
2023 Session A

A1. For a positive integer n, let fn(x) = cos(x) cos(2x) cos(3x) · · · cos(nx). Find the smallest
n such that |f ′′

n(0)| > 2023.

Answer: 18

Solution 1: The Taylor series is

fn(x) =

(
1− x2

2
+ · · ·

)(
1− (2x2)

2
+ · · ·

)
· · ·
(
1− (nx)2

2
+ · · ·

)
= 1− x2

2

(
12 + 22 + · · ·+ n2

)
+ · · · .

Therefore (using the well-known summation formula for sums of squares)

f ′′
n(0) = −(12 + 22 + · · ·+ n2) = −n(n+ 1)(2n+ 1)

6
.

The question is then to find the minimum n such that n(n+1)(2n+1)
6 > 2023. One can calculate

that this occurs at n = 18, where the sum is 3 · 19 · 37 = 2109 (and at n = 17 it is 1785).

Solution 2: By the product rule,

f ′
n(x) = − sin(x) cos(2x) cos(3x) · · · cos(nx)− 2 cos(x) sin(2x) cos(3x) · · · cos(nx)

− · · · − n cos(x) cos(2x) · · · cos((n− 1)x) sin(nx)

= −fn(x) (tan(x) + 2 tan(2x) + · · ·+ n tan(nx))

for x sufficiently small that all the tangents are well-defined. Applying the product rule again
and substituting x = 0,

f ′′
n(0) = −f ′

n(0) (tan(0) + 2 tan(2 · 0) + · · ·+ n tan(n · 0))
− fn(0)

(
sec2(0) + 4 sec2(2 · 0) + · · ·+ n2 sec2(n · 0)

)
= −(1 + 4 + · · ·+ n2).

One can compute directly (or using the formula in Solution 1) that |f ′′
17(0)| = 1+4+ · · ·+172

= 1785 and |f ′′
18(0)| = 1 + 4 + · · ·+ 182 = 1785 + 324 = 2109, so the answer is 18.
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A2. Let n be an even positive integer. Let p be a monic, real polynomial of degree 2n; that
is to say, p(x) = x2n + a2n−1x

2n−1 + · · · + a1x + a0 for some real coefficients a0, . . . , a2n−1.
Suppose that p(1/k) = k2 for all integers k such that 1 ≤ |k| ≤ n. Find all other real numbers
x for which p(1/x) = x2.

Answer: ±1/n!

Solution 1: The given condition can be equivalently written as p(x) = 1
x2 for x = ± 1

k , k =
1, . . . , n. Now define g(x) := x2p(x)−1, and note that p(1/x) = x2 is equivalent to g(1/x) = 0.
Notice that g is a monic polynomial of degree 2n+2, and by the preceding observation, it has
roots at all x = ± 1

k . Unique factorization of polynomials (and/or the Fundamental Theorem
of Algebra) then implies that

g(x) = (x− 1)(x+ 1)

(
x− 1

2

)(
x+

1

2

)
· · ·
(
x− 1

n

)(
x+

1

n

)
· (x2 + ax+ b)

=
(
x2 − 1

)(
x2 − 1

4

)
· · ·
(
x2 − 1

n2

)
· (x2 + ax+ b),

where a and b are real numbers.
In order to determine these final coefficients, first note that by definition of g(x), the

coefficient of x is zero. But on the other hand, this coefficient is
(−1)n

n!2
a, so a = 0. Now

consider the value at x = 0, which gives

g(0) = −1 =
(−1)n

n!2
b.

We therefore conclude (using that n is even) that b = −n!2. In all,

g(x) =
(
x2 − 1

)(
x2 − 1

4

)
· · ·
(
x2 − 1

n2

)
·
(
x2 − n!2

)
.

Finally, we see that g(1/x) has the additional roots x = ± 1
n! .

Solution 2: We first show that p is even.

Claim. Suppose that q is a monic, degree 2n polynomial. If there exists a sequence of distinct
positive values x1, . . . , xn such that q(xj) = q(−xj) for 1 ≤ j ≤ n, then q is even.

Proof. The polynomial q(x) − q(−x) has degree at most 2n − 1, but has (at least) 2n roots
±x1, . . . ,±xn. Therefore, q(x)− q(−x) is identically zero, so q is even.

Thus p(x) = s(x2), where s is a monic, degree n polynomial such that s(1/k2) = k2 for
1 ≤ k ≤ n. Let h(x) := x · s(x)− 1. Then h is a monic, degree n+ 1 polynomial with roots
at 1

k2
, so

h(x) = (x− 1)

(
x− 1

4

)
· · ·
(
x− 1

n2

)
(x+ b)

for some real number b. Plugging in x = 0 gives

h(0) = −1 =
(−1)n

n!2
b.

Finally, substituting x2 for x gives h(x2) = x2p(x) − 1, and the remainder of the proof
proceeds as in Solution 1.
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Remark. Although this is not needed in the proof of the claim, one can use Lagrange inter-
polation to say slightly more. For 1 ≤ aj ≤ n, let aj := q(±xj). Define L(x) as the unique
polynomial of degree strictly less than n with the values L(x2j ) = aj for all j (Lagrange
interpolation gives a formula for L). Then

q(x) =
(
x2 − x21

)
· · ·
(
x2 − x2n

)
+ L(x2).
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A3. Determine the smallest positive real number r such that there exist differentiable func-
tions f : R → R and g : R → R satisfying

(a) f(0) > 0,

(b) g(0) = 0,

(c) |f ′(x)| ≤ |g(x)| for all x,

(d) |g′(x)| ≤ |f(x)| for all x, and

(e) f(r) = 0.

Answer: π/2

Solution 1: Let h(x) := f(x)2 + g(x)2. Then, using the AM-GM inequality,

|h′(x)| =
∣∣2(f(x)f ′(x) + g(x)g′(x))

∣∣ ≤ 2
(
|f(x)||f ′(x)|+ |g(x)||g′(x)|

)
≤ 4|f(x)||g(x)| ≤ 2

(
f(x)2 + g(x)2

)
= 2h(x).

Thus, h(x)e2x has a nonnegative derivative. For x ≥ 0, it follows that h(x)e2x ≥ h(0)e0 =
f(0)2, so h(x) ≥ f(0)2e−2x > 0.

Now define θ(x) := tan−1 g(x)
f(x) on the largest interval around x = 0 on which f(x) > 0

(this includes a neighborhood of 0 by continuity of f). Then

θ′(x) =
1

1 + g(x)2

f(x)2

· g
′(x)f(x)− g(x)f ′(x)

f(x)2
=

g′(x)f(x)− g(x)f ′(x)

f(x)2 + g(x)2
,

which implies that |θ′(x)| ≤ 1, and (since θ(0) = 0) therefore |θ(x)| ≤ x for x ≥ 0 such that
θ is defined.

Finally, observe that f(x)2 = h(x) cos2 θ(x), and therefore f(x)2 ≥ f(0)2e−2x cos2 x > 0
for x ∈ (0, π/2). Thus, r ≥ π/2. Letting f(x) = cosx and g(x) = sinx shows that r = π/2 is
possible.

Solution 2: Notice that f(x) = cosx and g(x) = sinx satisfy all the conditions of the
problem with r = π/2.

To see that no smaller value of r is possible, we claim that f(x) ≥ f(0) cosx for 0 ≤ x <
π/2. If not, then there is some z ∈ (0, π/2) such that f(z)/ cos z < f(0). Since f(x)/ cosx
is continuous for 0 ≤ x < π/2 and f(0)/ cos 0 = f(0) > 0, we can choose z such that
f(x)/ cosx > 0 [whence f(x) > 0] for 0 ≤ x ≤ z. Since f(x)/ cosx is differentiable for
0 < x < z, the Mean Value Theorem implies that its derivative must be negative at some
y ∈ (0, z). Thus, f ′(y) cos y + f(y) sin y < 0. Since |f ′(y)| ≤ |g(y)| and cos y > 0, it follows
that f(y) sin y − |g(y)| cos y < 0.

Let h(x) = f(x) sinx− |g(x)| cosx. Since h(0) = 0, h(y) < 0, and h is continuous, there
is a greatest value w ∈ [0, y) such that h(w) ≥ 0. Then for w < x < y, we have h(x) < 0 and
f(x) sinx ≥ 0 [since f(x) > 0 for 0 ≤ x ≤ z and y < z], so |g(x)| cosx > 0, and thus |g(x)| > 0,
for all such x. In particular, h is differentiable on the interval (w, y), so by the Mean Value
Theorem h′(x) < 0 for some x ∈ (w, y). Further, since g is continuous and nonzero on (w, y),
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it does not change sign on this interval; without loss of generality, assume that g is positive on
(w, y) [otherwise, replace g with −g]. Then h′(x) = (f ′(x)+ g(x)) sinx+(f(x)− g′(x)) cosx.
Since h′(x) < 0, sinx > 0, and cosx > 0, we must have f ′(x) + g(x) < 0 or f(x)− g′(x) < 0.
But since f(x) > 0 and g(x) > 0, this would require either |f ′(x)| > g(x) = |g(x)| or
|g′(x)| > f(x) = |f(x)|, a contradiction.
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A4. Let v1, . . . , v12 be unit vectors in R3 from the origin to the vertices of a regular icosa-
hedron. Show that for every vector v ∈ R3 and every ε > 0, there exist integers a1, . . . , a12
such that ∥a1v1 + · · ·+ a12v12 − v∥ < ε.

Solution 1: We first claim that the vertices of a regular pentagon centered at the origin
in R2 generate a dense additive subgroup. Identify R2 ∼= C, and assume without loss of

generality that the vertices are the fifth roots of unity ζn5 = e
2πin
5 . Define

r := ζ5 + ζ45 = 2 cos
2π

5
< 2 cos

π

3
= 1

(in fact, r =
√
5−1
2 , which follows from observing that r2 + r = 1). Then the positive powers

of r accumulate at 0, and are all contained in the subring Z[ζ5]. Therefore this subring is
dense in R, since it contains all {mrn | m ∈ Z, n ≥ 0}. Furthermore, it similarly contains a
dense subset of ζ5R, and thus a dense subset of R+ ζ5R = C.

Now suppose that v1, . . . , v5 are the neighbors of some fixed vertex v in the icosahedron.
Then v1 − v2, v2 − v3, . . . , v5 − v1 are the vertices of a regular pentagon in the plane perpen-
dicular to the line through 0 and v. Therefore the set of vertices generates a dense set in this
plane, and similarly, in the plane perpendicular to (say) the line through 0 and v1. These
two planes span R3.

Solution 2: Write the vertex-vectors as ±v1, . . . ,±v6 where v2, . . . , v6 are each adjacent to
v1, and are adjacent to each other in the pairs (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v2). Then
v2 is also adjacent to −v4 and −v5, etc. Since all sides of the icosahedron have the same
length and vj · vj = 1 for all j, the value of vj · vk is the same for all pairs of adjacent vertices
(vj , vk). Thus,

v2 · v3 = v3 · v4 = v4 · · · v5 = v5 · v6 = v6 · v2
= −v2 · v4 = −v2 · v5 = −v3 · v5 = −v3 · v6 = −v4 · v6.

Then the cross terms 2vj · vk cancel each other in the following calculation:

(v2 + · · ·+ v6) · (v2 + · · ·+ v6) = v2 · v2 + · · ·+ v6 · v6 = 5.

By symmetry and adjacency, v2 + · · · v6 is a positive multiple of v1, so v2 + · · · v6 =
√
5v1.

By Kronecker’s Theorem on Diophantine approximation, the integer linear combinations of
1 and

√
5 are dense in the reals, so the integer linear combinations of v1 and v2 + · · · + v6

are dense in the line spanned by v1. By the analogous argument, appropriate integer linear
combinations of v1, . . . , v6 are dense in the line spanned by v2 and in the line spanned by v3.
Since v1, v2, v3 are not coplanar, they span three-space. Thus, every vector v in three-space
can be written c1v1 + c2v2 + c3v3, and since each term in this sum can be approximated
arbitrarily closely by an integer linear combination of v1, . . . , v6, so can v.
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A5. For a nonnegative integer k, let f(k) be the number of ones in the base 3 representation
of k. Find all complex numbers z such that

31010−1∑
k=0

(−2)f(k)(z + k)2023 = 0.

Answer:
1− 31010

2
,
1− 31010

2
±

√
32020 − 1

4
i

Solution 1: If n is an integer, a quasi-base-3 representation of n is n = aN3N +aN−13
N−1+

· · · + a1 · 3 + a0, where all aj ∈ {−1, 0, 1}. This can also be written in the shorthand
(aNaN−1 · · · a0)3, with parentheses used as needed for clarity. For example, 7 = 1(−1)13. If
the leading digit is required to be ±1, then it is a standard fact that this representation is
unique (both existence and uniqueness are easily proven by induction). However, here we
will also be interested in representations with some number of leading zeros. Let AN :=
3N − 1

2
= 11 · · · 13︸ ︷︷ ︸

N digits

. It can similarly be shown that if |n| ≤ AN , then n has a unique quasi-

base-3 representation consisting of exactly N digits.
Define f0,N (ℓ) to be the number of zeros when ℓ is written in its N -digit quasi-base-3

representation. For example, f0,3(8) = 1 and f0,5(8) = 3, as the left-extended quasi-base-3
expansion is 8 = . . . 0010(−1)3.

Claim. Let u = z+AN . The sum in the problem statement is equivalent to (with N = 1010)

SN (u) :=

AN∑
ℓ=−AN

(−2)f0,N (ℓ)(u+ ℓ)2N+3. (1)

This follows from the summation shift k = ℓ+AN , as well as the straightforward observa-
tion that f(ℓ+AN ) = f0,N (ℓ) (note that ℓ 7→ ℓ+AN is a bijection from N -digit quasi-base-3
representations to N -digit base-3 representations for the range ℓ = −AN , . . . , AN , while the
definition of f is unchanged by the presence of leading zeros).

If d is an integer, define the centered, d-shifted second-difference operator by

∆2
d(h(x)) := h(x+ d)− 2h(x) + h(x− d).

This operator satisfies some simple properties that will be helpful later for reducing longer
expressions.

Lemma 1. 1. ∆2
d is a parity-preserving operator on functions (i.e. ∆2

d(h) is an even/odd
function as h is).

2. ∆2
d acts on monomials as

∆2
d(x

n) = 2
∑

1≤j≤n
2

(
n

2j

)
d2jxn−2j .

3. If p(x) is a polynomial of degree n, then ∆2
d(p(x)) is a polynomial of degree n − 2 (or

is identically zero if n ≤ 1).
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Proof. 1. Suppose that h is an even or odd function. By definition, this means that
h(−x) = sgn(h) · h(x), where sgn(h) = ±1 denotes the parity of h. Then

∆2
d(h(−x)) = h(−x+ d)− 2h(−x) + h(−x− d)

= h(−(x+ d))− 2h(−x) + h(−(x− d))

= sgn(h) ·∆2
d(h(x)).

2. By the Binomial Theorem,

∆2
d(x

n) =
n∑

j=1

(
n

j

)
djxn−j +

n∑
j=1

(
n

j

)
(−d)jxn−j = 2

∑
1≤j≤n

2

(
n

2j

)
d2jxn−2j .

3. This follows by considering only the highest degree term in the sum from part 2.

We next show that sums of the form (1) can be written in terms of the second-difference
operator.

Lemma 2. If N is a positive integer, then

∆2
3N−1 · · ·∆2

3∆
2
1h(x) =

AN∑
ℓ=−AN

(−2)f0,N (ℓ)h(x+ ℓ).

Proof. The base case of N = 0 simply states that h(x) = h(x). For the inductive step,

∆2
3N

AN∑
ℓ=−AN

(−2)f0,N (ℓ)h(x+ ℓ)

=

AN∑
ℓ=−AN

(−2)f0,N (ℓ)
(
h
(
x+ 3N + ℓ

)
− 2h(x+ ℓ) + h

(
x− 3N + ℓ

))
=

3N+AN∑
ℓ=3N−AN

(−2)f0,N (ℓ)h(x+ ℓ) +

AN∑
ℓ=−AN

(−2)f0,N (ℓ)+1h(x+ ℓ)

+

−3N+AN∑
ℓ=−3N−AN

(−2)f0,N (ℓ)h(x+ ℓ)

=

AN+1∑
ℓ=−AN+1

(−2)f0,N+1(ℓ)h(x+ ℓ).

The final line follows because in the first and third sum ℓ has leading coefficient ±1, so
f0,N+1(ℓ) = f0,N (ℓ), whereas in the middle sum the leading coefficient is 0, so f0,N+1(ℓ) =
f0,N (ℓ) + 1. Furthermore, the three summation ranges combine to one because AN+1 =
3N +AN by definition.
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In particular, Lemma 2 implies that

SN (u) = ∆2
3N−1 · · ·∆2

3∆
2
1u

2N+3, (2)

with the implicit notational assumption that the ∆2 operators now act on the variable u.
Lemma 1 parts 1 and 3 then imply that SN (u) reduces to an odd, cubic polynomial (i.e. of
the form au3 + bu). The exact coefficients can now be determined using Lemma 1 part 2.

In particular, only the two highest-order terms are relevant. For n ≥ 4, the Lemma states
that

∆2
d(x

n) = 2

(
n

2

)
d2xn−2 + 2

(
n

4

)
d4xn−4 +O

(
xn−6

)
.

For a nonnegative integer m and real number x, the falling factorial is defined by (x)m :=
x(x− 1)(x− 2) · · · (x−m+ 1).

Lemma 3. If N , k and d are positive integers, where k ≥ 4, then

∆2
dN−1 · · ·∆2

d∆
2
1x

2N+k

= (2N + k)2N · dN(N−1)

[
xk +

k(k − 1)

3 · 4

(
12 + d2 + · · ·+ d2(N−1)

)
xk−2 +O

(
xk−4

)]
.

The statement is also true for k ≤ 3, except that any monomials in x with negative exponents
do not appear.

Proof. We induct on N . The base case is N = 1, and by Lemma 1,

∆2
1x

2+k = (2 + k)2 · 12xk +
(2 + k)4
3 · 4

14xk−2.

For the inductive step, suppose that the statement is true for N . Then we have (replacing k
by 2 + k when applying the statement for N)

∆2
dN∆

2
dN−1 · · ·∆2

1x
2(N+1)+k

= ∆2
dN

(
(2(N + 1) + k)2N · dN(N−1)

[
x2+k

+
(2 + k)(1 + k)

3 · 4

(
12 + d2 + · · ·+ d2(N−1)

)
xk +O

(
xk−2

)])
= (2(N + 1) + k)2N · dN(N−1)

[(
(2 + k)(1 + k)d2Nxk +

(2 + k)4
3 · 4

d4Nxk−2

)
+
(2 + k)(1 + k)

3 · 4

(
12 + d2 + · · ·+ d2(N−1)

)
· k(k − 1)d2Nxk−2 +O

(
xk−4

)]
= (2(N + 1) + k)2N+2 · dN(N+1)

[
xk +

k(k − 1)

3 · 4

(
12 + d2 + · · ·+ d2(N−1) + d2N

)
xk−2

+O
(
xk−4

)]
.

Applying Lemma 3 (with d = 3 and k = 3) to (2) gives

SN (u) = (2N + 3)2N · 3N(N−1)

(
u3 +

3 · 2
3 · 4

32N − 1

32 − 1
u

)
.
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The cubic u3 + 32N−1
16 u has the roots u ∈

{
0,±

√
32N − 1

4
i

}
. Finally, these are translated to

roots of the original expression in z using (1).

Solution 2: For nonnegative integers n, let

gn(z) =
1

(2n+ 5)!

3n−1∑
k=0

(−2)f(k)(z + k)2n+5,

and notice that the equation to be solved is (2023!)g′′1010(z) = 0. Let cn = (3n − 1)/2. We
will prove by induction on n that

g′′n(z) = 3n
2−n

(
(z + cn)

3

6
+

(32n − 1)(z + cn)

96

)
.

Since g0(z) = z5/5!, we have g′′0(z) = z3/3! = (z + c0)
3/6, verifying the base case. Assume

now the formula for g′′n above holds for a particular n ≥ 0. Observe that f(j+3n) = f(j)+1
and f(j + 2 · 3n) = f(j) for 0 ≤ j < 3n. Then, with the substitutions ℓ = k − 3n and
m = k − 2 · 3n in the corresponding sums below,

g′′n+1(z) =
(2n+ 7)(2n+ 6)

(2n+ 7)!

3n+1−1∑
k=0

(−2)f(k)(z + k)2n+5

=
1

(2n+ 5)!

3n−1∑
k=0

(−2)f(k)(z + k)2n+5 +
1

(2n+ 5)!

3n−1∑
ℓ=0

(−2)f(ℓ)+1(z + ℓ+ 3n)2n+5

+
1

(2n+ 5)!

3n−1∑
m=0

(−2)f(m)(z +m+ 2 · 3n)2n+5

= gn(z)− 2gn(z + 3n) + gn(z + 2 · 3n)

=

∫ 3n

0
g′n(z + 3n + t)dt−

∫ 3n

0
g′n(z + t)dt =

∫ 3n

0

∫ 3n+t

t
g′′n(z + s)ds dt

=

∫ 2·3n

0

∫ min(3n,s)

max(0,s−3n)
g′′n(z + s)dt ds

=

∫ 2·3n

0
(3n − |s− 3n|)g′′n(z + s)ds =

∫ 3n

−3n
(3n − |u|)g′′n(z + u+ 3n)du

= 3n
2−n

∫ 3n

−3n
(3n − |u|)

(
(z + u+ 3n + cn)

3

6
+

(32n − 1)(z + u+ 3n + cn)

96

)
dt.

The integrand is 3n − |u| times a cubic polynomial of u. Since 3n − |u| is an even function of
u, its integral from −3n to 3n times an odd power of u is zero, so we can eliminate the cubic
and linear terms from the cubic polynomial of u. Having done so, the integrand becomes an
even function of u, which we can integrate instead from 0 to 3n and double the result. Using
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also the fact that 3n + cn = cn+1, we have

g′′n+1(z) = 2 · 3n2−n

∫ 3n

0
(3n − u)

(
3u2

(z + cn+1)

6
+

(z + cn+1)
3

6
+

(32n − 1)(z + cn+1)

96

)
du

= 2 · 3n2−n

(
34n

4

(z + cn+1)

6
+

32n

2

(
(z + cn+1)

3

6
+

(32n − 1)(z + cn+1)

96

))
= 32n · 3n2−n

(
(z + cn+1)

3

6
+

(
32n

12
+

(32n − 1)

96

)
(z + cn+1)

)
= 3(n+1)2−(n+1)

(
(z + cn+1)

3

6
+

32n+2 − 1

96
(z + cn+1)

)
,

completing the induction.
Recall that the answers to the problem are the roots of g′′1010, which are those z for which

z + c1010 = 0 or (z + c1010)
2 = −(32020 − 1)/16, yielding the answers given above.

Solution 3: For a sequence of integers b, set p(b) = #{i : bi = 0}. For nonnegative integers
n,m, define

hn,m(y) =
∑

b∈{−1,0,1}n
(−2)p(b)

(
y +

n−1∑
i=0

bi3
i

)m

As described in Solution 1, the polynomial in the problem is hn,m(y) for n = 1010,m = 2n+3
and y = z + 1 + 3 + · · ·+ 3n−1 = z + 3n−1

2 .
We have that p(b) = n−

∑
i |bi|, and we can expand the polynomial by the Binomial and

Multinomial Formulas as follows:

hn,m(y) =
∑

b∈{−1,0,1}n
(−2)n−

∑
|bi|

m∑
k=0

(
m

k

)
ym−k

(
n−1∑
i=0

bi3
i

)k

=
m∑
k=0

(
m

k

)
ym−k(−2)n

∑
b∈{−1,0,1}n

(−2)−
∑

i |bi|
∑

a0+···+an−1=k
aj≥0

(
k

a0, a1, . . .

) n−1∏
i=0

(bi3
i)ai

=
m∑
k=0

(
m

k

)
ym−k(−2)n

∑
a0+···+an−1=k

aj≥0

(
k

a0, a1, . . .

) ∑
b0∈{−1,0,1}

· · ·
∑

bn−1∈{−1,0,1}

n−1∏
i=0

(−2)−|bi|(bi3
i)ai

=

m∑
k=0

(
m

k

)
ym−k(−2)n

∑
a0+···+an−1=k

aj≥0

(
k

a0, a1, . . .

) n−1∏
i=0

 ∑
bi∈{−1,0,1}

(−2)−|bi|(bi3
i)ai


Notice that the terms in the final parentheses evaluate as (recall that the correct conven-

tion for powers of 0 in multinomial expansions is 00 = 1, and 0ℓ = 0 for ℓ ≥ 1)

∑
bi∈{−1,0,1}

(−2)−|bi|(bi3
i)ai = (−2)−1(−3i)ai+0ai+(−2)−1(3i)ai =

{
0 , if ai = 0 or odd

−3aii , if ai ≥ 2 is even
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Thus the only nonzero summands can occur only when all ai ≥ 2 and are even and so
k =

∑
ai ≥ 2n and is even. Since k ≤ m = 2n + 3, we have either k = 2n and then ai = 2

for all i, or k = 2m+ 2 and then aj = 4 for some j and ai = 2 for all i ̸= j. The summation
simplifies as

hn,2n+3(y) = (−2)n

y3
(
2n+ 3

2n

)(
2n

2, 2, . . .

) n−1∏
i=0

(−32i) + y

(
2n+ 3

2n+ 2

)(
2n+ 2

4, 2, 2, · · ·

) n−1∑
j=0

(−34j)
∏

0≤i≤n−1
i ̸=j

(−32i)


= (−2)n(−1)n

n−1∏
i=0

32i

(2n+ 3

3

)
(2n)!

2n
y3 + y(2n+ 3)

(2n+ 2)!

12 · 2n
n−1∑
j=0

32j


Factoring out (2n+3)!

6·2n and simplifying the geometric sum over j we are left with looking
for the solutions of

y3 +
32n − 1

16
y = 0,

whose roots are {0,±i
√
32n−1
4 }. Finally, recalling that z = y − 3n−1

2 , the roots of the original

polynomial are then {−3n−1
2 ,−3n−1

2 ± i
√
32n−1
4 } with n = 2020.
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A6. Alice and Bob play a game in which they take turns choosing integers from 1 to
n. Before any integers are chosen, Bob selects a goal of “odd” or “even”. On the first
turn, Alice chooses one of the n integers. On the second turn, Bob chooses one of the
remaining integers. They continue alternately choosing one of the integers that has not yet
been chosen, until the nth turn, which is forced and ends the game. Bob wins if the parity of
{k : the number k was chosen on the kth turn} matches his goal. For which values of n does
Bob have a winning strategy?

Answer: Bob can always win by choosing the goal that matches the parity of n.

Solution 1: We say that k is a “fixed point” if k is chosen on the kth turn.
If n is even, then Bob can win by following a simple “mirror” strategy. Divide the available

numbers into adjacent pairs (1, 2), (3, 4), . . . , (n − 1, n). Whenever Alice chooses a number
from some pair, Bob chooses the other number from the pair on his turn. If on turn 2j + 1
Alice chooses 2j + 1, then Bob also creates a fixed point on turn 2j + 2, thereby adding two
to the total number of fixed points. Otherwise, Alice and Bob add zero fixed points on turns
2j + 1 and 2j + 2. There are therefore an even number of fixed points after each of Bob’s
turns, and since the game ends after the nth turn, which is Bob’s, he wins the game.

Now suppose that n = 2m + 1 is odd. For the remainder of the proof, denote Alice’s
choices by A1, A3, . . . , A2m+1, and Bob’s by B2, . . . , B2m. In particular, on the first turn of
the game, Alice chooses A1, followed by Bob choosing B2, and so on, and all of the As and
Bs must be distinct integers from 1 to 2m+ 1. Let Fk be the number of fixed points after k
turns, reduced modulo 2. We have F0 = 0, and Bob wins if Fn = 1.

If n = 1, then Bob clearly wins. Otherwise, for m ≥ 1 we claim that Bob wins by playing
according to the following rules. Throughout 2j will denote Bob’s current turn in the game,
beginning by applying Rule R1 on turn 2, followed by whichever of Rule R2 or R3 applies
on turn 2j for j ≥ 2. The rule statements include several assumed properties that will be
justified inductively later, most importantly that F2j−2 = 1 for j ≥ 2.

(R1) (a) If A1 is in {1, 2}, then Bob chooses the other integer in this pair as B2. This
results in either 0 or 2 fixed points, so F2 = 0. Now rename the remaining integers
3, . . . , n to 1, . . . , n− 2, and inductively restart the game.

(b) If A1 = a ≥ 3, then Bob chooses B2 = 2, so that F2 = 1. If n = 3, then a = 3 and
the game ends with the forced value A3 = 1, so F3 = 1. Otherwise, proceed to the
following rules.

(R2) If j ≥ 2 and A2j−1 = 2j − 1, then (we will show later that 2j ≤ a in this case):

(a) If 2j < a, Bob chooses B2j = 2j. Then F2j = F2j−2 + 2 mod 2 = 1.

(b) If 2j = a, then Bob chooses B2j = 1. Then F2j = F2j−2 + 1 mod 2 = 0. Rename
the remaining integers a+1, . . . , n to 1, . . . , n−a and inductively restart the game.

(R3) If j ≥ 2 and A2j−1 ̸= 2j−1, then Bob chooses B2j = 2j+1 if it has not been previously
chosen; otherwise, Bob chooses B2j to be an arbitrary unchosen integer not equal to
2j. Then F2j = F2j−2 = 1.

Since Rules R1b, R2a, and R3 all end with F2j = 1, and the other rules result in a restart
that resets j to 1, the assumption that F2j−2 = 1 for j ≥ 2 is true by induction. Bob’s
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last turn occurs when j = m. If this turn results in a restart (from Rule R1a or R2b),
then F2m = 0, and Alice is forced to choose a fixed point on her final turn, so Fn = 1 and
Bob wins. Otherwise, Rule R1b or R2a or R3 applies on Bob’s last turn, and in each case
F2m = 1. Rule R1b explains why Fn = 1 in that case. If Rule R2a applies on turn 2m, then
a = n = 2m + 1, so Alice cannot choose An = n, and Fn = 1. If Rule R3 applies on turn
2m, then either Bob chooses B2m = 2m+1, or 2m+1 has already been chosen; again, Alice
cannot choose An = n, and Fn = 1.

To complete the proof, we need to verify that the strategy above respects the rules of
the game, that the case 2j > a never occurs when Rule R2 applies, and that the inductive
restart in Rule R2b is valid. In the arguments below, we assume that Bob has been able to
apply the rules on all turns before the turn in question.

Claim. If Rule R3 applies, then Bob is able to follow its instructions. Further, Rule R3 will
apply on all of Bob’s remaining turns.

Proof. If 2j+1 has already been chosen, then since there are n− (2j− 1) = 2m− 2j+2 ≥ 2
remaining integers, there is at least one choice for B2j other than 2j. After Bob’s turn, Alice
cannot choose A2j+1 = 2j + 1. Thus, Rule R3 applies on turn 2j + 2, and by induction it
applies on all of Bob’s subsequent turns.

It follows that if Rule R2 applies, then Rule R3 could not have previously been applied.
Thus, after the most recent restart (if any), Rule R1b must have been applied on turn 2, and
Rule R2a must have been applied on turn 2i for 2 ≤ i < j.

Claim. If Rule R2 applies, then 2j ≤ a. Further, if Rule R2a applies, then Bob is able to
choose B2j = 2j. If Rule R2b applies, then a is even, and all integers from 1 to a are chosen
on turns 1 to a.

Proof. After Rule R1b was applied, 2 and a had been chosen. Since Rule R2 has applied
ever since, Alice has chosen all of the odd numbers from 3 to 2j − 1, and since Rule R2a
was applied on the previous turns, Bob has chosen all of the even numbers from 4 to 2j − 2.
Since a is different from the other chosen numbers, and a ̸= 1, we must have a ≥ 2j. If Rule
R2a applies, 2j ̸= a, so Bob can choose B2j = 2j. If Rule R2b applies, then Alice chose
A1 = a = 2j on her first turn, and Bob chooses B2j = 1. Then all of the numbers from 1 to
a (and only those numbers) have been chosen.

Solution 2: Let S = {k : the number k was chosen on the k th turn}; at the beginning of
the game, S is empty, and each turn either adds an element to S or keeps S the same. Call
a number “available” if it hasn’t been chosen yet.

If n is even and Bob chooses the “even” goal, then Bob can win by following the rules
below on the kth turn (where k is even).

(1) If all numbers greater than k are available, then Bob chooses the one remaining available
number in {1, . . . , k}. This rule always applies when k = n.

(2) If k ≤ n − 2 and Rule 1 doesn’t apply, then Bob chooses k + 1 if available; if not, he
chooses an available number greater than k + 1 if possible; otherwise, Bob can choose
any remaining value other than k (since k < n, there is more than one available number
for Bob to choose).
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Claim. If k is even, then after k turns, S has an even number of elements, and either 0 or
at least 2 of the numbers greater than k have been chosen.

The proof is by induction on even values of k from 0 to n, the base case k = 0 being the
beginning of the game with 0 elements in S and 0 numbers chosen. Assume now that the
claim hold for some even k < n.

If k = 0 or if Bob applies Rule 1 on the kth turn, then all numbers from 1 to k are chosen
before Alice makes the (k + 1)st turn. If Alice chooses k + 1 (adding an element to S) or
k + 2, then Bob applies Rule 1 on the (k + 2)nd turn to choose k + 2 (adding an element to
S) or k + 1, keeping an even number of elements in S and leaving 0 chosen numbers greater
than k+ 2. If, on the other hand, Alice chooses a number greater than k+ 2, then exactly 1
number greater than k+ 2 has been chosen before Bob makes the (k+ 2)nd turn. Bob must
then apply Rule 2, and since k + 2 ≤ n − 2 in that case, there is still an available number
greater than k + 2 for him to choose. Thus, Alice’s and Bob’s turns add no elements to S,
and result in 2 chosen numbers greater than k + 2.

If k > 0 and Bob applies Rule 2 on the kth turn, then either Bob chooses k + 1, or k + 1
was previously chosen; either way, Alice can’t add an element to S on the (k + 1)st turn.
Since Rule 1 didn’t apply on the kth turn, by the inductive hypothesis there were already
at least 2 chosen numbers greater than k, and thus at least 1 chosen number greater than
k+ 1. If before Bob makes the (k+ 2)nd turn, the only chosen number greater than k+ 1 is
k + 2, then Bob applies Rule 1 and chooses a number strictly less than k + 2; this adds no
new element to S, and leaves 0 chosen numbers greater than k. Otherwise, there is at least
1 chosen number greater than k + 2 before Bob makes the (k + 2)nd turn, so Bob applies
Rule 2, which never adds an element to S. Either he chooses a number greater than k + 2,
making at least 2 such numbers chosen, or else all of the numbers (and in particular, at least
2 numbers) greater than k + 2 were already chosen before Bob’s turn.

This completes the induction that proves the claim. Applying the claim with k = n shows
that Bob wins when n is even.

If n is odd and Bob chooses the “odd” goal, then Bob can win by following the rules
below on the kth turn; since k is even, k < n.

(1) If S has an odd number of elements, then Bob chooses k + 1 if available; otherwise,
Bob can choose any number other than k (since k < n, Bob must have an option other
than k).

(2) If S has an even number of elements, then Bob chooses k if available; otherwise, Bob
chooses a number less than k (since only k − 1 numbers are chosen before Bob’s turn,
there must be an available number less than or equal to k).

If Bob applies Rule 1, then he doesn’t add an element to S, and Alice can’t add an element
to S on the (k + 1)st turn, so the number of elements in S remains odd after the (k + 1)st
turn. By induction, Bob applies Rule 1 on all future turns, and the number of elements in S
remains the same for the rest of the game, so Bob wins.

Assume hereafter that Bob is never able to apply Rule 1 for the entire game.

Claim. If k is even, then after k turns, either S has an even number of elements and no
numbers greater than k have been chosen, or S has an odd number of elements and exactly
one number greater than k has been chosen.
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In the base case k = 0, there are 0 elements in S and no elements at all have been chosen.
Proceeding by induction, assume that the claim holds for some even k < n− 1.

If after k turns S has an even number of elements, then by the inductive hypothesis all
numbers less than or equal to k have been chosen so far, and only those numbers. To prevent
Bob from applying Rule 1, Alice must not choose k+1 on the (k+1)st turn. If Alice chooses
k + 2, Bob chooses k + 1 on the (k + 2)nd turn; then S still has an even number of elements
and no numbers greater than k+2 have been chosen. If Alice chooses a number greater than
k + 2, Bob chooses k + 2, adding an element to S; then S has an odd number of elements,
and exactly one number greater than k + 2 has been chosen.

If after k turns S has an odd number of elements, then Alice must choose k + 1 on the
(k+1)st turn, adding an element to S to prevent Bob from applying Rule 1. By the inductive
hypothesis, exactly one other number greater than k was chosen before Alice’s turn, and we
now know that number couldn’t have been k+1. If that number is k+2, then all but one of
the numbers from 1 to k + 2 have been chosen prior to the (k + 2)nd turn, and Bob chooses
the remaining avalaible number in that range; then S has an even number of elements, and
no numbers greater than k + 2 have been chosen. If, on the other hand, a number greater
than k + 2 was previously chosen, Bob chooses k + 2, adding another element to S; then S
has an odd number of elements, and exactly on number greater than k + 2 has been chosen.

This completes the induction that proves the claim. Applying the claim with k = n− 1,
either S has an even number of elements and Alice is forced to choose n on the nth turn,
adding an element to S, or S has an odd number of elements and n is already chosen, so
Alice is unable to add an element to S on the nth turn; either way, Bob wins.
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2023 Session B

B1. Consider an m-by-n grid of unit squares, indexed by (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n.
There are (m−1)(n−1) coins, which are initially placed in the squares (i, j) with 1 ≤ i ≤ m−1
and 1 ≤ j ≤ n− 1. If a coin occupies the square (i, j) with i ≤ m− 1 and j ≤ n− 1 and the
squares (i+1, j), (i, j+1), and (i+1, j+1) are unoccupied, then a legal move is to slide the
coin from (i, j) to (i + 1, j + 1). How many distinct configurations of coins can be reached
starting from the initial configuration by a (possibly empty) sequence of legal moves?

Answer:

(
m+ n− 2

m− 1

)
Solution 1: Think of (1, n) as the northwest corner of the grid and (m, 1) as the southeast
corner. Consider the unoccupied squares. Initially, they consist of all the squares in the
north row (j = n) and/or the east column (i = m). We think of these squares as forming
a lattice path from (1, n) to (m, 1), and we denote this path by E . . . E︸ ︷︷ ︸

m−1

S . . . S︸ ︷︷ ︸
n−1

, representing

the sequence of eastward and southward steps that traverse the path from northwest corner
to southeast corner.

Claim. The unoccupied squares always form a lattice path from (1, n) to (m, 1), with a total
of m− 1 eastward steps and n− 1 southward steps, and all such lattice paths can be achieved
by a sequence of legal moves.

Proof. The squares (1, n) and (m, 1) always remain unoccupied, because no legal move can
slide a coin to either square. A legal move changes an ES portion (consisting of three
unoccupied squares that make the move legal) of an unoccupied lattice path to SE, so by
induction, after every move the unoccupied squares continue to form a lattice path consisting
of the same number of E and S steps.

On the other hand, given a lattice path of E and S steps from (1, n) to (m, 1), which must
consist of m + n − 1 squares, consider the configuration with coins on every square not on
the path. If the sequence of steps does not contain an SE portion, then we are in the initial
configuration. Otherwise, choose any SE portion; the three squares connected by the SE
steps must have coordinates (i, j+1), (i, j), and (i+1, j), and there must be a coin in square
(i+1, j+1). Sliding that coin to square (i, j) is the reverse of a legal move, and changes SE
to ES in the path. Continue to change instances of SE to ES in this way until the initial
configuration is reached. Reversing the sequence of coin slides made yields a sequence of legal
moves from the initial configuration to the given configuration.

Thus, the total number of configurations is the number of possible lattice paths, which is
the number of different sequences of m− 1 E’s and n− 1 S’s; this number is

(
m+n−2
m−1

)
.
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B2. For each positive integer n, let k(n) be the number of ones in the binary representation
of 2023 · n. What is the minimum value of k(n)?

Answer: 3

Solution 1: Clearly k(n) must be more than one, since no power of 2 is a multiple of
2023 = 7 · 172. Furthermore, powers of 2 are all congruent to 1, 2, or 4 (mod 7), and no sum
of two of these residues can be zero. So k(n) must be at least three. We now show that this
can be achieved.

Note that the binary representations of both prime power divisors of 2023 have exactly
three ones, as 7 = 22+21+20 and 172 = 289 = 28+25+20. It is now possible to piece together
three powers of 2 whose sum is simultaneously a multiple of 7 and 289 using the Chinese
Remainder Theorem, since the multiplicative order of 2 modulo 7 is 3, which is coprime to
16 ·17 = 272, the order of the group of multiplication modulo 289 (from which it follows that
2272 ≡ 1 (mod 289), by Euler/Lagrange’s Theorem).

In particular, the triple (0, 277, 8) is congruent to (0, 1, 2) (mod 3) and (0, 5, 8) (mod 272),
so 2277 + 28 + 20 is a multiple of 2023. (Another natural solution here is 2280 + 25 + 20.)

Solution 2: As in Solution 1, k(n) ≥ 3 for all n. This solution gives an alternative simple
approach for constructing n that achieve k(n) = 3.

Since 24 = 17 − 1, raising both sides to the 17th power and using the binomial theorem
yields 268 ≡ −1 (mod 172). Also, squaring both sides yields 2136 ≡ 1 (mod 172). Since
268 = 267+267, we therefore have 267+267+20 ≡ 0 (mod 172). As in Solution 1, 2i+2j+2k ≡ 0
(mod 7) if and only if {i, j, k} ≡ {0, 1, 2} (mod 3). Since 136 ≡ 1 (mod 3), this can be
achieved by 2203 + 267 + 20, which is a multiple of 2023.

As a minor variant, we similarly have 269 + 20 + 20 ≡ −2 + 1 + 1 ≡ 0 (mod 172), which
naturally leads to the following solutions: 269+2136+2272, 2205+2272+20, and 2341+2136+20.

Solution 3: This solution provides an exhaustive description of all possible triples of non-
negative integers (i, j, k) such that 2i+2j +2k ≡ 0 (mod 2023). All solutions can be reduced
to a canonical form by factoring out (and removing) common powers of 2, and without loss of
generality the terms may be ordered as 2i+2j+20, where i ≥ j. The Chinese Remainder The-
orem implies that the exponents i and j may be taken as residues modulo lcm[3, 136] = 408
(note that the calculations in Solution 2 imply that the multiplicative order of 2 modulo 172

is 136; this is not necessary for the construction of single examples as in that solution, but it
is needed here in order to define the shape of canonical solutions). With these restrictions,
we will show that there are exactly 51 unique solutions, which are listed at the end.

In fact, all solutions lie in two simple families. Indeed, any (i, j) such that 2i + 2j ≡ −1
(mod 2023) also projects to a solution modulo 17. The order of 2 modulo 17 is 8, and there
are two solutions: (3, 3) and (5, 0). We now must check whether these lift to solutions modulo
172.

In the first case, such a lift has the form

28α+3 + 28β+3 ≡ −1 (mod 172)

for some integers 0 ≤ α, β ≤ 16. The Binomial Theorem implies that

28α ≡ (15 · 17 + 1)α ≡ 1 + α · 15 · 17 (mod 172).
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Plugging this in, the above equation reduces to

(8(α+ β) · 15 + 1) · 17 ≡ 0 (mod 172) ⇐⇒ 8(α+ β) · 15 + 1 ≡ 0 (mod 17),

which reduces to α+ β+1 ≡ 0 (mod 17). Since α, β play a symmetric role, the possible sets
of solutions modulo 172 are spanned by choosing 0 ≤ α ≤ 8 and β = 16 − α. To recover
solutions modulo 2023, multiples of 136 must be added to (8α + 3, 8β + 3) until the values
are congruent to {1, 2} (mod 3). For α < 8 there are two distinct ways of doing this, but
for α = 8 there is only one, making for 17 total solutions. (In fact, when α = 8 we recover
the congruence from Solution 2, namely 267 + 267 + 20 ≡ 0 (mod 172), which lifts uniquely
to (203, 67)).

For the case (5, 0), the calculations are similar. We find that 28α+5+28β ≡ −1 (mod 172)
has solutions parameterized by β = 1+2α mod 17. Now each such pair lifts to two solutions
modulo 2023, since α and β are no longer symmetric, so this gives a total of 34 solutions.
For example, α = 0, β = 1 corresponds to 25 + 28 + 20 ≡ 1 (mod 172) from Solution 1, and
α = 8, β = 0 corresponds to 269 + 20 + 20 from Solution 2.

The set of all reduced (i, j) is as follows:

(77, 16), (85, 32), (101, 64), (109, 80), (125, 112), (133, 128), (139, 131), (155, 115),

(160, 149), (163, 107), (176, 157), (179, 91), (187, 83), (203, 67), (208, 173), (211, 59),

(224, 181), (227, 43), (235, 35), (251, 19), (256, 197), (259, 11), (272, 205), (277, 8),

(280, 5), (293, 40), (296, 13), (301, 56), (304, 221), (317, 88), (320, 229), (325, 104),

(328, 29), (341, 136), (344, 37), (347, 331), (349, 152), (352, 245), (355, 323), (365, 184),

(368, 253), (371, 307), (373, 200), (376, 53), (379, 299), (389, 232), (392, 61), (395, 283),

(397, 248), (400, 269), (403, 275).
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B3. A sequence y1, y2, . . . , yk of real numbers is called zigzag if k = 1, or if y2 − y1, y3 −
y2, . . . , yk − yk−1 are nonzero and alternate in sign. Let X1, X2, . . . , Xn be chosen indepen-
dently from the uniform distribution on [0, 1]. Let a(X1, X2, . . . , Xn) be the largest value of k
for which there exists an increasing sequence of integers i1, i2, . . . , ik such thatXi1 , Xi2 , . . . Xik

is zigzag. Find the expected value of a(X1, X2, . . . , Xn) for n ≥ 2.

Answer: (2n+ 2)/3 for n ≥ 2.

Solution 1: We begin by noting that with probability one, theXi are all distinct. Indeed, the
event in which there are at least two identical values defines a finite collection of hyperplanes
in [0, 1]n, which has measure zero. Furthermore, since we consider only relative order , we can
translate the problem to computing a(w), where w = w1 . . . wn is a permutation of [1, . . . , n]
chosen uniformly at random.

Let u(w) be the length of maximal zigzag sequence starting with a descent, and let d(w)
be the maximal zigzag sequence starting with an ascent. Then a(w) = max{u(w), d(w)}
and moreover, for n ≥ 2 we see that u(w) = d(w) ± 1, as we can obtain one from the
other by adding/removing an initial element. By symmetry we see that u(w) and d(w) are
identically distributed and exactly half of the time u(w) will be the larger. Thus, by linearity
of expectation, we have

E[a(w)] = E[u(w)] +
1

2
E[1] = E[u(w)] +

1

2
= E[d(w)] +

1

2
.

We claim that a maximal zigzag subsequence can always be chosen containing the value
n. If a zigzag subsequence has wr = n where ij < r < ij+1, then we can reassign ij = r if
wij > wij+1 or ij+1 = r if wij < wij+1 , resulting either way in a zigzag subsequence of the
same length containing n. If r < i1, we can reassign i1 = r if wi1 > wi2 or prepend wr to wi1

if wi1 < wi2 , resulting an a zigzag subsequence of the same length or longer. The case r > ik,
where k is the length of the subsequence, is similar.

Let Sn denote the permutations of [1, . . . , n], and define

fn := E[d(w)|w ∈ Sn], gn := E[a(w)|w ∈ Sn].

By the above reasoning we have gn = fn + 1
2 .

Let w ∈ Sn+1. By the above reasoning, we can assume that the element n + 1 is part
of a maximal zigzag sequence wi1 · · ·wik . Suppose that wj+1 = n + 1 and ir = j + 1. Then
wir−1 < wir−2 > · · · is a maximal UD alternating subsequence (i.e. starting with an ascent)
in the reverse permutation wj . . . w1, and wir+1 < wir+2 > · · · is a maximal UD alternating
subsequence in wj+2 . . . wn+1. Thus we see that, choosing j with probability 1

n+1 , we have

gn+1 =
1

n+ 1

n∑
j=0

(fj + fn−j + 1).

We have the following boundary values, which are verified directly: f0 = 0, f1 = 1, f2 = 3
2

(d(12) = 2 and d(21) = 1).
Then

gn+1 = fn+1 +
1

2
=

1

n+ 1

2f0 + 2f1 + 2

n∑
j=2

fj

+ 1
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Rewriting this recursion for f we get

fn+1 =
2

n+ 1

1 +
n∑

j=2

fj

+
1

2
.

Note that this implies a relation of f2 + · · · + fn via fn+1, which can be then reiterated
for n− 1 and substituted

n+ 1

2

(
fn+1 −

1

2

)
= 1 + f2 + · · ·+ fn−1 + fn =⇒ n+ 1

2

(
fn+1 −

1

2

)
=

n

2

(
fn − 1

2

)
+ fn

Then

(n+ 1)fn+1 = (n+ 2)fn +
1

2
=⇒ (n+ 1)

(
gn+1 −

1

2

)
= (n+ 2)

(
gn − 1

2

)
+

1

2
,

so

(n+ 1)gn+1 = (n+ 2)gn =⇒ gn+1

n+ 2
=

gn
n+ 1

= · · · = g2
3

=
2

3
,

which completes the proof.

Solution 2: The event that two of the Xj ’s are equal has probability zero, so in the argument
below we assume that no two are equal. For 1 < j < n, call j a “turning point” if Xj −Xj−1

and Xj+1 −Xj have opposite signs, and let T be the total number of turning points.
We claim that a(X1, . . . , Xn) = T +2. For 1 ≤ j < n, let Dj = Xj+1 −Xj . Suppose that

Xi1 , . . . , Xik is zigzag. For each 1 ≤ m < k, we have Xim+1 − Xim = Dim + Dim+1 + · · · +
Dim+1−1. Choose ℓm with im ≤ ℓm < im+1 so that Dℓm has the same sign as Xim+1 −Xim .
Then the sequence Dℓ1 , Dℓ2 , . . . , Dℓk−1

alternates sign. Thus, there are at least k− 2 changes
of sign in the sequence D1, D2, . . . , Dn−1. Each such change of sign is a turning point, so
k − 2 ≤ T , and k ≤ T + 2. To see that k = T + 2 is possible, let j1, j2, . . . , jT be the turning
points. ThenD1, D2, . . . , Dn−1 changes sign only betweenDjm andDjm−1 form = 1, 2, . . . , T .
It follows that the sequence

Xj1 −X1, Xj2 −Xj1 , . . . , XjT −XjT−1 , Xn −XjT

= D1 + · · ·+Dj1−1, Dj1 + · · ·+Dj2−1, . . . , DjT−1 + · · ·+DjT−1, DjT + · · ·+Dn−1

alternates sign, so X1, Xj1 , . . . , XjT , Xn is a zigzag subsequence with length T + 2. This
verifies our claim.

For 1 < j < n, the probability that j is a turning point is 2/3, since 4 of the 6 equally likely
orderings of Xj−1, Xj , Xj+1 yield a turning point. Therefore, E[a(X)] = (n − 2)2/3 + 2 =
(2n+ 2)/3.

Solution 3: Let Zj = a(X1, . . . , Xj) − a(X1, . . . , Xj−1) for j ≥ 3. Then for n ≥ 2, we can
write a(X1, . . . , Xn) = a(X1, X2) + Z3 + · · ·+ Zn, so it suffices to determine

E[a(X1, X2) + Z3 + · · ·+ Zn] = E[a(X1, X2)] +E[Z3] + · · ·E[Zn].

Notice that E[a(X1, X2)] = 2 since with probability one either X1 > X2 or X1 < X2, and in
either case X1, X2 is zigzag. We claim that E[Zj ] = 2/3 for j ≥ 3, from which the answer
2 + 2(n− 2)/3 = (2n+ 2)/3 follows immediately.
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To verify the claim, we first excluded the possibility that two of the Xi’s are equal,
which has probability zero. Next, notice that if Xi1 , . . . , Xik is zigzag and i > ik, then
either Xi1 , . . . , Xik−1

, Xi or Xi1 , . . . , Xik , Xi is zigzag, according (if k ≥ 2) to whether or
not Xik is between Xik−1

and Xi. Then if k = a(X1, . . . , Xj−1) and Xi1 , . . . , Xik is zigzag,
Xi1 , . . . , Xik−1

, Xj−1 must also be zigzag (since otherwise there would be a longer zigzag
subsequence). Further, Xj−1 − Xj−2 must have the same sign as Xj−1 − Xik−1

; otherwise,
Xj−2−Xik−1

= (Xj−2−Xj−1)+(Xj−1−Xik−1
) would have the same sign as Xj−2−Xj−1 and

Xj−1 −Xik−1
, hence the opposite sign as Xj−1 −Xj−2, making a longer zigzag subsequence

Xi1 , . . . , Xik−1
, Xj−2, Xj−1. Thus, Zj = 0 if Xj − Xj−1 has the same sign as Xj−1 − Xj−2,

and Zj = 1 if they have opposite signs. In other words, Zj = 0 if Xj−1 is between Xj−2 and
Xj , and Zj = 1 otherwise. Since Xj−1 is between Xj−2 and Xj for 2 of the 6 equally likely
orderings of Xj−2, Xj−1, Xj , the probability that Zj = 1 is 4/6 = 2/3, and E[Zj ] = 2/3 as
claimed.
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B4. For a nonnegative integer n and a strictly increasing sequence of real numbers t0, t1, . . . , tn,
let f(t) be the corresponding real-valued function defined for t ≥ t0 by the following proper-
ties:

(a) f(t) is continuous for t ≥ t0, and is twice differentiable for all t > t0 other than t1, . . . , tn;

(b) f(t0) = 1/2;

(c) limt→t+k
f ′(t) = 0 for 0 ≤ k ≤ n;

(d) For 0 ≤ k ≤ n− 1, we have f ′′(t) = k + 1 when tk < t < tk+1, and f ′′(t) = n+ 1 when
t > tn.

Considering all choices of n and t0, t1, . . . , tn such that tk ≥ tk−1 + 1 for 1 ≤ k ≤ n, what is
the least possible value of T for which f(t0 + T ) = 2023?

Answer: 29

Solution 1: Let T be the value for which f(t0 + T ) = 2023, and assume without loss of
generality that tn < t0 + T , since greater values do not affect f(t0 + T ). Let tn+1 = t0 + T .
Notice that for each 1 ≤ k ≤ n+1 we have f(t) = f(tk−1)+k(t−tk−1)

2/2 when tk−1 ≤ t ≤ tk.
Let τk = tk − tk−1; then τk ≥ 1 for 1 ≤ k ≤ n and τn+1 ≥ 0. Let m = n+ 1. The goal is to
minimize T = τ1 + τ2 + · · ·+ τm subject to the constraint

C(τ) :=

m∑
k=1

kτ2k = 2(f(t0 + T )− f(t0)) = 4045.

The space to be minimized over consists of all m ≥ 1 and all real m-tuples (τ1, . . . , τm)
with τk ≥ 1− δmk, where δmk is the Kronecker delta. This space can be made topologically
connected with the identification (τ1, . . . , τm−1, 0) = (τ1, . . . , τm−1) for m ≥ 2. The subset of
this space that satisfies the constraint is bounded and hence compact, because the constraint
excludes values of m for which m(m− 1)/2 > 4045 and values of τk greater than

√
4045.

Let (τ1, τ2, · · · , τm) lie in the constrained space, so that C(τ) = 4045 and τk ≥ 1 − δmk.
If there is more than one value of k for which τk > 1 − δmk, let two of these values be k1
and k2, and assume without loss of generality that k1τk1 ≥ k2τk2 . Choose ε > 0 sufficiently
small that τk2 − ε ≥ 1 − δmk2 , and consider the m-tuple for which (τk1 , τk2) is replaced by
(τk1 + ε, τk2 − ε), and the other τk are unchanged. Then T is unchanged, while the sum∑m

k=1 kτ
2
k in the constraint changes by

2(k1τk1 − k2τk2)ε+ (k1 + k2)ε
2,

which is (strictly) positive by our earlier assumption. Thus, the sum is now greater than
4045. Next, reduce τk1 + ε until the constraint is satisfied again, and notice that the value
that meets this condition is strictly between τk1 and τk1 + ε (since C(τ) is increasing in each
τk), so it satisfies the same lower bound as τk1 . The resulting m-tuple has a strictly lower
value of T , so the original m-tuple could not have minimized T . Thus, the (constrained)
minimum of T cannot be achieved with more than one value of k for which τk > 1− δmk.

Next, suppose that T is minimized with τk > 1 for some k < m; then by the argument
above, τm = 0. In that case, reduce m by 1, and since τm−1 > 0, the above argument implies

23



that T is not at a minimum for the new value of m, and hence not a global minimum. By the
compactness described above, there must be a global minimum value for T , and by what we
have argued so far, this minimum must satisfy τ1 = τ2 = · · · = τm−1 = 1. Thus, the problem
is reduced to minimizing

T (m) = m− 1 +

√√√√(4045− m−1∑
k=1

k

)
/m = m− 1 +

√
4045/m− (m− 1)/2

over all 1 ≤ m ≤ M , where M is the greatest integer for which the square root is well-defined.
The fact that M ≥ 20 suffices for the arguments below.

If m < M , then T (m+ 1) > T (m) is equivalent to

1 +
√

4045/(m+ 1)−m/2 >
√

4045/m− (m− 1)/2.

Squaring both sides (which we observe are nonnegative) and simplifying, this is equivalent to

2
√

4045/(m+ 1)−m/2 > 4045/[m(m+ 1)]− 1/2.

Notice that the right side is nonnegative when the left side is well-defined (when m < M).
We square and simplify again to conclude that T (m+ 1) > T (m) is equivalent to

4m > 4045/[m(m+ 1)]− 1/2 ⇐⇒ m(m+ 1)(m+ 1/8) > 1011.25.

Thus, T (m+ 1) > T (m) for 10 ≤ m < M .
Similarly, T (m+1) < T (m) is equivalent to m(m+1)(m+1/8) < 1011.25, which is true

for 1 ≤ m ≤ 9. We conclude that T (10) = 9 +
√
404.5− 4.5 = 29 is the minimum possible

value of T .

Solution 2: Following the same notation and initial steps as the previous solution, the goal
is to minimize T = τ1 + τ2 + · · ·+ τn+1 subject to the constraint

C(τ) :=
n+1∑
k=1

kτ2k = 4045,

where n ≥ 0 and τk ≥ 1 for k = 1, . . . , n and τn+1 ≥ 0.
We now make the following substitution: Let xk = kτ2k − k ≥ 0 for k = 1, . . . , n and

xn+1 = (n+ 1)τ2n+1. We have xi ≥ 0 and

xn+1 = 4045−
(
n+ 1

2

)
− x1 − · · · − xn ≥ 0.

Then the goal is to minimize

Fn(x1, . . . , xn) :=

n∑
k=1

√
xk + k

k
+

√
4045−

(
n+1
2

)
− x1 − · · · − xn

n+ 1

over the simplex xi ≥ 0 and x1 + · · · + xn ≤ 4045 −
(
n+1
2

)
, and over n ≥ 0 for which this

simplex is non-empty. (We include n = 0, for which the simplex is undefined but the original
constraint requires τ1 = 4045; in this case, T =

√
4045, so we let F0 =

√
4045.)
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We now analyze the function gk(xk) = Fn(x1, . . . , xn) for fixed values of xj , j ̸= k. We
have

g′k(xk) =
1

2
√

k(xk + k)
− 1

2
√
(n+ 1)

(
4045−

(
n+1
2

)
− x1 − · · · − xn

)
g′′k(xk) = − 1

4
√
k(x+ k)3/2

− 1

4
√
n+ 1

(
4045−

(
n+1
2

)
− x1 − · · · − xn

)3/2 < 0,

so gk is a concave function and the minimum is achieved at the boundary. Thus we either
have xk = 0 or x1 + · · · + xn = 4045 −

(
n+1
2

)
for every k. So the minimum is achieved for

some (x1, . . . , xn) either on the hyperplane Hn := {x1 + · · ·+ xn = 4045−
(
n+1
2

)
} or else we

must have xk = 0 for all k so (x1, . . . , xn) = (0, . . . , 0).
In the first case we have xn = 4045−

(
n+1
2

)
− x1 − · · · − xn−1, so

Fn(x1, . . . , xn) =
n−1∑
k=1

√
xk + k

k
+

√
4045−

(
n+1
2

)
− x1 − · · · − xn−1 + n

n
= Fn−1(x1, . . . , xn−1).

If (x1, . . . , xn−1) minimizes Fn−1 and (x1, . . . , xn−1) ∈ Hn−1, then we can again reduce to the
case of one fewer variable. Recursively, we can eventually reach a minimum in the second
case where (x1, . . . , xN ) = (0, . . . , 0), which is vacuously true for N = 0 in case we get that
far.

Having reduced to the second case, we now need only minimize the function

t(N) := fN (0, . . . , 0) = N +

√
4045−

(
N+1
2

)
N + 1

= N +

√
4045

N + 1
− N

2

over the integers 0 ≤ N ≤ 89 (since the square root is undefined for N ≥ 90). To motivate
the next steps, crude estimates show that t(1) > 40, t(3) < 40, t(10) < 40, and t(30) > 40.
This suggests that the minimum occurs when 4045

N+1 is considerably larger than N
2 . To get

a rough idea where the minimum occurs, replace N for the moment with a real variable y,

and consider the approximation t(y) ≈ y +
√

4045
y+1 . From its derivative, the latter function is

minimized when y = −1 + (4045/4)1/3 ≈ 9.
Consider then t(y) − t(9) = t(y) − 29; we will find values of y ≥ 0 for which this is

nonpositive. Thus, we are solving for√
4045

y + 1
− y

2
≤ 29− y ⇐⇒ y ≤ 29 and

4045

y + 1
− y

2
≤ (29− y)2.

The last inequality is equivalent to (using the fact that we have equality for y = 9 to factor)

(y − 29)2(y + 1)− 4045 +
y(y + 1)

2
= 1/2(y − 9)(2y2 − 95y + 712)

=
1

4
(y − 9)

(
y − 95 +

√
3329

4

)(
y − 95−

√
3329

4

)
≥ 0.

This inequality is true only when y ≥ 95+
√
3329

4 > 29 or when y is (not strictly) between 9

and 95−
√
3329

4 . The latter number is strictly between 9 and 10 because 552 = 3025 < 3329 <

3481 = 592. Thus, t(y) − t(9) ≤ 0 only when 9 ≤ y ≤ 95−
√
3329

4 < 10. Then t(N) ≥ t(9) for
integers N , and t(9) = 29 is the desired minimum.
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B5. Determine which positive integers n have the following property: For all integers m that
are relatively prime to n, there exists a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} such
that π(π(k)) ≡ mk (mod n) for all k ∈ {1, 2, . . . , n}.

Answer: Those n of the form 4j + 2 where j is a nonnegative integer, and n = 1.

Solution: Suppose that τ ∈ Sn, where Sn is the group of permutations on n elements. We
say that a permutation π ∈ Sn is a square root of τ if π2 = τ (we will shortly see that in
general there is not a unique square root, if one exists). If m is an integer coprime to n, let
τm ∈ Sn denote the permutation defined by multiplication by m modulo n, in other words,
τm(k) = m · k mod n for 1 ≤ k ≤ n. The problem statement asks for a classification of the
n such that all τm have a square root in Sn.

Now consider the standard decomposition of τ into disjoint cycles. For a positive integer
i such that i ≤ n, let fi(τ) denote the number of distinct cycles of length i.

Lemma. Suppose that τ ∈ Sn. Then τ has a square root if and only if f2i(τ) is even for all
i ≤ n

2 .

Proof. If ℓ is a positive integer, consider the permutation in Sn defined by a cycle of length
ℓ, say γ = (x1x2 · · ·xℓ). When squared, the resulting permutation either preserves the cycle
length, or splits it into two cycles of half the length, depending on the parity of ℓ:

γ2 =

{
(x1x3 · · ·x2k+1x2x4 · · ·x2λ) if ℓ = 2λ+ 1,

(x1x3 · · ·x2λ−1)(x2x4 · · ·x2λ) if ℓ = 2λ.
(3)

Applying this fact to the cycle decomposition of a permutation π ∈ Sn implies that (noting
that all of the resulting cycles remain disjoint)

f2λ+1(π
2) = f2λ+1(π) + 2f4λ+2(π),

f2λ(π
2) = 2f4λ(π).

Here we set fi(π) = 0 if i > n. The forward direction of the claim follows, as fi(π
2) is even

for all even i.
For the reverse direction, suppose that τ is a permutation such that f2i(τ) is even for all

i. We now construct a square root π as a list of cycles, essentially using (3) in reverse. For
each cycle in τ of odd length, say γ = (x1x2 · · ·x2λ+1), append the following length 2λ + 1
cycle to π:

(x1xλ+2x2xλ+3x3 · · ·x2λ+1xλ+1).

By assumption, there are an even number of cycles of even length in τ , so they may be
grouped (arbitrarily) in pairs. For each pair of the form (x1x2 · · ·x2λ), (y1 · · · y2λ), append
the following cycle of length 4λ to π:

(x1y1x2y2 · · ·x2λy2λ).

Now it is immediate that π2 = τ , since by construction they share the same cycle decompo-
sition.
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This result also shows that even parity of τ is a necessary condition for the existence of
a square root (though not sufficient, as for example, τ = (12)(3456) is an even permutation
without a square root).

Corollary. If τ is an odd permutation, then it has no square root.

Returning to the problem at hand, note that the cycles of τm ∈ Sn are of the form

⟨m⟩ · x := (x mx · · ·mℓ−1x),

where x is a positive integer, and ℓ is the minimum positive exponent such that mℓx ≡ x
(mod n). This is equivalent to the minimal ℓ such that mℓ ≡ 1 (mod n

gcd(x,n)).
If n = 4k + 2, then consider an arbitrary value of m, which must be odd. In this case,

we will show that fi(τm) is even for all i, and therefore τm has a square root by the Lemma.
Specifically, we claim that fi(τm) = 2oi(τm), where oi(τm) denotes the number of cycles of
length i such that all elements are odd.

To verify this claim, suppose that x is odd. Then ⟨m⟩ · x consists of only odd integers
(and any such cycle is generated by some odd x), and maps bijectively to ⟨m⟩ · 2x (a cycle
with only even integers), since x 7→ 2x (mod n) bijectively maps the odd residues modulo n
to the even residues (noting that n is divisible by 2 but no higher power of 2).

If n = 1, then the property trivially holds because all integers are congruent to each other
modulo 1, and because there does exist a (trivial) permutation π : {1} → {1}.

For all other n, we will provide a value m = mn such that τmn does not have a square
root in Sn. If n = 4k, let mn = −1. Then f1(τm) = 2 (the fixed points being x = 0 and
2k) and f2(τm) = 2k − 1, so the conclusion follows by the Lemma. A similar argument also
shows that τ−1 does not have a square root if n = 4k + 3. However, this does not work for
n = 4k + 1, and the case that n is odd can be treated in a unified manner as follows.

Suppose that n > 1 is odd, with prime factorization n = pe11 · · · perr , where the pi are
distinct odd primes, and ei are positive integers. Let m1 be a primitive root of the multi-
plicative group modulo pe11 (cf. Euler, Lagrange, Legendre, Gauss for the existence of such
a root). Then m1 is also a primitive root modulo pe1 for 1 ≤ e ≤ e1 − 1. Now (using the
Chinese Remainder Theorem) set m to be the residue modulo n that satisfies

m ≡ m1 (mod pe11 ), m ≡ 1 (mod p
ej
j ) for 2 ≤ j ≤ r.

Then all non-fixed-point cycles of τm have lengths of the form pe−1
1 (p1−1) for some 1 ≤ e ≤ e1.

Specifically, if x is a multiple of pe11 , then ⟨a⟩ ·x has length 1, and otherwise if ps1 is the largest
power of p1 dividing x (where 0 ≤ s ≤ e1 − 1), then the length is pe1−s−1

1 (p1 − 1).
Thus by considering the cycles formed by all x’s that are not multiples of p1 (this is the

case s = 0, but in fact any s < e1 works similarly), we find that

f
p
e1−1
1 (p−1)

(τm) =
n
(
1− 1

p1

)
pe1−1
1 (p1 − 1)

= pe22 · · · perr .

Since this is odd, the Lemma implies that τm is not a square.

27



Remark. The Corollary can also be proven directly (almost immediately using the fact that
the sign map is a homomorphism). This gives an alternative criterion for showing that τ−1

does not have a square root when n ≡ 0, 3 (mod 4).
There are many possible constructions for permutation square roots in the case n = 4k+2.

The proof above implicitly defines a square root of τm by “zipping” together all cycles of the
form (x,mx,m2x, . . . ) and (2x,m · 2x,m2 · 2x, . . . ). One alternative is to instead pair cycles
of the form (x,mx,m2x, . . . ) and ((x+n′),m(x+n′),m2(x+n′), . . . ), where n′ = 2k+1 = n

2 .
To be more precise, it is straightforward to show that the following permutation is also a
square root of τm:

π(x) :=

{
x+ n′ (mod n) if x is odd,

mx+ n′ (mod n) if x is even.
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B6. Let n be a positive integer. For i and j in {1, 2, . . . , n}, let s(i, j) be the number of
pairs (a, b) of nonnegative integers satisfying ai+ bj = n. Let S be the n-by-n matrix whose
(i, j)-entry is s(i, j).

For example, when n = 5, we have S =


6 3 2 2 2
3 0 1 0 1
2 1 0 0 1
2 0 0 0 1
2 1 1 1 2

.
Compute the determinant of S.

Answer: (−1)m+12m where m is the least integer greater than or equal to n/2

Solution 1: Let d(i, j) = 1 if i | j and 0 otherwise, and let D = (d(i, j))
(n,n)
(i,j)=(1,0) be the

corresponding n× (n+1) matrix whose rows are indexed by 1, . . . ,m and whose columns are
indexed by 0, 1, . . . , n. For example, for n = 8, we have

D =



j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
i = 1 1 1 1 1 1 1 1 1 1
i = 2 1 0 1 0 1 0 1 0 1
i = 3 1 0 0 1 0 0 1 0 0
i = 4 1 0 0 0 1 0 0 0 1
i = 5 1 0 0 0 0 1 0 0 0
i = 6 1 0 0 0 0 0 1 0 0
i = 7 1 0 0 0 0 0 0 1 0
i = 8 1 0 0 0 0 0 0 0 1


All possible solutions (a, b) to ai+bj = n in nonnegative integers can be indexed by those

0 ≤ k ≤ n such that i | k and j | n− k, so

s(i, j) =

n∑
k=0

d(i, k)d(j, n− k).

Thus S = D(Dr)T , where Dr is the matrix D with the rows reversed, i.e., Dr
i,j = Di,n−j .

The Cauchy–Binet formula implies that ifM is an n×(n+ 1)-matrix andN is an (n+ 1)×
n-matrix, then

det (MN) =

n∑
k=0

det
(
M

k̂

)
· det

(
N k̂
)
,

where M
k̂
denotes the matrix M with the k-th column removed, and N k̂ denotes the matrix

N with the k-th row removed.
In the present case we have M = D and N = (Dr)T , and can further reduce

det

((
Dr)T

)k̂)
= det

(
(Dr)

k̂

)
= (−1)⌊n/2⌋ detD

n̂−k
.

The first equality is due to the fact that determinants are preserved by transposition, and
the sign arises from writing the row reversals as ⌊n/2⌋ column swaps. In all, we therefore
have

detS =
n∑

k=0

detD
k̂
(−1)⌊n/2⌋ detD

n̂−k
. (4)
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This sum can be further simplified by evaluating detD
k̂
for large k.

Lemma. (a) If k > n/2, then detD
k̂
= (−1)k−1.

(b) If n is even, then detD
n̂/2

= 0.

Proof. For k > n/2 we can compute detD
k̂
by cofactor expansion along row k. For such a k

we have d(k, j) = 0 unless j = 0 or k, and on removing column k, row k of D
k̂
is [1, 0, . . . , 0].

Thus detD
k̂
= (−1)k−1, since after removing row k and columns 0 and k of D, the remaining

matrix is upper triangular with 1s on the diagonal.
If n is even, say n = 2m, then row m of Dm̂ is [1, 0, . . . , 0, 1] (since d(m, j) = 1 only when

j = 0,m, 2m, and j = m has been removed). Thus d(m, j) = d(2m, j) for j ̸= m, and since
row m and row n = 2m are then identical, detDm̂ = 0.

Plugging in to (4), we can hence in all cases set m := ⌈n/2⌉ and write

detS = 2(−1)⌊n/2⌋
m−1∑
k=0

detD
k̂
detD

n̂−k
= 2(−1)⌊n/2⌋

m−1∑
k=0

(−1)n−k−1 detD
k̂

= 2(−1)m−1
m−1∑
k=0

(−1)k detD
k̂
,

where we have also used that n−m = ⌊n/2⌋. The proof is complete on evaluating this sum.

Claim. We have
m−1∑
k=0

(−1)k det
(
D

k̂

)
= m.

Proof. Let D′ be the (n + 1) × (n + 1)-matrix obtained from D by attaching an extra row
(1, 1, . . . , 1) at the top of the matrix (i.e., at row index i = 0). Then, the topmost two rows of
the matrix D′ are equal, so that det (D′) = 0. On the other hand, expanding the determinant
of D′ along the topmost row, and using part (b) of the Lemma to eliminate the middle term
of the sum when n is even, we obtain

det
(
D′) = n∑

k=0

(−1)k det
(
D

k̂

)
=

m−1∑
k=0

(−1)k det
(
D

k̂

)
+

n∑
k=n−m+1

(−1)k det
(
D

k̂

)
=

m−1∑
k=0

(−1)k det
(
D

k̂

)
+

n∑
k=n−m+1

(−1)k · (−1)k−1 =

m−1∑
k=0

(−1)k det
(
D

k̂

)
−m.

The second line follows by part (a) of the Lemma. Recalling that det(D′) = 0, the proof is
complete.

Solution 2: As in Solution 1, the (i, j)−th entry of S is the convolution of indicator series
for multiples of i and j. In particular, this gives the factorization S = B · Rev(B)T , where
Rev(B) denotes the matrix formed by reversing each row of B, and B consists of the rows
R1, . . . , Rn, where

Ri = (1 0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0︸ ︷︷ ︸
i−1

1 · · · ) = (1(i | j))nj=0.
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The key idea in this proof is to apply row operations directly on B. In particular, if M
is an n× n matrix with det(M) = 1, then

det
(
MB · Rev(B)TMT

)
= det(S).

Furthermore, Rev(B)TMT = Rev(MB)T , since under left-multiplication M acts as row
operations on B, which are commutative with row reversal.

The preceding claims can also be justified more explicitly by noting that RevB = M · J,
where

J :=


0 · · · 0 1
0 · · · 1 0
...

...
...

1 0 · · · 0

 .

For example, commutativity follows since M · Rev(B) = M ·B · J = Rev(MB).
The rowsRi form a full rank system, sinceB excluding the first column is upper triangular.

We can therefore reduce B to the canonical form

MB =


a1 1 0 0 · · · 0 0
a2 0 1 0 · · · 0 0
...

...
an−1 0 0 0 · · · 1 0
an 0 0 0 · · · 0 1


by a sequence of row operations that acts on the rows from bottom to top, with each operation
subtracting a row from below the row being acted on. It follows that ai can be defined
recursively for i = n, n− 1, . . . , 1 by the formula

ai = 1− a2i − a3i − · · · ,

where for convenience we set the initial conditions ai = 0 for i > n. Equivalently, we can set
additional initial conditions an−m+1, . . . , an = 1, where m = ⌈n2 ⌉, and define ai recursively
for i = n−m, . . . , 1.

Assume now that n is odd, so that n = 2m− 1; it will turn out that n = 2m reduces to
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this case almost immediately. Then n−m+ 1 = m, and

MSMT = MB · Rev(B)TMT

=



a1 1 0 0 · · · 0 0
a2 0 1 0 · · · 0 0
...

...
am−1 0 · · · 1 0 · · · 0
1 0 · · · 0 1 · · · 0
...

...
1 0 0 0 · · · 0 1





0 0 · · · 0 0 0 1
0 0 · · · 1 0
...

...
0 0 · · · 1 0 · · · 0
...

...
0 1 · · · 0
1 0 · · · 0
a1 a2 · · · am−1 1 · · · 1



=



1 a1
...

...
1 am−1

1 1
...

...
1 1
a1 · · · am−1 1 · · · 1 2


The determinant of this matrix can now be evaluated by reducing the final row to zeroes in
all except the final column, and then expanding along that row. This gives

det(S) = det(MSMT ) = (−1)m−1 (2− 2(a1 + · · ·+ am−1)) .

Lemma 4. With aj defined as above,

a1 + · · ·+ am−1 = −(m− 1).

Proof. Plugging in the definition of a1 and initial values for am, . . . , an,

a1 + · · ·+ am−1 = (1− a2 − a3 − · · · − an) + a2 + · · ·+ am−1

= 1− am − · · · − an = 1−m.

This completes the proof for n = 2m− 1.
Finally, in the case that n = 2m, the recursion gives am = 0. Thus, the mth row of MB

has only one nonzero entry, a 1 in the first column, and is orthogonal to all other rows of
MB. It follows that the mth row in MSMT has a 1 in the mth column, and is 0 elsewhere,
so this row has no effect on its determinant. Further, the conclusion in Lemma 4 also still
holds, since now am = 0 implies that am + am+1 + · · ·+ an = m.

Solution 3: As in Solution 2, let m be the least integer greater than or equal to n/2, so that
either n = 2m or n = 2m− 1. We will define (n+ 1)× (n+ 1) matrices C and D and show
that

CD =

[
−2m O
OT S

]
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where O denotes a row of n zeros. It will then follow that detS = (detC)(detD)/(−2m).
We will write the entries of C and D as cij and dij where 0 ≤ i ≤ n and 0 ≤ j ≤ n.

For 1 ≤ i ≤ n and 0 ≤ k ≤ n, let cik = 1 if k is a multiple of i, and cij = 0 otherwise. For
0 ≤ k ≤ n and 1 ≤ j ≤ n, let dkj = 1 if n− k is a multiple of j, and dkj = 0 otherwise. Then
each allowed solution of ai+ bj = n corresponds to a case where cik = dkj = 1, with k = ai.
Thus, s(i, j) =

∑n
k=0 cikdkj , verifying the S block in the equation above for CD.

Next, we will choose column 0 of D (corresponding to j = 0) to be orthogonal to rows 1
to n of C, which will satisfy the OT block of the equation for CD. Such a column must exist
because these n rows can’t span (n + 1)-dimensional space. Notice that the n × n matrix
{cik}1≤i,k≤n is upper triangular, with all ones on its diagonal, so the rows of this reduced
matrix are linearly independent. Thus, for the desired orthogonality, d00 must be nonzero,
and since rows 1 to n of C span an n-dimensional space, choosing d00 = 1 uniquely determines
column 0 of D. For n −m + 1 ≤ i ≤ n, we have 2i > n, so cik = 1 if and only if k = 0 or
k = i. Thus, the desired orthogonality requires that di0 = −1 for these values of i. Also, if
n is even, then row m of C is the same as row n of C except that cmm = 1 while cnm = 0.
Thus, the desired orthogonality requires that dm0 = 0 when n is even. Then, whether n is
even or odd, we have

∑n
k=m dk0 = −m. For column 0 of D to be orthogonal to row 1 of C,

all of whose entries are 1, we then must have
∑m−1

k=0 dk0 = m. We will not need to determine
the individual values of d0k for 1 ≤ k ≤ m− 1.

Now let c0k = dn−k,0 for 0 ≤ k ≤ n. Notice that this makes row 0 of C (which is the
reverse of column 0 of D) orthogonal to columns 1 to n of D (which are the reverses of rows
1 to n of C), satisfying the O block of the equation for CD. To complete the verification of
this equation, the upper left entry of CD is

n∑
k=0

c0kdk0 =
n∑

k=0

dn−k,0dk0 =
m−1∑
k=0

(−1)dk0 +
n∑

k=n−m+1

dn−k,0(−1) = −m−m = −2m.

Next, to determine detC, replace column 0 of C with column 0 of CD. Since the latter
column is the sum over 0 ≤ k ≤ n of dk0 times column k of C, and d00 = 1, this replacement
is a column operation on C that this does not change its determinant. The resulting matrix is
upper triangular, and its diagonal consists of −2m followed by n ones. Thus, detC = −2m.

Finally, since D can be obtained by reversing the columns of CT , which amounts to swap-
ping m pairs of columns, detD = (−1)m detCT = (−1)m detC = (−1)m+12m. Therefore,
detS = −2m(−1)m+12m/(−2m) = (−1)m+12m.
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