)) and, especially, the efficiency curves of the tur-
bines. Those equations for KW; were obtained by applying a statistical technique called
“parabolic regression,” which uses calculus to find a parabola which is the best fit to a set
of data points.

The Lagrange multiplier technique then solved the three turbine problem. However,
it was crucial to observe that we needed to check the possibility of using just one or two
turbines, and indeed the benefits of final solution depended heavily on doing just that.
Creativity and the careful use of common sense are both crucial to effective mathematical
modeling.

Finally, notice the interplay between analytic techniques (Lagrange multipliers), graph-
ical techniques (The efficiency curves in Figure 1 gave important insight into the problem),
and numerical techniques (Table 1 presented our solution). This interplay pervades ap-
plied mathematics. If you are going to use mathematics to solve real problems, you should
be willing to use all of them, and think about how they interrelate. For graphical and
numerical work, computer assistance is often essential. However, this problem makes it
abundantly clear that “putting it on the computer” can’t substitute for modeling sense,
creativity, and a powerful idea from calculus.
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Answers to Exercises

A =.1338 —.2783-107* Q7.

See Table 1 for the optimal flow distribution, which gives 28410 kilowatts, rounded to
the nearest 10. A flow distribution of (750, 750, 1000) gives 28400 kw; a distribution
of (800, 800, 900) gives 28380 kw.

For turbine 1, we need to maximize

—18.89
Q

Taking the derivative and setting it equal to zero gives

[ 18.89
Q= 408104 680.

For turbine 2, the maximum is at = 723; for turbine 3 it is at @ = 839.

The graphs for turbines 2 and 3 cross at @ = 429. The graphs for turbines 1 and 3
cross at @) = 681.

+.1277 — (408 - 107%) Q.

. For turbine 1, Table 1 gives 7290 kw. The only other configuration we need to check

is turbines 1 and 2, which would give (13.14 + 14.67)(169.4) = 4710 kw.

Table 1 gives 25480 for turbines 1, 2 and 3. The only other configuration we need to
check is turbines 1 and 3, which would give (68.10 + 83.19)(162.3) = 24550 kw.

. (15.75 + 12.01)(169.4) = 4700 kw. Our solution is 55% better.

b. (68.01 + 64.39 + 72.58)(155.6) = 31895 kw. Our solution is only 0.6% better.
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The Portfolio Problem

‘Buy low, sell high’ may sound like wise advice, but it is certainly not easy to follow.
If we open the daily paper to the stock quotations and see that currently a share of IBM
stock sells for 103%, down from 105-._1; the day before, is the stock currently ‘low’ and ready
for an advance, or is it ‘high’ and on the way down? Even when a stock is behaving in
a relatively stable way over a time period, there is daily volatility which might make us
nervous. We all want a decent return on our investments, but not at the cost of our feeling
of security.

There are many kinds of information that might be used to predict the performance
of stocks: general economic conditions, health of the industry which the stock represents,
productivity of the company as reflected in its annual report, success of the company’s
competitors, and so on. It is not our purpose here to show how to make use of this type
of information to play the stock market successfully. Rather we will suggest how, using
stock quotations and a little bit of statistics, one can define and estimate the average rate
of return on investment and the risk of investment. Then, with estimates in hand and an
idea of the relative importance we give to riskiness as compared to return, we will use the
technique of Lagrange multipliers to put together an optimal portfolio of investments.

The problem of choosing an optimal combination of investments is known in the
economic literature as the portfolio problem. The 1990 Nobel Prize in Economics was
awarded to Harry Markowitz, William Sharpe and Mertin Miller for developing the theory
of portfolio optimization which is introduced in this module. For further reading, you
might enjoy looking at Markowitz’s original paper and Sharpe’s book in the References.

Average Rate of Return

Suppose for concreteness that we are following four possible investments, whose market
prices per share today are '

PI,P2,P3>P4'
Let the share prices for the same stocks tomorrow be denoted by

Q11Q2s QS: Q4-

251
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If we buy a share of stock 1 today, then the so-called rate of return on the investment, that
is the gain in value per dollar paid, is

Ry = Q—Iéfl. (1)

Rates of return on the other stocks are defined analogously. It is obvious that we should
prefer high rates of return to low rates of return. Now the rate of return on stock 1 is
unknown to us today; we must wait until tomorrow if we want to know it. But then we
have missed our investment opportunity. The way of getting around this dilemma is to
suppose that, at least over a short time period, there is a constant but unknown ‘average’
rate of return on stock 1, call it p;, about which R; fluctuates as days pass. A reasonable
way to estimate this theoretical rate of return is to follow the stock over as many days as
possible, compute from the price data the succession of rates of return as in formula (1),
and average those.

Date WalMart Rate of Goodyear Rate of Honda Rate of ComEd Rate of
Return Return Return Return

June 5 42 30.125 20.25 36.5

June 6 41.375 -1.5% 31.375 4.1% 20.375 0.6% 36.75 0.7%

June 7  41.875 1.2% 32.125 2.4% 20.5 0.6% 36.5 -0.7%

June 8 41.625 -0.6% 33.25 3.5% 20.375 -0.6% 36.375 -0.3%
June 11 42.125 1.2% 33.25 0.0% 20 -1.8% 36.625 0.7%
June 12 43.125 2.4% 32.125 -3.4% 20.625 3.1% 37.375 2.0%
June 13 42.5 -1.4% 33.25 3.5% 20.625 0.0% 37.25 -0.3%
June 14 42.625 0.3% 33.125 -0.4% 21.125 2.4% 37.5 0.7%
June 15 43.375 1.8% 33.5 1.1% 21.375 1.2% 37.875 1.0%
June 18 42.75 -1.4% 34.875 4.1% 21.125 -1.2% 37.625 -0.7%
June 19 42.5 -0.6% 34 -2.5% 20.875 -1.2% 37.375  -0.7%
June 20 42.375 -0.3%  34.125 04%  20.625 -1.2%  37.125 -0.7%
June 21 43 1.5% 34.25 0.4% 21.25 3.0% 37.375 0.7%
June 22 43.375 0.9% 34.25 0.0% 21.5 1.2% 37625 0.7%
June 25 42.375 -2.3% 33.875 -1.1% 21 -2.3% 36.375 -3.3%
June 26 42.25 -0.3% 33.5 -1.1% 21.375 1.8% 36.75 1.0%
June 27 43.375 2.7% 33.125 -1.1% 21.375 0.0% 37.125 1.0%
Mean .212% .620% .352% .113%
Var .022% .054% .029% .015%
Table 1.

For example, consider Table 1. We have recorded the prices of the common stocks of
four companies trading on the New York Stock Exchange: WalMart, Goodyear, Honda,
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and Commonwealth Edison. We followed the stocks over a period of seventeen trading
days. The numbers in the rate of return columns are obtained by dividing the difference
(current price minus previous price) by the previous price. Taking the simple arithmetical
average of those observed rates of return gives the estimates of py, p, p3, and p4 listed in
the row labeled ‘Mean’. We will discuss the row labeled ‘Var’ later. In Figure 1 are graphs
of the rates of return of two of the stocks as functions of trading day.

percent Goodyear Rate
4
3
14

percent Honda Rate
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Figure 1.

N
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As the table and the graphs suggest, there is variability in the rates of return, some-
times a lot of it. Typically, risky investments which have high average rates of return also
have high risks. If this was not the case, then investors would all flock to high-reward,
low-risk investments, and market imbalances would occur. To increase safety, investors
tend to diversify, that is, to spread their wealth among several opportunities, hence con-
structing a collection or portfolio of investments. If the investor has total wealth W, then
the decision to be made is what fraction w; of that wealth is to be devoted to investment
i, for i=1,2,3,4. The total wealth invested in investment ¢ is w; - W, and since the expected
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rate of return per dollar invested is p;, the expected dollar return from our investment in
investment ¢ is

p,--w,--W. (2)

Summing over all four investments, the total dollar return on the portfolio is expected to

be
pr-wyWtpy-wy - Wepg-ws - Wepg-wg- W . (3)

Since we invested W dollars, the rate of return for the portfolio per dollar invested is

p_p1-w1-W+p2-w2-W+p3-w3-W+p4-w4~W
- w

= p1wy P2 W2t P3 W3+ Py Wy .

(4)

If we did not care about riskiness, then to maximize the rate of return (4) on the

portfolio, we would find the largest of the individual rates of return, say p,, and devote

wy = 1 = 100% of our wealth to that investment, leaving w; = 0 = 0% of our wealth to

the other investments, : = 1,3,4. The portfolio problem becomes much more interesting
if we take riskiness into account. In the next section we take a look at the idea of risk.

Exercises

1. Choose two of your favorite companies and follow the progress of their prices on the New
York Stock Exchange for a few days. Obtain estimates of their average rates of return. If
you had $10,000 to invest in these stocks, what would you do, and why? Does it seem to
you that a few days worth of information is sufficient to make a decision? Why or why
not?

2. Suppose that there are three stocks, with rates of return p; = 5%, p; = 10%, p3 = 15%.
Suppose also that because the third stock is very speculative, you want no more than half
as much wealth in it as in stock 1. What is the maximum portfolio rate of return that you
can achieve? (Hint: Express the problem in terms of portfolio weights w;,w; only, and
look carefully at the region of points in the w; — w; plane that are legal under the problem
conditions. Where in that region is the portfolio rate of return largest?)

Risk and Risk Aversion

We mentioned in the last section that a rate of return R on a stock is not something
that can be perfectly predicted; hence there is riskiness in investment. We also assumed
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that there is an unknown theoretical average (or mean) rate of return p which can be
estimated from a sample of data by the sample mean, which will now be denoted by R. In
general, if a;, as, ..., a, are measurements of some quantity (such as the rate of return for
a given stock) the sample mean of the measurements is

—_ar+a+...+a, 1 - '
a ~ —nZa,. (5)

Let us now introduce a notion of theoretical risk that is called variance by statisticians,
which is also easily estimable from a sample of data.

The variance Var(R) = o? (read ‘sigma squared’) of an uncertain rate of return is
the average squared difference between the rate of return R and its mean p. The squaring
ensures that both positive and negative differences contribute positively to the variance.
You can find out more about mean and variance in the Hogg and Tanis reference, as well as
many other sources. It is enough for us to know intuitively that the variance will be large
when values of R far from the mean p occur with high likelihood, and the variance will be
small when R is very likely to be close to p. In this way, variance becomes a reasonable
measure of risk.

A simple way of estimating the theoretical variance o2 is to take a sample, compute
the sample mean for that sample, and then average the squared differences of the sample
values from the sample mean. If there are n sample values, it would seem that in averaging
we should divide the total by n, but technical reasons indicate that this method underes-
timates the variance slightly. It is more common to divide by n — 1 instead. In general,
if a1, az,...,a, are measurements of some quantity (such as the rate of return for a given
stock) the sample variance S? of the measurements is

gt Tl gt bl T L S (6)

When the data is widely spread out from the sample mean, the sample variance will be
large.

For the rate of return data in the table in the last section, the sample variance of rate
of return for the sixteen observations of the Walmart stock is:

1
1—5[(--1.5 —.212)% + (1.2 - .212)2 4+ (—0.6 — .212)% + ... + (2.7 — .212)%] = .022

The sample variance was calculated for each of the stocks, and the results are displayed in
the row labeled “Var” at the bottom of Table 1.

In the portfolio problem we will need to consider the risk or variance of the portfolio’s
actual rate of return, which, by analogy with formula (4), is

Rp = w1R1 + ‘LU2R2 + ‘LU3R3 + UJ4R4. (7)
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What is the variance of this random quantity? First, it happens to be the case that when
a random quantity R is multiplied by a constant w, its theoretical mean is also multiplied
by w, and its theoretical variance is multiplied by w?. The sample mean and variance also
have these properties, as you will show in Exercise 3. Second, though we are not prepared
to show it here, when several random quantities satisfy a property called stochastic inde-
pendence, meaning roughly that the value of one does not affect the probabilistic laws of
the others, then the variance of the sum is the sum of the variances of the individual terms
in the sum. These results allow us to write

Var(Rp) = Var(w1R1 + woRq + waR3 + w4R4)
= Var(w, Ry) + Var(waR3) + Var(ws R3) + Var(wsRy)
= w?Var(R;) + wiVar(Rz) + wiVar(R3) + w2Var(Ry)

— 2242 2 2 2 2 2 _2
= w;07] + w305 + w303 +wioy.

(8)

Thus, by estimating the individual rate of return variances o? by sample variances SZ,
we have an explicit quadratic expression for the portfolio variance as a function of the
portfolio weights.

A brief digression is in order here. It is not too surprising that risks should be additive,
though it requires an assumption. Interestingly, when the independence assumption is not
satisfied, extra terms appear on the right of (8) which can be negative if one stock tends
to go down as another goes up. These negative terms, arising from ~orrelations among
stocks, actually reduce portfolio risk as compared to the independent case. Intuitively, by
combining two stocks which tend to move in opposite directions one 1s protected against
losses in one by gains in the other. This is the heart of diversification in investment
problems.

At this point we have provided a notion of average rate of return on a portfolio
p = 3 wip; (equation(4)) and variance of the portfolio 02 = Y w;s?. We would like to
choose investment fractions w; which maximize the average rate of return and minimize
the risk. In general, these two goals are incompatible, since the most profitable investments
tend to be the riskiest (see Table 1). Hence we need to balance these two goals somehow.

One way to do this is to maximize a kind of net value of the portfolio, p — ac?, where
a is a risk aversion factor which measures your reluctance to take risks. For example a =0
means that you don’t mind taking risks at all; your only goal is to maximize average rate
of return. If a = 10, then an increase of one unit in risk would have to be offset by an
increase in 10 units of rate of return in order for you to value the investment in the same
way. A larger value of a means more worry about risk.

If an investor with risk aversion a is presented with two portfolios having average rates
of return p and j and variances o2 and 62, then the investor will be indifferent between
the two portfolios if

p—act=p—as? . (9)

Solving for a, we see that R
o= L2 (10)
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In assuming that an investor has risk aversion a, we are assuming that this quotient is
the same for all pairs of investments between which the investor is indifferent. Equation
(10) then gives us a way to estimate an investor’s risk aversion. We will assume that a is
constant and known, and proceed to solve the portfolio problem.

Exercises

3. a. Show that if each observation in a sample ay,a,,...,a, is multiplied by a constant
w, then the sample mean is also multiplied by w.

b. Show that if each observation in a sample a1, az,...,a, is multiplied by a constant
w, then the sample variance is multiplied by w?.

4. For the stocks you followed in Exercise 1, estimate the variances of their rates of return.
Does this information affect your response to the question in Exercise 17

5. What is your risk aversion constant if you are indifferent between two portfolios, one
of which has mean return 5% and variance 1%, and the other has mean return 8% and
variance 4%?

6. When stock returns are dependent on one another, the variance of a sum is not just the
sum of the variances, but also includes a covariance term, e.g. for two stocks:

Var(w, Ry + waRy) = wiVar(R,) + wiVar(R;) + 2wiwaCov(Ry, Ry)

The covariance measures the degree of dependence between the two returns. Suppose that
Var(R;) = 2,Var(R;) =1 and Cov(Ry, R;) = —1. By how much is the portfolio variance
of an equally balanced portfolio reduced, as compared to the independent case? What
values of w; and w; minimize the variance of the portfolio? Are they different weights
than those which minimize variance in the independent case?

Solving the Optimization Problem
Agreeing to maximize p — ao? reduces the portfolio problem to the constrained opti-
mization problem

Maximize  f(wi, w2, w3, ws) =p1w;1 + p2w2 + P3w3 + pPawy
— a(wio} +wio] + wio] +wjo}) (11)

subject to  g(w;, w2, w3, wy) = wy + wy + w3 +wy —1 =0.

The Lagrange multiplier technique tells us that we may find possible maximum points by
solving simultaneously the equations

vVi=Avge, g=0, (12)
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where A is a new variable and ¥/ indicates the gradient operator. The partial derivatives
of f and ¢ are easy to find:

af

8 .
52 = p; — 207w, 2 -1,  i=1,2,34. (13)
1

ow;

These computations result in a system of equations in the unknowns A, w;, w,, w3 and
wy:
— 2a0%w; = A
p2 — 2aa§w2 = A
~ 2a03w3 = A (14)
ps — 203wy = A
w; + wo+ w3z +wy = 1.
By equating A in equations 2, 3, and 4 with X in the first equation, we can find w,, w3 and

wy in terms of w;:
p1— 2aafw1 = pp — 2a0'§w2

- 2 15
gives wy = (p2 —p1) + afflwl (15)
2a02
and similarly

(p3 = p1) + 2a0iw,
= 16
ws 2a0? (16)

(pa = p1) + 2a0? w1
17
wa = 2a0}? (17)

The last condition of system (14) lets us solve for w;:

1=w, +w2+w3+w4

- 2
P p p3 ~— p o
__w1+_.w +w+ 2w1 } ( 3 21) l ; 1 I (P4 fl),
2a 0'2 o3 2003 oy 2a0; (18)

ggz—qq !ga—gﬂ !E-i—gl!

1- 2a03 - 2a0;
o2 o? o2 :

+ %+ ;'2' + =+

2 4

so that w, =

Formula (18) is now an explicit formula for w; in terms of the parameters of the
problem. The other weights ws, w3, ws can be computed from w; by (15), (16), and (17).
We have done the numerical computations for several values of the risk aversion a and the
estimated means and variances of return from Table 1, and we find the following optimal
values for the portfolio weights:
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Risk Aversion: 2 4 6 8 10 12

ComEd -1.83 -0.71 -0.3¢ -0.15 -0.04 0.03

WalMart -0.12 0.08 0.14 0.18 0.19 0.21

Honda 1.11 0.66 0.51 0.44 0.39 0.35

Goodyear 1.84 098 0.69 0.54 0.46 0.40
Table 2.

There are a few interesting things to be noted about the weights in Table 2. First, there
are some negative values, particularly for the low-return, low-risk stock Commonwealth
Edison. Nothing in the mathematics that we did prevented this from happening, and until
we actually performed the analysis, we could not have guessed that this would happen. Is
our model flawed? Not necessarily, because it is actually possible to hold negative wealth
in an asset, by taking what is called in finance circles a ‘short position’ in that asset.
An investor can do this by contracting to acquire the proceeds of sale of the asset as if
the investor actually owned it, then paying back at a later time by ‘buying’ the asset
back at current market price, thus reversing the order in the usual buy-sell cycle. The
investor profits if the stock price goes down, so that the ‘purchase’ price is less than the
‘selling’ price. If this opportunity is not available or not appealing to us, the original model
would have to be redesigned as a constrained optimization problem with non-negativity
constraints on the variables w;. This would take us farther afield into the subject of
mathematical programming than we would like to travel, but it is an important extension
to the problem.

We will see in the next section that if in addition to risky investments like stocks
(02 > 0), we consider a risk-free investment opportunity like a bond or savings account
(02 = 0), then, under reasonable conditions, the weights for the risky investments will
always be positive. In other words, in this more realistic context, the problem of negative
weights for stocks does not arise.

Another interesting aspect of the data in Table 2 is much more foreseeable. We have
ordered the stocks top to bottom from least risky to most risky. For these stocks, the mean
returns also increase from top to bottom. As risk aversion increases, more of the wealth
shifts from the more speculative stocks (at least in terms of our limited data), Honda and
Goodyear, to the safer stocks, ComEd and WalMart.

For another unexpected result in the case where one of the available stocks seems to
be strictly preferable to another, see Exercise 8.

Exercises

7. Suppose that there are three mutually independent stocks, with p; = 5%, 02 = 0%, p, =
8%, 02 = 2%, p3 = 12%, 0% = 4%. What is the optimal portfolio for an investor whose risk
aversion is a = 27 Risk aversion a = 37
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8. a. In the process of obtaining the data on the four stocks used as examples, I traced
the activity of several others and noticed a surprising result. Over the same seventeen
day trading period, sixteen observations of rates of return on Exxon, Hormel, and Abbott
Laboratories gave mean rates of return .085, .134, and .179 respectively, and variances
.011, .029, .025 respectively. Then Abbott Labs appears to be strictly better than Hormel,
in the sense of having a higher expected return, with lower risk. One would guess that an
optimal portfolio consisting of these stocks, together with, say Goodyear as a fourth stock,
would not include Hormel at all. Check that in actuality this is not the case using a risk
aversion of a = 4.

b. If you are curious and ambitious, write general expressions for the value function
p — ac? for a portfolio that uses all stocks, and for a second portfolio like the first, except
that the weight formerly given to stock 2 (Hormel) is lumped together with the weight for
stock 3 (Abbott Labs). Try to see what it is about the two values that makes the first
better than the second, and think about what your study implies about diversification of
investments.

The Portfolio Separation Theorem

Before closing, let us use our results to prove a beautiful and important theorem of
investment economics.

Portfolio Separation Theorem. Suppose one possible investment in a portfolio is risk-
free (for example a savings account or a bond). Then the ratios of the optimal weights of
the other investments is independent of the investor’s risk aversion.

Proof: Suppose that investment 1 is risk-free, so that 62 = 0. Then formulas (15), (16),
and (17) simplify to

pP2— P P3— M Ps— P1
T ee—— = ——p—, I e——— 19 .
W2 2a0? ’ ws 2a0? 4 2a0}? (19)

The ratios of these weights are indeed independent of the risk aversion a. For example,

ws _ (b3 = p1)/2a0} - (ps = p1)/ o}
wy  (p2 —p1)/2a05 — (p2 — p1)/0}

and the theorem is proved.

Another way of stating the result of the portfolio separation theorem is that the portion
of the total wealth in risky investments which is devoted to each single risky investment
does not depend on the risk aversion, e.g.

w2W _ ;;!
woW +wsW +w,W 2520 4 LaspL o s
3 4
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This means that any investor working with the same knowledge about rates of return and
variance, and using the type of objective that we are using, will hold these investments in
the same proportion to each other, regardless of the degree of risk aversion. These constant
relative proportions describe what economists call the market portfolio. The role of the
risk aversion a is only to determine what proportion of wealth is devoted to the risk-free
investment, not the relative mixture of the risky investments.

Finally, notice that if all of the risky investments have higher rates of return than the
risk-free investment, i.e. p3, p3,p4 > p1, then by (19) the weights of the risky investments
wy, w3 and wy are all positive. This is the result referred to in the previous section’s
discussion of negative weights. The weight w; of the risk-free investment may still be
negative (see Exercise 9) if our risk aversion is small. A negative w; in this case has the
interpretation that we should borrow money to buy more risky investments.

Exercises

9. Suppose your investment opportunities are stocks in Exxon, Hormel, and Abbott Labs
(see the data in Exercise 8), and a bond with p = .050 and o? = 0. What is your optimal
portfolio if your risk aversion is a = 4? a = 8? a = 12? (What do you suppose it means
if the weight you should invest in the bond is negative?) What is the market portfolio of
the three stocks?

10. Consider a portfolio problem with five investments, the first risk-free, and with the
extra constraint that investments 2 and 3 must have equal portions of the total wealth.
Does a portfolio separation theorem still hold in this case? (Note: For this problem you
will need an extra Lagrange multiplier for the extra constraint.)
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Answers to Exercises
2. Invest all in stock 2; 10%.
5. The risk aversion is 1.

6. The variance in the dependent case is only a third of what it is in the independent
case. The minimum variance in the dependent case occurs for w; = 2/5,w, = 3/5,
and in the independent case it occurs for w; = 1/3, w2 = 2/3.

7. For @ = 2, wy = 3/16,w, = 3/8, w3 = 7/16. For a = 3, wy = 11/24,w, = 1/4, w3 =
7/24.

8. The optimal weights come out to be w; = —.455, w, = .0387, w3 = .2699, w, = 1.146.

For the second question, the issue of which is better turns on the size of (w; + w3)?
relative to w2 + wi.

> Risk aversion 4 8 12 Market portfolio
Bond —-41 .30 .53
Exxon 40 .20 .13 .28
Hormel 36 .18 .12 .26
Abbott .65 .32 .22 .46

Investing a negative amount in the bond might be interpreted as borrowing to buy
more stock.

10. A separation theorem does hold. Formulas analogous to (16) still apply to assets 4 and
5, and the weights wy = w; also satisfy an equation like (16), with mean p3 replaced
by the average of the two asset means, and the variance o3 replaced by the average
of the two asset variances.
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