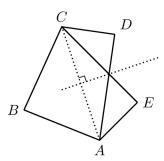
maa.org/putnam

The 85th William Lowell Putnam Mathematical Competition 2024

- **B1** Let n and k be positive integers. The square in the ith row and jth column of an n-by-n grid contains the number i + j k. For which n and k is it possible to select n squares from the grid, no two in the same row or column, such that the numbers contained in the selected squares are exactly $1, 2, \ldots, n$?
- B2 Two convex quadrilaterals are called *partners* if they have three vertices in common and they can be labeled ABCD and ABCE so that E is the reflection of D across the perpendicular bisector of the diagonal \overline{AC} . Is there an infinite sequence of convex quadrilaterals such that each quadrilateral is a partner of its successor and no two elements of the sequence are congruent?



B3 Let r_n be the *n*th smallest positive solution to $\tan x = x$, where the argument of tangent is in radians. Prove that

$$0 < r_{n+1} - r_n - \pi < \frac{1}{(n^2 + n)\pi}$$

for $n \geq 1$.

B4 Let n be a positive integer. Set $a_{n,0} = 1$. For $k \ge 0$, choose an integer $m_{n,k}$ uniformly at random from the set $\{1, \ldots, n\}$, and let

$$a_{n,k+1} = \begin{cases} a_{n,k} + 1, & \text{if } m_{n,k} > a_{n,k}; \\ a_{n,k}, & \text{if } m_{n,k} = a_{n,k}; \\ a_{n,k} - 1, & \text{if } m_{n,k} < a_{n,k}. \end{cases}$$

Let E(n) be the expected value of $a_{n,n}$. Determine $\lim_{n\to\infty} E(n)/n$.

B5 Let k and m be positive integers. For a positive integer n, let f(n) be the number of integer sequences $x_1, \ldots, x_k, y_1, \ldots, y_m, z$ satisfying $1 \le x_1 \le \cdots \le x_k \le z \le n$ and $1 \le y_1 \le \cdots \le y_m \le z \le n$. Show that f(n) can be expressed as a polynomial in n with nonnegative coefficients.

B6 For a real number a, let $F_a(x) = \sum_{n \ge 1} n^a e^{2n} x^{n^2}$ for $0 \le x < 1$. Find a real number c such that

$$\lim_{x \to 1^{-}} F_{a}(x)e^{-1/(1-x)} = 0 \quad \text{for all } a < c, \text{ and}$$

$$\lim_{x \to 1^{-}} F_a(x)e^{-1/(1-x)} = \infty \text{ for all } a > c.$$