Problems for Session A

The 85th William Lowell Putnam Mathematical Competition 2024

A1 Determine all positive integers n for which there exist positive integers a, b, and c satisfying

$$2a^n + 3b^n = 4c^n.$$

A2 For which real polynomials p is there a real polynomial q such that

$$p(p(x)) - x = (p(x) - x)^2 q(x)$$

for all real x?

A3 Let S be the set of bijections

$$T: \{1, 2, 3\} \times \{1, 2, \dots, 2024\} \rightarrow \{1, 2, \dots, 6072\}$$

such that T(1,j) < T(2,j) < T(3,j) for all $j \in \{1,2,\ldots,2024\}$ and T(i,j) < T(i,j+1) for all $i \in \{1,2,3\}$ and $j \in \{1,2,\ldots,2023\}$. Do there exist a and c in $\{1,2,3\}$ and b and d in $\{1,2,\ldots,2024\}$ such that the fraction of elements T in S for which T(a,b) < T(c,d) is at least 1/3 and at most 2/3?

- **A4** Find all primes p > 5 for which there exists an integer a and an integer r satisfying $1 \le r \le p-1$ with the following property: the sequence $1, a, a^2, ..., a^{p-5}$ can be rearranged to form a sequence $b_0, b_1, b_2, ..., b_{p-5}$ such that $b_n b_{n-1} r$ is divisible by p for $1 \le n \le p-5$.
- A5 Consider a circle Ω with radius 9 and center at the origin (0,0), and a disk Δ with radius 1 and center at (r,0), where $0 \le r \le 8$. Two points P and Q are chosen independently and uniformly at random on Ω . Which value(s) of r minimize the probability that the chord \overline{PQ} intersects Δ ?
- **A6** Let c_0, c_1, c_2, \ldots be the sequence defined so that

$$\frac{1 - 3x - \sqrt{1 - 14x + 9x^2}}{4} = \sum_{k=0}^{\infty} c_k x^k$$

for sufficiently small x. For a positive integer n, let A be the n-by-n matrix with i,j-entry c_{i+j-1} for i and j in $\{1,\ldots,n\}$. Find the determinant of A.