
A1. Determine all possible values of the expression

A3 +B3 + C3 − 3ABC

where A,B, and C are nonnegative integers.

Answer. The possible values are the nonnegative integers that are either divisible by
9 or not divisible by 3.

Solution 1. Let f(A,B,C) = A3 + B3 + C3 − 3ABC. By direct computation, for
nonnegative integers A we have f(A,A,A+ 1) = 3A+ 1 and f(A,A,A) = 0, while
for positive integers A we have f(A,A,A− 1) = 3A− 1 and f(A,A+ 1, A− 1) = 9A.
This shows that all the values listed in the answer can actually be obtained. To
show that no other values are possible, first note that by the AM-GM inequality, for
nonnegative A,B,C we have

1

3
(A3 +B3 + C3) ≥ 3

√
A3B3C3 = ABC, and therefore f(A,B,C) ≥ 0.

So when A,B,C are nonnegative integers, the value f(A,B,C) must be a nonnegative
integer; it remains to show that if f(A,B,C) is divisible by 3, then it is also divisible
by 9. Note that f(A,B,C) ≡ A3+B3+C3 ≡ A+B+C (mod 3), so we are concerned
with the case that A+B +C ≡ 0 (mod 3). In this case we have C = 3k−A−B for
some integer k, and then

f(A,B,C) = A3 +B3 + (3k − A−B)3 − 3AB(3k − A−B)

= 9k(a2 + ab+ b2 − 3k(a+ b) + 3k2)

is divisible by 9, completing the proof.

Solution 2. Start by observing the factorization

A3 +B3 + C3 − 3ABC = (A+B + C)(A2 +B2 + C2 − AB −BC − CA)

= (A+B + C) · (A−B)2 + (B − C)2 + (C − A)2

2
,

from which it is clear that the only possible values are nonnegative integers. For
(A,B,C) = (k, k, k) we get 0; for (A,B,C) = (k, k, k + 1) we get (3k + 1) · 1; for
(A,B,C) = (k, k + 1, k + 1) we get (3k + 2) · 1; and for (A,B,C) = (k, k + 1, k + 2)
we get (3k + 3) · 3 = 9(k + 1), showing that all the values listed in the answer can
actually be obtained. To show that no others are possible, we show that of the two

factors A+B +C and
(A−B)2 + (B − C)2 + (C − A)2

2
, either both are divisible by

3 or neither is divisible by 3. If A+B + C is divisible by 3, then either A,B,C are
all equal mod 3, in which case the second factor is clearly divisible by 3, or A,B,C
are all different mod 3, in which case (A − B)2 + (B − C)2 + (C − A)2 is equal to
1 + 1 + 1 modulo 3 and the second factor is again divisible by 3. If A+B + C is not
divisible by 3, then A,B,C take on precisely two different values mod 3 (one twice,
the other once), so (A−B)2 + (B − C)2 + (C − A)2 is equal to 0 + 1 + 1 modulo 3
and the second factor is not divisible by 3.

A2. In the triangle ∆ABC, let G be the centroid, and let I be the center of the inscribed
circle. Let α and β be the angles at the vertices A and B, respectively. Suppose that
the segment IG is parallel to AB and that β = 2 tan−1(1/3). Find α.

Answer. α =
π

2
.



Solution 1. Recall that I is the intersection point of the angle bisectors, and G is
the intersection point of the medians, of the triangle. Let Z be the “foot” of the angle
bisector at C (the intersection of that bisector and AB) and M be the midpoint of
AB. Then because IG and AB are parallel, ∆CIG and ∆CZM are similar triangles,
so

CI

IZ
=

CG

GM
= 2.

On the other hand, AI is the angle bisector through A in ∆ACZ, which divides
the opposite side in the ratio of the sides adjacent to A, so AC = 2AZ. Similarly,
BC = 2BZ, and adding these two equations we get AC +BC = 2AB. Now use the
law of sines to express all the side lengths of ∆ABC in terms of BC:

AC = BC
sin β

sinα
, AB = BC

sin(π − α− β)

sinα
= BC

sin(α + β)

sinα
,

and it follows that
sin β + sinα = 2 sin(α + β) .

Given that β = 2 tan−1(1/3), we have

sin β = 2 sin(tan−1(1/3)) cos(tan−1(1/3)) = 2 · 1√
10
· 3√

10
=

3

5
,

cos β = 2 cos2(tan−1(1/3))− 1 =
4

5
,

and using the addition formula for sine we get

3

5
+ sinα = 2 sinα cos β + 2 cosα sin β

=
8

5
sinα +

6

5
cosα,

which simplifies to
sinα + 2 cosα = 1 .

If we set x = cosα, y = sinα we have 2x+ y = 1, x2 + y2 = 1. Eliminating y yields
5x2 − 4x = 0, so x = 0 or x = 4/5, but x = 4/5 would yield a negative value for y,
which is impossible. So cosα = 0 and α = π/2 .

Solution 2. Let h be the length of the altitude from C in ∆ABC, and let r be the
radius of the inscribed circle. Then the area of ∆ABC is equal to h · AB/2 and also,
as can be seen by dissecting ∆ABC into three triangles with a common vertex at I,
equal to r · (AB +BC + AC)/2. On the other hand, because IG is parallel to AB,
the distances from I and from G to AB are equal. The distance from I is r, and
because the centroid is two-thirds of the way (along the median) from C to AB, the
distance from G is h/3. So r = h/3, and comparing the expressions above for the
area of the triangle, we see that

1

3
(AB +BC + AC) = AB, that is, BC + AC = 2AB .

From here we can proceed as in the first solution, or we can use the law of cosines:

AC2 = AB2 +BC2 − 2AB ·BC cos β = AB2 +BC2 − 8

5
AB ·BC , so

(2AB −BC)2 = AB2 +BC2 − 8

5
AB ·BC , which yields AB =

4

5
BC, AC =

3

5
BC .



So AB2 + AC2 = BC2, and ∆ABC is a right triangle with the right angle α at A.

A3. Given real numbers b0, b1, . . . , b2019 with b2019 6= 0, let z1, z2, . . . , z2019 be the roots
in the complex plane of the polynomial

P (z) =
2019∑
k=0

bkz
k.

Let µ = (|z1|+ · · ·+ |z2019|)/2019 be the average of the distances from z1, z2, . . . , z2019
to the origin. Determine the largest constant M such that µ ≥M for all choices of
b0, b1, . . . , b2019 that satisfy

1 ≤ b0 < b1 < b2 < · · · < b2019 ≤ 2019 .

Answer. M =

(
1

2019

) 1
2019

=
1

2019
√

2019
.

Solution. Because the polynomial factors as

P (z) = b2019(z − z1)(z − z2) · · · (z − z2019),

its constant term is

b0 = −b2019z1z2 · · · z2019 ,
and therefore we have

|z1||z2| · · · |z2019| =
b0
b2019

≥ 1

2019
.

By the AM-GM inequality,

µ = (|z1|+ · · ·+ |z2019|)/2019 ≥ (|z1||z2| · · · |z2019|)
1

2019 ≥
(

1

2019

) 1
2019

.

So to finish the proof, it is enough to exhibit a specific polynomial for which

µ = M , where M =

(
1

2019

) 1
2019

. Note that for such a polynomial, all the |zi| must be

equal to M , and we must have b0 = 1, b2019 = 2019. Specifically, let ω = exp(2πi/2020),
a primitive 2020th root of unity. Then the polynomial

P (z) = 2019(z −Mω)(z −Mω2) · · · (z −Mω2019)

= 2019 · z
2020 −M2020

z −M
= 2019(z2019 +Mz2018 + · · ·+M2018z +M2019)

has coefficients

b0 = 2019M2019 = 1 < b1 = 2019M2018 < · · · < b2018 = 2019M < b2019 = 2019

and roots zi = Mωi with |zi| = M , so µ = M as desired.



A4. Let f be a continuous real-valued function on R3. Suppose that for every sphere S of
radius 1, the integral of f(x, y, z) over the surface of S equals 0. Must f(x, y, z) be
identically 0?

Answer. No.

Solution. We will show that any nonzero continuous function f that depends on
just one of the three variables x, y, z and that is periodic with period 2 and average
value 0 provides a counterexample. (One such function is f(x, y, z) = sin(πz).) Let f
be such a function, and assume that f depends only on z. Then to find the surface
integral of f(z) over a sphere of radius 1, we may assume without loss of generality
that the sphere is centered at (0, 0, c); it can then be parametrized by

x = sinφ cos θ, y = sinφ sin θ, z = c+ cosφ, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

For this parametrization R(φ, θ) =< sinφ cos θ, sinφ sin θ, c + cosφ> we have the
surface area element

dS = |∂R/∂φ× ∂R/∂θ| dφ dθ
= |<cosφ cos θ, cosφ sin θ,− sinφ> × < − sinφ sin θ, sinφ cos θ, 0> | dφ dθ
= |<sin2 φ cos θ, sin2 φ sin θ, sinφ cosφ> | dφ dθ = sinφ dφ dθ.

Therefore, the surface integral is equal to∫ π

0

∫ 2π

0

f(c+ cosφ) sinφ dθ dφ = 2π

∫ π

0

f(c+ cosφ) sinφ dφ

= 2π

∫ c+1

c−1
f(z) dz.

Because the integral is over a full period of f and f has average value 0, the integral
is always 0.

A5. Let p be an odd prime number, and let Fp denote the field of integers modulo p. Let
Fp[x] be the ring of polynomials over Fp, and let q(x) ∈ Fp[x] be given by

q(x) =

p−1∑
k=1

akx
k,

where

ak = k(p−1)/2 mod p .

Find the greatest nonnegative integer n such that (x− 1)n divides q(x) in Fp[x].

Answer. n =
p− 1

2
.

Solution. Let m =
p− 1

2
. Then the polynomial q(x) can be obtained from the

polynomial P (x) =
p−1∑
k=0

xk by m applications of the linear operator L on Fp[x] defined

by L(f(x)) = xf ′(x), where the prime denotes taking the formal derivative. Note

that if a polynomial f(x) ∈ Fp[x] is divisible by (x− 1)r, then L(f(x)) is divisible by

(x− 1)r−1 (to see this, write f(x) = (x− 1)rg(x) and differentiate both sides). We



now observe that because the coefficients are in Fp, we can write

P (x) =

p−1∑
k=0

xk = 1 + x+ · · ·+ xp−1 =
1− xp

1− x
=

(1− x)p

1− x
= (1− x)p−1,

so P (x) is divisible by exactly p − 1 = 2m factors x − 1, and by the observations
above, q(x) = Lm(P (x)) is divisible by at least 2m−m = m factors x− 1. To show
that q(x) cannot have more than m factors x − 1 in Fp[x], note that the result of
applying L another m times to the polynomial q(x) is

Lm(q(x)) =

p−1∑
k=1

kp−1xk

=

p−1∑
k=1

xk (by Fermat’s Little Theorem)

= P (x)− 1.

Because P (x) is divisible by x− 1, Lm(q(x)) is not, so q(x) cannot have more than m
factors x− 1, showing that n = m.

A6. Let g be a real-valued function that is continuous on the closed interval [0, 1] and
twice differentiable on the open interval (0, 1). Suppose that for some real r > 1,

lim
x→0+

g(x)

xr
= 0 .

Prove that either

lim
x→0+

g′(x) = 0 or lim sup
x→0+

xr|g′′(x)| =∞ .

Solution. Throughout this solution, we will abbreviate lim
x→0+

by lim , and similarly

for lim sup
x→0+

and lim inf
x→0+

. Suppose that under the assumptions of the problem,

lim g′(x) 6= 0 . We will show that then lim supxr|g′′(x)| =∞ . First of all, from the
given limit of g(x)/xr we have g(0) = 0. We claim that

lim inf g′(x) ≤ 0 ≤ lim sup g′(x). (∗)
In fact, if the left-hand inequality would fail, there would be some positive constant
c and some interval (0, δ) on which g′(x) > c. But that would imply g(x) > cx on
this interval, in contradiction with the given limit. The argument for the right-hand
inequality is similar. Also, if both inequalities were equalities, then we would have
lim g′(x) = 0 after all, so at least one of the two inequalities in (∗) must be strict.

Now suppose that the inequality lim sup g′(x) > 0 is strict. (The other case is

completely analogous.) Choose a positive constant C < lim sup g′(x). Then because

g′ is continuous on (0, 1) and lim inf g′(x) ≤ 0, we can find a sequence (bn) of

real numbers tending to zero such that g′(bn) = C, and for each bn we can find

a number an with 0 < an < bn such that g′(an) = C/2 and such that on the

interval [an, bn], g′(x) ≥ C/2. By the Mean Value Theorem on that interval, we then

have g(bn) − g(an) ≥ C(bn − an)/2, so at least one of |g(bn)| ≥ C(bn − an)/4 and



|g(an)| ≥ C(bn − an)/4 must hold. Let

tn =
bn − an
b rn

.

Then because we know lim g(x)/xr = 0, it follows that tn → 0 as n → ∞, and in
particular, an/bn approaches 1 as n→∞.

Finally, applying the Mean Value Theorem to g′ on the interval [an, bn] shows the
existence of un ∈ (an, bn) such that

g′′(un) =
g′(bn)− g′(an)

bn − an
=
C − C/2
bn − an

=
C

2tnb rn
.

If we take n sufficiently large so that an/bn ≥ (2/3)1/r, we will have 3u rn > 3a rn ≥ 2b rn
and thus

g′′(un) ≥ C

3tnu rn
, that is, u rn g

′′(un) ≥ C

3tn
.

As tn approaches 0 as n→∞, it follows that lim supxrg′′(x) =∞.



B1. Denote by Z2 the set of all points (x, y) in the plane with integer coordinates. For
each integer n ≥ 0, let Pn be the subset of Z2 consisting of the point (0, 0) together
with all points (x, y) such that x2 + y2 = 2k for some integer k ≤ n. Determine, as a
function of n, the number of four-point subsets of Pn whose elements are the vertices
of a square.

Answer. 5n+ 1.

Solution. Let Sk be the set of all points (x, y) ∈ Z2 such that x2 + y2 = 2k, so that

Pn = {(0, 0)} ∪
n⋃
k=0

Sk .

Then S0 = {(1, 0), (−1, 0), (0, 1), (0,−1)} and S1 = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.
For k ≥ 2 and any (x, y) ∈ Sk, we have x2 + y2 ≡ 0 (mod 4), so because 0 and 1 are

the only squares (mod 4), x and y must both be even. If we put x = 2x1, y = 2y1,

then 4(x21 + y21) = 2k, so x21 + y21 = 2k−2 and (x1, y1) ∈ Sk−2. It follows by induction

on k that

Sk = {(2q, 0), (−2q, 0), (0, 2q), (0,−2q)} for k = 2q even and

Sk = {(2t, 2t), (2t,−2t), (−2t, 2t), (−2t,−2t)} for k = 2t+ 1 odd.

Note that for any k, the four points of Sk form the vertices of a square; also, for any
q there are four squares with one vertex at the origin, two vertices in S2q, and one

vertex in S2q+1 (the square with vertices (0, 0), (2q, 0), (2q, 2q), (0, 2q) and the three

squares obtained from it by rotation through π/2, π, 3π/2 around the origin), and
for any t there are four squares with one vertex at the origin, two vertices in S2t+1,

and one vertex in S2t+2 ( the square with vertices (0, 0), (2t, 2t), (0, 2t+1), (−2t, 2t) and

the three squares obtained from it by rotation). Thus when we pass from Pn to Pn+1

by including the points in Sn, we get at least five additional squares, whether n is
even or odd. Because there is exactly one four-point subset of P0 (namely S0) that
gives a square, there will be exactly 5n+ 1 such subsets of Pn , provided that the only
squares of which all vertices are in the set

P∞ =
∞⋃
n=0

Pn = {(0, 0)} ∪
∞⋃
k=0

Sk

are the ones we have mentioned so far.
To see that there are no additional such squares, first note that for all k ≥ 2, all

points in Sk have only even coordinates; if we have a square for which each vertex is

in {(0, 0)} ∪
∞⋃
k=2

Sk , we can scale down all coordinates by a factor 2 and get another

square of which all vertices are in P∞ . Thus it is sufficient to consider squares for
which all vertices are in P∞ and at least one vertex is in S0 ∪ S1.

It is impossible to have just one of the vertices of such a square be in S0 ∪ S1,
because the square of the side length from that vertex to any other vertex would be 1
or 2 mod 4, whereas the square of a side length not involving that vertex would be 0
mod 4. By the same argument, if exactly two of the vertices of such a square are in
S0 ∪ S1, those two must be opposite vertices of the square. And if three or four of
the vertices of such a square are in S0 ∪ S1, we can choose two such vertices that are



opposite each other. Thus it is enough to analyze squares of which all vertices are in
P∞ and two opposite vertices are in S0 ∪ S1.

If one of the two opposite vertices in S0 ∪ S1 is in S0, up to rotational symmetry
we can assume it is (1, 0). Then it can be checked by a quick case analysis that the
vertex of the square opposite it cannot be in S1; if it is (−1, 0), then the vertices of
the square are the four points of S0, otherwise it is (0, 1) up to reflectional symmetry,
and the vertices of the square are (0, 0), (1, 0), (1, 1), (0, 1). The final possibility is
that the two opposite vertices in S0 ∪ S1 are both in S1, in which case we can assume
up to symmetry that they are (1, 1) and (−1,−1) (and the vertices of the square
are all the points of S1) or (1, 1) and (−1, 1) (and the vertices of the square are
(0, 0), (1, 1), (0, 2), (−1, 1)). We have now checked that the only possible squares whose
vertices are all in Pn are the 5n+ 1 squares found above.

B2. For all n ≥ 1, let

an =
n−1∑
k=1

sin
( (2k−1)π

2n

)
cos2

( (k−1)π
2n

)
cos2

(
kπ
2n

) .
Determine

lim
n→∞

an
n3

.

Answer.
8

π3
.

Solution. Let θn =
π

2n
, and note that sin θn 6= 0. Then we have

an =
n−1∑
k=1

sin((2k − 1)θn)

cos2((k − 1)θn) cos2(kθn)

=
1

sin θn

n−1∑
k=1

sin((2k − 1)θn) sin θn
cos2((k − 1)θn) cos2(kθn)

=
1

sin θn

n−1∑
k=1

1

2

cos((2k − 2)θn)− cos(2kθn)

cos2((k − 1)θn) cos2(kθn)

=
1

sin θn

n−1∑
k=1

1

2

2 cos2((k − 1)θn)− 1− (2 cos2(kθn)− 1)

cos2((k − 1)θn) cos2(kθn)

=
1

sin θn

n−1∑
k=1

( 1

cos2(kθn)
− 1

cos2((k − 1)θn)

)
.

We now see that the sum telescopes, and we get

an =
1

sin θn

( 1

cos2((n− 1)θn)
− 1
)
.

Because nθn =
π

2
, we have cos((n− 1)θn) = cos(

π

2
− θn) = sin θn, so

an =
1

sin3 θn
− 1

sin θn
.



Now let n→∞. Then θn → 0, so

lim
n→∞

n sin θn = lim
n→∞

nθn =
π

2
.

Therefore,

lim
n→∞

an
n3

= lim
n→∞

1

(n sin θn)3
− lim

n→∞

1

n2(n sin θn)

=
1

(π/2)3
− 0 =

8

π3
.

B3. Let Q be an n-by-n real orthogonal matrix, and let u ∈ Rn be a unit column vector
(that is, uTu = 1). Let P = I − 2uuT , where I is the n-by-n identity matrix. Show
that if 1 is not an eigenvalue of Q , then 1 is an eigenvalue of PQ .

Solution. Note that P (u) = u− 2uuTu = u− 2u = −u, while if v ∈ Rn is a vector
orthogonal to u, that is, if uTv = 0, we have P (v) = v − 2uuTv = v. So P has a
one-dimensional eigenspace for the eigenvalue λ = −1 and an (n − 1)-dimensional
eigenspace for the eigenvalue λ = 1, and thus det(P ) = −1. Also, P is an orthogonal
matrix; this can be seen geometrically by noting that P is the matrix of the reflection
in the hyperplane through the origin with normal vector u, or by direct computation:

P TP = (I − 2(uuT )T )(1− 2uuT ) = (1− 2uuT )(1− 2uuT )

= 1− 4uuT + 4u(uTu)uT = 1− 4uuT + 4uuT = 1 .

Now recall that any orthogonal matrix has determinant ±1, and that the product
of orthogonal matrices is orthogonal. Therefore, because det(P ) = −1, we know Q
and PQ are orthogonal matrices of the same size that have opposite determinants
±1. The desired result now follows immediately from the following.

Lemma. If A is an n-by-n real orthogonal matrix such that either (i) det(A) = 1
and n is odd or (ii) det(A) = −1 and n is even, then 1 is an eigenvalue of A.

To prove the lemma, first let λ ∈ C be any eigenvalue of A and v ∈ Cn be an associated
eigenvector. Then, taking complex conjugates, Av = λv yields Av = λv, so

(Av)TAv = λλ vTv = |λ|2|v|2 , while also

(Av)TAv = vT (ATA)v = vTv = |v|2 .
Because |v| 6= 0, it follows that |λ| = 1. Thus the eigenvalues of A that are not 1
or −1 must occur in complex conjugate pairs for which λλ = 1. The product of all
the eigenvalues (counting multiplicity) is det(A), and if we leave out the complex
conjugate pairs, the product of the real eigenvalues ±1 will still be det(A). If n is odd,
the number of real eigenvalues is odd, but to get det(A) = 1 the number of factors −1
must be even, so the eigenvalue 1 must occur at least once. Similarly, if n is even, the
number of real eigenvalues is even (in general, possibly zero), but to get det(A) = −1
the number of factors −1 must be odd, and again the eigenvalue 1 must occur.

B4. Let F be the set of functions f(x, y) that are twice continuously differentiable for
x ≥ 1, y ≥ 1 and that satisfy the following two equations (where subscripts denote
partial derivatives):

xfx + yfy = xy ln(xy) ,

x2fxx + y2fyy = xy .



For each f ∈ F , let

m(f) = min
s≥1

(
f(s+ 1, s+ 1)− f(s+ 1, s)− f(s, s+ 1) + f(s, s)

)
.

Determine m(f), and show that it is independent of the choice of f .

Answer. m(f) = 2 ln 2− 1

2
, independently of the choice of f ∈ F .

Solution. First note that for any f ∈ F ,

f(s+ 1, s+ 1)−f(s+ 1, s)− f(s, s+ 1) + f(s, s) =

= (f(s+ 1, s+ 1)− f(s, s+ 1))− ((f(s+ 1, s)− f(s, s))

=

∫ s+1

s

fx(x, s+ 1) dx−
∫ s+1

s

fx(x, s) dx

=

∫ s+1

s

(fx(x, s+ 1)− fx(x, s)) dx

=

∫ s+1

s

∫ s+1

s

fxy(x, y) dy dx,

so to find m(f) we must minimize this double integral. We now use the given
partial differential equations to find fxy. Taking partial derivatives of both sides of
xfx + yfy = xy ln(xy) with respect to each of x and y, we get the two equations

fx + xfxx + yfyx = y ln(xy) + y, xfxy + fy + yfyy = x ln(xy) + x. (∗)

Note that because f is twice continuously differentiable, fyx = fxy. If we multiply the
first equation in (∗) by x and the second equation by y and add the results, we obtain

(xfx + yfy) + (x2fxx + y2fyy) + 2xyfxy = 2xy ln(xy) + 2xy.

Using the two given equations to replace the bracketed expressions on the left and
then dividing by 2xy leads to

fxy =
1

2
(ln(xy) + 1) =

1

2
(lnx+ ln y + 1).

Therefore, we have

m(f) = min
s≥1

∫ s+1

s

∫ s+1

s

1

2
(lnx+ ln y + 1) dy dx

=
1

2
min
s≥1

∫ s+1

s

(
lnx+ 1 +

∫ s+1

s

ln y dy
)
dx

=
1

2
min
s≥1

(∫ s+1

s

lnx dx+ 1 +

∫ s+1

s

ln y dy
)

= min
s≥1

(∫ s+1

s

ln t dt+
1

2

)
.

Because the function ln is increasing, the minimum occurs for s = 1, and so

m(f) =
1

2
+

∫ 2

1

ln t dt =
1

2
+ (t ln t− t)

∣∣2
t=1

= 2 ln 2− 1

2
.



Comment. With some additional calculation it can be shown that the functions in
F are exactly those of the form

f(x, y) =
1

2
xy ln(xy)− 1

2
xy + C(lnx− ln y) +D,

where C and D are arbitrary constants.

B5. Let Fm be the mth Fibonacci number, defined by F1 = F2 = 1 and Fm = Fm−1 +Fm−2
for all m ≥ 3. Let p(x) be the polynomial of degree 1008 such that p(2n+ 1) = F2n+1

for n = 0, 1, 2, . . . , 1008. Find integers j and k such that p(2019) = Fj − Fk.
Answer. p(2019) = F2019 − F1010, so j = 2019, k = 1010.

Solution 1. More generally, let pN(x) be the polynomial of degree N such that
pN(2n + 1) = F2n+1 for n = 0, 1, 2, . . . , N . We will show by induction on N that
pN (2N +3) = F2N+3−FN+2 ; setting N = 1008 then gives the desired answer. For the
basis step, p1(x) is the linear polynomial with p1(1) = 1, p1(3) = 2, so p1(x) = (x+1)/2
and p1(5) = 3 = F5 − F3 . To start the induction step, note that pN(x) and pN−1(x)
have the same values for x = 1, 3, 5, . . . , 2N − 1, and therefore there is a constant cN
such that

pN(x) = pN−1(x) + cN(x− 1)(x− 3) · · · (x− (2N − 1)).

We can find cN by substituting x = 2N + 1 and using the induction hypothesis
pN−1(2N + 1) = F2N+1 − FN+1 , which yields

F2N+1 = F2N+1 − FN+1 + cN(2N)(2N − 2) · · · 2 and thus cN =
FN+1

2NN !
.

It follows that

pN(x) = (x+ 1)/2 + c2(x− 1)(x− 3) + · · ·+ cN(x− 1)(x− 3) · · · (x− (2N − 1))

= (x+ 1)/2 +
N∑
i=2

Fi+1

2ii!
(x− 1)(x− 3) · · · (x− (2i− 1)),

and in particular

pN(2N + 3) = N + 2 +
N∑
i=2

Fi+1

2ii!
(2N + 2)(2N) · · · (2N − 2i+ 4)

= N + 2 +
N∑
i=2

Fi+1(N + 1)N · · · (N − i+ 2)

i!

= N + 2 +
N∑
i=2

Fi+1

(
N + 1

i

)

=
N∑
i=0

Fi+1

(
N + 1

i

)
=

N+1∑
i=0

Fi+1

(
N + 1

i

)
− FN+2 .



Thus the induction on N will be complete if we can prove that
K∑
i=0

Fi+1

(
K
i

)
= F2K+1

for any positive integer K. This in turn follows from the more general fact

K∑
i=0

Fi+m

(
K

i

)
= F2K+m ,

which is true for all positive integers K and m and can be shown by a relatively
straightforward induction on K (the generality helps because the induction step uses
the induction hypothesis both for m and for m+ 1).

Solution 2. By Binet’s formula, we have

F2n+1 =
1√
5

((1 +
√

5

2

)2n+1 −
(1−

√
5

2

)2n+1
)

=
1 +
√

5

2
√

5
rn1 −

1−
√

5

2
√

5
rn2 ,

where r1, r2 are given by

r1 =
3 +
√

5

2
=
(1 +

√
5

2

)2
, r2 =

3−
√

5

2
=
(1−

√
5

2

)2
.

Therefore, if we define q1(x), q2(x) to be the polynomials of degree 1008 such that

q1(2n+ 1) = rn1 and q2(2n+ 1) = rn2 for n = 0, 1, 2, . . . , 1008,

we will have

p(x) =
1 +
√

5

2
√

5
q1(x) − 1−

√
5

2
√

5
q2(x).

Thus the following fact about interpolating polynomials will be useful.

Lemma. If q(x) is the polynomial of degree N such that q(n) = rn for

n = 0, 1, 2, . . . N , where r is some fixed real number, then q(N+1) = rN+1−(r−1)N+1.

To prove the lemma, first define

TN,k(x) =
N∏
j=0
j 6=k

(x− j) and QN,k(x) =
TN,k(x)

TN,k(k)
.

Then QN,k(x) is the polynomial of degree N such that for integers n with 0 ≤ n ≤ N ,

we have QN,k(n) = δn,k , where δ is the Kronecker delta. Therefore, q(x) is the linear

combination

q(x) =
N∑
k=0

rkQN,k(x)



of these “basic” interpolating polynomials. We then get

q(N + 1) =
N∑
k=0

rkQN,k(N + 1) =
N∑
k=0

rk
TN,k(N + 1)

TN,k(k)

=
N∑
k=0

rk
(N + 1)!/(N + 1− k)

k! (−1)N−k (N − k)!

=
N∑
k=0

(−1)N−krk
(N + 1)!

k! (N + 1− k)!
=

N∑
k=0

(−1)N−krk
(
N + 1

k

)

= −
N+1∑
k=0

(−1)N+1−krk
(
N + 1

k

)
+ rN+1 = rN+1 − (r − 1)N+1,

proving the lemma.

The lemma applies to the polynomials q(x) = q1(2x+ 1) and q(x) = q2(2x+ 1), so we
can compute

p(2019) =
1 +
√

5

2
√

5
q1(2019) − 1−

√
5

2
√

5
q2(2019)

=
1 +
√

5

2
√

5

(
r10091 − (r1 − 1)1009

)
− 1−

√
5

2
√

5

(
r10092 − (r2 − 1)1009

)
=

1√
5

((1 +
√

5

2

)2019 − (1−
√

5

2

)2019)− 1√
5

((1 +
√

5

2

)1010 − (1−
√

5

2

)1010)
= F2019 − F1010 ,

where we have used that r1 − 1 =
1 +
√

5

2
and r2 − 1 =

1−
√

5

2
.

B6. Let Zn be the integer lattice in Rn. Two points in Zn are called neighbors if they
differ by exactly 1 in one coordinate and are equal in all other coordinates. For which
integers n ≥ 1 does there exist a set of points S ⊂ Zn satisfying the following two
conditions?
(1) If p is in S, then none of the neighbors of p is in S.
(2) If p ∈ Zn is not in S, then exactly one of the neighbors of p is in S.

Solution. We will show how to construct such a subset for every n. Because each
point in Zn has exactly 2n neighbors, for each point there is a set of size 2n + 1
(consisting of its neighbors and itself) of which exactly one element should be in S.
This may suggest looking at congruences modulo 2n+ 1. More specifically, for each
integer k with 0 ≤ k ≤ 2n we can define a subset Sk of Zn by

Sk = {(x1, x2, . . . , xn) ∈ Zn |x1 + 3x2 + 5x3 + · · ·+ (2n− 1)xn ≡ k mod (2n+ 1)}.
It is immediate that these 2n + 1 subsets partition Zn ; we claim that any of the
subsets has the desired properties for S. To see this, let

f(x1, x2, . . . , xn) = x1 + 3x2 + · · ·+ (2n− 1)xn , so that

Sk = {(x1, . . . , xn) | f(x1, . . . , xn) ≡ k mod (2n+ 1)}. Note that moving from a point

p = (x1, . . . , xn) to one of its neighbors adds one of the numbers ±1,±3, . . . ,±(2n−1)

to the value of f(x1, . . . , xn). Because these numbers represent all the nonzero



congruence classes mod (2n+ 1)

(specifically, 1 ≡ 1, 2 ≡ −(2n−1), 3 ≡ 3, 4 ≡ −(2n−3), . . . , 2n−1 ≡ 2n−1, 2n ≡ −1),

for any k exactly one of the point p and its 2n neighbors is guaranteed to be in the
set Sk , as desired.
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