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Preface

This volume is intended for mathematicians and mathematics instructors who want to enhance the learning and 
achievement of students in their undergraduate mathematics courses. The chapters in this volume are based on research 
that closely examines the cognitive and social complexities of how learners build mathematical ideas. 

Academic mathematicians spend much of their time teaching, preparing to teach, or thinking about how to 
improve their teaching. Their conversations with colleagues and personal reflections often raise difficult questions 
about teaching and student learning. All the while the undergraduate mathematics education research community 
produces theories, models, curricula, and learning materials that speak to the questions mathematics instructors ask. 
To date, however, few vehicles have been available to assist instructors in using this research knowledge to better 
understand students’ conceptual growth and to facilitate their reflection on teaching practice. 

This volume is intended to bring some of the knowledge created by mathematics education researchers to the 
attention and service of mathematics instructors. The 23 chapters in the volume are divided into two sections. In 
Part 1, “Student Thinking, ” the chapters describe perspectives and findings derived from investigations about how 
people learn central ideas in the undergraduate mathematics curriculum. Part 2, “Cross-Cutting Themes,” contains 
chapters that focus on the teaching of mathematics and various ways to frame issues that are inextricably related to 
the art of teaching. In the table of contents, for each article there is a brief annotation describing what issues the article 
addresses.

 In both sections authors synthesize and describe research findings from multiple studies in ways that they believe 
will make the findings useful for classroom instructors. When chapters do include data from particular studies, the 
authors provide useful details on methodology and references for further elaboration. 

The authors in Part 1 each describe some facet of the growing body of knowledge regarding how students develop 
increasingly sophisticated ways of reasoning about particular mathematical ideas. In Part 2 the chapters focus on what 
research is revealing about the fundamental processes of teaching mathematics—including teacher interactions with 
students, teacher strategies for promoting student learning, teacher knowledge, and classroom and institutional values 
and norms.

Readers will find that mathematics education research, like any other field, has developed terminology to help 
systematize the collection of data and the interpretation of results. In this regard, authors have attempted to define 
terms likely to be new to readers outside of mathematics education. 

The variety of research methods used in mathematics education research and described in this volume may also be 
novel to some readers. Unlike mathematics, our field is empirical rather than deductive. It employs both quantitative 
methods—such as the administration of assessments to gauge learning and statistical analyses of a population’s 
performance, and qualitative methods—such as close studies of individual students or teachers or groups using data 
gathered through clinical interviews, observation of classrooms, coding and interpretation of videos, and examination 
of student work. 

All of the chapters in this volume aim to reveal fundamental aspects of learning and teaching while simultaneously 
working toward solving pressing problems of practice. The chapters in this volume typically do not identify particular 
teaching methods that are “proven” to be effective – these types of studies would be “pure applied” studies, in that 
they would only attempt to show what works without proposing why. Such studies would employ tightly controlled 
experimental designs, defining and manipulating variables, then analyzing the variables’ impact. 

In our view, two factors limit the usefulness of experimental studies in the early stages of mathematics education 
research. First, it is difficult to control a classroom environment sufficiently so as to isolate variables and determine 
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cause and effect. Second, classical experimental design is used to test and verify theories. But mathematics education 
research is a young field, and for many research questions there is no established theory to test. 

At this stage of the field’s development, a central goal of our research is to develop explanatory models for 
patterns in observations. Thus, readers will notice that many of the chapters in this volume speak about frameworks 
or theoretical constructs that have emerged by systematically analyzing and searching for patterns in qualitative data. 
From these patterns researchers can begin to build theories about learning and teaching that are useful for guiding 
the development and refinement of curriculum and other instructional tools. Once theories about knowing or learning 
specific content become stable, researchers may also develop quantitative tools to continue testing and expanding the 
theories. 

Readers will also notice that transcripts of students’ speaking are included in many chapters. Such transcripts of 
students “reasoning aloud” are a source from which we draw data and make observations. We believe that reviewing 
these transcripts will also provide readers with greater insights into how students think and how the authors derived 
their conclusions. 

Above all, we hope that reading the chapters in this volume will encourage all mathematics teachers to become 
more reflective about their craft. In this need for reflection, teaching is much like problem solving. Teachers and 
problem solvers both become more effective as they acquire knowledge and skills; they become most effective when 
they can draw on their knowledge and skills to reflect on what works, why it works, what does not work, and why 
it does not work, in solving the problems upon which they are focused. May it also provide useful knowledge for 
the mathematics community as a whole, populated as it is by teacher-scholars who care deeply about doing the best 
possible job of assisting their students to develop as strong mathematical thinkers.
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Part I
Student Thinking

a.  Foundations for Beginning Calculus
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1
On Developing a Rich Conception of Variable

María Trigueros, Instituto Tecnológico Autónomo de México
Sally Jacobs, Scottsdale Community College

Introduction
Have you ever considered that what mathematicians call ‘variable’ is not a mathematically well-defined concept? 
And that variable can have different meanings in different settings? Unlike the concept of function, for example, 
variable has no precise mathematical definition. It has come to be a “catch all” term to cover a variety of uses of 
letters in expressions and equations. As a result, students are often unclear about the different ways letters are used in 
mathematics.

Later in this chapter, we provide practical suggestions to help students develop a rich conception of variable 
as called for by the National Council of Teachers of Mathematics (NCTM) in Principles and Standards for School 
Mathematics (NCTM, 2000). For now, though, let’s begin this chapter with some traditional problems that students 
typically encounter in their high school or college math courses. Work through each problem, and pay attention to the 
roles that your symbols play during the process of solving them.

Problem 1 .  Laureen trained for a bicycle race by repeatedly going up and down a hill near her house. Every time she 
went up the hill, she rode her bike at an average speed of 8 km/h and she rode back down the hill at an average speed 
of 17 km/h ending at the same spot where she started. One day, she went up and down the hill repeatedly for two and 
a half hours. How long did it take Laureen to go up the hill each time? What is the total distance she travelled that 
day? 

Problem 2.  Find the family of lines that pass through the point (–2, 3). What is the slope of the line that goes through 
(7, 4)? 

Problem 3 .  Find the values of a so that the function given by  
23 2,( )

3 4,
x x af x
x x a

 − ≤= 
+ >

  is continuous over its entire 
domain.
 

As you solved these problems, did you notice the complexity of demands for thinking about variable? Did your 
symbols take on different roles during the problem solving process?

All of these problems are straightforward for most advanced students. But for many average students, it is difficult 
to understand the role of the symbols at each different step in the solution process. It is hard for them to consider 
symbols sometimes as variables related in a function, at other times as unknown numbers to be found, and at still other 
times as general numbers. (By “general number” we mean a symbol whose value is neither assigned throughout the 
solution process nor is to be determined at the final stage of the solution process.) Yet many teachers say ‘variable’ 
for all these different instances of symbol. Using the same name for a symbol that plays a variety of roles is very 
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confusing to students. Most of them think of symbols as unknowns that have to be found no matter where they 
appear; a few consider them as standing for any number and they know how to operate on them procedurally; but all 
students have difficulty integrating all the different meanings of what mathematicians call ‘variable.’ Because the term 
‘variable’ covers a variety of uses of letters and lacks an analytic definition, it should be no surprise that attaining a 
well-developed robust variable conception is problematic for students.

To elaborate more fully, we turn now to a discussion of the complexity of the demands for thinking about variable 
in each of the problems above.

Analysis of Problem 1
The solution to the first part of the problem requires dividing the distance travelled by Laureen into two parts: the way 
up and the way down the hill. It is necessary to consider the time Laureen took while going uphill as a general number. 
That is, it can be represented with a letter, say t, that can take any value in a set and on which one can operate. The time 
to go downhill can be symbolized as T – t, where T is another general number. In order to find the total distance, one 
has to consider the distance up the hill the same as the distance down, since Laureen ended at the same spot where she 
started. Using the fact that the distance travelled is proportional to the time spent travelling, and that the constant of 
proportionality is the average speed, it is necessary to introduce functional relationships between the distance travelled 
each part of the trip and time spent in each of them: v1t = d1 and  v2 (T – t) = d2. In these relationships, it is important 
to note that t can be considered as the independent variable in the function, d1 and  d2  as the dependent variables, and 
v and T as parameters. Using these two relationships, one gets a new functional relationship, v1t +  v2 (T – t) = d1 + d2. 
Since the values of the parameters are given,  d1 = d2 results in the equation, ( )8 17 2.5t t= − , where the symbol t is a 
specific unknown that must be determined. Once the value of t is obtained, it is necessary to go back to the function 
that relates time and distance, substitute the value for t and solve a new equation for d1. The total distance can then be 
calculated by multiplying the uphill distance by 2.

Did you notice how the symbols take on different meanings at different times during the solution process? Initially, 
t and T were used as general numbers. Then t became an independent variable coordinating with the dependent 
variables d1 and d2. At that same time, T changed from a general number to a parameter. Near the end of the process, 
the roles of t and d1 changed to unknown from independent variable and dependent variable, respectively.

Analysis of Problem 2
The solution to this problem requires students to find an expression for all the possible lines that pass through the 
given point. They need to generalize what they know about a line to consider a family of lines each with different 
slopes. They must thus conceptualize slope as a varying quantity; but then they must introduce a parameter (a symbol 
used to generalize an algebraic statement so that the expression covers a family of cases) when they express the 
functional relationship between the independent variable x and the dependent variable y: ( )3 2y m x− = + . Students 
need to distinguish between the meaning of the symbol m, as a parameter, and the meaning of the symbols x and y, as 
covariates. This distinction is required in order for them to recognize that m (not x!) now becomes the unknown to be 
determined. Take note of the complexity of understanding required here: the student must move flexibly from variable 
as varying quantity to variable as parameter, as independent/dependent variable, and as unknown.

Analysis of Problem 3
To solve this problem the student needs to understand the functional relationship between x and ( )f x , where x can 
take any real value. It also helps if the student  considers this relationship as a dynamic covariation between the 
independent and dependent variables. Furthermore, the ability to distinguish the different roles played by the variables 
becomes crucial when applying the definition of continuity for a real function. In the expression, lim ( ) ( )x a f x f a→ = , 
the student must realize that the independent variable x varies dynamically with the dependent variable f (x) as it nears 
the value of the parameter a. At the moment when x takes the value of a, the student must recognize that the role of 
( )f x  changes from dependent variable to a specific unknown that must be found.

Following in the spirit of the analysis of these three problems, you may now have a more acute awareness of the 
different uses and the changes in meaning of the term ‘variable.’ Several questions may come to mind: When is the 
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last time you discussed the concept of variable with your students? How often do you point out the different ways in 
which variables are used in mathematics? Are you satisfied with the treatment given to variable in the textbooks? Do 
you assume, perhaps, that students just “know” variable and that it’s not necessary to spend much class time talking 
about it?

Mainstream mathematics textbooks used in the high school, community college and first-year mathematics 
university programs (including the calculus sequence) generally give a cursory treatment to the concept of variable. 
The concept is not well developed and it is not given much attention. Thus it is not surprising that high school and 
college students possess variable conceptions that in some cases are narrow, limiting, and generally underdeveloped. 
In the next section, we present literature regarding the impoverished nature of some commonly held variable notions. 
Moreover, the research literature suggests that these limited conceptions of variable can pose obstacles for students 
when they advance to calculus and higher levels. This chapter discusses some of this research and provides practical 
suggestions.

Research Literature About Students’ Conceptions of Variable
Research on both high school and beginning college math students suggests that their conceptions of variable are 
often superficial and lacking in richness. A rich variable conception should include the notion of changing quantity 
and joint variation. Also, dynamic imagery plays a key role in a well-developed variable conception. In this section, 
we summarize several studies related to these aspects of a rich variable conception.

Superficial Conceptions
In an investigation involving 167 beginning college students, Ursini and Trigueros (1997) concluded that these students 
had generally superficial conceptions of variable. The majority were able to interpret, symbolize and manipulate 
variables as specific unknowns only at a very elementary level. For example, they could interpret the symbol x in 

3 7x+ =  as representing an unknown value, and they knew that x in 3x+  is not an unknown to be determined. 
Furthermore, they could symbolize the relationship 2y x=  from the data of a given table, and could correctly 
manipulate the symbols in expressions such as 2 5 4 3x x- = + . They could recognize the presence of an unknown 
number in a problem; but their ability to process other given information was limited (e.g., the ability to use contextual 
data to symbolize an equation). In particular, they often had difficulty discriminating between variable as unknown and 
variable as general number in fairly simple expressions. For example, they had trouble seeing how variable is used 
differently in equations such as 24 12 9 5x x- + =  and ( )224 12 9 2 3x x x- + = - . Further, they consistently avoided 
manipulation of variables. Additionally, situations involving related variables posed difficulties for these students. 
While they could adequately handle correspondence between specific numbers, they had trouble with the notion of 
related variation. Their difficulties seemed to stem from the absence of a conception of relation as a transformation 
process or a dynamical process of variation.

The researchers noticed, also, that while these students were capable of recognizing the role played by the variable 
in very simple expressions and problems, any small increase in complexity provoked inadequate generalizations. 
Overall, students’ understanding of the concept of variable lacked the flexibility that is expected at the college level. 
In a later study, Trigueros and Ursini (2003) concluded that when students engaged in more complex problems in 
which different uses of variable are involved (for example, where they must pose and solve an equation or set up and 
work with a specific functional relationship), they were unable to differentiate among the different uses of variable 
and integrate them successfully.

Varying Uses of Variable
Based on a seminal large scale British study, Küchemann (1980) developed a model for describing and classifying 
different ways secondary students use algebraic letters. This classification model delineates six levels of interpretation 
and use of letters: Letter Evaluated; Letter Ignored; Letter as Object; Letter as Specific Unknown; Letter as Generalized 
Number; and Letter as Variable. Building on the work of Küchemann and others, Trigueros and Ursini (1999, 2001, 
2003) developed the “3 Uses of Variable Model” (3UV model) — not for classification purposes — but for the purpose 
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of analyzing student difficulties, textbook treatment, and classroom observations. In addition, they use the 3UV model 
in the development and testing of instructional design. Their work analyzes the different uses of variable and the 
different aspects involved in its use when solving elementary algebra problems.

The 3UV model identifies variable as (a) unknown, sometimes called ‘indeterminate’ in older textbooks, (b) 
general number, and (c) related variables, such as those found when working with functions or curves. In this model, 
the term general number refers to the meaning associated with symbols in general expressions in which it is necessary 
to perform algebraic operations; or when symbolizing generalizations (for example, those found in problems where 
it is needed to find the next term in a sequence of numbers, or the number of points or lines that a specific geometric 
pattern will have after a certain number of iterations). To be fluent with variables, students need to be able to interpret 
all three uses of variable in different parts of a multi-step problem. They also need to be able to symbolize a quantity 
with a variable and manipulate variables. In the case of functions and curves, they need to be able to construct graphs 
of related variables and interpret them. According to Trigueros and Ursini (1999, 2001, 2003), a well-developed 
understanding of algebra necessitates the ability to differentiate among the three uses of variable and to flexibly 
integrate their uses during the solution of any problem.

Parameters
The 3UV model has also been used to analyze problems that include the use of parameters. Ursini and Trigueros (2004) 
consider parameters as a particular use of general numbers since they are needed to generalize expressions that already 
include variables. But in their study with 62 undergraduates, they found that students think of parameters as variables. 
During interviews, most students responded, “this letter stands for a constant that can change, it is another variable.” 
These students interpreted parameters as general numbers and did not differentiate them from other variables unless 
the problem they were confronted with provided them with a concrete referent where the parameter acquires a specific 
meaning (for example, when parameters appear in the equation for a line or within a well-known formula such as the 
quadratic formula). Students showed difficulties manipulating the parameters, and on many occasions they tended to 
ignore them.

To illustrate, students solved the equation without taking the parameter into account when they were presented 
with the following problem: Given the equation 23 7 0x px+ + = , for which values of p does the equation have only 
one solution? What are the roles of p and x in this equation? When asked to explain their answer, they could not 
attach any meaning to p. They did not see p as the coefficient part of the linear term; they ignored it and were able 
to solve only a particular case. Most of the time, when these students were asked to symbolize a generalization, they 
either ignored the parameter or identified some general elements from the problem, but ultimately could not write an 
appropriate expression or equation.

Changing Quantity, Dynamic versus Static Imagery, and Joint Variation
Using variables to represent changing quantities and express relationships is particularly problematic for students, as 
substantiated by numerous reports (e.g., Küchemann, 1980; Kieran, 1992; Ursini & Trigueros, 1997, 2001; Trigueros 
& Ursini, 1999, 2001, 2003; Jacobs, 2002). Studies show that high school and beginning college students can work 
appropriately with correspondence between numbers, but the idea of joint variation is not easy for them. They can plug 
in a value of one variable into a functional relationship, but they are unable to determine variation intervals (Kieran, 
1992; English & Sharry, 1996) or think about this relationship in a more dynamic way (Ursini & Trigueros, 1997).

In exploring this difficulty, a few studies have revealed the role played by a covariational view of function that is 
supported by dynamic imagery in the formation of student conceptions of variables (e.g., Cottrill et al., 1996; Jacobs, 
2002; see also Oehrtman, Carlson, and Thompson, this volume). In the context of limit, investigations of calculus 
students’ views about variable have uncovered interesting results. Cottrill et al. (1996) found that, among first semester 
calculus students, mental construction of the domain process (x a ) was dynamic, whereas thinking about the range 
entailed the static image of considering only a single value, f a( ) π θ2 -( ). A similar finding was reported by Jacobs (2002) 
in her exploratory study of Advanced Placement BC (AP/BC) calculus students’ notions about variable. When these 
students were asked to discuss the meaning of ‘x’ in the expression lim ( )x a f x L = , they used dynamic imagery as 
they referred to x occurring in x a ; at the same time, however, they held a static view when they talked about x 
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occurring in  f (x) as a single value that is ‘plugged in.’ In other words, they did not conceive of the two instances of  x 
within the same equation in quite the same way (dynamic image in one instance, static in the other).

Moreover, Jacobs found that when these same students discussed derivative, the notion of continuous variation 
in a changing quantity seemed to be largely absent from their thinking. They gave no indication of holding an image 
of one variable changing in tandem with another variable (a dynamic covariational view) in the context of derivative. 
Also, they tended not to mention changing rate in their discussion of derivative. Jacobs concluded that, in general, 
the ability to view variable as capable of having changing values seems to play an important role in conceptualizing 
changing rate. Recognition that something is changing is an essential underpinning to understanding the key ideas in 
calculus such as derivative, changing rate, integration and the Fundamental Theorem.

White and Mitchelmore (1996) revealed serious deficiencies in first semester calculus students’ conceptions of 
variable that affected their ability to represent changing quantities. Their study involved four versions of four problems 
(each problem having to do with application of the first derivative), where the most contextual presentation required 
more translation than the purely symbolic presentation.  Most of the students had difficulty using variables to represent 
changing quantities; few were able to correctly symbolize. The investigators noted that “… defining and using new 
variables is qualitatively different from relating explicitly given variables in symbolic form… [it] involves forming 
relationships at a higher level of abstraction than relating those already given” (p. 91). In particular, students’ written 
work and their follow-up interviews demonstrated that many of them were confused about how to define appropriate 
variables and whether letters represented changing or constant values. Moreover, they tended to think about two or 
more variables as things to be manipulated rather than as representations of quantities having a relationship. The 
researchers noted that these students seemed to view variables as literal symbols detached from any concrete meaning. 
That is, their conception of variable was limited to algebraic symbols. The study concluded that an underdeveloped 
conception of variable is a major obstacle to applying calculus successfully. 

Examining variable understanding in the context of linear inequality, Sokolowski (2000) found that a conception 
of variable as a varying quantity is linked with the ability to model, solve, and interpret solutions to linear inequality 
problems. In addition, she concluded that most students lacked a deep and robust understanding of variable and the 
ability to use variables flexibly. Other authors have called attention to the role that covariational reasoning plays in 
students’ understanding of variable quantities changing in tandem with each other (e.g., Carlson, Jacobs, Coe, Larsen, 
& Hsu, 2002).

Possible Explanations
Why do secondary and post-secondary students have such difficulty with variable? The roots of the problem are 
indeed complex. Certainly over the past several centuries, variable has conveyed different meanings at different times. 
A retrospective look at these shifts in meaning provides some insight into why students may have difficulties.

Historical Development: Shifts Over The Ages
Variable is a concept for which conventional meanings and published definitions have varied considerably since its 
early origins. The meaning of variable has changed in emphasis at different times. In the 16th century, François Vieta 
(1540–1603) (or Viète) proposed a general method to solve problems. He referred to his method as the “analytical 
art” (Klein, 1968). Vieta’s greatest innovation was his conception of (a) a general object which could be introduced 
in the general method and which could be operated on by well-defined rules and (b) a notational scheme:  “a vowel 
to represent the quantity in algebra that was assumed to be unknown or undetermined and a consonant to represent a 
magnitude or number assumed to be known or given” (see Boyer & Merzbach, 1989, p. 341). He did not, however, 
apply his method to problems involving relationships between variables. The notion of related variables was advanced 
some years later. Working independently, both René Descartes (1596–1650) and Pierre Fermat (1601–1665) applied 
Vieta’s ideas to geometry; Descartes, in particular, considered general objects as a useful tool to model and think about 
problems, to introduce dependence between symbols, and to calculate the value of one of the objects when the value 
of the other was known (Youschkevitch, 1976).

 In the 18th century the mathematical term ‘variable’ conveyed the meaning of something that actually varies, such 
as time that passes, temperature that oscillates, days that lengthen, mortality rate that decreases, etc. (see Freudenthal, 
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1983). The earlier meaning is imbued with a kinesthetic quality, as evidenced by mathematical expressions such 
as ‘e converges to 0,’ ‘x runs through the set S,’ or ‘n approaches infinity.’ According to Hamley (1934), that kind 
of interpretation began to give way in the late 1800s to the idea of variable as an abstract concept relating to ‘pure’ 
number values disassociated from any concrete embodiment in physical quantity. This latter notion of variable, which 
Freudenthal (1983) calls ‘polyvalent name,’ has persisted throughout the last century. The modern mathematical 
practice, however, is to mix polyvalent names and variable mathematical objects into one term, ‘variable.’ 

A look at definitions used for the term ‘variable’ over the last few centuries reveals qualitative shifts in emphasis. 
Schoenfeld and Arcavi (1988) cite 10 different definitions of variable in various technical publications printed between 
1710 and 1984. These definitions differ according to the importance they attribute to notions such as domain (modern 
emphasis) or variable quantity (earlier emphasis). Mainstream mathematics curricula in several countries, for example 
México and the United States, tend to introduce variables as symbols (usually letters) that stand for numbers and 
whose value is changeable. Contrast this approach with the notion of changing amounts of some measurable quantity 
like amount of time. Appreciation of this distinction invites the question: Which is the variable, ‘time’ or ‘t’? Adding 
to the complexity of variable for the uninitiated student, phrases such as ‘x varies,’ ‘as x gets closer and closer to,’ and 
‘let number of hours be the independent variable’ are often heard.

Some researchers have expressed their concern about the polyvalence of meaning of variable. Thompson (1994b) 
theorizes that Newton’s insight leading him to the Fundamental Theorem of Calculus was supported by a mental 
image of dynamic quantities. Similarly, the development of an image of rate in 7th graders, he found, begins with 
an image of change in some quantity. Thus, according to Thompson (1994a), a conception of variable as changing 
magnitude is important for developing a mature image of rate. He asserts:

In today’s K–14 mathematics curriculum there is no emphasis on function as covariation. In fact, there is no 
emphasis on variation. . . . This is in stark contrast to the Japanese elementary curriculum which repeatedly 
provokes students to conceptualize literal notations as representing a continuum of states in dynamic 
situations. . . . It seems, to me anyway, that a progressively more abstract notion of covariation rests upon a 
progressively more abstract image of variable magnitude. (p. 29) 

Even earlier, Menger (1956) had expressed dismay over the blending of meanings into one term because it 
resulted in loss of preciseness in mathematical language. Freudenthal (1983) also disagreed with this convention on 
both pedagogical and mathematical grounds, since it obscures the important aspect of kinesthetics.  Janvier (1996) 
notes the difference between magnitudes and numbers. He contends that the essence of the term ‘magnitude’ captures 
the idea of a measuring number as opposed to a ‘pure’ number. For him, this double meaning has serious implications 
for curriculum design, particularly in the areas of modeling and function approaches to algebra. 

Calculational Attitude
Another possible explanation for student difficulties may relate to the tendency for both teachers and students to 
focus more on calculations and less on concepts involving variable. The role of calculational versus conceptual 
orientation to variable surfaced in the Jacobs’ (2002) study. Her investigation of AP/BC high school calculus 
students revealed that when they oriented themselves to a given task in a calculational manner (i.e., they talked 
about the task in terms of ‘find,’ ‘solve,’ ‘answer’ or ‘plug in’), they viewed a variable as an unknown, a letter that 
stands for a number or general number, an input to a function, or as a receptacle that receives a number in specific 
cases or parameter. These views about variable contrasted sharply with the views of students who exhibited a 
conceptual orientation and who talked about the task in terms of dependency relationships and varying values. In 
the latter case, students tended to view variables as tools for expressing mathematical relationships; their variable 
conception was characterized by a concern for how a variable relates to its domain and how two or more variables 
relate to each other.

In the context of function, these AP/BC students tended to focus on the independent variable and the process of 
evaluating the function at a particular input value. The independent variable was in the foreground of their discussions 
while the dependent variable remained in the background. In other words, they were not mentally coordinating two 
changing quantities in a covarying relationship.

In the context of limit, students’ calculational attitudes were associated with their tendency to view limit (or the 
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variable L) as an unknown value to be procedurally determined. The limit L was never discussed as a variable. Also, a 
mental coordination of L with a (as in ‘x approaches a’) was seldom observed in these students.

In the context of derivative, a calculational attitude was associated with students’ inability to view variable as 
a changing quantity. Whether they talked about slope, difference quotient, rate, velocity or derivative, the matter of 
two simultaneously changing quantities was never mentioned. What they almost always alluded to, however, was the 
procedure for calculating slope/rate/velocity or finding the derivative function.

White and Mitchelmore (1996) reported similar findings regarding students’ tendency to approach a derivative 
problem with a view toward using variables to perform a calculation or follow a procedure. As previously mentioned, 
they found that university calculus students’ difficulties in applying calculus were directly related to their tendency to 
view variables merely as algebraic symbols that are to be manipulated.

Lack of Rich Curricular Material
Current school mathematics curricula often fail to account for the conceptual complexity of variable. Not only do 
curriculum materials generally fall short of scaffolding a robust variable understanding, but instructional practices 
often neglect developing a rich conception. Textbook analysis and classroom observations indicate that curriculum 
and instruction at the secondary level concentrate mainly on the use of variable as unknown. Teachers seem to expect 
that as students encounter algebraic expressions, word problems, and problem-solving exercises, they will construct 
(all by themselves!) a robust, flexible and coherent conception of variable as a mathematical entity. However, the large 
body of research findings clearly indicates that this expectation has no grounding in empirical studies. Teachers need 
to become aware that something more explicit is needed to ensure that students develop the ability to differentiate 
general numbers from specific unknowns and work with variables as changing entities that can be related in a dynamic 
way. They need to concentrate on helping students work with the different uses of variable in a flexible way, to foster 
students’ ability to overcome a merely computational way of thinking about symbols, and to ensure that students 
achieve a stronger conceptual understanding.

Simply having students take more math courses does not improve their variable understanding. Results from a 
study by Trigueros and Ursini (1999) suggest that, as students continue to take algebra courses through high school, 
their conception of variable shows little sign of substantial and sustained improvement between middle school and 
university levels. The researchers examined interpretation, symbolization and manipulation of variable in a variety of 
representations (verbal statements, tables, graphs, algebraic expressions). They found that even though students are 
exposed to different uses of variable in algebra courses, they nonetheless fail to comprehend variable as a multifaceted 
entity. Surprisingly, on tasks involving variables in a functional relationship or identification and interpretation of the 
unknown, students who had not yet taken algebra performed better than students who had already studied algebra. 
This finding indicates that student difficulties with variable conception are probably attributable to current didactical 
approaches.

Interventions and Promising Results
Attempts to address the potential of students to understand the concept of variable after suitable intervention are 
reported by Ursini and Trigueros (2001). They designed a teaching approach that follows a spiral path where at 
each stage students are introduced first to a problem requiring only one use of variable at a time (variable as specific 
unknown, variable as general number, or variables in functional relationship) and then to a problem of the same level 
of difficulty but requiring integration of the different uses of variable. This procedure is repeated numerous times with 
ever increasing levels of task difficulty. This teaching design was tested in a study with 12- and 13-year-old public 
school students in México (Ursini, Trigueros, Escareño, & González, 2002). The analysis of these students’ work 
showed that after 15 sessions they had acquired the ability to recognize the different uses of variable and use them 
appropriately when working on simple algebraic problems. Also, they were able to differentiate among the uses of 
variable and integrate the different uses throughout the process of solving the problem. Overall, they demonstrated 
gains in their ability to shift between the different uses of variable in a flexible way. The next section proposes specific 
suggestions for the practitioner.
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A Call To Action
The National Council of Teachers of Mathematics (NCTM) has designated specific goals relating to variable 
understanding in children from pre-K through grade 12. In the Principles and Standards for School Mathematics 
(NCTM, 2000), a comprehensive resource guide and set of recommendations for mathematics curriculum, strategies 
for developing student conceptions of variable are explicitly recommended for each grade band (Grades preK–2, 
Grades 3–5, Grades 6–8, Grades 9–12). One of the NCTM’s guiding philosophies for developing variable conception 
is expressed in this document in a quote by Anna Sfard: “A thorough understanding of variable develops over a long 
time, and it needs to be grounded in extensive experience” (p. 39).  

It is interesting to note that in the NCTM (2000) document, most of the curricular recommendations addressing 
variable concept development target the middle grades.  There is very little discussion of variable at the secondary level. 
The same is true of the programs for the three compulsory mathematics courses for middle school education published 
by the Ministry of Education in México, as well as the most widespread programs for high school mathematics in 
México. A careful examination of all these curricula leaves us with the distinct impression that a robust variable 
understanding is tacitly assumed to be firmly established by the time students reach high school. The literature in 
mathematics education, however, strongly suggests otherwise. In fact, as we have documented throughout this chapter, 
high school algebra students tend to have under-developed conceptions of variable and this impoverishment holds true 
for college students as well. 

Practical Suggestions
The teaching of variable at all levels before calculus must develop the capacity of the learner to think of this concept 
as an entity and to understand its different uses as diverse facets of the same concept. Students need opportunities to 
discuss the differences in variables that appear in a problem so that they can become acquainted with different uses 
and can integrate and interiorize them into that which teachers and mathematicians call ‘variable.’ Students also need 
opportunities to reflect on the roles that symbols play at different moments in the solution of specific problems, as 
demonstrated in the analysis of problem solutions discussed at the beginning of this chapter.

When students arrive at the calculus level, their conception of variable is far from complete. They still need to 
be given opportunities to revisit variables and think about them in the differentiated way presented in these pages. 
Students are capable of developing a rich conception of variable, but they need the full complexity of the concept to 
be addressed in a more explicit manner in their courses. And since many of the conceptual obstacles facing calculus 
students are related to variables playing a dynamic role in functional relationships, mathematics educators must give 
increased curricular attention to variables in such roles. We must be overt and intentional as we redirect our efforts 
toward fostering well-connected understandings.

Specifically, it is important that teachers realize the need (a) to become aware of students’ difficulties with variables 
and (b) to address them explicitly in the classroom. In particular, teachers can incorporate into their classroom practice 
the following suggestions: 

•	 Encourage students to choose meaningful symbols for variables in a contextual setting (not always x and y), and 
take care that they are able to change the name of the variable when needed to be sure they are not using the 
variable only as the replacement of the name of an object, but as a symbol to operate with. In expressions such 
as T – t in the bicycle problem presented at the beginning of this chapter, it is helpful to ask students to write 
1–2 sentences to explain the difference in meaning between T and t. 

•	 Ask students to identify all of their symbolic expressions. For example, have them write in words what each 
expression represents and discuss similarities and differences. Engage them in explaining the difference 
between equations and open expressions. Have them write in words what each open expression represents. For 
their equations, have them explain when the symbols stand for a number or numbers they need to find and when 
they represent any number in a certain domain. In the case where there is a relationship between variables, have 
them explain in words which variables are related and how.

•	 Discuss with students the different roles (unknown, general number, related variables) played by each of the 
symbols in specific problems. For instance, have students work in groups to construct a table that shows, for 
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each successive step of the solution, what role each symbol plays in that particular step. Allow each group to 
present their table to the whole class and discuss the different roles played by their symbols with particular 
attention to when the roles change. Discuss similarities and differences between the tables presented.

•	 Request that students state the appropriate unit of measure that goes with each variable in a contextual setting. 
For example, when students identify variables and their relationship, have them write the unit of measure that 
goes with each variable. Also, when they identify their open expressions, have them write appropriate units.

•	 Provide opportunities for students to identify related variables and to explain how these quantities vary in 
different problems. Encourage them to imagine the variation and describe it in their own words. For example, 
when working with a problem such as the bicycle problem presented at the beginning of this chapter (e.g., 
number of times that Laureen rides up the hill, down the hill; distance travelled; duration of training that day, 
etc.), talk with students about all the quantities that vary. Ask students questions such as:  What is the smallest 
and largest value that you can imagine for each quantity identified?  What intermediate values do you imagine 
would occur between the smallest and largest values?

•	 Place increased emphasis on the covariation aspect of related variables. Have students work in groups to 
construct a 2-column table for each pair of variables that co-vary. Using their tables, have them construct 
graphs where they label and scale both axes. Have them select two points on their graph and discuss what each 
point represents (in terms of coordinated variables). Also have them explain what changes occur when moving 
from one point to the next. Then have them construct 3-column tables to show how the values of each variable 
change in tandem with the values of related variables.

•	 Help students develop dynamic imagery in connection with the concept of variable. Design classroom activities 
where students kinesthetically act out variation in some designated quantity over time (by walking, by hand 
movement along an axis on a graph, or by using physical models). Have them attend to aspects of the variation 
(for example, magnitude, amount of change, increasing/decreasing magnitudes, rate of change and changing 
rate). Then create for them a function setting where the varying quantities do not explicitly involve time and 
have them attend to aspects of variation in each quantity as it relates to the other.

•	 Reinforce all of these suggestions by including items on tests, quizzes, and other assessments that engage 
students in sense-making. For example, a problem like the bicycle problem (discussed earlier) lends itself to 
asking questions such as the following: What does the equation ( )f t d=  mean? Explain each letter. What is 
the unit of measure for ( )2f ? What does the equation ( ) 1f t =  mean? What does ( )f t  mean?

Classroom time spent on developing a rich conception of variable is time well spent. With appropriate curriculum 
and instruction, students can achieve gains in their confidence and proficiency in working with variables. A better 
knowledge of variable can help students overcome a merely computational orientation and achieve rich conceptual 
thinking. When students possess rich variable conceptions, they are better prepared to advance to their next higher 
course in mathematics. Our goal for students is that they will no longer struggle with the complexities of variable in 
the ways that they are struggling today.

Concluding Remarks
The research findings reported in this chapter make it clear that variable is a very complex concept and that students 
need help in developing a rich conception. The current body of research alerts us to specific difficulties that students 
face regarding the concept of variable and provides useful information to guide the design of interventions for helping 
students work more fluently with variables. The way is open for new curricular design; the way is open for new 
instructional methods. With research guiding the way, mathematics educators are now obligated to direct their efforts 
toward ensuring that students advance their conceptual understanding of variable.
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Rethinking Change

Bob Speiser and Chuck Walter
Brigham Young University

A cat springs from a walk into a run. A spiral shell takes form through growth. With suitable mathematics, what might 
we learn about the motion or the form? Calculus is said to help with questions about movement, growth and change. 
How, exactly, does it help us? What might we need to understand? How could we gain such understanding? In this 
paper we explore two tasks that we designed for students, one about a moving cat and one about a spiral shell. We 
have written extensively about these tasks (Speiser & Walter, 1994, 1996, 2004; Speiser, Walter & Maher, 2003), as 
well as several related tasks (Speiser, Walter & Glaze, 2005; Speiser, 2004). We revisit this research briefly, partly to 
introduce it to new readers, partly to suggest further implications.

For concreteness, consider a moving cat. Based on information to be gathered from the photographs in Figure 1, 
how fast might the cat be moving in Frame 10? We will consider this task in more detail below, but we encourage 
readers to tackle it right away, and to reflect on the kinds of thinking needed to resolve it.1

Figure 1. The cat (Muybridge, 1887). Note: The time interval between successive photographs is .031 sec. 
The distance between lines in the background grid is 5 cm. Every tenth vertical black line is emphasized.

Under typical instruction, far too many students fail to build sufficient understanding of the central mathematical 
ideas. In response, we would like to learn much more about the way successful learning might take place and about 
conditions that support such learning. On the one hand, a researcher might respond (as some have, especially in the 

1 It would certainly help to enlarge the figure given here, or else to copy from Muybridge (1887), which is still in print and legal to copy.

2
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quite extensive misconceptions literature) by documenting and systematizing the surprising range of difficulties that 
so many students have. While such research has made us more aware of the specific difficulties many students have, it 
has not, by itself, at least in our view, led to much progress in developing instruction—until quite recently.2 In general, 
the tendency has been to avoid pitfalls rather than to understand what successful learning might be like and how to 
support it. The work we survey here, on the other hand, takes a very different path: to study attentively, in detail, 
specific instances where students (typical students, not just a favored few) do learn successfully. In our analyses, we 
try to clarify what that learning might consist of, and to identify conditions that support it.

Our research is anchored in case studies where groups of learners, with little teacher intervention, tackle challenging 
investigations. We focus on how groups of students reason, based on information that they build together in complex, 
realistic problem situations. We are especially interested in task designs that invite students to tackle fundamental 
issues about change and motion. In the cases we consider here, students can discover how to reason about change. 
For us such cases, studied in detail, offer chances to clarify important theoretical and practical issues about student 
learning.

In our data, students build and advocate for models, that is, mathematical structures to describe or predict data. 
In the next section, we consider what students can learn from building models to fit or predict data in rich, realistic 
contexts that present important challenges. In later sections, we build from this basic theme.

Perspectives on Models
For clarity, we first consider building models in the context of a spiral shell (Speiser & Walter, 2004). Specifically, give 
students photographs of the fossil shell, as shown in Figure 2, and simple metric rulers.

Figure 2. The Placenticeras fossil. Age: 170 million years. Found near Glendive, Montana. 
The students’ photocopies were about twice this size. (Photo: Two Samurai Graphics.)

To treat the spiral mathematically, it is natural to introduce polar coordinates (r, q) centered at the spiral’s origin. What 
can you say about r as a function of q? 

This task was designed by the first author for first-semester calculus students, to invite them to look deeply at 
how models might be built in realistic situations. In Placenticeras, by design, students must first construct the data 
they will try to model. Hence students must decide where to locate the polar origin and axis, which angles q they will 
sample, and then make whatever measurements they need. The shell has visible irregularities. Thus, in addition to 
measurement discrepancies, students may decide to face important questions of interpretation. 

2 Awareness of the diversity of student difficulties, however, has begun to trigger research, by a number of workers, where epistemological and 
pedagogical issues have been explored productively. See the work of Carlson, Rasmussen, Selden & Selden, Zaskis, and others in this volume.
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For many students in an initial trial,3 an exponential model of the form

(1) 0r r aθ=

emerged quickly. Several students, however, made a cogent observation: when they plotted a model of the form 
(1) against a scatter plot of their data, they found that the data points, as one student put it “sort of snake back and 
forth” across the exponential. (Different groups of students, however, obtained different amplitudes and phases for 
their wobbles.) Leading the class, the first author asked for the period of the observed oscillations. Several students, 
although using different models, soon estimated a period of 2π. This estimate led several students to propose models 
of the form

(2)  0 sin( ).r r a b cθ θ= + +

These models, based on students’ visual estimates, offered much closer agreement with the data.4 If mere 
agreement with one’s data were the standard, we could have stopped right there. But discrepancies for b and c across 
several student groups raised a further issue.

Let’s take stock for a moment. Equations (1) and (2) present models for the spiral of Placenticeras. To move from 
(1) to (2), students reasoned from a graph of (1) together with the data points, in order to obtain good values for the 
constants b and c. That a model of the form (2) fits data better than a model of form (1) might indicate that (2) describes 
the shell more accurately. But the discrepancies for b and c suggest that the sine term in (2) might not describe the 
shell. 

One class session later, several students suggested that the sine terms reflected different choices for the polar 
origin. To support this guess, they used their values for b and c to relocate the polar origin. Measuring again obtained 
new models of the form (1), that is, with different values for r0 and a, which gave still better fits. In other words, 
they used the sine term in model (2) to reconstruct their data, and then returned to models of the form (1) without the 
controversial sine term.

If we think of data as inhabiting one world, and models inhabiting another, then all we need to do is find a formula 
to fit the data. As we have seen, it’s not that simple. When we reason carefully in realistic situations, building models 
and obtaining data often interact. Such interaction can impel students to reexamine fundamental mathematics, as they 
did above when they interpreted the sine term. The data (in this case measurements) present the shell, and so reflect 
decisions we have made about the shell’s geometry. 

Returning to a model of form (1) for the Placenticeras, we see that r can be interpreted as growing exponentially 
as a function of q. In other words, the Placenticeras grew proportionally, and in particular (neglecting a few obvious 
dents) it must therefore be self-similar. In this way our model tells us something new about Placenticeras. 

The spiral’s self-similar geometry can also be the basis for constructing models. In 2002 the first author taught 
an experimental mathematics class for students in the arts. In November, Sara Godfrey, a ballet major, noticed a copy 
of Figure 2 on a bulletin board and sketched it in her notebook. In a conversation several days later, Sara proposed to 
base her senior choreography project on the Placenticeras form, and asked the first author to help her and her dancers 
with the mathematics. A few days later, Sara recorded measurements of r at q-increments of 90 degrees into her journal 
next to a second rough sketch of the spiral.5

In Sara’s words: “When I see [the shell], I see movement. I can start from something small and investigate 
evolving into something larger, almost an explosion. Or, going backwards, an engulfment.” The shell’s chambers, 
“how each one relates to the one before,” challenged her to investigate the underlying geometric structure. She wanted 
her choreography to reflect the unifying rigor of the mathematics. “I see the space [that the dancers] are working in, 
and how it’s utilized, in a mathematical sense. I see failures in that, too. I want to try some things here, to best represent 
[the shell’s] shape in choreography that is anchored in the mathematical concepts.”6 

At one point in Sara’s choreography, six dancers formed a spiral on the floor of the stage. First, a lone male dancer 

3 September 18, 1991.
4 The students’ software could compute a least-squares estimate, but no student reported using such an estimate.
5 This and a related choreographic project, and their documentation, was supported by a modest grant from BYU’s Office of Research and Creative 
Activities. We are very grateful for this help. 
6 Conversation with Speiser, November 19, 2002. 
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ran in from the wings and sat down on the stage to mark the center. Next, five women entered in succession. The first 
woman took a spot not far from the center, to locate a first point on the spiral. The next dancer then took her place to 
give a second spiral point. Following her, the three remaining dancers quickly found appropriate locations. Figure 3, 
from a dress rehearsal on March 20, 2003, shows the resulting spiral just as the sixth and final dancer took her place.

At first the dancers found the spiral difficult to build and understand. When they tried to form it, they found 
themselves too tightly wound around the center. For them, as they posed it, the issue was to grasp more clearly how 
they should relate, in space, to one another.7 Sara then asked Speiser, observing from one side, to help the dancers 
grasp better how to build the form. With a rough sketch of Figure 4 in mind, he formed the angle α with his arms. 

Figure �. The equiangular spiral, as exemplified by the Placenticeras. (Montage: Two Samurai Graphics.)

7 Sara explained to us in conversations that dancers in classical ballet typically travel along straight lines, especially the corps. Hence her dancers, 
as they explained to us in interviews, saw spiral motions as challenging and new, both geometrically (the dancers tended toward circular arcs) and 
also physically, in that the acceleration needed to produce tight curves required surprising force and preparation. Sara sought here, quite consciously, 
as she explained in interviews, to widen the foundations of ballet.

Figure 3. The spiral on the floor. Here five women build the spiral form. Note: Their backs 
also faced the center when they selected their locations. (Photo: Two Samurai Graphics.)
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Then he moved outward, holding the angle of his arms fixed, using the ray t (given by his right arm and hand) to 
determine his direction. Because the spiral is self-similar, the angle α, giving the tangent direction, remains constant 
through the motion. Sara had worked through this construction before, but her dancers had not. Immediately they 
returned to their rehearsal. This time, as they acknowledged right away, the spiral they were seeking soon emerged as 
they had hoped.

Based on videotaped data from rehearsals, Sara’s dancers built the spiral form on stage on the basis of a mathematical 
model. Their model, shown in Figure 4, is both geometric and dynamic, in that it centers on developing the spiral curve 
through time. Each dancer found her place according to this model.8 In interviews the dancers emphasized the local 
and dynamic nature of their thinking. They never visualized a static spiral form projected on the stage, but rather each 
dancer sensed, from the positions of the dancers just ahead, where she had to land. In this way, we could say the model 
(equiangular growth) gave each dancer a tool to build or find a data point (a place on stage) to fit her model. Again, as 
we reflected, the data cannot simply be given (they vary from performance to performance), and the models were not 
built even to fit pre-given data, but rather to help the dancers to construct those data.

In the next section, we explore how students reason.

Rates of Change in Realistic Contexts
One message of this chapter is that if we take realistic modeling seriously (c.f., Speiser & Walter, 1994), then we need 
to treat the basic concepts of calculus with much more subtlety and depth than standard pedagogy does. In this section, 
we focus on the interplay between data and models in situations where the data come from motion. We anchor this 
discussion to the case of a specific moving cat, through 24 historic time-lapse photographs by Eadweard Muybridge 
(1887). These photographs9 appear in Figure 1 above.

In September 1993 we gave full-sized copies of the photographs in Figure 1 to first-semester calculus students, 
reviewed briefly how to find average speeds, and then posed two questions.

Based on information to be gathered from these photographs: (1) How fast is the cat running in Frame 10? 
(2) How fast is the cat running in Frame 20?

Because cats pursue their prey by sight, they should tend to move with their heads steady. Hence we suggested 
that students begin by taking the cat’s position to be given by the tip of the cat’s nose. In these photographs the cat 
shifts from a walk to a full gallop. The shift seems to be right around Frame 10, so we expected the average velocities 
for intervals before and after Frame 10 to be significantly different. From the photographs, students could calculate the 
average velocity between each pair of successive frames. Around frame 20, they found that the average speed between 
successive frames was nearly constant, but as the cat moved through frame 10, its average speed approximately 
tripled. What would the students do with this?

We posed this task (Speiser & Walter, 1994) to motivate discussion of the derivative as giving, at each moment, 
an instantaneous rate of change. We chose Muybridge’s photographs because we wanted students to confront such 
rates of change in a complex, realistic setting. We especially wanted students to appreciate how much the concept 
of an instantaneous rate of change can be an idealization, a kind of postulate that might reach notably beyond the 
discrete data that one might observe. Students argued after some discussion that one cannot know (in particular, cannot 
convincingly defend a value for) the instantaneous speed at Frame 10 based on the evidence at hand, because the 
average speed varied too drastically. 

Well and good, we thought. But a surprise came next, when we attempted to define the derivative formally, as 
the limit of a difference quotient.10 Our students, thinking of the cat, raised several very fundamental questions. In 
our view, as mathematicians, we might seem to gain precision when we introduce a function s = f (t) to represent the 
position of the cat’s nose at time t. Hence, in this kind of setting, we would typically presume that the function f (t) 

8 Our use of the word model here seems quite similar to the way models derived from data are said in practice to offer predictions. 
9 We learned of these photographs from David Lomen and David Lovelock (Cushing, Gay, Grove, Lomen, & Lovelock, 1992) who introduced them 
to illustrate potential uses of technology in teaching calculus.
10 We will try here to explain what happened very briefly, but we urge readers to consult our first paper on the cat task (Speiser & Walter, 1994) for 
full details, interpretation and discussion.
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has been defined for every t, from Frame 1 to 24, even though we know values of f (t) only for those 24 particular t at 
which a camera fired. We might further assume that the function f (t) is continuous, or even smooth. In this way, we 
imagine that an average speed exists for any interval [t, t + h] in our range, with h nonzero. Each such average speed 
can then be represented by the classical difference quotient

( ) ( ) ,h
f t h f tQ

h
+ -

=

whether or not we can provide numerical values, based on measurements, for the two terms in the numerator. Of 
course we can provide such values for each pair of successive frames, as we did earlier. The 23 average speeds that we 
obtain in this way give useful information about the motion of the cat, even though they do not seem to tell us much 
about what may have happened at Frame 10. In practice, position measurements are necessarily discrete, so there 
seems to be no way to get around the lack of local information. 

Based on this analysis, we enter suspect terrain the moment we enquire about a possible limit hQ L  as 0.h   
This limit, should it exist, would be the derivative f (t), here the instantaneous speed at time t. But, as our analysis 
suggests, this number would be simply a postulate if all we know for sure are discrete data. Further, asserting (or 
assuming) the derivative’s existence for a given t might seem like quite a drastic move for someone who has kept the 
data from the photographs clearly in mind. 

In a typical calculus course, perhaps by force of habit, we interpret the difference quotient geometrically as the 
slope of a secant, under the additional assumption that the function f is not just defined for every t in a suitable interval, 
but also that the graph of f is smooth. Thus we might explain the limit of Qh as 0h   dynamically, as the point of the 
graph given by t + h is imagined to approach the point given by t. In this way, imagining the tangent line and perhaps 
sketching it, we would argue for the tangent as a limit of secants. Of course, when h is very small, one cannot really 
see what happens, so some texts and instructors adopt the further strategy of zooming, progressively magnifying the 
graph of f (t), perhaps using a graphing calculator, until the curve looks linear. In this way a situation like that of Frame 
10 can come to resemble that of Frame 20, which, upon reflection, might seem strange. Indeed, when the second 
author tried this strategy (also in 1993), he found himself surprised by how his students understood the function f (t) 
in question. (Speiser & Walter, 1994, p. 146).

Chuck asked the students to imagine what happens to the secant when one of the two points approaches 
the other. Their response was that they could not do so. Chuck… then asked his students to imagine that the 
picture… instead of being on the blackboard, was now on their calculator screens, and asked them to imagine 
zooming in on the two points as they come together. Wouldn’t the curve look straighter after zooming in? 
Here is the subsequent exchange, as Chuck remembers it: 

“No,” said the students, “the curve looks straighter, but we still can’t tell you what will happen, because 
the curve has thickness.”

“Thickness?” Chuck asked.
“Yes, thickness,” the class responded.
“Is this thickness due to uncertainties?” Chuck asked.
“Yes.”
“As in the motion of the cat?” Chuck asked.
“Yes,” said the students, “we really don’t know where the cat is, so we can’t say how the points will 

come together.”
Through further discussions with our students, it became quite clear that the difference quotient and derivative 

(and later, the definite integral) made quite good sense when the function f (t) is well defined and smooth, as would be 
the case if f were built up in standard ways from elementary functions. As a result, we felt, we and our students needed 
to make clear to what extent a postulated model (to which calculus, in general, applies) might be taken to describe a 
given set of data (to which calculus may often not apply, as we have seen above). In other words, we chose to make 
the selection and design of models more visible, more open to inspection and discussion with the learners, in relation 
to a given set of data.

A further point is that the heuristic discussion of the tangent as limit of secants assumes directly that the tangent 
needs to be there. Psychologically at least, this makes good sense. For example, if we imagine driving through the x, y 
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plane along a road, say, given by a smooth function y = f(x), a driver or passenger would tend to look directly forward, 
along a straight line tangent to the road, our path of motion (Speiser & Walter, 1994, p. 148). Secants might seem at 
least as natural (as lines determined by two points) but the central issue, as we’ve seen, is to relate the secant to the 
tangent as the two points come together. These observations led the authors (loc. cit.) to discover a straightforward 
geometric argument, using the half-planes given by a moving tangent, that the secant limits to the tangent when the 
two points coincide. In this argument no zooms are needed, and there is no temptation to make use of one. Note, 
however that what seems natural certainly depends on the observer’s viewpoint. To understand a tangent as above, we 
must imagine moving with a point along a road; in contrast, for a secant, we would very likely need to stand outside 
the plane, to draw a line between two given points. 

At the very least, the cat task can raise important questions about continuity, and perhaps especially discontinuity 
(as at Frame 10) in cases where no evidence could dismiss the possibility that there might have been an instantaneous 
change of speed—as if a quantum of momentum suddenly arrived. As a result, in 1994 (ibid.) we urged including 
discontinuous functions as potential models early. By the time we wrote a second paper on the cat task (Speiser & 
Walter, 1996) our rationale seemed even stronger.

Making Sense of Realistic Data
The initial studies (Speiser & Walter, 1994, 1996) were to some extent exploratory, in the sense that student data came 
from field notes and informal interviews. In 1999, as part of Carolyn Maher’s Kenilworth longitudinal study, we posed 
the cat task to a group of third-year high-school students11 in a nearly ideal research setting (Speiser, Walter & Maher, 
2003). We obtained student data of unprecedented richness, and hence could study learners’ choices, arguments and 
presentations in extraordinary depth. 

In the Kenilworth data, linear models for the cat’s motion took on particular importance, once the students came 
to recognize the potential of such models to help them verify and then make sense of standard graphs they had initially 
constructed for position and velocity as functions of time. They had built these graphs, as graphing calculator plots, 
from data they had found by measuring.12 When they found themselves unable to connect position to velocity as they 
discussed these graphs, several students began checking independently to be sure the data in their tables made sense 
to them numerically. Magda and Aquisha, for example, measured distances directly on the photographs, rather than by 
means of Muybridge’s squared background. To do so, they superimposed two overhead transparencies, as shown in 
Figure 5, to compare the cat’s position in each pair of successive frames.

Figure 5. Superimposed, transparent cats, by Magda and Aquisha. 
(This image, from videotape, appears here for the first time in print.)

11 These students, about 17 years old, had recently completed a precaculus course together, but had not yet begun to study calculus.
12 Graphing calculators were quite helpful for the students here, especially for building certain graphs from data tables. Once built, these graphs 
could be projected onto whiteboards for further layers of elaboration, the latter done entirely by hand.
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Then Aquisha, working alone, took an important further step, eliminating measurement entirely: she recorded 
each change of position as a line segment, traced directly from each pair of superimposed, successive frames. She then 
assembled the 23 resulting segments, in alternating colors, to form a line that showed the cat’s position as it moved 
from frame to frame, as shown in Figure 6.13 Read from left to right, Aquisha’s line progresses through an initial series 
of short segments and then suddenly (at Frame 10) continues with drastically longer segments. 14 

We had seen line models earlier (Speiser &Walter, 1996), in a series of discussions about change and motion with 
art and dance faculty, for whom standard graphs made little sense initially. For these colleagues, line models seemed 
much more readable. Sara Lee Gibb, who teaches modern dance, suggested that the authors join her in a rehearsal 
studio, build a line model on the floor, and then run it as she beat a steady pulse. We were startled by the force and 
preparation needed to step out beyond frame ten, after a sequence of tight steps, and continue moving at the pace 
required. Hence, at Kenilworth (Speiser, Walter & Maher, 2003), we asked the students (many of them competition 
athletes) to build a version of Aquisha’s line that they could run. Their model, built in a hallway of their high school, 
was slightly more than 65 meters long, scaling the cat’s motion upward by a factor of 50. These students, too, were 
startled by the sudden burst of energy they needed to go past Frame 10. 

Many learners find mathematics difficult when its constructs strike them as artificial or fictitious. Running physically 
through the hallway model, as several students argued later, helped them to connect the tables in their calculators to 
the immediate, detailed experience of physically moving. In effect, the act of running gave them opportunities, not 
to replicate the motion of the cat, but instead, as several students pointed out, to build a new model for it: their own 
motion. This experiential model, as student discussion soon made quite explicit, helped several students to connect 
not just the graphs, but indeed nearly every model they had built, to key features of their own experience of moving, 
and then, by extension, to the motion of the cat. To achieve this, they will need to reason carefully, and most likely 
collaborate in detail. In particular, they would need sufficient time and freedom to build convincing arguments based 
on the range of models then in play, as well as clear encouragement to do so.

Making Realistic Sense of Graphs
To find the average speed between two frames, we can compare, as Magda and Aquisha did, two successive snapshots of 
the cat in motion, by setting one photograph on top of another. We might be doing something similar, but with numbers, 
when we calculate the change between two successive measurements to form the numerator of the corresponding 
difference quotient. When we run the hallway model, however, it seems that we would experience our motion more 
as an evolving whole than as a mere aggregate of discrete pieces set out side by side for subsequent comparison. 

13 Magda and another student, Romina, then measured Aquisha’s segments and rescaled them to obtain “cat distances” that allowed an independent 
check of their group’s data tables.
14 This idea looks very classical. Recall that Euclid (Heath, 1956) did not work with measurements, but rather used implicitly a kind of algebra for 
line segments (Hartshorne, 2000) in which lengths of segments could be added and compared. Hartshorne, in particular, drew his figures by hand, 
using the classical tools (compass and straightedge), and encouraged students to do the same, in this way gaining physical experience that many 
teachers, perhaps over centuries, have seen as helpful.

Figure 6. Aquisha’s line (Speiser, Walter & Maher, 2003).
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Similarly, in Section 2, to unpack the relation between tangents and nearby secant lines, we found it helpful to imagine 
looking forward (on a line of sight) as we drove along a given curve—again seen as a single, unimpeded motion. In 
both cases, from the viewpoint of our own participation in the motion, what happens when we divide time into discrete 
intervals would need to be related, through detailed reflection, to our own sense of what happened when we moved. 
In this way, successive snapshots or successive measurements might come to tell a story—although, strange to say, a 
set of snapshots and resulting measurements helped anchor the actions we performed. In this sense, we can say that 
we have superposed our personal experience of moving across key information from successive photographs. The 
personal experience allows us to connect distinct events to form a narrative. 

In Figure 7, one student, Matt, has drawn a graph by hand across a projected image (on a whiteboard) of the graph 
of velocity with respect to time stored in Romina’s calculator (Speiser, Walter & Maher, 2003). Romina’s graph, a 
scatter plot, suggests a step function. The scatter points display a rapid increase in velocity at Frame 10, followed by a 
further rise at Frame 18. Elsewhere, the plot looks roughly constant. Matt’s graph, in effect, interprets the scatter points 
by suggesting possible velocities between them. Based on his experience of running, he emphasizes the second rise 
especially in his discussion. This further acceleration, after the cat has launched into its run, does not seem obvious 
from Aquisha’s line model (Figure 6), and may not have been clear to Matt until he ran the model in the hallway.15 
Matt conjectured that both rises correspond to moments when the cat, running, had pushed with its hind legs. Matt’s 
graph, built from his own experience of running, allowed him to conjecture a connection between that graph and how 
the cat had moved. 

Figure 7. Matt’s drawing on Romina’s graph (Speiser, Walter & Maher, 2003).

In a few minutes, Matt and a second student, Benny, photographs in hand, proved that conjecture right. In this 
way, the following presentations were connected: the photographs, the students’ tables, the calculator graph of velocity 
with respect to time, Matt’s drawing on the projection of this graph, Aquisha’s line model, its elaboration on the 
hallway floor, and students’ detailed analyses of the experience of running. A key observation here is that of these 
seven presentations, only two (the photos and the calculator graph) were in some sense standard, and all but one (the 
photos) were constructed fully by the students. In effect, each presentation has come to be superposed on every other, 
through the ways the students have connected them. Further, based on our analysis (Speiser, Walter & Maher, 2003), 
if these students’ emerging understanding could be seen as anchored to any one of the available array of presentations 
they have built, it might be anchored perhaps just as usefully in any other. In this way, using the full variety of 
presentations, the students argued strongly that the speed at Frame 10 could not be known, based on the data from the 
photographs, while at Frame 20 a close estimate could be made for the instantaneous speed. These students had not 
yet studied calculus. 

15 In other words, when they ran the line model, students discovered further detail, significant detail, that they had not noticed when they simply 
looked at Aquisha’s presentation, or even at the marked floor of the hallway before running.
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The Kenilworth experiment strongly suggests that students have much to gain from work on tasks that give them 
opportunities to look closely at fundamental mathematical issues, in settings where they have sufficient time and 
freedom to build and then work through a range of standard and (as needed) original, new forms of presentation to 
support their reasoning. 

Connecting Teaching and Research
In an important sense, our research approach develops from a cognitive tradition, in that we focus strongly on how 
ideas and information are represented. In this sense, our work builds on Bob Davis’ later work (1984), most especially 
his strongly cognitive approach to problem solving. For us, therefore, a representation is a presentation, either to 
oneself as part of an ongoing thought, or to others, as a tool for communication (Speiser, Walter & Maher, 2003). Put 
simply, whether to persuade or understand, we first build presentations and then reason from them. Such presentations 
might, for example, take the form of words, symbolic expressions, graphs, diagrams or models. 

Our work also reflects, perhaps equally fundamentally, research traditions that stress the social sharing and 
negotiation of ideas. As in Maher’s work (Maher & Martino, 1996), we pay close attention to how ideas and arguments 
are built and move through groups of learners, as they build and reason from key presentations. 

As researchers in mathematics education, we are especially concerned with understanding how best to help students 
to reason mathematically. In particular, in our own teaching, we place strong emphasis on explanation, argument and, 
when appropriate, on formal proof. While it is widely understood that students seldom learn to reason mathematically 
simply by being told or shown how one might do it, nonetheless, as we have seen, powerful and fully mathematical 
thinking can emerge, both individually and socially, through collective task investigations that have raised important 
issues for the learners. 

In this connection, we should emphasize how central listening has become for us, both as researchers and as 
teachers. In order to respond helpfully, we need to understand our students’ thinking, in detail and depth. This need has 
led to a quite specific research methodology: (1) the development of tasks that raise fundamental issues for the learners 
and are rich enough to trigger extensive exploration and discussion of alternatives by learners; (2) close study, in this 
context, of how specific learners build, select, connect and restructure the presentations that they reason from; and (3) 
detailed attention to the way ideas and information move through the community of learners, and to the conditions 
that support such interchange.

We cannot emphasize too strongly how our research methods and our teaching practice, in related ways, entail a 
central emphasis on task selection and design. Our teaching, and hence our classroom research, might take place either 
within a standard mathematics class (as with our first work with the cat task), or perhaps (as, later, at Kenilworth) 
outside of one. In the work we have described, regardless of the setting, learners addressed important issues (such as 
the complexity of making sense of realistic data) that many course designs are structured to avoid. 

Perhaps the largest difference between our work and what might be called the “standard model” for instruction 
stems from our strong disagreement with the widespread postulate, within that model, that students will learn best when 
they begin with simple, pre-structured situations that might be taken as convenient points of entry for more complex 
situations to be treated later. To provide the structures ready-made, however, can deprive students of the opportunity 
to learn, from hard experience, how to structure situations by and for themselves. Instead, we offer students problem 
situations to explore that, in effect, require the learners to propose and test potential structures and possible action plans 
against specific goals they see as pertinent. In this way, starting with rich situations and proceeding later to more simple 
cases, we have found that many learners build robust conceptions, lines of reasoning and basic skills that they can adapt 
directly to the simpler special cases. This view of learning, quite explicitly, informed the task designs we have described.

In both Placenticeras and the cat task, to facilitate our teaching, we designed rich situations for the learners to 
explore and structure.16 In Placenticeras, student explorations often center on how to make good choices for a model, 

16 This view reflects a long tradition, which contrasts strongly with the “standard model.” Consider Freudenthal (1991, p. 28 ff.), who strongly 
criticized the widespread use of logical or attribute blocks in elementary instruction: “Who is not familiar with the so-called logical blocks, 24 in 
number, available in a rich variety of models, for instance, red/blue, circle/square/triangle, big/small, thick/thin? They are a paragon of an entirely 
pre-structured world: one piece for each combination of the four criteria. Abstract operations on sets can be concretized marvelously by means of 
such a model. I chose this example not because I may believe in classifying as an important cognitive activity, but rather an example that, thanks to 
its simplicity, sharply features the difference between poor and structured on the one hand, and rich and to be structured, on the other.” 
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because no preferred, pre-structured choice had been concealed in given data for the students to “discover.”17 Or, 
thinking of the dance students, our analyses suggest that the learners’ thinking centered strongly on how to generate 
the form, or as one student put it, to create the spiral. In the first case, the students even had to build the data for 
themselves, before they could consider structures for them. In the second case, the data could only take form once 
a structure had been chosen for them. Further, in the cat task, while standard graphs of position and velocity were 
constructed early, these did not, by themselves, help to resolve the questions that the students sought to answer. Such 
questions, indeed, led the learners to invent and build from new presentations, like Aquisha’s line, the line model on 
the hallway floor, and the physical experience of running. Only then, we feel, could truly useful structuring begin, 
as it did in Matt’s discussion, when still further presentations, such as drawing on projected images, provided means 
for students to connect and to contrast what different prior presentations might have made available. In this way, the 
students structured the cat’s motion, and, through the way they built and thought about the structures they considered, 
deeply enriched their understanding.
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The concept of function is central to undergraduate mathematics, foundational to modern mathematics, and essential 
in related areas of the sciences. A strong understanding of the function concept is also essential for any student hoping 
to understand calculus — a critical course for the development of future scientists, engineers, and mathematicians. 

Since 1888, there have been repeated calls for school curricula to place greater emphasis on functions (College 
Entrance Examination Board, 1959; Hamley, 1934; Hedrick, 1922; Klein, 1883; National Council of Teachers of 
Mathematics, 1934, 1989, 2000). Despite these and other calls, students continue to emerge from high school and 
freshman college courses with a weak understanding of this important concept (Carlson, 1998; Carlson, Jacobs, Coe, 
Larsen & Hsu, 2002; Cooney & Wilson, 1996; Monk, 1992; Monk & Nemirovsky, 1994; Thompson, 1994a).  This 
impoverished understanding of a central concept of secondary and undergraduate mathematics likely results in many 
students discontinuing their study of mathematics. The primarily procedural orientation to using functions to solve 
specific problems is absent of meaning and coherence for students and has been observed to cause them frustration 
(Carlson, 1998). We advocate that instructional shifts that promote rich conceptions and powerful reasoning abilities 
may generate students’ curiosity and interest in mathematics, and subsequently lead to increases in the number of 
students who continue their study of mathematics. 

This article provides an overview of essential processes involved in knowing and learning the function concept. 
We have included discussions of the reasoning abilities involved in understanding and using functions, including the 
dynamic conceptualizations needed for understanding major concepts of calculus, parametric functions, functions 
of several variables, and differential equations. Our discussion also provides information about common conceptual 
obstacles to knowing and learning the function concept that students have been observed encountering. We make 
frequent use of examples to illustrate the ‘ways of thinking’ and major understandings that research suggests are 
essential for students’ effective use of functions during problem solving, and that are needed for students’ continued 
mathematics learning. We also provide some suggestions for promising approaches for developing a deep and coherent 
view of the concept of function. 

Why Is The Function Concept So Important?
Studies have revealed that learning the function concept is complex, with many high performing undergraduates (e.g., 
students receiving course grades of A in calculus) possessing weak function understandings (Breidenbach, Dubinsky, 
Hawks, & Nichols, 1992; Carlson, 1998; Thompson, 1994a). We are beginning to understand that the conceptions 
and reasoning patterns needed for a strong and flexible understanding of functions are more complex than is typically 
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assumed by designers of curriculum and instruction (Breidenbach et al., 1992; Carlson, 1998; Thompson, 1994a). 
Students who think about functions only in terms of symbolic manipulations and procedural techniques are unable to 
comprehend a more general mapping of a set of input values to a set of output values; they also lack the conceptual 
structures for modeling function relationships in which the function value (output variable) changes continuously in 
tandem with continuous changes in the input variable (Carlson, 1998; Monk & Nemirovsky, 1994; Thompson, 1994a).  
These reasoning abilities have been shown to be essential for representing and interpreting the changing nature of 
a wide array of function situations (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Thompson, 1994a); they are also 
foundational for understanding major concepts in advanced mathematics (Carlson, Smith & Persson, 2003; Cottrill et 
al., 1996; Kaput, 1992; Rasmussen, 2000; Thompson, 1994a; Zandieh, 2000).

It is noteworthy that many of the reform calculus texts of the early 1990s, e.g., Ostabee & Zorn (1997), Harvard 
Calculus (Hughes-Hallet & Gleason, 1994), and C4L (Dubinsky, Schwingendorf, & Mathews, 1994), included a 
stronger conceptual orientation to learning functions. Such past curriculum development projects and the educational 
research literature are pointing the way for future curricular interventions to assist students in developing a robust 
function conception — a conception that begins with a view of function as an entity that accepts input and produces 
output, and progresses to a conception that enables reasoning about dynamic mathematical content and scientific 
contexts. Research suggests that the predominant approach to calculus instruction is not achieving the foundational 
understandings and problem solving behaviors that are needed for students’ continued mathematical development and 
course taking (Carlson, 1998, 1999, 2003; Oehrtman, 2002).  It is our view that the mathematics community is ready for 
a careful rethinking of the precalculus and calculus curriculum — one that is driven by past work of mathematicians, 
as well as the broad body of research on knowing and learning function and major concepts of calculus. It is also our 
view that if algebraic and procedural methods were more connected to conceptual learning, students would be better 
equipped to apply their algebraic techniques appropriately in solving novel problems and tasks. 

Why is the Function Concept So Difficult for Students to Understand? 
As students move through their school and undergraduate mathematics curricula, they are frequently asked to manipulate 
algebraic equations and compute answers to specific types of questions. This strong emphasis on procedures without 
accompanying activities to develop deep understanding of the concept has not been effective for building foundational 
function conceptions—ones that allow for meaningful interpretation and use of functions in various representational 
and novel settings. Even understanding functions in terms of input and output can be a major challenge for many 
students. As one example, 43% of A-students at the completion of college algebra attempted to find ( )f x a+  by 
adding a onto the end of the expression for f rather than substituting x + a into the function (Carlson, 1998). When 
probed to explain their thinking, they typically provided some memorized rule or procedure to support their answers. 
Clearly these students were not thinking of x + a as a value of the function’s argument at which the function is being 
evaluated. Another misconception is thinking that constant functions (e.g., y = 5) are not functions because they do 
not vary. Not viewing y = 5 as an example of a function can become problematic for students; as one example, when 
considering equilibrium solution functions for differential equations such as dy/dt = 2y(y – 5) (Rasmussen, 2000). 
In one study, only 7% of A-students in a college algebra course could produce a correct example of a function all of 
whose output values are equal to each other, while 25% of A-students in second semester calculus produced y x=  
as an example (Carlson, 1998). Even more problematic, students often view functions simply as two expressions 
separated by an equal sign (Thompson, 1994b). Such an impoverished understanding of functions is insufficient to 
serve as a base for a rich understanding of more advanced mathematics.

It is also common for developing students to have difficulty distinguishing between an algebraically defined 
function and an equation (Carlson, 1998). This is not surprising if one considers the various uses of the equal sign 
and the fact that many instructors refer to a formula as an equation. For the student, this ambiguous use of the word 
equation appears to cause difficulty for them in distinguishing between the use of the equal sign as a means of defining 
a relationship between two varying quantities and a statement of equality of two expressions. Our recent work has 
shown that students benefit from an explicit effort to help them distinguish between functions and equations. The first 
two authors have developed instructional interventions that promote students’ thinking about an equation as a means 
of equating the output values of two functions, and the act of solving an equation as finding the input value(s) where 
the output values of these functions are equal.
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Many students also tend to believe that all functions should be definable by a single algebraic formula. This focus 
often hinders flexible thinking about function situations and can lead to erroneous conclusions, such as thinking that 
all functions must always behave “nicely” in some sense (Breidenbach et al., 1992). For example, many students tend 
to argue that a piecewise defined function like
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is not even a function at all because it “behaves badly.” Similarly, many students have difficulty conceiving of different 
formulas representing the same function, as in the examples

2
1( )f n n=   and  [ ]2

1
( ) 2 1

n

k
f n k

=

= -å ,

which define the same function on the natural numbers, albeit through very different algebraic operations. Many students 
also tend to assume that functions are linear or quadratic in cases where this assumption is unwarranted, expecting 
for example, that any “u-shaped” graph is a parabola (Schwarz & Hershkowitz, 1999). These tendencies are perhaps 
not so surprising when we consider that functions are typically introduced in the school curriculum through specific 
function types. As such, a working definition in which functions are equated with formulas is perfectly reasonable, and 
even mirrors the historical understanding of mathematicians like Euler, Bernoulli, Lagrange, and d’Alembert (Kleiner, 
1989; Sierpinska, 1992). It is not, however, the view that Euler himself, and subsequently the mathematics community 
in general, ultimately found to be most useful. The modern definition of function was motivated largely by debates 
between d’Alembert and Euler on the nature of a solution to the vibrating string differential equation (Luzin, 1998a, 
1998b) and by Cauchy’s and others’ attempts to decide the conditions under which a limit of a sequence of continuous 
functions is a continuous function (Boyer, 1968; Lakatos, 1976). Thus, to use the modern definition of function in an 
introduction to the function concept is to present students with a solution to problems of which they cannot conceive. 
We recommend that school curricula and instruction include a greater focus on understanding ideas of covariation 
and multiple representations of covariation (e.g., using different coordinate systems), and that more opportunities be 
provided for students to experience diverse function types emphasizing multiple representations of the same functions. 
College curricula could then build on this foundation. This would promote a more flexible and robust view of functions 
— one that does not lead to inadvertently equating functions and formulas. 

Another common difficulty for students is distinguishing between visual attributes of a physical situation and 
similar perceptual attributes of the graph of a function that models the situation. When dealing with functions as 
models of concrete situations, there are often topographical structures within the real-world setting itself (e.g., the 
curves of a racetrack, the elevation of a road traveling across hilly terrain, or the shape of a container being filled with 
liquid) that students see as being reflected in the function’s graph. The considerable salience of these physical features 
often creates confusion, even for students with a strong understanding of function. Several types of errors can be 
traced to conflating the shape of a graph with visual attributes of the situation (Carlson, 1998; Monk, 1992; Monk & 
Nemirovsky, 1994). Consider the following problem:

The following diagram is the side-view of a person cycling up and over a hill. Draw a graph of 
speed vs. position along the path. 
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Figure 1.  A problem in which students must distinguish between visual features of a situation and 
representational features of a graph. (From Monk, 1992).
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In response to this problem, many students tend to copy features 
directly from the diagram into their graph (Monk, 1992). Correctly 
interpreting the situation is not a conceptually trivial task. A student 
must ignore the fact that the picture looks like a graph, think of how 
riding uphill (for example) affects the speed of the cyclist, then, 
while ignoring the shape of the hill in the picture, determine how to 
represent the result graphically. 

When interpreting graphs such as the one in Figure 2, students 
often confuse velocity for position (Monk, 1992) since the curves 
are laid out spatially, and position refers to a spatial property. This 
confusion leads to erroneous claims such as: the two cars collide 
at 1t =  hour or that Car B is catching up to Car A between .75t =  
hour and 1t =  hours. In one study, 88% of students who had earned 
an A in college algebra made such mistakes, as did 63% of students 
earning an A in second semester calculus, and 42% of students 
earning an A in their first graduate mathematics course (Carlson, 1998). 

In both these examples, students are thinking of the graph of a function as a picture of a physical situation rather 
than as a mapping from a set of input values to a set of output values. Developing an understanding of function in such 
real-world situations that model dynamic change is an important bridge for success in advanced mathematics. 

Students’ weak understandings of functions have also been observed in their inability to express function 
relationships using function notation. When asked to express s as a function of t, many high performing precalculus 
students did not know that their objective was to write a formula in the form of “s = <some expression containing a 
t>.”  Some students have also exhibited weaknesses in knowing what each symbol in an algebraically defined function 
means. Even in the case of a simple function such as ( ) 3f x x= , many students are unaware that the parentheses serves 
as a marker for the input, that ( )f x  represents the output values, that f is the name of the function, and that 3x specifies 
how the input x is mapped to the output ( )f x .  Such weak understandings and highly procedural orientations appear 
to contribute to students’ inability to move fluidly between various function representations, such as the inability to 
construct a formula given a function situation described in words (Carlson, 1998). 

Dynamic Conceptualizations Needed for Understanding and Using Functions
In our work to develop and validate the Precalculus Concept Assessment Instrument1 (Carlson, Oehrtman, & Engelke, 
submitted), the first two authors found that students’ ability to respond correctly to a diverse set of function-focused 
tasks is tightly linked to two types of dynamic reasoning abilities. First, as mentioned above, students must develop 
an understanding of functions as general processes that accept input and produce output. Second, they must be able 
to attend to both the changing value of the output and rate of its change as the independent variable is varied through 
an interval in the domain. 

Understanding limits and continuity requires one to make judgments about the behavior of a function over intervals 
of arbitrarily small sizes. Conceptualizations based on “holes,” “poles,” and “jumps” as gestalt topographical features 
(corresponding to removable discontinuity, vertical asymptotes, and jump or one-sided discontinuity, respectively) 
can lead to misconceptions in more complex limiting situations, such as the definitions of the derivative and definite 
integral. For example, students can develop an intuitive understanding of the Fundamental Theorem of Calculus with 
which they explain why the derivative of the volume of a sphere ( 34

3v rπ= ) with respect to the length of its radius is 
its surface area. However, most of these students cannot explain why the same is not true for the volume of a cube (

3v s= ) with respect to the length of its side (Oehrtman, 2002). In order to resolve such results conceptually, one must 
be able to coordinate images of changes in the “radius” with the corresponding changes in the volume over a range 
of small variations. For such variations, students must then be able to imagine the computation of rate of change of 
volume and see its connection to the computation of surface area.
1 The Precalculus Concept Assessment Instrument is a 25-item multiple choice instrument for assessing students’ understanding of the major 
aspects of the function concept that are foundational for success in beginning calculus. The answer choices include the correct answer and the com-
mon misconceptions that have been expressed by students in research studies (e.g., interviews that have probed students’ thinking when providing 
specific responses to conceptually based tasks). 
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Figure 2. Students fail to interpret the function 
information conveyed by the graph.
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Figure 3. Foundational images for the definitions of a) the derivative and b) the definite integral.

To understand the relationship between average and instantaneous rates and the graphical analog between secant 
and tangent lines, a student must first conceive of an image as in Figure 3a (Monk, 1987). By employing covariational 
reasoning (e.g., coordinating an image of two varying quantities and attending to how they change in relation to each 
other), the student is able to transform the image and reason about values of various parameters as the configuration 
changes. Being able to answer questions that require covarying two quantities, i.e., “When point Q moves toward P, 
does the slope of S increase or decrease?”, is significantly more difficult than being able to answer questions about the 
value of a function at a single point. 

Analyzing the changing nature of an instantaneous rate also requires the ability to conceive of functional situations 
dynamically. Consider the following question based on a classic related rates problem in calculus:

From a vertical position against a wall, the bottom of a ladder is pulled away at a constant rate. Describe the 
speed of the top of the ladder as it slides down the wall.

Reasoning about this situation conceptually is difficult for calculus students even when they are given a 
physical model and scaffolding questions (Monk, 1992) and is similarly challenging for beginning graduate students 
in mathematics (Carlson, 1999). The standard calculus curriculum presents accumulation in terms of methods of 
determining static quantities — such as the area of an irregular region of the plane, or the distance traveled over a 
fixed amount of time given a changing velocity. Students imagine themselves approximating an area of a region. The 
area happens to be defined by a graph, but the task, to them, is essentially the same as approximating the area of a 
circle with triangles emanating from the circle’s center. Equally important, however, is a dynamic view in which an 
accumulated total is changing through continual accruals (Kaput, 1994; Thompson, 1994a). For example, in a typical 
“area so far” function as in Figure 3b, this involves being able to mentally imagine the point p moving to the right by 
adding slices of area at a rate proportional to the height of the graph. This requires students to engage in covariational 
reasoning (Carlson, Smith & Persson, 2003) and is significantly more difficult for students than evaluating and even 
comparing areas at given points (Monk, 1987), for instead of asking them to conceptualize ( )b

a
m f x dx= ò , we are 

asking them to conceptualize ( ) ( )x
a

F x f t dt= ò . 
In interviews with over 40 precalculus level students, the first two authors found that students who consistently 

verbalized a view of function as an entity that accepts input and produces output were able to reason effectively 
through a variety of function-related tasks. For example, these students, when asked to find ( ( ))f g x  for specific 
values of x, given in either a table or words that defined the functions f and g, described a process of inputting a value 
into g, with the output of g becoming the input of f, and this output providing an output for the composite function
f g . However, students who provided an incorrect answer to this question were typically attempting to employ 

some memorized procedure. Without understanding, they invariably made a crucial mistake along the way such as 
interpreting ( (3))f g  as meaning “the value of f when g is three,” and by mistaking the output of g to be 3, arriving at 

(3)f  as an answer. As another example, when asked to solve the equation, ( ) 7f x = , given the graph of f, students 
who viewed this problem as a request to reverse the function process to determine the input associated with an output 
of f, had no difficulty responding to this task. Surprisingly, only 38% of 1196 students (550 college algebra and 646 
precalculus) provided a correct answer at the completion of their courses. Those unable to provide a correct answer 
appeared to be applying memorized procedures – they did not speak about a function as a more general mapping of a 
set of input values to a set of output values. Their impoverished function view was also revealed by their inability to 
explain the meaning of function composition and function inverse in other settings and their inability to apply function 
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composition to define an algebraic formula for a function situation (e.g., to define area as a function of time for a circle 
whose radius is expanding at 7 cm per second).  

According to several studies, calculus students are slow to develop an ability to interpret varying rates of 
change over intervals of a function’s domain. (Carlson, 1998; Kaput, 1992; Monk, 1992; Monk & Nemirovsky, 
1994; Nemirovsky, 1996; Tall, 1992; Thompson, 1994a). According to Thompson (1994a), once students are adept 
at imagining expressions being evaluated continually as they “run rapidly” over a continuum, the groundwork has 
been laid for them to reflect on a set of possible inputs in relation to the set of corresponding outputs (p. 27). Such a 
covariation view of function  has also been found to be essential for understanding central concepts of calculus (Cottrill 
et al., 1996; Kaput, 1992; Thompson, 1994b; Zandieh, 2000) and for reasoning about average and instantaneous rates 
of change, concavity, inflection points, and their real-world interpretations (Carlson, 1998; Monk, 1992). 

The following section provides additional elaboration of these essential process and covariational understandings 
of functions.

The Action and Process Views of Functions — A More Formal Examination
Developmental research has provided insights about the reasoning patterns essential for success in collegiate 
mathematics. As we have previously discussed, investigations of students’ function knowledge have consistently revealed 
that students’ underlying conceptual view is important. Researchers have formalized these consistent observations by 
introducing terms for referencing specific types of conceptual views and their development. Specifically, students 
must move from what is called an action view of functions to what is called a process view of functions.

According to Dubinsky & Harel (1992),

An action conception of function would involve the ability to plug numbers into an algebraic expression 
and calculate. It is a static conception in that the subject will tend to think about it one step at a time (e.g., 
one evaluation of an expression). A student whose function conception is limited to actions might be able 
to form the composition of two functions, defined by algebraic expressions, by replacing each occurrence 
of the variable in one expression by the other expression and then simplifying; however, the students would 
probably be unable to compose two functions that are defined by tables or graphs.  (pp. 85)

Students whose understanding is limited to an action view of function experience several difficulties. For 
example, an inability to interpret functions more broadly than by the computations involved in a specific formula 
results in misconceptions such as believing that a piecewise function is actually several distinct functions, or that 
different algorithms must produce different functions. More importantly, reasoning dynamically is difficult because it 
requires one to be able to disregard specific computations and to be able to imagine running through all input-output 
pairs simultaneously. This ability is not possible with an action view in which each individual computation must be 
explicitly performed or imagined. Furthermore, from an action view, input and output are not conceived except as 
a result of values considered one at a time, so the student cannot reason about a function acting on entire intervals. 
Thus, not only is the complex reasoning required for calculus out of reach for these students, but even simple tasks 
like conceiving of domain and range as entire sets of inputs and outputs is difficult.

Without a generalized view of inputs and outputs, students cannot think of a function as a process that may be 
reversed (to obtain the inverse of a function) but are limited to understanding only the related procedural tasks such 
as switching x and y and solving for y or reflecting the graph of f across the line y x=  (Figures 4a and 4b). This 
procedural approach to determining “an answer” has little or no real meaning for the student unless he or she also 
possesses an understanding as to why the procedure works. Students with an action view often think of a function’s 
graph as being only a curve (or fixed object) in the plane; they do not view the graph as defining a general mapping 
of a set of input values to a set of output values. As such, the location of points, the vertical line test, and the “up and 
over” evaluation of functions on a graph are concepts only about the geometry of the graph, not about the more general 
mapping that is conveyed by the function,	or the meaning that is conveyed by inverting the process for a function that 
represents a real-world situation. Similarly, with an action view, composition is generally seen simply as an algebra 
problem in which the task is to substitute one expression for every instance of x into some other expression. An 
understanding of why these procedures work or how they are related to composing or reversing functions is generally 
absent. 
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Figure �. Various conceptions of the inverse of a function as a) an algebra problem, b) a geometry problem, and c) the 
reversal of a process. The first two of these are common among students but, in isolation, do not facilitate flexible and 
powerful reasoning about functional situations.

Students who possess only the procedural orientations of Figures 4a and b, without understanding why the 
procedures work, are not likely to recognize even simple situations in which these procedures should be applied. 
Curriculum and instruction has not been broadly effective in building these connections in students’ understanding. A 
recent study of over 2000 precalculus students at the end of the semester (Carlson et al., submitted) showed that only 
17% of these students correctly determined the inverse of a function for a specific value, given a table of function 
values.

In contrast to the conceptual limitations of an action view, Dubinsky and Harel (1992) state:

A process conception of function involves a dynamic transformation of quantities according to some repeatable 
means that, given the same original quantity, will always produce the same transformed quantity. The subject 
is able to think about the transformation as a complete activity beginning with objects of some kind, doing 
something to these objects, and obtaining new objects as a result of what was done. When the subject has a 
process conception, he or she will be able, for example, to combine it with other processes, or even reverse it. 
Notions such as 1-1 or onto become more accessible as the student’s process conception strengthens. (p. 85) 

With such a process view, students are freed from having to imagine each individual operation for an algebraically 
defined function. For example, given the function on the real numbers defined by 2( ) 1f x x= + , the student can 
imagine a set of input values that are mapped to a set of output values by the defining expression for f. In contrast, 
students with an action view see the defining formula as a procedure for finding an answer for a specific value of x; 
they view the formula as a set of directions: square the value for x then add one to get the answer. A student with a 
process view can conceive of the entire process as happening to all values at once, and is able to conceptually run 
through a continuum of input values while attending to the resulting impact on output values. This is precisely the 
ability required for covariational reasoning introduced above and discussed more fully in the following section. In 
Table 1 we provide a characterization of “action views” of functions and their corresponding “process views.” 

Understanding even the basic idea of equality of two functions requires a generalization of the input-output 
process, (i.e., the ability to imagine the pairing of inputs to unique outputs without having to perform or even consider 
the means by which this is done). Students may then come to understand that any means of defining the same relation 
is the same function. That is, a function is not tied to specific computations or rules that define how to determine the 
output from a given input. For example, the rules

 2f
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look different; yet produce the same results (and thus define the same function) on the natural numbers. 
Students with a process view are also better able to understand aspects of functions such as composition and 

inverses. They are consistently able to correctly answer conceptual and computational questions about composition in 
a variety of representations by coordinating output of one process as the input for a second process. Similarly, students 
conceiving of an inverse as reversing the function process so that the old outputs become the new inputs and vice-versa 
(Figure 4c), or by asking “What does one have to do to get back to the original values?” were able to correctly answer 
a wide variety of questions about inverse functions (Carlson et al., submitted).
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Table 1. Action and Process Views of Functions

Action View Process View
A function is tied to a specific rule, formula, or computation 
and requires the completion of specific computations and/or 
steps.

A function is a generalized input-output process that defines a 
mapping of a set of input values to a set of output values.

A student must perform or imagine each action. A student can imagine the entire process without having to 
perform each action.

The “answer” depends on the formula. The process is independent of the formula.
A student can only imagine a single value at a time as input or 
output (e.g., x stands for a specific number).

A student can imagine all input at once or “run through” a 
continuum of inputs. A function is a transformation of entire 
spaces.

Composition is substituting a formula or expression for x. Composition is a coordination of two input-output processes; 
input is processed by one function and its output is processed 
by a second function. 

Inverse is about algebra (switch y and x then solve) or geometry 
(reflect across y = x).

Inverse is the reversal of a process that defines a mapping 
from a set of output values to a set of input values.

Finding domain and range is conceived at most as an algebra 
problem (e.g., the denominator cannot be zero, and the 
radicand cannot be negative).

Domain and range are produced by operating and reflecting on 
the set of all possible inputs and outputs.

Functions are conceived as static. Functions are conceived as dynamic.
A function’s graph is a geometric figure A function’s graph defines a specific mapping of a set of input 

values to a set of output values.

A process view of function is crucial to understanding the main conceptual strands of calculus (Breidenbach et al., 
1992; Monk, 1987; Thompson, 1994a). For example, the ability to coordinate function inputs and outputs dynamically 
is an essential reasoning ability for limits, derivatives and definite integrals. In order to understand the definition of 
a limit, a student must coordinate an entire interval of output values, imagine reversing the function process, and 
determine the corresponding region of input values. The action of a function on these values must be considered 
simultaneously since another process (one of reducing the size of the neighborhood in the range) must be applied 
while coordinating the results. Unfortunately, most pre-calculus students do not develop beyond an action view, and 
even strong calculus students have a poorly developed process view that often leads only to computational proficiency 
(Carlson, 1998). With intentional instruction, however, students can develop a more robust process view of function 
(Carlson et al., submitted; Dubinsky, 1991; Sfard, 1991).

Certainly not every aspect of an action view of functions is detrimental to students’ understanding, just as the 
acquisition of a process view does not ensure success with all functional reasoning. However, a process view of 
functions is crucial for developing rich conceptual understandings of the content in an introductory calculus course. 
The promotion of the more general ‘ways of thinking’ that we have advocated should result in producing curricula that 
are more effective for promoting conceptual structures for students’ continued mathematical development. 

Fostering a Process View of Functions
We offer the following general recommendations for promoting students’ 
development of a process view of functions:

Ask students to explain basic function facts in terms of input and output.  
For example, ask students to determine whether 1( )f g -

  is 1 1f g- -
  or 

1 1g f- -
  and explain their reasoning. In the process, most will initially 

struggle to decide which of the diagrams in Figure 5 represents 1( )f g -
 . 

Determining both the correct diagram and the correct formula for the inverse 
encourages students to think in terms of a general input-output process. As 
another example, students typically learn to carry out rote procedures when 
asked to solve equations such as ( ) 6f x =  for some specified function f; but 
asking them to find the input value(s) for which the function’s output is 6 

g

g f

f

Figure 5. Which diagram represents 
f g ? What is its inverse?
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(both algebraically and graphically) promotes an understanding that solving an equation can be seen as the reversal 
of a function process. As yet another example, students typically memorize (without understanding) that the graph of 
a function g given by ( ) ( )g x f x a= +  is shifted to the left of the graph of f, but asking them to discover or interpret 
this statement as meaning “the output of g at every x is the same as the output of f at every x a+ ” will give them a 
more powerful way to understand this idea and reinforce a process view of functions. Ask students to determine the 
domain and range of functions based on the problem context, and relate this to answers (possibly different) derived 
from algebraic constraints alone. Other possibilities include asking students to explain why composition is associative, 
to develop the definition of a periodic function on their own, or to graph and explain the results of simple function 
arithmetic.

Ask about the behavior of functions on entire intervals in addition to single points. Focusing on the image of a 
function applied to an infinite set also encourages students to think in terms of a general process. Students should be 
asked to coordinate such judgments with basic compositions and inverses, asking, for example, for the length of an 
interval after being transformed by two linear functions. Similarly, ask students to find preimages of intervals as in 
the definition of limit or continuity and to reverse the process of a function even if it is not invertible (e.g., find the 
preimage of 1 under 2( )f x x= ).

Ask students to make and compare judgments about functions across multiple representations. Such questions 
should include multiple algebraic representations to reinforce the independence from a formula as well as the standard 
representations of graphs, tables, and verbal descriptions. Students should make such determinations; then compare 
the results for consistency, justifying or discovering why they are the same. For example, asking how the various 
techniques of inverting a function are related reinforces seeing a reflection across the line y x=  as switching the roles 
of independent and dependent variable, of input and output. Also helpful are predictions about how a graph will look 
based on how a real-world quantity is changing across its domain, requiring simultaneous attention to multiple input-
output pairs and translation between representations. As an example, when asking students to solve standard problems 
such as ‘define the area as a function of time for a circle whose radius is expanding at 7 cm per second,’ ask students 
to begin by constructing a dynamic image of the situation via a computer program or by drawing a picture; then ask 
them to label using algebraic symbols the varying quantities in the situation.  After recognizing the 7cm change in the 
radius per second can be represented algebraically by labeling the varying length of the radius with the formula r = 7s 
on the picture, prompt them to determine how to relate area to time in seconds.  You could also ask your students to 
graph the resulting function, A = 2(7 )sπ , and determine the average rate of change of the circle as s changes from 3 to 
4; then as s changes from 4 to 5; then as s changes from 5 to 6; then as s changes from 6 to 7; then ask them to explain 
in the context of the growing circle what these average rates imply about how the area of the circle is growing over the 
time interval from s = 3 to s = 7. (For additional discussion of the complexities involved in acquiring a flexible view of 
variable as an unknown, varying quantity, placeholder, etc., see the Jacobs and Trigueros chapter in this volume). 

Building on the Process View of Function: Applying Covariational Reasoning 
As students begin to explore dynamic function relationships such as how speed varies with time or how the height 
of water in a bottle varies with volume, they will need to begin considering how one variable (often the dependent 
variable) changes while imagining changes in the other (the independent variable). When coordinating such changes, 
one must be able to represent and interpret important features in the shape of a graph of a dynamic function event. As 
a very simple example, a student who has a strong process view of function might see the algebraic formula 2( )A s s=  
as a means of determining the area of a square for a set of possible input values. She would be viewing the function as 
an entity that accepts any side length s as input, to produce an output value for the area A. She would have no difficulty 
determining the side of the square for given values of the area (reversing the process) or with using any particular 
representation of this function situation (algebraic, tabular, graphical). In this context, the student may begin to notice 
that as the value of s increases, the value of A increases. By exploring numerical patterns and/or constructing a graph 
of this function, the student may also observe that as one steps through positive integer values for s, the amount of 
increase of A is getting larger and larger. He or she may also notice that as s increases continuously, the area is growing 
faster and faster. By constructing a graph to represent this function relationship, the student may observe that, when s 
is greater than 0, the slope of the graph gets steeper as s increases. When asked to explain why the graph gets steeper, 
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the student would also be able to unpack the notion of slope (steepness) by describing the relative change of the input 
(side) and output (area), while stepping through values of s. 

The Covariation Framework
Our work to characterize the thinking involved in reasoning flexibly about dynamically changing events has led to our 
decomposing covariational reasoning into five distinct mental actions (Carlson et al., 2002). This decomposition has 
been useful for guiding the development of curricular modules to promote covariational reasoning in students. These 
five categories of mental actions (Table 2) describe the reasoning abilities involved in meaningful representation and 
interpretation of a graphical model of a dynamic function situation. In our work, the first two authors have developed 
beginning calculus modules that include tasks and prompts to promote these ways of thinking in students. After three 
iterations of refining these modules (based on our analysis of data of students’ reasoning when working through these 
modules), we are observing dramatic gains in beginning calculus students’ covariational reasoning abilities over the 
course of one semester. 

The initial image described in the framework for covariational reasoning is one of two variables changing 
simultaneously. This loose association undergoes multiple refinements as the student moves toward an image of 
increasing and decreasing rate over the entire domain of the function (Table 2). 

Table 2. Mental Actions of the Covariation Framework

Mental Action Description of Mental Action Behaviors
Mental Action 1
(MA1)

Coordinating the dependence of one 
variable on another variable

•	 Labeling the axes with verbal indications of coordinating 
the two variables (e.g., y changes with changes in x)

Mental Action 2
(MA2)

Coordinating the direction of change of one 
variable with changes in the other variable

•	 Constructing a monotonic straight line 
•	 Verbalizing an awareness of the direction of change of the 

output while considering changes in the input 
Mental Action 3
(MA3)

Coordinating the amount of change of one 
variable with changes in the other variable

•	 Plotting points/constructing secant lines
•	 Verbalizing an awareness of the amount of change of the 

output while considering changes in the input
Mental Action 4
(MA4)

Coordinating the average rate of change of 
the function with uniform increments of 
change in the input variable

•	 Constructing secant lines for contiguous intervals in the 
domain

•	 Verbalizing an awareness of the rate of change of the 
output (with respect to the input) while considering 
uniform increments of the input 

Mental Action 5
(MA5)

Coordinating the instantaneous rate of 
change of the function with continuous 
changes in the independent variable for the 
entire domain of the function 

•	 Constructing a smooth curve with clear indications of 
concavity changes 

•	 Verbalizing an awareness of the instantaneous changes in 
the rate of change for the entire domain of the function 
(direction of concavities and inflection points are correct)

In our work to study and promote students’ emerging covariational reasoning abilities, we have found that the 
ability to move flexibly between mental actions 3, 4 and 5 is not trivial for students. We have also observed that many 
precalculus level students only employ Mental Action 1 and Mental Action 2 when asked to construct the graph of a 
dynamic function situation. 

When prompting students to construct the graph of the height as a function of the amount of water in a bottle 
(Figure 6), the first two authors found that many precalculus students appropriately labeled the axes (MA1) and then 
constructed an increasing straight line (MA2). When prompted to explain their reasoning, they frequently indicated 
that “as more water is put into the bottle, the height of the water rises (MA2).” These students were clearly not 
attending to the amount of change of the height of the water level or the rate at which the water was rising.

We have observed that calculus students frequently provided a strictly concave up graph in response to this 
question (Carlson, 1998; Carlson et al., 2002). When probed to explain their reasoning, a common type of justification 
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was, “as the water is poured in it gets higher and higher on the bottle (MA2).” In contrast, other students who were 
starting to be able to construct an appropriate graph began coordinating the magnitude of changes in the height with 
changes in the volume (MA3). This is exemplified in the strategy of imagining pouring in one cup of water at a time 
and coordinating the resulting change in height based on how “spread out” that layer of water is.

Other students have demonstrated the ability to speak about the average rate of change locally for a specific 
interval of a function’s domain (MA4) but were unable to explain how the rate changes over the domain of the 
function. Even when calculus students produced a graph that was correct, they commonly had difficulty explaining 
what was conveyed by the inflection point and why the graph was “smooth” (in particular, why it is C1 rather than 
piecewise linear). Students frequently exhibited behaviors that gave the appearance of engaging in Mental Action 5 
(e.g., construction of a smooth curve with the correct shape), however when prompted to explain their reasoning, they 
expressed that they had relied on memorized facts to guide their constructions. They were relying on apparent facts 
such as “faster means steeper” and “slower means less steep,” but they were unable to explain why this was true. 

Engaging Covariational Reasoning Through Analysis Of Function Situations
We offer the following suggestions for strengthening students’ covariational reasoning abilities:

Generally, ask questions associated with each of the mental actions. For orientation to any problem, MA1 skills 
and basic function awareness can be addressed by asking what values are changing and what variable(s) influence 
the quantity of interest (i.e., the dependent variable). Is there a single variable that determines that quantity’s values? 
How are the variables related and in what representations can this relationship be expressed? For MA2, ask whether 
a function increases or decreases if the independent variable is increased (or decreased). Expect students to make 
such judgments from multiple representations. At an MA3 level, ask students to make judgments about amounts of 
change in the function for constant increments of the independent variable. For a dynamic situation, have students 
draw diagrams representing changes from one output variable to the other for each of two nearby intervals of the input 
variable, and represent these changes pictorially and algebraically. Ask students to interpret these representations in 
terms of rate of change in the problem context. To foster MA4 thinking, have students compute several average rates 
using various representations and find various interpretations for these values and explicitly discuss the meaning of 
units such as meters per second and even non-temporal rates such as square inches per inch or degrees Kelvin per 
meter. For MA5, ask students to anticipate second derivative information based on the problem context, e.g., whether 
the force of gravity between two celestial objects will increase at an increasing rate or at a decreasing rate with 
respect to a decreasing distance between them. Ask students to describe the rate of change of a function event as the 
independent variable continuously and dynamically varies through the domain. Ask where inflection points are, what 
events they correspond to in real-world situations, and how these points are interpreted in terms of changing rate of 
change.

Ask for clarification of rate of change information in various contexts and representations. Expect students to 
explain statements about rates in real-world contexts from algebraic or graphical information, e.g., why does a steeper 
graph mean the quantity represented by the function is increasing faster? Push beyond students’ initial, simplified 
statements such as “the rate of change of position” that ignore the role of time. Require explication of both variables 
involved and relationships about changes in both quantities. Finally, a student may be able to make statements indicative 
of a Mental Action 5 by attending only to the geometry of the curve and associated phrases such as “increasing at a 
decreasing rate.” Ask them to unpack such statements in terms of the underlying mental actions, in this case perhaps 
prompts that reveal if they understand what they mean by the phrase “increasing at a decreasing rate.” Unpacking what 
may be pseudo-conceptual knowledge (that is, knowledge that has been memorized and is not based on an underlying 
conceptual structure and understanding) can be achieved by posing pointed questions that prompt students to reveal 
their underlying conceptions (e.g., why is the graph concave up or why is the curve “smooth” rather than piecewise 

Imagine this bottle filling with water. Sketch a graph of the 
height as a function of the amount of water that’s in the bottle.

Figure 6. The bottle problem.
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linear?) Such questions typically reveal if the student is merely spouting a memorized rule or fact, or if the statement 
is supported by an understanding of why the rule or statement is true. 

Extending Ideas of Covariation To Higher Dimensions
The idea of covariation is fundamentally that of parametric functions. As one imagines 
scanning through values of one variable and keeping track of values of another variable, 
one is essentially imagining the parametric function (x, y) = (t, f(t)). Once students have 
developed the ability to reason covariationally, it is a natural (but not small) step to reason 
about functions defined parametrically by (x, y) = ( f(t), g(t)). For example, the graph in 
Figure 7 is (x, y) = (sin10t, cos20t), 0 ≤ t ≤ 1. Students can conceptualize this graph by 
generating the graphs of f(t) = sin10t and of g(t) = cos20t separately and then tracking 
the values of x = sin10t and y = cos20t as t varies. This same technique can be used 
to conceptualize graphs of phase space, (x, y) = ( f(u), f (u)), in differential equations.

Covariation can also support thinking about curves in space. To continue the 
previous example, imagine that t in Figure 7 is actually an axis, coming straight at 
your eyes. If you now keep track of t as well as x and y, you get a sense that each point on the graph in Figure 7 is 
actually some distance toward you from the page. If you rotate your position relative to the graph so that you can see 
an axis that is perpendicular to x-y, then you have engendered an image like that in Figure 8.

x

y

z

Figure �. Graph of (x, y, z) = (sin10t, cos20t, t), 0 ≤ t ≤ 1. As t varies, points in Figure 7 with 
coordinates (sin10t, cos20t) are projected t units perpendicularly from the x-y plane.

Finally, ideas of covariation can help students visualize functions of more than one variable. For example, we 
can envision the behavior of z = f(x, y) in a multitude of ways, such as thinking of y (or x) as a parameter. The graph 
of f, then, can be visualized as being generated by a family of functions z = f y(x) as y varies. Figure 9 shows three 
successive graphs corresponding to z = x3 + yx at y = –2, at y = –1, and at y = 1, where in each graph, x varies from –2 
to 2. Figure 10 shows the surface swept out by f y(x) = x3 + yx as y varies continuously from –2 to 2, thus generating 
the graph of f(x, y) = x3 + yx, –2 ≤ x ≤ 2, –2 ≤ y ≤ 2.
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y = 1

Figure 9. Graphs of z = fy(x) for y = –2, y = –1, and y = 1.

Figure �. Graph of (x, y) =
(sin10t, cos20t), 0 ≤ t ≤ 1.
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z

y

x

Figure 10. Graphs of z = f(x, y),  –2 ≤ x ≤ 2, –2 ≤ y ≤ 2.

Concluding Remarks
A mature function understanding that is revealed by students’ using functions fluidly, flexibly, and powerfully is typically 
associated with strong conceptual underpinnings. Promoting this conceptual structure in students’ understanding may 
be achieved through both curriculum and instruction including tasks, prompts, and projects that promote and assess 
the development of these “ways of thinking” in students. We advocate for greater emphasis on enculturating students 
into using the language of function in order to develop facility in speaking about functions as entities that accept input 
and produce output, a more conceptual orientation to teaching function inverse and composition, the inclusion of tasks 
requiring simultaneous judgments about entire intervals of input or output values, and the development of students’ 
ability to mentally run through a continuum of input values while imagining the changes in the output values, with 
explicit efforts to also promote, at the developmentally appropriate time, the covariational reasoning abilities described 
in this chapter. Our work also suggests that students would benefit from explicit efforts to promote their understanding 
of function notation. Additionally, we call for evaluations of students’ mathematical development and readiness to 
include assessments that measure the foundational reasoning abilities needed for a robust function conception. As 
one example, when teaching calculus I, we begin the semester by assessing students’ function understanding. This 
provides useful knowledge for our selecting and creating tasks to address their misconceptions and promote the 
reasoning abilities and understandings that we have described in this chapter.  We have found that the time spent at 
the beginning of calculus to strengthen students’ function conceptions is crucial for their understanding the major 
ideas of calculus (For further reading on how the covariation perspective to teaching functions influences students’ 
understanding of ideas of calculus, see Thompson and Silverman, this volume). (Note that the precalculus concept 
assessment instrument (PCA) and calculus modules mentioned in this chapter can be acquired by contacting the 
second author at marilyn.carlson@asu.edu.) You may also find it useful to assess your students’ thinking and reasoning 
on tasks that we have discussed in this chapter. Lastly, we advocate that you regularly pose questions and engage your 
students in tasks that will allow you to gauge their development in understanding major ideas of your courses. This 
instructional perspective will require that you have clarity on the mathematical thinking, understandings, and problem 
solving behaviors that your students need to acquire to advance their mathematical development. It also sets up a 
challenge for you to scaffold your instruction based on what your students know and understand, but should in turn 
lead to greater success for your students and a more rewarding instructional experience for you. 
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The Concept of Accumulation in Calculus

Patrick W. Thompson, Arizona State University
 Jason Silverman, Drexel University

The concept of accumulation is central to the idea of integration, and therefore is at the core of understanding many 
ideas and applications in calculus. On one hand, the idea of accumulation is trivial. You accumulate a quantity by 
getting more of it. We accumulate injuries as we exercise. We accumulate junk as we grow older. We accumulate wealth 
by gaining more of it. There are some details to consider, such as whether it makes sense to think of accumulating a 
negative amount of a quantity, but the main idea is straightforward.

On the other hand, the idea of accumulation is anything but straightforward. First, students find it hard to think 
of something accumulating when they cannot conceptualize the “bits” that accumulate. To understand the idea of 
accomplished work, for example, as accruing incrementally means that one must think of each momentary total 
amount of work as the sum of past increments, and of every additional incremental bit of work as being composed 
of a force applied through a distance. Second, the mathematical idea of an accumulation function, represented as
( ) ( )x

a
F x f t dt= ò , involves so many moving parts that it is understandable that students have difficulty understanding 
and employing it. 

Readers already sophisticated in reasoning about accumulations may find it surprising that many students are 
challenged to think mathematically about them. The ways in which it is difficult, though, are instructive for a larger 
set of issues in calculus. As such, our intention in this chapter is to: 

(1) Explicate the complex composition of a well-structured understanding of accumulation functions,
(2) Illustrate students’ difficulties in understanding accumulation mathematically,
(3) Point out promising approaches in helping students conceptualize accumulation functions, and
(4) Place students’ understandings of accumulation functions within the calculus as a whole.

Composition of a Well-Structured Understanding of Accumulation Functions
Accumulation functions can be represented generally by f t dta

x ( )ò .1 It is worthwhile to unpack the meanings behind 
this formula in order to see all that it entails. We will do this in two passes, first without addressing ideas of Riemann 
sums, then addressing them. 

Accumulation Functions
For sake of illustration, let ( ) ( )cos2 2.5xf x e-= - . To understand an accumulation function involving f, students must 
have a process conception of the formula ( )cos2 2.5xe- - .2 This means that they must hold the perspective that though 

1 For purposes of this chapter, we will speak only of Riemann integrals over an interval.
2 Briedenbach et al., Dubinsky and Harel, and Carlson speak of a process conception of function. We also speak of a process conception of formu-
lae. To us, for students to have a process conception of “f(x) = …” requires that they have a process conception of the right-hand side. A process 
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it might require actual effort to calculate any particular value of this formula, in the end it represents a number, and 
the number it represents depends only on the value of x (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Dubinsky 
& Harel, 1992; see also Oehrtman, Carlson, & Thompson, this volume). To have a process conception of a function’s 
defining formula implies that one has what Gray and Tall (1994) call a proceptual understanding of what the formula 
represents. One has in mind a well-structured set of procedures for evaluating the formula together with ability and 
inclination to see the formula as “self-evaluating” (P. W. Thompson, 1994b), meaning that one sees it as evaluating 
itself instantaneously for any number.3 

To understand an accumulation function, students also need a 
covariational understanding of the relationship between x and f (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998; P. W. 
Thompson, 1994b, 1994c). In the case of the current example, this means 
understanding that as the value of x varies, the value of ( )cos2 2.5xe- -  
varies accordingly. It also entails creating an image of how the value 
of ( )cos2 2.5xe- -  varies as the value of x varies, thus generating the 
relationship expressed by the graph in Figure 1.

Students who have mastered the process conceptions of formulae and 
covariational conceptions of function must then coordinate a third aspect 
with them—imagining accumulation and its quantification. Students 
must coordinate the value of x as it varies from some starting point, the 
value of ( )cos2 2.5xe- -  as it varies accordingly, and, in addition, imagine 
the bounded area accumulating (Figure 2) as x and ( )cos2 2.5xe- -  vary. 
Moreover, the student must attend to how these values are varying in 
tandem.4

To conceive of an accumulation function defined in x is to imagine a 
total accumulated area for each value of x. This introduces a third dimension 
into the conceptualization of accumulation functions—students must coordinate three values simultaneously:

x,  ( )cos2 2.5xe- - ,  and  2 2 5e dtt

a

x - ( ) -( )ò cos . .

Figure 3 illustrates this coordination graphically. Points 
on the space curve are ordered triplets

x e e dtx t
a

x
, . , . .cos( ) cos( )2 2 5 2 2 5- -- -( )æ

è
ççç

ö
ø
÷÷÷ò

While we do not claim that students must conceptualize 
the space curve in Figure 3 in order to understand 
the mathematical idea of accumulation, we do claim 
that expecting them to understand accumulations as 
functions is tantamount to expecting them to understand 
a space curve.5

Before covering these issues again from the perspective of Riemann sums, we would like to point out a notational 
issue. The role of t in the expression f t dta

x ( )ò  often is a mystery to students. When textbooks address it at all they 
treat it as a “dummy variable,” or a variable that will disappear when the expression is evaluated (Weisstein, 2006). We 
propose that t actually serves a conceptual role in making sense of the expression f t dta

x ( )ò . In Figure 2, f cannot be 
thought of as having the same argument as does f t dta

x ( )ò . In a sense, the graph of f must “pre-exist” when imagining 

conception of a function entails more than does a process conception of a formula. Our intent is to avoid adopting an “all or none” stance toward 
what it means to understand a function.
3 We will give specific examples later in this article of students having and not having a process conception of an integral.
4 A simpler example involves coordinating changes in x with changes in 3x2 while simultaneously imaging how the bounded area under the graph 
of 3x2 is accumulating.
5 A colleague thought we are implying that accumulation functions should therefore not be taught, since they are so sophisticated. On the con-
trary, we argue that they should be taught, but they should be taught with full awareness of what it means to understand them.

y

x

Figure 1. Graph that depicts values of x and 
( )cos2 2.5xe- -  varying simultaneously.

y

x

Figure 2. Area accumulates as x varies.

z y

x

z

Figure 3. Coordination of x, ( )cos2 2.5xe− − , and
( )( )cos2 2.5

x t

a
e dt- -ò , and its projection into the x-z plane.
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the accumulation of area between it and an axis. Thinking of t as already having varied through f’s domain prior to x 
varying through a subset of f’s domain then allows one to think of f t dta

x ( )ò  as representing the accumulation of area 
within an already bounded region.

Riemann Sums
Calculus texts typically offer Riemann sums as a way to approximate areas bounded by a curve. The question of how a 
bounded area itself can represent a quantity other than area requires us to examine ways to understand Riemann sums 
and how they arise.

If f is a function whose values provide measures of a quantity, and x also is a measure of a quantity, then f(c)∆x, 
where c ∈ [x, x + ∆x], is a measure of a derived quantity. The simplest case is when f(x) and x are both measures of 
length. Then f(c)∆x is a measure of area. If f(x) is a measure of speed and x is a measure of time, then f(c)∆x is a 
measure of distance. If f(x) is a measure of force and x is a measure of distance, then f(c)∆x is a measure of work. If 
f(x) is a measure of cross-sectional area and x is a measure of height, then f(c)∆x is a measure of volume. If f(x)is a 
measure of electric current and x is a measure of time, then f(c)∆x is a measure of electric charge. A Riemann sum, 
then, made by a sum of incremental bits each of which is made multiplicatively of two quantities, represents a total 
amount of the derived quantity whose bits are defined by f(c)∆x. Therefore, for students to see “area under a curve” as 
representing a quantity other than area, it is imperative that they conceive of the quantities being accumulated as being 
created by accruing incremental bits that are formed multiplicatively.

Our account of how “area under a curve” comes to represent quantities other than area clearly holds an undertone 
of thinking with infinitesimals. Though a large portion of 19th-century activity in the foundations of mathematics was 
motivated by the desire to eliminate infinitesimals, we see no way around explicitly supporting students’ reasoning 
about them as part of their path to understanding accumulation functions (and functions in general). Much of this 
support should be given in middle school and high school, but given that this does not happen in the United States, it 
must be addressed in introductory calculus courses.6

Students’ Difficulties in Understanding Accumulation Mathematically
While our analysis of the ideas entailed in understanding accumulation functions also points to ways that students 
have difficulty with them, we must also note that the major source of students’ problems with the idea of accumulation 
functions is that it is rarely taught with the intention that students actually understand it. We anticipate the objection 
that definite integrals already receive clear and explicit attention in every calculus textbook. Our reply is that a definite 
integral is to an accumulation function as 4 is to x2. No one would claim to teach the idea of function by having students 
calculate values of a specific function. Similarly, we should not think that we are teaching the idea of accumulation 
function by having students calculate specific definite integrals.

We say this without hubris. In a teaching experiment (P. W. Thompson, 1994a) conducted with the intention 
of investigating advanced undergraduates’ difficulties forming the ideas of accumulation and rate of change of 
accumulation, the first author failed to anticipate both the difficulty they would have conceptualizing accumulation 
functions and the importance that they actually do so for understanding the Fundamental Theorem of Calculus 
(FTC).7 

Lastly, the idea of limit and the use of notation are two of the most subtle and complex aspects of understanding 
accumulation functions. Research on students’ understanding of limit (Cornu, 1991; Davis & Vinner, 1986; Ferrini-
Mundy & Graham, 1994; Tall, 1992; Tall & Vinner, 1981; Williams, 1991) shows consistently that high school 
and undergraduate students understand limits poorly, even after explicit instruction on them. We located only two 
empirical studies that addressed students’ reasoning about limit in the context of integration (Oehrtman, 2002; P. W. 
Thompson, 1994a). Thompson studied advanced undergraduate and graduate students’ understanding of the FTC, 
and in that context found students concluding, for example, that the rate of change of volume with respect to height 
in a cone was equal to the cross-sectional area at that height because as you make an increment in height smaller, 

6 The legacy of infinitesimal reasoning in calculus is reflected in the continued use of the integral notation that Leibniz introduced in 1675, when he 
used “dt” in f t dt( )ò  to represent the difference between successive values of t (O’Connor & Robertson, 2005).
7 This was a classic case of an outcome being harder than someone expected even though he anticipated it would be harder than he expected.
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the incremental cylinder of volume gets closer and closer to an area (P. W. 
Thompson, 1994a, p. 34). Oehrtman (2002) named this way of thinking “the 
collapsing metaphor,” meaning that students reasoned that the object being 
considered (e.g., a cone, a secant, etc.) approached another object having one 
less dimension. He found one-third of his subjects (first-year calculus students 
after instruction) employing this metaphor in one setting or another. 

Oehrtman points out that though the collapsing metaphor is mathematically 
incorrect, it sometimes enables students to educe mathematically correct 
results from incorrect reasoning. Students sometimes justify the FTC by 
the incorrect reasoning that as the interval width decreases, the rectangle 
collapses to its height (Figure 4). Put another way, students reason that 
∆x→0 implies that f(c)∆x →	f(c). They were thinking of an image (e.g., a 
rectangle) instead of the quantity (e.g., electrical charge) and the value of its 
measure. We do note that although the collapsing metaphor enables students’ intuitive, albeit incorrect, “justification” 
of the FTC, it also divorces their understanding of the fundamental theorem from any idea of rate of change.

Finally, we address the issue of what one might take as evidence as to whether students understand the representation 
of an accumulation function. The goal is to avoid accepting as evidence of understanding what Vinner (1997) calls 
pseudo-analytic and pseudo-conceptual behavior. Students exhibit conceptual behavior when their words and symbols 
refer to ideas and relationships. They exhibit pseudo-conceptual behavior when their words and notations refer to 
other words, to notations, or to iconic images. They exhibit pseudo-analytic behavior by applying pseudo-conceptual 
thinking in the course of their reasoning. The following student’s response to the prompt, “Explain what f t dta

x ( )ò  
means,” illustrates the subtleness in distinguishing between conceptual and pseudo-conceptual behavior.

f x dxa
b ( )ò  gives the area bounded by the graph of f(x) and the lines y=0, x=a, and x=b. Therefore, f t dta

x ( )ò  
gives the area bounded by f (t), y=0, t = a, and t=x. As x varies, the bounded area varies.

This answer, on the surface, appears quite acceptable. The problem is that we cannot tell which of several possible 
meanings this student gives to the integral notation. We highlight this by making a notational substitution in this 
student’s answer so that it responds to the question, “Explain what ( )( )x

aA f t  means when ( )( )b
aA f x  stands for the 

area bounded by the graph of f(x) and the lines y=0, x=a, and x=b.”

( )( )b
aA f x  gives the area bounded by the graph of f(x), y = 0, x=a, and x=b. Therefore, ( )( )x

aA f t  gives the 
area bounded by f(t), y=0, t=a, and t = x. As x varies, the bounded area varies.

In other words, students could be imagining no more than a 
concrete image of a region “filling up” with paint as one moves one 
of its vertical edges (Figure 5), and at the same time could be using 
integral notation referentially (Figure 6) to describe that image. While 
this understanding of f t dta

x ( )ò  would be a process conception of 
the notation, and indeed is useful as a shorthand for anyone having 
an in-depth understanding of the function, the process that  students 
conceive when they have only the shorthand has nothing to do with the 
meaning of integration as the limit of Riemann sums. 

We mentioned earlier a teaching experiment that investigated 
difficulties inherent in coming to understand the FTC (P. W. Thompson, 
1994a). It involved 19 advanced undergraduate mathematics and 
masters mathematics education students. One aspect of the teaching 
experiment emphasized students’ development of a process conception 
of integrals that entailed ideas of accumulation, variation, and Riemann 
sums as the root ideas of integration. We joined these ideas by defining 
Riemann sums as one would for fixed intervals, but modifying the 
definition so that ∆x was a parameter and x was a variable. That is, 
we held ∆x constant and let x vary instead of holding x constant and 

1 2 3

2

4

Figure �. As ∆x approaches 
0,  f(c)∆x approaches f(c).

1 2 3

2

4

Figure 5. A student’s image of a region filling 
up with paint as she moves one edge.

f x dx( )

The area
between anda b

of the region bounded by
the graph of this function.

b

a
Figure 6. Referential understanding 
of integral notation.
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letting ∆x vary.8 This can be expressed generally as 

( ) ( ),
0

, .

x a
x

x a
i

F x f i x a x a x b
∆

∆ ∆ ∆

ê ú-ê ú
ê úë û

=

= + £ £å

However, we did not provide this general representation of the Riemann accumulation function. Instead, we worked 
with students to model the accumulation of a quantity that accrued in bits created by joining two of its constituent 
attributes (like work from power and time) and to develop a representation of the total accumulation.

At the end of the teaching experiment we used Item 6, among others, to assess the extent to which students had 
developed a process conception of Riemann accumulation functions.

Item 6 . Let q(x) be defined by 
1

( ) ( )
t

t
i

q t f i t tD
=

= D Då , 0 ≤ t ≤ b. Explain the process by which the 
expression 

q t f i t t
i

t
t

( ) ( )= D D
=

D

å
1  

assigns a value to q(t) for each value of t in the domain of f.

Responses to this item showed that understanding Riemann sums as functions was a complex act for students. 
Student 1 wrote:

First the value of a certain chunk is measured by i∆t. This is then multiplied by the change which is ∆t. This 
is repeated for every value of t and then added up. Each value of t is cut up into t/∆t intervals, and added. t/∆t 
is the number of intervals the piece is to be divided up into.

Student 1 had a number of problems, one being that he was imagining a “chunk” of a quantity independently of 
an analytic expression that established its measure—i∆t does not “measure” the chunk, it just puts you at the right 
place to make it. The student also failed to note the role played by the function f in creating a “chunk”— it is f(i∆t)∆t 
that gives the chunk’s measure. Also, the student was unclear about what was being summed: “Each value of t is cut 
up into t/∆t intervals, and then added.” However, the subintervals are not summed. A more serious problem, though, 
is that this student appeared to be imagining t and i varying simultaneously instead of, first, varying i from 1 to t t∆ê úë û  
for a fixed value of t, and then varying t.

Student 2 wrote:
• Here ∆t represents the size of each interval that f is being broken up into.
• So t/∆t equals the number of intervals the graph of f is broken up into.
• So our i starts out at 1 and then goes to t/∆t.
• The expression first finds f and then it finds the ith interval of f that we are dealing with. Then it finds the value 

of the function f at that interval and then multiplies by ∆t. This finds the area of that particular rectangle. Then 
we add it to the previous areas found and plot that point. You then connect all the points to get your curve.

The process that Student 2 understood is much more well-structured than Student 1’s. While some of her phrasing 
is imprecise (“… the size of each interval that f is being broken up into”) and suggests that she is reasoning about a 
graph, she does seem to be imagining the process being played out for each value of t. One missing element in this 
student’s explanation is that the value of t does not vary. Rather, she seems to imagine that she “samples” values of 
t and then connects the points that get plotted for each value. This suggests that she was imagining a Riemann sum
over a fixed interval, which would normally correspond to an approximation of a definite integral f t dta

b ( )ò  instead
of the indefinite integral

 
f t dta

x ( )ò . When students do not see the upper limit as varying, it is difficult, if not impossible, 
for them to conceive that the accumulation function has a rate of change for every value at which it is defined (Smith, 
in preparation).
8 Our justification for this approach, fixing ∆x and letting x vary, was our intention to have students understand integral accumulation functions as 
being rooted in Riemann accumulation functions. In earlier attempts to probe students’ understandings of accumulation functions, we got only the 
“paint filling” metaphor alluded to in the discussion of Figure 5. We will say more about the benefits of this approach in the last section.
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Only seven of the 19 students expressed an appropriate order of variation for the index variable of the Riemann 
sum and the argument of the function. Five students appeared to have mixed images of definite and indefinite integrals 
(e.g., i varied, but t did not). The remaining seven students had confounded the two variations so that everything was 
happening at once. For us, these results imply that the idea of accumulation function is far more complex than is 
commonly assumed and that it is still unclear what instructional trajectories will best support students learning them. 

We note in closing that Item 6, above, was useful in seeing the extent to which students had developed a process 
conception of Riemann sums and Riemann accumulation functions. In subsequent years, we have found that Item 6′, 
below, is a better task for determining that students have developed a process conception of a Riemann accumulation 
function.

Item 6 . Suppose f is a continuous real-valued function on (a,b) and 0x∆ > . Let g be defined as

( ) ( )
0

, .

x a
x

i
g x f i x a x a x b

∆

∆ ∆

ê ú-ê ú
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Explain why g is a step function.

To see why g is a step function, let x0 be 2∆x + a. Then ( )x a
x

-ê
ë
ê

ú
û
ú∆  is 2 for every value of x in [x0, x0 + ∆x), and 

thus g(x) is ( ) ( ) ( )0 1 2f x a x f x a x f x a x∆ ∆ ∆ ∆ ∆ ∆+ + + + +  for every value of x in [x0, x0 + ∆x). Therefore, g(x) is 
constant as x varies within each interval [i∆x + a, (I + 1)∆x + a).

Promising Approaches In Helping Students Conceptualize Accumulation Functions
Carlson, Persson, and Smith (2003), building upon Thompson’s (1994a) work, conducted a teaching experiment with 
first-semester calculus students using instruction that addressed the conceptual difficulties experienced by Thompson’s 
students in learning accumulation functions and their rate of change. Their approach to teaching accumulation functions 
was embedded in a larger effort to have students conceptualize the FTC as the course’s culmination. The course began 
with a review of functions that emphasized covariation of quantities and then leveraged that reasoning to develop rates 
of change, limits, derivatives, and accumulations in terms of covarying quantities. Carlson et al. spent six sessions over 
two weeks developing notions of accumulating quantities and accumulation functions and another five sessions over 
10 days on the FTC. Their coverage of the FTC had students examine in detail the incremental accumulation of various 
quantities, tying the idea of accumulation to the notation by which it is represented. They then had students examine 
the rates at which total accumulations changed by looking at average rates of change of the total accumulation over 
the interval of incremental accrual. Carlson et al. reported that their approach led to a high success rate, both in terms 
of students’ conceptions of accumulation functions and their ability to use and explain the FTC.9 

At the same time that Carlson et al.’s (2003) findings point to the promise of building students’ understanding and 
skill with calculus on a strong conceptual foundation of covariation, function, rate of change, and accumulation, their 
post-instruction interviews suggest that students had not clarified some important issues. For example, one student, 
Chad, was shown a graph of a piecewise-linear function f whose values gave the rate in gallons per hour at which 
water filled a container. He was asked to explain the meaning of 0( ) ( )xg x f t dt= ò  and how to evaluate g(9). Carlson 
et al. reported that Chad gave an acceptable explanation of the meaning of g(x) and also provided Chad’s explanation 
of how to evaluate g(9).

1. Interviewer:  So, how do you think about evaluating g(9)? 
2. Chad:  I see that as finding the time that passes from 0 to 9 and thinking about how much area gets added under 

the curve as I move along. I see that water is coming into the tank, first at an increasing rate, then at a 
decreasing rate. Then after 4½ hours, water starts to go out of the tank. As you add up the area under the 
curve you see that the same amount of water comes in between 0 and 4 ½ that goes out between time 
4½ and 9 …. so, the result is that there is no water in the tank after 9 hours have passed.

9 We do not compare performances of Thompson’s and Carlson’s students because the two studies used different assessment tasks and therefore 
the results are not directly comparable.
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3. Interviewer:  How are g and f related?
4. Chad:  The derivative of g gives the graph of f. What I don’t get is why t is the variable that is used in f. I never 

really understood this on some of the other problems we did either.           (Carlson et al., 2003, p. 270)

Paragraph 2 suggests that Chad could think about accumulation functions and rate of change to support his 
evaluation of g(9). He also was thinking about the quantities that x, f(x), and g(x) represented (viz., number of hours, 
the rate at which water filled the container, and the amount of water in the container). He also appeared to attend 
to how g changes while imagining changes in x and f. However, we observe that Chad’s statements in paragraph 
2 also are reminiscent of the “paint filling” notion of accumulation discussed in conjunction with Figure 5. As a 
result, without querying Chad further, we have no way of knowing if he is using the “paint metaphor” in a pseudo-
conceptual way—i.e., does he understand that infinitesimal amounts of multiplicative bits are being accrued as x 
varies. In addition, paragraph 4 suggests that Chad had not worked through the conceptual issues behind the use of t 
in the accumulation function’s definition. 

It is unclear to us the extent to which Chad’s understanding was rooted in Riemann sums as opposed to being 
rooted in the paint-filling metaphor. We see this as once again pointing to the need for further analysis of what it 
means for students to understand accumulation functions and how to assess their levels of understanding. It also 
points to the need for further investigation into the implications that various ways of understanding accumulation have 
for learning related ideas in the calculus, and the kinds of instruction that will support students in developing those 
understandings.

Students’ Understandings of Accumulation Functions within the Calculus as a Whole
Accumulation functions would not be important if understanding them well did not pay off elsewhere. In this section 
we argue that the kind of understanding we have depicted as well-structured not only pays off in other areas, they 
are part of understanding many related ideas and they are essential for understanding many advanced ideas in the 
calculus. But even beyond the connections with other ideas that we will outline here, we feel that the precise thinking 
and thoughtful use of notation required to understand accumulation functions well is in itself valuable mathematical 
activity.

Connections with Other Ideas
Rate of change. The idea of accumulation both grows out of and contributes to a coherent understanding of rate of 
change (Carlson et al., 2003; P. W. Thompson, 1994a). When something changes, something accumulates. When 
something accumulates, it accumulates at some rate. To understand rate of change well, then, means that one sees 
accumulation and its rate of change as two sides of a coin. Thus, students’ success in the integral calculus can begin in 
middle school if rate of change is taught substantively (A. G. Thompson & Thompson, 1996; P. W. Thompson, 1994a, 
1994c; P. W. Thompson & Thompson, 1994).

Function. The obvious connection between the ideas of accumulation functions and function is that an accumulation 
function is precisely that, a function. It is nontrivial for students to understand this. There are three additional important 
connections that can be exploited in a calculus curriculum.

•	 Accumulation functions are, in all likelihood, the first functions students meet that are defined in terms of a 
complex process instead of in terms of an algebraic, trigonometric, or exponential expression. The challenge is 
to avoid leading them to pseudo-conceptual understandings of accumulation (see discussion of Figure 5) and 
pseudo-analytic interpretations of the notation (see Figure 6).

•	 Accumulation is the root of accumulation functions, and hence covariational conceptions of functions must be 
a key connection.

•	 Riemann accumulation functions that are specified by the formula

( ) ( )
0

,

x a
x

i
g x f i x a x a x b

∆

∆ ∆

ê ú-ê ú
ê úë û

=

= + £ £å



50 Part Ia.  Foundations for Beginning Calculus

are step functions. Computer programs that allow Riemann sums as defined here will also support students’ 
explorations of convergence.10 The issue of convergence, however, expresses itself differently in this context 
than it does in typical treatments of Riemann sums. In the typical case, the issue is whether there is a number 
that is the limit of a Riemann sum as ∆x→0. The accumulation function f t dta

x ( )ò  is then defined so that 
each value of the function is a pointwise limit. In the case of a Riemann accumulation function, the issue is 
whether there is a function that is the limit of the family of Riemann accumulation functions that is generated 
as ∆x approaches 0. That is to say, the idea of function is always at the forefront in this approach, even when 
working with approximations. We anticipate the objection that the issue of limits of function sequences is 
beyond first-term calculus students’ conceptual capacity. Our experience is quite the contrary. Students find 
it visually compelling when they see a sequence of graphs approaching what appears to be the graph of some 
function, and willingly entertain the question, “What is the function that this sequence appears to approach? 
Does it approach it pointwise or uniformly?11 How can we determine it analytically?” For example, the graphs 
of cos(x) and
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are given in Figure 7. The accumulation function’s graph appears to be of a trigonometric function, but which 
one? What are its coefficients? Is something added? How is it related to cos(x)? We feel that these questions 
can be mined fruitfully to develop students’ understandings of a web of related ideas—approximation, 
limits, functions, convergence, and antiderivate, to name a few. How these connections might be developed 
instructionally, though, requires further investigation.

1

–1 –1

1

–6 –4 –2 2 42 4–6 –4 –2

Figure �. Graphs of cos(x) and its Riemann accumulation function.

Functions of two variables. Carlson, Oehrtman, and Thompson (this volume) argue that ideas of function-as-covariation 
in the case of two variables can be extended naturally to functions as covariation in the case of three variables. Were 
one to take that approach, then accumulation functions defined over lines and regions in a plane and over surfaces 
would be natural extensions from accumulation functions defined over intervals. We suspect that one needn’t fall back 
to Riemann accumulation functions to make these cases meaningful if students have understood them thoroughly 
when they were first taught. We stress that ideas of covariation must remain at the forefront even with multiple 
integrals, and the importance of attending to issues of scope of variation is even greater than what we saw earlier in 
students’ understanding of Riemann accumulation functions over intervals.

Conclusion
As we mentioned in the beginning of this chapter, the concept of accumulation is almost trivial yet, at the same time, 
quite complex. One aspect of the complexity described in this chapter was the focus on accumulation functions as 
opposed to the traditional focus on the calculation of a number representing the area bound by the curve over a specific 

10 We used Graphing Calculator from PacificTech to generate the graphs of accumulation functions contained in Figures 2–5. The functions graphed 
in those figures were specified as Riemann accumulation functions.
11 The distinction between pointwise and uniform convergence arises quite naturally in classroom discussions when looking at the behavior of 
Riemann accumulation functions for functions with unbounded derivates. 
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interval. The emphasis of this chapter, though, was not on the differences between these two related notions of integral 
calculus; it was on the underlying images students bring to bear on such problems and the implications of those images. 
The first image involved covering a region, where the result was a number equivalent to “the amount of paint needed” 
to cover the area between the x-axis and the function on the interval [a, b]. The second image involved measuring the 
accumulation of a quantity that is created from bits that themselves are made from measures of two quantities, one 
whose measure is a function of the other on the interval [a, b], by summing values of f(c)∆x, c ∈ [i∆x,(i+1)∆x). The 
connection between the second image and area is simply that if f(c) and ∆x are represented by lengths, then f(c)∆x 
gives the area of a rectangle made from those lengths. The former image is difficult to apply to quantities other than 
area, while the second necessitates understandings that both f(c) and ∆x can be measures of quantities (for example 
force and distance) and f(c)∆x is a measure of a derived quantity (work).

It could appear that these images (painted area and accumulated quantities) are the same. We note in reply that they 
are only the same when one has constructed a scheme of understandings within which area can represent a quantity 
other than area. Further, the intricacies of understanding accumulation are often reduced to calculating products and 
limits without understanding the significance of either. Without additional focus on constructing, representing, and 
understanding Riemann Sums, there is little reason to believe that students will understand accumulation functions as 
playing a central role in the FTC. 

This paper presents a call for increased emphasis on the FTC as explicating an inherent relationship between 
accumulation of quantities in bits and the rates at which an incremental bit accumulates. Understanding this relation-
ship entails a clear emphasis on covariation as a foundational idea in calculus instruction. We make this call with 
awareness of the difficulties involved in developing a well-structured understanding of accumulation functions, and 
that this difficulty stands in contrast with the efficiency of teaching students to calculate definite integrals as area 
under a curve. We believe that the benefits make the effort worthwhile. Understanding ( )b

a f x dxò  
as an expression that 

yields the area bound by the x-axis and f(x) is efficient but not generative. It supports a superficial understanding of  
( )x

a f t dtò . We believe that understanding accumulation so that ( )b
a f x dxò  is simply ( )x

a f t dtò  evaluated at x=a, 
where ( )x

a f t dtò  itself has a well-developed meaning, can be part of a coherent calculus that focuses on having 
students see connections among rates of change of quantities, accumulation of quantities, functions as models, limits, 
antiderivatives, pointwise and uniform convergence, and functions of two (or more) variables. Though more work is 
needed to flesh out instruction that achieves this, we believe that a focus on accumulation functions as discussed in 
this chapter will be central to it.
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5
Developing Notions of Infinity

Michael A. McDonald, Occidental College
Anne Brown, Indiana University South Bend

The various notions of infinity are among the most intriguing and challenging concepts in mathematics. Despite their 
important role in the undergraduate mathematics curriculum, concepts related to infinity typically receive little direct 
instructional attention. While a number of mathematics education researchers have examined students’ understanding 
of topics related to infinity, this is still an area rich with unanswered questions. In this chapter, we do not attempt to 
summarize all of the research in this area and its possible implications for instruction. Rather we look at three specific 
examples — comparing infinite sets, determining limits of sequences, and constructing infinite iterative processes 
— and use them to illustrate the types of research being done, and the ways in which research may provide insights 
for classroom instruction. We begin by introducing the examples and follow up by discussing the results of the related 
research. 

Situation 1 . How might students who have not been exposed to Cantor’s theory respond to the following question:

Which infinite set, A or B, below has more elements, or do they have the same number of elements? 

A = {1, 2, 3, 4, 5, 6,…}  B = {4, 8, 12, 16, 20, 24,…}1

Would their responses change if sets A and B were listed one above the other? What if they were given in a 
geometric presentation where set A is given as the set of line segments of length 1 cm, 2 cm, 3 cm, 4 cm, and so on, 
and set B is given as the set of perimeters of squares with sides of length 1 cm, 2 cm, 3 cm, 4 cm, and so on? 

Would students say that sets A and B have the same number of elements because they are both infinite sets and 
there is only one infinity? Or would they say that A clearly has more elements than B because B is a proper subset 
of A? Would some argue that the two sets have the same number of elements because they can set up a one-to-one 
correspondence between the sets, the answer consistent with Cantorian set theory? And do different presentations 
suggest different answers to students?

Situation 2 . What response will the following problem elicit from the typical Calculus student?

There is a stairway consisting of two steps, with height and width of each step one foot. From this stairway 
we construct another with twice the number of steps, by halving the height and width. 

Staircase 1 Staircase 2 Staircase 3

1 Adapted from Tsamir and Tirosh (1999).
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Following this process inductively, we construct a whole family of staircases. What can we say about the 
perimeter of the staircases? What is the final result of the inductive process? 2

Will students say that the final result of the geometric constructions is a staircase with an infinite number of stairs 
that are infinitesimally small, or will they say that it is a ramp with slope 1? And what will they say is the perimeter of 
this “final” result? Finally, is this a good task to give students who are still developing their notions of limit?

Situation 3 . Can the typical mathematics major in a transition course on proofs determine whether the indicated 
statement concerning the union of the power sets of finite initial segments of the set of natural numbers N is true or 
false? 

Prove or disprove: ( )
1

{1,2, , } ( )
k

P k P
¥

=

= 
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Do they use the notion of set inclusion to prove or disprove the equality of the two sets?  Or do they focus on the 
nth partial union and note that ( ) ( )1 {1,2, , } {1,2, , }n

k P k P n= = 



? Does this knowledge lead them to claim that the 
infinite union must equal ( )P   so that the equality holds? Or do they observe that the final result of the infinite union 
has only finite sets as elements while ( )P   contains infinite sets as elements so the equality does not hold? 

We now examine each problem situation more thoroughly and summarize the results of the related research. 

Comparing Infinite Sets
Over the past two and a half decades, one group of researchers has carefully examined students’ intuitions regarding 
infinity, particularly the comparison of infinite sets. Primary intuitions that are most often invoked by students in those 
settings include:

•	 a single infinity intuition — there is only one infinity, thus all infinite sets have the same size;
•	 an inclusion or part-whole intuition — the smaller infinite set is the one that is a subset of the other given set; 

and
•	 an incomparability intuition — you cannot compare infinite sets, therefore there are no right or wrong 

answers.
Obviously there is also the conventional mathematical interpretation based on Cantorian set theory that two sets 

are of the same size if and only if they can be put in one-to-one correspondence with each other. This view is often not 
very intuitive to students.

These researchers have embarked upon a long-term research agenda where each study reveals more about how 
students’ intuitions impact (and often inhibit) their mathematical understanding of infinity, and subsequent studies 
build upon what is learned from the previous ones. In this section, we briefly highlight several of the recent studies by 
Dina Tirosh and Pessia Tsamir and discuss the implications of these studies. Although many of their studies focus on 
middle and high school students in Israel, some of their studies have been conducted with college students preparing to 
be teachers. Additionally, our own research related to infinity as well as our experience teaching college and university 
students convinces us that the ideas discussed below are very relevant to college-aged students.

In Tirosh and Tsamir (1996), the researchers tried to determine whether the representation of the infinite sets to 
be compared affected the answers and justification students gave. In this study, 189 tenth through twelfth graders in 
Israel were asked to compare the sizes of two infinite sets presented in one of four ways:

numerical-horizontal, such as:  { } { }1, 2, 3, 4, 5, 6, and , 3, 2, 1, 0,1, 2,C D= = - - -  

numerical-vertical, such as:  
{ }

{ }1 1 1
2 2 2

1, 2, 3, 4, 5,

,1,1 , 2, 2 ,

E

F

= ¼

= ¼

numerical-explicit, such as:   { } { }2 2 2 2 21, 2, 3, 4, 5, and 1 , 2 , 3 , 4 , 5 ,G H= =   

2 Adapted from Mamona-Downs (2001).
3 Adapted from Brown, McDonald and Weller (in press).
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geometric, such as  
the set of sides of squares of length 1, 2, 3, 4, 5, …
the set of areas of squares of length 1, 2, 3, 4, 5, …

G
H

=
=

They were also asked to justify their answers. The researchers found that equivalent set arguments using one-
to-one correspondence justifications were given most often when sets were in numerical-explicit or geometric 
representations. However, when arguing that the sets are equivalent in terms of number of elements, students still used 
single infinity arguments more often than one-to-one correspondence.

In Tsamir and Tirosh (1999), the researchers used a variation of Situation 1 presented earlier to examine the 
thinking of 32 thirteen to eighteen year old Israeli public school children who were advanced in mathematics. Based 
on previous research findings, the researchers encouraged part-whole (inclusion) thinking as follows. They first 
showed the student a card with the natural numbers listed, {1, 2, 3, 4, 5, } . Students were asked to circle all multiples 
of four and then list those numbers in a new set, {4, 8,12,16, 20, } , and asked to compare the size of this set to the 
previous one. The researchers then encouraged thinking about one-to-one correspondences. They showed them a card 
with line segments of increasing length and asked students to write down the lengths in a set, resulting once again in 
{1, 2, 3, 4, 5, } . Students were then asked to create a sequence of squares using each of the line segments as the side 
of one of the squares, to write down the perimeters of the squares in a set, resulting in {4, 8,12,16, 20, } , and again 
asked to compare the size of these two sets. The four sets were then shown to the students and they were presented 
with their own, often contradictory, comparison results in the two tasks. 

The researchers found that 12 of the 32 students argued that all the sets had the same number of elements using 
either single infinity or incomparability arguments. The remaining 20 students gave contradictory answers in the two 
comparison tasks. Some students noted that their answers were incompatible, but most needed some prompting to 
realize this. Ultimately, a few students decided that contradictions were acceptable in mathematics, while the others 
resolved their contradictions using one of the reasoning patterns indicated at the beginning of the section, with only 
two choosing the one-to-one correspondence criterion.  

This study has two implications for instruction on the comparison of infinite sets. First, they confirm that students’ 
responses are not independent of the way the sets are represented. Second, the fact that not all students see the need 
to avoid contradictions suggests that simply encouraging the use of the Cantorian approach, while pointing out that 
inconsistencies occur when other comparison criteria are used, will not guarantee that students will dismiss their 
primary intuitions and other criteria in favor of the Cantorian approach. 

In Tsamir (2001), the researcher followed up on the previous study with a new problem situation that she proposes 
may help students reject the part-whole criteria by adding a numerical-explicit representation to the geometric 
representation in the problem. Students were first given the two sets {1, 2, 3, } and {3, 4, 5, } in a numerical-
horizontal representation, usually evoking part-whole thinking on the part of the students. The second representation 
of these same sets given in an attempt to evoke one-to-one correspondence was a geometric representation with 
a sequence of trapezoids where the top base had measure equal to a natural number n and the bottom base was 
always two units larger than the top. Finally, students were given a numerical-explicit representation given vertically 
consisting of the two sets {1, 2, 3, }  and {1 2, 2 2, 3 2, }+ + +  . 

Tsamir found that this sequence of presentation of sets helped students provide consistent responses and to use 
one-to-one correspondence as the sole criteria of comparison. However, in follow-up interviews, she found that this 
was the case only if students could specify the rule of correspondence (in the previous case “+2”). When asked to 
compare the set of natural numbers and the set {0,1, 3, 6,10,15, 21, } , where the correspondence may not be obvious, 
none of the students participating in the follow-up used one-to-one correspondence. In fact, about half used a single 
infinity argument and about half reverted to a part-whole criterion. Tsamir notes that while this teaching intervention 
seems to encourage the use of one-to-one correspondence, what it does not do is convince students that one-to-one 
correspondence should be the only criterion one uses to compare infinite sets. 

In all the previous studies, students were asked to give their own criteria for each comparison task. In Tsamir 
(2003), the researcher presented students with possible approaches to a comparison task and asked whether the given 
criteria (either one-to-one correspondence, inclusion, or single infinity) were acceptable. Participants in this study were 
110 prospective secondary school teachers who had taken a yearlong Cantorian set theory class and 71 prospective 
teachers who had not taken the course. They were given a questionnaire with illustrations of a student explaining 
their belief in the use of one of the three criteria, and participants were asked to discuss whether these were suitable. 
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They were then given a second questionnaire that illustrated a student who claimed one should only use one-to-one 
correspondence as the criteria for comparing infinite sets along with four specific comparison tasks along with his 
explanations of how he used one-to-one correspondence. Again, participants were asked if each explanation was 
a suitable argument for showing the equivalency of infinite sets. The first questionnaire was then re-administered. 
Finally, 10 participants from each of the two cohorts who gave insufficient justifications were interviewed. 

In the initial questionnaire, over half the students who had not taken the set theory class, and just over three-
quarters of those who had, said that one-to-one was an acceptable criterion. However a substantial number of both 
cohorts said the other two criteria were also acceptable. After the intervention of the second questionnaire, there 
was an increase in both groups’ acceptance of one-to-one correspondence as a valid criterion when retaking the first 
questionnaire. But there was no change in the rate of acceptance of the inclusion criteria in either group and an increase 
in the rate of acceptance of the single infinity criteria in both groups! Thus, while reminding and familiarizing students 
with one-to-one correspondence as a criterion strengthens their tendency to accept it, it does not weaken their tendency 
to accept other criteria. As Tsamir concluded, “Even after studying set theory, participants still failed to grasp one 
of its key aspects, that is, that the use of more than one … criteria for comparing infinite sets will eventually lead to 
contradiction” (Tsamir, 2003, p. 90).

In teaching about comparison of sets, Tsamir recommends using cognitive conflict teaching, a method in which 
tasks are sequenced with the aim of making students aware of the contradictions in their thinking. An example of a 
task that might spark cognitive conflict is asking students to compare the number of elements in A = {1, 2, 3, 4,…}  
and B = {1, 4, 9, 16,…}, and then to compare the number of elements in A = {1, 2, 3, 4,…} and C = {12, 22, 32, 42,…}. 
By providing this task, where students often use the inclusion criterion to say that A has more elements than B but use 
a one-to-one comparison criterion to say that A and C have the same number of elements, one might raise awareness 
with students’ of inconsistencies in their answers because they can easily see that B and C contain the same elements. 
Tsamir (2003) presents a possible cognitive conflict based teaching sequence in the appendix of the paper. In part 1.a, 
she gives students various finite sets, such as

{5,10,15, 20, 25, 30}A=  and {10, 20, 30}B = ,
asks if the two sets have an equal number of elements, and asks students to explain how they reached their conclusion. 
After reflecting on the different criteria they used in part 1.a, in part 1.b, students revisit each example from 1.a and, for 
each of the three criteria, decide if it is an applicable criteria to use for the given sets. After they complete this for all 
pairs of sets with all three criteria, they are asked to reflect on whether different conclusions are reached using different 
criteria. Tasks 2.a and 2.b are essentially identical to 1.a and 1.b, but involve infinite sets such as

{5,10,15, 20, 25, 30, }F =   and {10, 20, 30, }K =  . 
At the end of the teaching sequence, students are asked to reflect on what happens when they move from dealing with 
finite to infinite sets.

In addition to the specific results just presented regarding infinity, this discussion highlights the role of intuition 
in the development of mathematical knowledge. As Tirosh (1991) reports, contradictory intuition has been shown to 
be an obstacle to acquiring formal mathematical knowledge. In addition, intuition, particularly in this case with regard 
to the concept of infinity, is highly resistant to change from direct instruction. The result of instruction, such as in 
the sequence of studies considered here, may only help students develop an awareness of their intuitions, recognize 
the need to control their primary intuitions, and encourage them to use explicit deductively developed means of 
solving problem situations (Tirosh, 1991). These are important issues for teachers of mathematics to understand as we 
interact with students in our classrooms on difficult concepts for which students bring their varied, and often strongly 
embedded intuitions.

The brief survey of the sequence of studies presented in this section also shows how research and teaching 
practice intertwine and can inform each other. A researcher conducts a careful empirical study, reflects on what might 
be learned from the study about student learning of a given topic, and designs instructional content and pedagogical 
approaches based upon theory and empirical results. The implementation of this instruction and pedagogy then serves 
as the next stage in the research program, whereby the researcher conducts further empirical studies to find out more 
about the impact of the instruction on student learning and mathematical performance. Next, we look at an example of 
a theoretical research report and its potential impact on practice.
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Limits of Sequences
While cardinal infinity is theoretically grounded in set theory, as dealt with in the previous section, other aspects 
of infinity play a critical role in a variety of conceptual domains. For example, aspects of infinity are ubiquitous in 
calculus. From the use of limits to examine the behavior of functions or to define both the derivative and the integral, 
students’ ability to reason about infinite processes is essential. In Mamona-Downs (2001), the researcher presents a 
didactical approach that may help students better understand the concept of the limit of a sequence. [We also refer 
readers to the chapter by Oehrtman in this volume for a more thorough review of studies related to the limit concept.] 
Mamona-Downs’ report differs from those in the previous section as it takes a purely theoretical approach, based 
on existing research results and the author’s experience and knowledge, rather than an empirical study of students’ 
reasoning or mathematical performance.

Mamona-Downs notes that one of the problems with the limit concept is that students possess a “surprisingly rich 
intuitive base” (p. 259) for the concept of infinity, in agreement with the results of Tirosh and Tsamir in the previous 
section. A second problem the author identifies in students’ development of their understanding is “the clash between 
the ‘dynamic approaching’ intuitive image and the ‘static’ image evinced by the definition of limit” (p. 261). A central 
issue in much of the literature concerning limits, this conflict is between the mental image of a sequence in motion 
and the formal expressions that uniquely definite the limit of a sequence. These observations lead Mamona-Downs 
to present a didactical approach that uses classroom discussion to raise awareness of and further develop intuition, 
followed by an analysis of the formal definition of the limit using a particular representation, and concluding with a 
comparison of these ideas with students’ intuitions. Her approach is intended to help students move from intuitions of 
mathematical ideas to more formal approaches and it may be adaptable to other situations. [Another framework for the 
process of formalization is described in the chapter by Rasmussen and Ruan in this volume.]

Mamona-Downs begins by presenting tasks that are intended to help raise students’ intuitive understandings 
explicitly so that they can be considered, and then accepted or rejected. The first task she presents is that of a ping-
pong ball that is dropped from a given height and which continues to bounce, each time coming back exactly half the 
prior height. Students are asked to discuss how many times the ball bounces (and if they say “infinity”, asking them 
what this means in this context), and how far the ball travels in total. Issues raised may include the tension between 
the physical perception (that the ball will stop) and the theoretical possibility (that the ball bounces infinitely often). 
By considering the process of counting the number of bounces, the students may also develop a belief that “infinity is 
the number that you get if you count forever” which might in turn lead them “to consider an infinite sequence ( )na  to 
possess a final term a¥ ” (p. 268). In considering how far the ball travels, students may at first assume that if the ball 
bounces an infinite number of times, it must travel an infinite distance. But as they begin discussing the fact that the 
lengths decrease each time, this assumption comes into question. The author presents a simulated classroom debate on 
this issue that is consistent with the results of the research literature, Sierpinska (1987) in particular. 

In the ping-pong ball problem, there is a natural candidate for the limit when summing to get the distance the ball 
travels. However, there are problems, like Situation 2 involving the sequence of staircases given at the beginning of 
the paper, where the actual limit is not the natural candidate. In the staircase problem, we start out with two stairs, each 
with height and width one foot. For the purpose of this discussion, we will ignore the base and back of the staircase, 
and define the perimeter of the staircase to be the sum of the lengths of the rise and tread of the steps. Thus the total 
perimeter of the first staircase is four feet. If we double the number of steps and halve their heights and widths, we still 
have perimeter four feet. One might expect the limiting object of this sequence of staircases also to have perimeter 
four feet. If we allow for non-standard analysis, students may argue that the result is a staircase with an infinite number 
of steps that are infinitesimally small. But in standard analysis, the limiting object is a ramp with slope one, and 
perimeter 2 2  not 4! While the problem is intriguing, Mamona-Downs cautions that tasks with paradoxical results 
might be better left until students have debated the more basic issues and have developed some confidence in their 
thinking. Thus, the ping-pong ball problem, or a problem where one approximates the circumference of a circle using 
a sequence of inscribed polygons, might be more appropriate in these initial stages of students’ development of the 
limit concept.

The overall purpose of the class discussions that Mamona-Downs advocates is to allow students’ intuitions and 
ideas to be brought up rather than to deny them and advocate only the formal ideas. But her study also highlights that 
the choice of task can influence what issues are raised and whether it leads to productive discourse or a “non-useful 
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impasse” (p. 273). Students also may focus on the infinite process and then wonder how this process is completed, 
or they may focus on the completion itself. This already raises for the students the “clash” Mamona-Downs noted 
between the dynamic and the static. 

Having raised students’ awareness of their intuitions, a teacher then needs to help them grapple with the definition 
and to reconcile their understanding of the definition with their intuitions. While Mamona-Downs provides a long 
discussion of the various issues and difficulties embedded in building a solid and coherent image of the typical 
epsilon-N definition of limit, and how to connect students’ intuitive understanding with this image, we present only a 
few selected issues here. She also recommends using an illustrating graph to help students understand the details of 
the definition. 

This is likely one of the first times in students’ mathematical experience where they must deal with such a 
formal definition and potentially confusing symbolism. Some examples of how students must digest the meanings 
of these symbols follow. The focal point of the standard definition is the inequality na L ε- < . But students often 
will have difficulty interpreting this. It is also often the last statement in the definition, requiring students to suspend 
all the information introduced about these various symbols earlier in the definition until they reach the end. The 
individual symbols require a great deal of care to understand, as L should have the characteristic of a constant, na  
the characteristic of a variable (while n varies through the natural numbers), and ε  the characteristic of a parameter. 
Further, the definition introduces a new symbol, N, that seems completely independent of the focal point of the 
definition, the inequality. Finally, the inequality must be interpreted not as a statement of truth, but rather as forming 
the basis for a decision process. [A more thorough examination of the issues related to student understanding of literal 
symbols appears in the chapter by Trigueros and Jacobs, this volume.] 

Mamona-Downs discusses how an illustrating graph (see Figure 1) can assist students in developing the 
understandings just described, and ultimately may help the student distinguish between the sequence and the limit of 
that sequence. 

N

L } 2

Figure 1. Distinguishing between a sequence and its limit.

As noted earlier, a student might believe that the sequence has an ultimate term, a¥ , which then must be equal 
to the limit, L. But visually the limit on the graph is a horizontal line, y L= , whereas the terms of the sequence 
are identified with discrete points obtained using the functional relationship ( ) ny n a= . This may help the students 
“identify L as a number and a construct related … to the sequence but not as an integral part of it” (p. 286). We return 
to the importance of distinguishing between the sequence and its limit in the next section where we talk more generally 
about infinite processes.

As we see from the example just presented, some research reports are theoretical in nature, and can provide an 
informed perspective on what might happen when implementing a didactical intervention. Reports that are more 
theoretical in nature are usually based on other empirical studies, personal experience, existing theories, and deep 
understanding of the mathematics involved. Careful reflection on theoretical reports like this can help teachers improve 
their own practice. As Mamona-Downs herself states, a research report like hers is often written to “inform teachers 
what to expect, or what to include in their class plan” (p. 261).

Infinite Iterative Processes
While concepts related to infinity are ubiquitous in calculus, infinity is often formally examined for the first time in 
an introductory set theory or introduction to proofs course. The next research study we consider (Brown, McDonald, 
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& Weller, in press) was conducted with students who had recently completed such a course. The problem situation 
examined in the research was presented in Situation 3: to determine whether or not 1 {1,2, , } ( ).( )k P k P¥

= = 



 
Given the content covered in the course, it was expected that the students would observe that the infinite union 
contains only finite sets as elements whereas ( )P   also contains infinite sets as elements. In fact, although they 
demonstrated knowledge of the definitions of the objects involved, all of the students tried to make sense of the infinite 
union by constructing one or more infinite processes. Thus, the primary focus of the study was to examine, using a 
particular theory of learning called APOS theory (Asiala et al., 1996), how an individual might cognitively construct 
an understanding of an infinite iterative process in a context involving actual infinity. 

In Brown, et al., the term infinite iterative process refers to the repeated application of a transformation of mental 
or physical objects, involving one or more parameters that change with each repetition. For example, perhaps the most 
simple infinite iterative process is enumerating through the natural numbers where one simply “adds 1” at each step. 
In the problem considered in this study, all of the students attempted to mentally construct an infinite iterative process 
that produced the sequence of partial unions ( )1 {1,2, , }n

k P k= 



. Most of the students quickly noticed that, since the 
power sets are nested, the partial unions “collapse” in the sense that
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Thus, for these students, the key to solving this problem was to imagine the ultimate result of continuing this process 
indefinitely, and to consider whether this result is indeed equal to ( )P  . We will now discuss their attempts more 
specifically. In our discussion, we will introduce and use the language of APOS theory, as it applies to this research. 

All of the students began to think about the infinite union by looking at the first few partial unions, writing:  
({1}) ({1,2}) ({1,2})P P PÈ = , ({1}) ({1,2}) ({1,2,3}) ({1,2,3})P P P PÈ È = , and sometimes one or two steps further. 

In APOS theory, this is called performing an action, transforming mathematical or mental objects using external cues 
such as the formula for the infinite union and explicit values for the index 1k = , 2k = , etc. As students realized 
that they could do this over and over again, and could imagine doing it mentally without necessarily having to write 
down each step, they had mentally constructed what is called a process in APOS theory. So, for instance, many of the 
students in the study were able to describe the nth partial union and understood that this finite union consisted of all 
subsets of the set {1,2,3, , }n . They could describe the relationship between successive partial unions or explain how 
to obtain one from the previous one. To continue, they had to find a way to extend their understanding of the finite 
processes to construct a corresponding infinite process.

One of the key results of Brown, et al. (in press) is the observation that students who made significant progress 
in solving the problem were the ones who could conceive of the process of taking the union of an infinite number of 
sets of the form ({1,2,3, , })P n  as complete. Unlike a finite process where one can imagine completing the process 
by reflecting on the last step, in an infinite process one must imagine completing all the steps even though there is no 
last step. This was not easy for most of the students interviewed. For example, one student could imagine a process of 
taking the union through the nth partial union and obtaining ({1,2,3, , })P n , but from that point she simply imagined 
the index n increasing continually and obtained ( )P   as the result. Thus, she did not focus on all steps of the process 
being completed and missed the significance of the fact that all of the power sets produced by the process of forming 
partial unions are actually finite. 

Only two students in the study could see the infinite process as complete, and could hold in mind the properties 
of the result at each step in this process even as they talked about the process being “done.” As one student so clearly 
articulated about the infinite process, “it doesn’t ever get to infinity, ‘cause it’s always just one more than it was 
previous. But you just keep going and going and going. So this is the union of an infinite number of finite sets.” She 
was able to see that in the infinite process no infinite power sets are computed, which allowed her to move forward in 
solving the problem. 

Beyond seeing the process as complete, students must also be able to reason about the infinite union as a single 
entity in order to compare the result with the set ( )P  . Being able to move from a dynamic process of generating 
partial unions term by term to thinking of the “unioning” process as a single operation is an example of what is referred 
to in APOS theory as seeing the process as a totality. In general, seeing a process as a totality may be followed by 
encapsulating the process into an object. Often one needs to encapsulate a process into an object in order to perform 
an action. Since an action can only be performed on a static object, one has to encapsulate the dynamic process. For 
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the problem in this study, an appropriate action might be asking “What is the final result of the infinite union?” Only 
the one student quoted in the previous paragraph was able to view the completed process as a totality, and she clearly 
articulated that what is obtained is an infinite collection of finite sets.

Brown, et al. (in press) introduce the term transcendent object for the state at infinity that is the encapsulation of 
an infinite process. The name was chosen to indicate that this object must be understood as not being produced by the 
process itself, but instead as transcending the process. So while the process of computing partial unions produces only 
finite collections of finite sets, what we get as a final result of the infinite union, the transcendent object of this process, 
is an infinite collection of finite sets. 

Similar to the previous section on limits of sequences where we saw that many students consider an infinite 
sequence( )na  to possess a final term a¥ , or to the first section where we saw that students carry over their intuitions 
of comparing finite sets over to comparing infinite sets, many students in this study carried over ideas that worked for 
them in constructing finite processes to their construction of infinite ones. For example, one student who noted that 
the kth partial union ({1}) ({1,2}) ({1,2, , })P P P kÈ È È   equals ({1,2, , })P k  observed that it reduced to the set 
“farthest to the right”, and therefore concluded that the final result of the infinite union would be ( )P  . One fallacy 
in this reasoning is that while the result of every finite partial union is a power set, the result of the infinite union is 
not the power set of any set, so there is a “discontinuity at infinity.” Returning to Situation 2, the staircase problem, 
recall that Mamona-Downs cautions against using such counter-intuitive situations too early in students’ development 
of their understanding of a limit of a sequence. In comparison, the results by Brown, et al. suggest that we should use 
a problem like the staircase problem eventually, as it foreshadows in a simpler situation a subtle phenomenon that 
students apparently find quite difficult: an infinite process with a discontinuity at infinity.

The interview data in Brown, et al. (in press) suggests that students construct infinite iterative processes when 
faced with certain situations involving actual infinity. More research is needed in order to describe the variety of 
situations in which this might apply. However, it is clear that when that phenomenon occurs, it is important to help 
students conceive of infinite processes as completed totalities, and help them identify the appropriate action, such as 
asking “What is the final result?”, which may spur them to encapsulate the process into an object. Once the infinite 
process is encapsulated, the student may be ready to reconsider the situation in terms of formal definitions. That is, 
construction of an infinite iterative process might be seen as an exercise that builds understanding of the objects 
involved; this understanding then plays a role when the formal definitions are used. 

Since this research is in its early stages in that no instructional strategies have been tested yet, we hesitate to make 
strong suggestions concerning pedagogy. It may be useful, though, to consider one simple example that raises the idea 
of a completed infinite process and its transcendent object. Imagine the indicated sequence of regular polygons, one 
created at each step:  

…

One might ask students to describe what results from each of the steps of the process, and to propose an ultimate 
result. This may raise some interesting ideas (as in Situation 2), but one helpful idea that seems likely to arise is that 
a circle is an appropriate transcendent object. Since it is not a polygon, it cannot be directly produced by any step. 
Yet, it can be imagined as a natural transcendent object for this sequence. 

A more complex example is to consider the set of all finite strings of two letters a and b. This infinite set can be 
imagined to be generated recursively, using ordering by size. That is, an iterative process could be constructed in this 
way: take a string S of length n at step n, form Sa and Sb, and adjoin all such strings of length n+1 to the existing 
collection. Students might be asked to compare the size of the collection at consecutive steps, to describe all objects 
produced at the steps, and then to suggest an ultimate result. As in Situation 3, one of the key ideas is to understand 
that the ultimate result is an infinite set in which each element is finitely represented. 

Other APOS-based empirical and theoretical studies of concepts involving infinity are ongoing (see Weller, 
Brown, Dubinsky, McDonald, & Stenger, 2004). One research group is examining students’ understanding of iteration 
through natural numbers and an infinite iterative process that arises from a very different type of problem situation. 
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Another is examining how individuals might construct a deep understanding of ( )P  , an uncountable set. Yet another 
group (Dubinsky, Weller, McDonald, & Brown, 2005a, 2005b) is using cognitive explanations from APOS Theory to 
describe the thinking about infinity in the historical and philosophical literature and to give new cognitive resolutions 
of various historical paradoxes of the infinite. Further initiatives in research on conceptions of infinity will no doubt 
arise from these projects. The potential for instructional implications based on a careful examination of the mental 
constructions students may or may not make while engaged in mathematical problem solving situations related to 
concepts of infinity is just beginning to be realized. 

Conclusion
This report has laid out three specific research agendas that address issues related to concepts of infinity. There are 
a number of other studies that have been conducted on issues related to infinity, yet there are many issues that have 
not yet been researched. Concepts of infinity span a wide range of the mathematical curriculum and as researchers 
continue to examine various aspects of students’ thinking about infinity, there is the potential for broad impact on 
educational practice.

In addition to giving a brief summary of the specific findings related to infinity, we also have presented studies 
that highlight different ways that empirical and theoretical research reports may be used to implement curricular and 
pedagogical improvements in the college classroom. While mathematics education research, like research in many 
other areas in academia, is often basically “theoretical” in nature, its application to our teaching and student learning is 
the “applied” aspect. We have presented here, in the context of research on concepts of infinity, three different models 
of how mathematics education research might be “applied” to classroom teaching and student learning.
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6
Layers of Abstraction: Theory and Design for the 

Instruction of Limit Concepts

Michael Oehrtman
Arizona State University

Imagine asking a first-semester calculus student to explain the definition of the derivative using the epsilon-delta 
definition of a limit. Given the difficulty of each of these concepts for students in such a course, you might not be 
surprised at the array of confused responses generated by a question requiring understanding of both. Since the central 
ideas in calculus are defined in terms of limits, research on students’ understanding of limits and the ways in which 
they can develop more powerful ways of reasoning about them has significant implications for instructional design. 
Throughout this paper we will focus on calculus courses intended as an appropriate introduction for students who have 
never seen limits or derivatives and that are not intended to be a rigorous treatment of analysis. The following typical 
response to the question relating the definitions of limit and the derivative illustrates the confusion that students exhibit 
when trying to make such connections. This response was offered by an A-student, who we will call Bob, during a 
clinical interview late in a first-semester course:

Your epsilon — this — the slope of this tangent line. You want to pick a set of x’s, and that’s here [points at 
graph]. This x, it’s barely changing such that it’s equal to or less than this tangent line. That would be your 
delta. The slope — oh, OK. The slope of this tangent line [points at tangent] — that’s epsilon. The slope of 
this line [points at secant] that you’re making is your delta at 2. Take a delta — a slope of this line [points at 
secant] less — such that it is less than the slope of this tangent line. 
Bob’s language is confused, but it seems he was identifying epsilon as the slope of the tangent line and possibly 

both x and delta as the slope of a secant line and indicates that he wants the latter to be smaller. It is quite likely that 
this question was beyond Bob’s conceptual resources and that he was simply trying to make any connection possible 
to appease the interviewer. Had he been present, Bob’s professor might have been rather discouraged by this response 
given the efforts he made in class, during special study sessions, and through creatively designed homework to help 
his students understand the formal definitions of both limits and derivatives.

Only a few seconds later, however, the interviewer asked Bob to explain the same idea in terms of approximation 
and received this response:

There will be — there could be a difference in the slopes of these lines. You could say that the slope of this 
line [points at secant] is approximately equal to this [points at tangent] with a margin of error of such and 
such, and that margin of error can be less than that [points at the word “bound”]. You can choose a slope 
that’s less than the margin of error — less than whatever you need it to be.

When asked to explain his use of language about “error” in more detail, Bob explained
Your margin of error is here [holds up hands facing each other to indicate a distance] and here’s your limit 
[waves one hand] and you have to be at least in so far closer to it [waves other hand across the space in 



66 Part Ib.  Infinity, Limit, and Divisibility

between]. You can always get closer to it, you know? That’s the way I was looking at bounding. You can 
always get closer to it.
Bob’s characterization of the limit is noticeably different in this excerpt. He described approximating the slope of 

a tangent line using the slopes of secant lines with an error that can be made smaller than some predetermined bound. 
Much of the logic involved in this statement is identical to the logic of the epsilon-delta statement that he completely 
failed to interpret only moments earlier.

What did Bob understand about limits? What about derivatives? What bearing did his understanding of limits 
have on his understanding of derivative? In this chapter, we will explore the pedagogical implications of this sort of 
discrepancy in students’ ability to articulate mathematical concepts involving limits in a wide variety of situations. 
This will lead into a design perspective on how we might better help students learn and use limit concepts. Before 
engaging in that task, however, we will address how abstract concepts develop in general and identify various goals 
for teaching limits.

The Nature and Process of Abstraction
One of Jean Piaget’s most forcefully repeated conclusions from careful observations of the nature of abstraction relates 
to the source of abstract concepts. Specifically, he argues that the source of conceptual structure such as that found in 
mathematics is an individual’s actions or coordinations of actions on physical or mental objects (Piaget, 1970a, 1970b, 
1975, 1980, 1985, 1997). As illustrated in Figure 1, the significance of this statement is that it emphasizes actions 
rather than other potential sources, such as objects, their properties, or even relationships among objects. To serve 
as the source of an abstracted concept, such actions must be engaged repeatedly while receiving and incorporating 
feedback under the specific constraints of a system that is being explored. Piaget (1970b) used the structure of the 
algebraic group as a prototype for all conceptual structure to emphasize the way in which actions embody structure that 
can be abstracted by the individual. He emphasized the role of operations (such as physically or mentally performing 
a symmetry transformation of a figure) and ways in which they can be coordinated (such as realizing an associative 
property or inverse condition) in addition to the elements with their properties and relations. Conceptual structure, 
such as that representing a dihedral group, is formed as a whole from the inseparable interplay between these elements 
and operations.

Actions and
Coordinations of Actions

Objects and
Properties of Objects

Structure of
Concept

Abstraction in Mathematics

Ordinary Abstraction

Figure 1. The source of complex abstract concepts are actions and coordinations of actions.

Piaget’s characterization of the process of abstraction applied to limit concepts suggests three important features of 
instructional activity. First, the structure of understanding we hope our students will achieve should be systematically 
reflected in the actions we ask them to perform. Since these activities form the basis of conceptual understanding 
and thus also precede such understanding, they must be stated in terms more accessible to students than formal 
definitions. If a formal understanding (such as an ability to interpret and apply epsilon-delta definitions in a variety 
of contexts) is to eventually develop, it will be built on conceptual structures that already make sense to students 
because of their previously internalized activity. On the other hand, if students will never be expected to develop 
such formal understandings, then their conceptual structures and abilities can still reflect rigorous and appropriate 
mathematics. For example an engineering student, such as Bob who was introduced at the beginning of this chapter, 
might be able to develop a general understanding of techniques by which the error for an approximation may be made 
smaller than some required bound without this being formalized as finding a 0δ>  such that ( )f x L ε- <  whenever 
0 x a δ< - < .

The second feature of instructional activity we infer from Piaget’s theory of abstraction is that students’ actions 
should be repeated and coordinated in ways that help them attend to feedback obtained from the inherent constraints 
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of the system being explored. In the preceding example, the dependence of delta upon epsilon is a key feature of the 
structure. Students struggle with this dependence, however, since it moves in the opposite direction from the action 
of the function (i.e., it moves from a condition in the range to a condition in the domain). A student such as Bob may 
only attend to the appropriate dependence due to encountering a difficulty that otherwise arises, for example, through 
a real need to find an approximation with sufficient accuracy for some purpose. 

The third implication we draw from Piaget’s theory is that instruction on the limit concept should not be isolated, 
but extend throughout its many applications in the calculus curriculum in ways that foster mutual growth. The concepts 
defined in terms of limits provide fertile ground for continued exploration into important issues related to limits. 
Reciprocally, an emerging understanding of the depth of limit structures can help guide students’ explorations into 
these other concepts.

Goals for Teaching Limits
Instructional decisions regarding the teaching of limits will ideally follow from specific objectives for students’ 
learning. We will briefly outline a small number of possible goals and trace research related to the implications of 
pursuing each one.

Exposure to formal definitions and proofs. A possible objective for the instruction of limits is for students to develop 
facility with formal epsilon-delta and epsilon-N definitions and arguments. In fact, the Principles and Standards, 
published by National Council of Teachers of Mathematics (NCTM) argue that throughout their mathematical careers, 
students should continually engage in proof and argumentation. Construction of simple epsilon-delta proofs provides 
opportunities to interpret and then use definitions in a rigorous fashion (cf., Edwards and Ward, this volume, for a 
discussion of the role of definitions in formal proofs). Other objectives that would lead to a similar approach include 
fostering students’ understanding of limit concepts in terms of epsilon-delta (or epsilon-N) arguments preparing students 
for more advanced mathematical study and establishing a rigorous foundation for the entire calculus curriculum. 
Such goals were especially pursued during the 1960s and early 1970s in efforts to increase the rigor of mathematics 
curricula to support a growing demand for scientists, engineers, and mathematicians.

Most calculus textbooks include a section on the formal definitions of limits, providing basic epsilon-delta and 
epsilon-N definitions, some pictures and intuitive explanations using graphs of functions and sequences, simple 
existence proofs for specific limits, and proofs of basic properties of limits (such as linearity). These ideas are 
typically presented in the text shortly after limits are introduced, but since most introductory calculus courses are not 
intended to provide a rigorous treatment of analysis, they are rarely raised afterwards. Several education researchers 
and curriculum committees have concluded that carrying formal limit proofs forward throughout an introductory 
calculus sequence might be successful in preparing a small number of the most talented students for further studies in 
advanced mathematics, but it leaves the vast majority of students with little more than a procedural understanding and 
an impression of mathematics as personally incomprehensible (Davis, 1986; Tall, 1992; Tucker & Leitzel, 1995). It is 
unclear whether introducing formal definitions even conveys to students a sense that there is a rigorous foundation for 
the mathematics. Consequently, these definitions and proofs are often de-emphasized in current curricula and courses 
as explicitly recommended in the report of the content workshop for the MAA publication Toward a Lean and Lively 
Calculus (Tucker, 1986).

A more modest goal for introducing limit proofs than providing a rigorous treatment of the entire calculus 
curriculum is to engage students in a limited amount of formal mathematical argumentation. Unfortunately, many 
instructors find little time to devote to this goal under the pressures of an expansive curriculum. As a result, most 
students only learn the basic patterns to complete simple algebraic proofs or learn the rules and peculiarities of a 
particular representation (e.g., games where you “keep the graph in the box” on a calculator or player 1 challenges 
with an e and player 2 finds a d) without understanding the connections to other representations, potential applications, 
or other content in the course (Jacobs, Larsen, & Oehrtman, 2003).

From Piaget’s characterization of the process of abstraction, we can understand some of the difficulties students 
have with formal limit concepts. Instruction that begins with formal definitions attempts to move in the opposite 
direction from which abstraction naturally occurs. When students are first exposed to the concepts in calculus, there is 
no conceptual structure through which they can meaningfully interpret key features of formal limit structures. Based 
on Piaget’s theory of abstraction and refined through a series of clinical interviews with students, Cottrill et al. (1996) 



6� Part Ib.  Infinity, Limit, and Divisibility

have proposed a progression of actions that students must abstract, generalize, and relate to one another in order to 
construct such a conceptual structure. For the limit lim ( )x a f x L = , they suggest that students must first abstract the 
actions of evaluating f at points near a, then develop and coordinate domain and range processes of x approaching a 
and ( )f x  approaching L. Then this coordinated structure must be reinforced by performing actions on limits, such as 
by considering limits of combinations of functions. Only at this stage in Cottrill et al.’s framework are students able to 
reconstruct these coordinated processes in terms of inequalities, apply a consistent understanding of the universal and 
existential quantifiers, and develop a complete epsilon-delta conception for a specific situation.

Attempts to support students’ understanding of a formal definition with an intuitive rephrasing such as “You can 
make ( )f x  arbitrarily close to L by making x sufficiently close to a” also provide neither appropriately structured 
activity nor underlying meaning, so are likely to fail as well. Instead, under the burden of making some sense out 
of what is being said, students attach simpler meanings to these phrases. In interviews with students throughout 
three semesters of calculus being exposed to such language, nearly all interpreted the modifiers “arbitrarily” and 
“sufficiently” in the simplest way possible: as indicators of degree (Oehrtman, 2002). To them, “sufficiently small” 
meant “very small” and “arbitrarily small” meant “very very small.” These students did not have any experiences from 
which the intended logical entailments of these phrases could be generated.

If students are not expected to use epsilon-delta definitions and arguments throughout a course, the corresponding 
conceptual structure is neither continually reinforced nor developed for use as a powerful tool. Consequently, it is 
unclear how formal limit definitions and proofs could guide students’ exploration into subsequent topics without 
offering a nearly complete analysis course.

Intuitive understanding. Most secondary and introductory undergraduate calculus courses and textbooks take an 
approach to limits that focuses on intuitive ideas and phrasings, such as “when x gets close to a, ( )f x gets close to L.” 
Even if formal definitions are introduced and used to prove some basic properties of limits, they are de-emphasized 
or abandoned when advancing to subsequent concepts, even those that are defined in terms of limits. The definition 
of derivative is rarely treated in terms of epsilons and deltas in an introductory calculus course, for example. One 
purpose of treating limits with an intuitive approach is to provide a common and accessible introduction to other 
concepts throughout the course (cf., Speiser & Walter, this volume). Derivatives are discussed in terms of secant lines 
where the points are made closer and closer to each other, and definite integrals are defined as summing products over 
intervals that get smaller but increase in number. Another objective leading to similar approaches is the need to teach a 
number of techniques for algebraic computations that will be used later in the course, such as finding certain derivative 
formulas, determining specific values for improper integrals, or applying convergence tests for infinite series. Since 
these skills do not require students to understand epsilon-delta and epsilon-N structures, formal definitions are often 
de-emphasized and intuitive descriptions of limits viewed as sufficient.

When subsequent topics are introduced through an informal understanding of limits, the role of limits is typically 
suppressed. Operationally, the limit concept is often concealed conceptually by definitions of derivatives in terms of 
slope, definite integrals in terms of area, Taylor series as actual sums, etc. Corresponding to this conceptual shift, limits 
may also be de-emphasized notationally. For example, ( )f a¢  may be described as the slope of the tangent to the graph 
of f at ( ), ( )a f a , the definite integral ( )b

a f x dxò  may be described as the area under the graph of f on the interval [ , ]a b
, or the Taylor series
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as being equal to ( )f x  for most functions students will see. Limit notation is absent from all of these descriptions and 
limit structures (as encapsulated by epsilon-delta or epsilon-N definitions) are even further in the background. Intuitive 
images such as tangent lines, areas, and infinite sums are often used as a proxy for limits since they are conceptually 
accessible to students and can be extremely powerful for intuitive reasoning (Monk, 1987, 1992; Rodi, 1986; Tall, 
1992; Thompson, 1994). 

Informal language and reasoning about limits can also lead to misconceptions for even advanced students who are 
supposedly equipped with the formal tools to avoid such errors. Twenty-two students in their final year of university 
mathematics and who had dealt with the formal epsilon-delta definition of limits for two years were asked the following 
question: 
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True or false: Suppose as x a  then ( )f x b , and as y b  then ( )g y c . Then it 
follows that as x a  then ( )( )g cf x  .

All but 1 of these 22 students responded “true” and refused to change their answer even when pressed (Tall & 
Vinner, 1981). Whether considered explicitly or subconsciously, the logic of this statement as typically verbalized 
establishes a false syllogism by stating “If x approaches a then ( )f x  approaches b, and if y approaches b then ( )g y  
approaches c.” If the first premise holds, then ( )f x  satisfies the hypothesis of the second premise, i.e., it qualifies as a 
y that approaches b, thus leading to the incorrect conclusion that ( )( )g f x  approaches c. Additionally, the arrows and 
their verbalizations as “approaches” or “goes to” are represented in the same way for both dependent and independent 
variables in this problem. The suppression of different technical meanings by using the same notation for both 
contributes to students’ misconceptions.

In another study on the use of intuitive dynamic language, when faced with challenging problems involving 
limiting situations, students did not rely on images of motion to reason about the problems (Oehrtman, 2003). This 
is particularly surprising given the predominance of motion language used when talking about limits and abundant 
proclamations that intuitive, dynamic views of functions should help students understand limits. While students 
frequently used words such as “approaching” or “tends to,” these utterances were not accompanied by any description 
of something actually moving. When asked specifically about their use of such phrases, students denied thinking of 
motion and gave an alternate explanation for their words. 

In terms of abstraction, the informal approaches to limits described in this section are susceptible to a similar 
problem as purely formal approaches. Without other supports, they do not provide students with a structure that can 
guide their investigation of the relevant mathematics of subsequent topics. Instead of providing an incomprehensible 
structure, they provide little to no structure, but the result is still that students are left to construct an understanding 
based on disjoint and possibly unguided connections and images. The work of understanding subsequent topics is 
then shifted to representations specific to each one (a lack of gaps for continuity, steepness for derivatives, area for 
definite integrals, etc.). Each of these understandings, then are bound to a specific representation (typically graphical), 
and for students to reason conceptually requires a translation back and forth between that representation and the 
problem context. It is difficult for students to see and work with the commonalities between these images as required, 
for example, to understand the fundamental theorem of calculus. Further, since the central concepts in calculus are 
defined in terms of limits, important aspects of these structures are also lost to the same degree that limits are de-
emphasized.

De-emphasis of limits and alternative foundations of calculus. Due to the well-documented difficulty of limit 
concepts, several researchers and reformers have suggested providing a more intuitive starting point for calculus. 
The most common is based on using infinitesimals, rounding, and local linearity. This approach mirrors some aspects 
of Newton’s reasoning with fluxions and fluents and Leibniz’s notational encapsulation of infinitesimal quantities. 
Concerns about lack of rigor are addressed by referring to Robinson’s set-theoretic work in the 1960s establishing 
nonstandard analysis as a logical foundation for an infinitesimal approach. Promising aspects of infinitesimal instruction 
are that the foundational concepts are accessible and that, in some cases, students used those ideas as integral parts of 
their reasoning.

Citing historical and cultural difficulties related to concepts of function, limit, infinity, and proof, Tall (1986, 
1990, 1992) suggests that a better cognitive starting point for calculus might be “local straightness.” Students are 
introduced to tangents via magnification of the graph of a function at a point. This approach, he suggests, allows 
for the investigation of a rich source of concepts: different left and right gradients, functions that are locally straight 
nowhere, etc. Students taught with this approach were much better at recognizing, drawing, and reasoning about 
graphical information for derivatives than students in a control group. On the other hand, they tended to describe a 
tangent as passing through two or more very close points on the graph. At least part of these students’ difficulties seems 
to be conflation of the tangent line and the actual graph caused by the appearance of the graph as a straight line after 
sufficient magnification. 

In the infinitesimal approach, computations are performed using an infinitesimal element, e, and standard algebra 
extended to the infinitesimals. This process is followed by “rounding off” infinitesimal terms, so that an expression 
like 2x ε+  is replaced by 2x. Tangents are then treated by magnification as described above with the addition that the 
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graph is magnified to an infinitesimal scale. Frid (1994) found that although students who were given instruction with 
infinitesimals did not perform significantly better on standard computations, they did use the language and notation 
of rounding as an integral part of their explanations. Whether the students’ use of everyday language was of help or a 
hindrance depended on the extent to which they integrated that informal language with technical language or symbols 
in ways congruent with the corresponding concepts. 

Michèle Artigue (1991) conducted a study with 85 third-year university students enrolled in multivariable calculus 
and physics courses to investigate their understanding and use of differential elements. In their courses, students 
were provided with a tangent linear approximation definition, which dominated their descriptions of differentials. 
At the procedural level, however, they reverted to treating differentials algebraically in algorithms involving partial 
derivatives and Jacobian matrices. Students were not able to identify conditions in specific contexts necessitating the 
use of differentials and gave incorrect justifications about convergence of approximations based on convergence of 
geometric “slices” in a diagram. Such arguments also may be common for students who have not received infinitesimal 
instruction, however. Thompson (1994) observed advanced mathematics students incorrectly justify the fundamental 
theorem of calculus by arguing geometrically that the shape of a three-dimensional object with thickness Dx converges 
to a two-dimensional object as Dx  0. Oehrtman (2002, 2003) classified a ubiquitous category of such reasoning in 
terms of “collapsing dimensions” among freshmen calculus students and secondary mathematics teachers in a wide 
variety of problem contexts.

Ideas of local linearity contain conceptual pitfalls when used to supplement a standard treatment of calculus. In 
a class regularly exposed to descriptions of zooming in on graphs, students did not ever develop these concepts for 
use in any of their own explanations about limits (Oehrtman, 2002). When directly probed about what they would see 
when zooming in on the graph of a function, only 10 out of 77 gave a response that was relevant to the mathematics, 
and these were all incorrect, suggesting that one would see a straight line because the vertical change is reduced to 
a very small amount (although this argument seems to imply that one would see a horizontal line). All of the other 
students appealed to non-mathematical interpretations such as images of the line becoming thicker or blurrier under 
magnification or that you would see individual calculator pixels or atoms of paper. This indicates that images of zooming 
did not provide these students with sufficient structure to guide their reasoning and the related instructional process 
lacked the necessary feedback to prevent major misconceptions. Additionally, subsequent analysis-based mathematics 
courses are rarely taught in terms of nonstandard analysis and science and engineering rarely use mathematical models 
that incorporate infinitesimals.

A Design Approach to Limit Instruction
The main thrust of this chapter is to frame a set of objectives related to the learning of limits, taking into account many 
of the goals introduced above, and to outline an instructional approach based on research and refined through several 
teaching experiment cycles. One of our main objectives is to base the instruction on activities that are conceptually 
accessible to students. As discussed above, this has been achieved by others, notably through infinitesimal approaches, 
and we have drawn from their successes. A second goal is to structure students’ understanding in ways that reflect 
formal definitions. The purpose of this is to lay a conceptual groundwork from which formal understandings may 
later emerge but not necessarily to provide those formalizations themselves. Such an approach could, of course, leave 
open the option for an instructor to develop these definitions at an appropriate time. Third, we strive to establish an 
instructional approach for limits that serves as a guide for the investigation of all other concepts defined in terms 
of limits in ways that enhance exploration of their underlying structures. Finally, the approach should allow and 
encourage flexible application in all representations (algebraic, graphical, numerical, contextual/descriptive, etc.). The 
diversity of these goals leads to the consideration of an important additional constraint: we require an approach that is 
coherent. That is, the treatment should be mutually reinforcing across the entire calculus curriculum, and the process 
of achieving each goal outlined above should support the attainment of the others. 

A design process. From a design perspective we have sought to achieve these goals via the following process:
1. Identify the mathematical structures (elements, operations, relations that result from coordinating operations, 

etc.) that must be reflected in the instructional activities.
2. Identify a structurally equivalent conceptual system and language base that is accessible to students. This 

is achieved by documenting students’ natural reasoning, developing possible frameworks of mathematical 
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expressions for this reasoning, then evaluating the effectiveness of structuring students’ activities around these 
mathematical versions of their natural reasoning. 

3. Develop, test, and refine instructional activities in which students apply the framework to particular applications. 
Students work in groups on structurally similar problems in a variety of contexts and then present results to 
each other, reinforcing the structure across novel contexts and problems. Design whole-class discussion to 
elicit the common features across all applications. Initial activities should focus on familiarizing students 
with the language, notation, and procedures of the framework and assisting them in choosing and applying its 
tools (e.g., focusing on types of questions generally asked, common procedures that may be used, and relevant 
representations of the results). Later activities should encourage students to reason through solving problems 
on their own. 

4. Repeat Step 3 for a variety of applications of the concept. This establishes a second level of activities in which 
students are encouraged to see similarities across different uses of the concept and develop a more general and 
robust abstraction of the concepts.

5. Design tasks to foster formalization as an end result. This includes naming or symbolizing a structure that has 
already been abstracted and can lead to discussion and use of formal definitions and proofs.

The overarching principle is that students should engage in multiple activities that reveal and encourage the 
abstraction of a common structure, and the results of many such abstractions should share common features to allow 
for further levels of abstraction. At each level, students should participate in experientially real activities designed 
to engage them in the relevant structures of the underlying mathematics (although not necessarily the formal 
representations) and in seeing common structures across multiple experiences. This allows an abstract understanding 
to emerge over a long period of time with significant reinforcement at a variety of conceptual levels. The concept may 
be formalized near the end of this process as a way to concisely capture a well-understood structure.

In the case of limits, a particular application developed in an iteration of Step 3 would stem from the limit structure 
involved in the definition of the derivative (see Figure 2). The activities are designed to reflect the predetermined 
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Figure 2. Layers of Abstraction: A common structure for limit concepts is repeated within each application, then 
across multiple applications to provide coherence throughout the calculus curriculum. 
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limit structures to provide an appropriate source for later abstraction. Different groups of students present their work 
detailing the operations and relations involved in applying the limit framework to different rate of change contexts. 
Although the contexts are different, the underlying structure is the same, and classroom discussion is focused on 
drawing out the common features. As this is repeated for the limit of a function at a point, the definite integral, the 
fundamental theorem of calculus, Taylor series, etc., there is variation in the structures of these different topics but 
certain consistencies in the underlying limit structures. 

We have identified in our goals, the formal limit definitions as capturing the underlying structure to be modeled 
through instruction. This means students should develop to use conceptual tools corresponding to the algebraic entities 
and expressions in the definitions, guided by the types of operations possible within the underlying logical connections 
between these expressions. We have also identified the need to apply this structure to solve problems in the contexts 
of other concepts within the calculus curriculum.

Students’ spontaneous reasoning with approximation concepts. Formal limit definitions and structures are often 
considered beyond the reach of most introductory calculus students. Students, however, often naturally reason about 
limit concepts in terms of approximations in ways that are structurally equivalent to aspects of formal epsilon-delta 
and epsilon-N definitions (Oehrtman, 2004). For example, students may be able to construct an idea such as “the slope 
of the tangent line is approximated by slopes of secant lines, and the errors (differences between the two slopes) can 
be made smaller than any predetermined bound” even though merely interpreting an abstract statement such as “for
every e > 0, there is a d > 0 such that whenever 00 x x δ< - <  then 0

0

( ) ( )f x f x
x x m ε
-
- - < ” may be entirely beyond their

reach. Furthermore, instruction can foster the development and application of appropriate versions of such reasoning 
so that it may become a basis for understanding the formal statements and incorporating aspects into their reasoning 
with approximations (Oehrtman, 2004). For this reason we take the stance that epsilon-delta and epsilon-N definitions 
should only be introduced after multiple rounds of instruction that reinforce the conceptual structure of limits in 
different settings as depicted in Figure 2.

In a study to characterize calculus students’ spontaneous reasoning patterns while working with limits, Oehrtman 
(2002) collected responses to short writing assignments from an entire class of 120 students and more in-depth 
descriptions of students reasoning from 25–35 students from regular online writing assignments. Nine students 
participated in initial clinical interviews during which the interviewer prompted for detailed explanations of their 
reasoning about the meaning of limits through standard problems, and follow-up interviews were conducted with an 
additional 11 students. Approximation ideas emerged as the strongest and most frequently applied metaphor for limits 
in this study, and students’ reasoning while thinking about approximations were more likely to reflect the correct 
mathematical structures than any of the other contexts that emerged. These results may not be surprising since much of 
calculus is historically motivated by needs for numerical estimation techniques, and these ideas continue to influence 
our classroom and textbook presentations. Consider the following quote from a typical second-semester calculus 
student as she explains her understanding of the equality 3 5 71 1 1

3! 5! 7!sin x x x x x= - + - + . Attend to her use of the 
words “approximation”, “error”, and “accuracy” and how their usage matches the structures in epsilon-N convergence 
arguments.

When calculating a Taylor polynomial, the accuracy of the approximation becomes greater with each 
successive term. This can be illustrated by graphing a function such as sin(x) and its various polynomial 
approximations. If one such polynomial with a finite number of terms is centered around some origin, the 
difference in y-values between the points along the polynomial and the points along the original curve (sin x) 
will be greater the further the x-values are from the origin. If more terms are added to the polynomial, it will 
hug the curves of the sin function more closely, and this error will decrease. As one continues to add more and 
more terms, the polynomial becomes a very good approximation of the curve. Locally, at the origin, it will 
be very difficult to tell the difference between sin(x) and its polynomial approximation. If you were to travel 
out away from the origin, however, you would find that the polynomial becomes more and more loosely fitted 
around the curve, until at some point it goes off in it’s own direction and you would have to deal once again 
with a substantial error the further you went in that direction. Adding more terms to the polynomial in this 
case increases the distance that you have to travel before it veers away from the approximated function, and 
decreases the error at any one x-value. Eventually, if an infinite number of terms could be calculated, the error 
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would decrease to zero, the distance you would have to travel to see the polynomial veer away would become 
infinite, and the two functions would become equal. This is a very important and useful characteristic, as it 
allows for the approximation of complicated functions. By using polynomials with an appropriate number of 
terms, one can find approximations with reasonable accuracy.

This student received no special instruction related to ideas about approximation, yet the language of approximation, 
errors, and accuracy figured prominently and systematically in her reasoning. Furthermore, the structure of these ideas 
for this student reflect a sophisticated understanding of limits and is integrated with her understanding of various aspects 
of Taylor series, such as the relationship between graphs of a function and several Taylor polynomials, pointwise 
convergence, and the radius of convergence. These types of statements were common among students trying to make 
sense out of limit concepts in their own language (Oehrtman, 2002). 

The main components of students’ spontaneous use of approximation ideas to reason about limits consisted of an 
unknown actual quantity and approximations that are believed to be close in value to the unknown quantity. For each 
approximation, there is an associated error,

error = | unknown quantity – approximation |.

Consequently, a bound on the error allows one to use an approximation to restrict the range of possibilities for the 
actual value as in the inequality

approximation – bound < unknown quantity < approximation + bound.

An approximation is contextually judged to be accurate if the error is small, and a good approximation method 
allows one to improve the accuracy of the approximation so that the error is as small as desired. An approximation 
method is precise if there is not a significant difference among the approximations after a certain point of improving 
accuracy. 

The structure of this schema parallels the logic of epsilon-N and epsilon-delta definitions of limits. For the 
latter, bounding the error corresponds to the statement “then | ( ) |f x L ε- < ”. The need to obtain any predetermined 
degree of accuracy evokes the requirement that the condition hold “for any 0ε> .” A mechanism to generate better 
approximations corresponds to the phrase “there exists a δ  such that whenever 0 | |x a δ< - < .” Linking these 
structures together gives the practical statement of being able to find a suitable approximation for any degree of 
accuracy on the one hand and the formal epsilon-delta definition on the other. Students’ intuitive descriptions of 
precision such as “There will not be a significant difference among the approximations after a certain point.” reflect the 
structure of Cauchy convergence, if n N>  then | |m na a ε- < . These structures are consistent even with a generalized 
definition of definite integral as a net, with partitions partially ordered by refinement. In terms of approximations such 
a description may be even more intuitively accessible than a simple limit definition and its restrictions on the types of 
approximations considered.

Instructional Activities. The types of tasks discussed in this section have been tested and refined in use with three 
different student populations: a standard introductory calculus class, a supplemental calculus workshop, and a summer 
professional development workshop for high school teachers. Research teams videotaped all instructional settings 
and analyzed data to discern which aspects of the activities reinforced the desired conceptual structures and provided 
students with powerful reasoning tools and where potential difficulties might arise. In each round, the instructional 
activities were refined accordingly.

An initial task that must be accomplished by the instructional activities is to systematize students’ spontaneous 
understandings related to approximations so that a relevant and standard set of ideas and language can be developed by 
the class to use in further explorations. Williams (1991) found students’ exhibited strongly held sets of beliefs typically 
surrounding the contexts in which they were first exposed to limits and that their viewpoints were extremely resistant 
to change, even in response to explicit discussions about contradictory examples. Students viewed counterexamples 
as minor exceptions rather than reasons to abandon an incomplete concept and evaluated the appropriateness of 
any particular conceptualization based on its usefulness in a given setting rather than on its rigor, consistency, or 
correctness. These are hallmarks of spontaneous reasoning which is not volitional or structured (Vygotsky, 1987). 
The development of students’ scientific concepts alongside their spontaneous concepts can be slow and difficult, 
but in any instructional process related to limits, something similar will be necessary. The key is to have a strong set 
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of spontaneous concepts (as is the case with students’ approximation ideas) to enable and mediate this process. To 
accomplish this, we have developed a variety of heavily “scaffolded” tasks (tasks with significant initial instructional 
support designed to be gradually removed throughout subsequent activities as students develop proficiency). Examples 
are shown in Figures 3 and 4. 

These highly scaffolded activities introduce the students to limit structures using applications that are fully 
developed later in the course, such as the derivative or continuity. Other initial tasks engage students in similar 
activities using different applications of limits such as the definite integral structure presented as approximating how 
far a wind-up car would travel and infinite series presented as “mystery” sums. Although there are opportunities 
for some discussions about these other topics at this stage, best results were obtained by focusing group and class 
discussions on the limit structures within each application in order to reinforce the use of ideas about approximations, 
errors, and bounding errors. In each case, students were able to reason within the given context to determine whether 
specific approximations were overestimates or underestimates, then to find an actual bound on the size of the error. 
They were then asked to reverse this process and find several approximations with errors smaller than pre-determined 
bounds. In students’ work and presentations, continual emphasis that these two processes are the reverse of one 
another was necessary to help students understand the distinction and when one way of reasoning would be required 
over the other. 

Subsequent activities provide fewer step-by-step instructions for the students with the expectation that they will 
begin to remember or develop appropriate strategies to solve increasingly more sophisticated problems. Through the

In the following problem, you will approximate the slope of the tangent line to a curve at a point.There are several 
important ideas about approximation that are embedded in these exercises that have a close relationship to the limit 
concept. You will need a graphing calculator or a graphing program on a computer.

Graph 2xy =  on a calculator or computer over the interval [ 3,3]-  and take careful note of the general shape of 
the curve. Now zoom in on the graph at 1x =- . That is, change the window to show the graph over a smaller interval 
around 1x =- , like [ 2,0]- . Notice that the graph appears less curved and more like a straight line. If you keep 
zooming in around 1x =- , the graph will appear more and more like a straight line. This is called the tangent line to 
the graph of 2xy =  at 1x =- . The details of tangent lines will be developed more fully later in this course. For now, 
you will approximate the slope of the tangent line.

1. Look at a region of the curve where it appears fairly straight but still has a slight, noticeable curvature, e.g., 
on [ 2,0]- . Take a point on the curve to the right of the point at 1x =- , and find the slope between these two 
points. (Make sure to keep as many decimal places in your calculation as possible since this exercise will 
require precision.)

2. Take a point on the curve to the left of the point at 1x =- . Find the slope between these two points.
3. Are the two slopes from parts a and b both underestimates, both overestimates, or one of each? Explain how 

you know. (Hint: Use the fact that the graph of 2xy =  is concave up, i.e., it curves upwards.)
4. Using your work from above, give a range of possible values for the slope of the tangent line. Using the center 

of this range as an approximation, what is a bound on the size of the error?
5. Explain why your bound is just an upper bound for the error and not exactly the error.
6. Zoom in and use points to the left and right of 1x =-  to find an approximation of the slope of the tangent line 

with error less than 0.0001. Record your work for each computation you do.
7. Explain why any points between 1x =-  and the points you used in Part f would result in an approximation 

with error less than 0.0001.
8. What other x-values can you use for the second point and have the error be less than 0.0001.

Be prepared to answer:
1. What unknown value were you approximating?
2. What were your approximations?
3. Describe what the error for each approximation was. Why is the exact value of the error impossible for you 

to determine?
4. How did you bound the error?
5. Explain a procedure for getting an approximation with error smaller than any pre-determined bound.

Figure 3. A scaffolded activity on the slope of a tangent line designed to reinforce approximation structures relevant to limit 
concepts. This task is used before limits or derivatives are formally introduced to lay a foundation for the conceptual structure.



6.  Layers of Abstraction: Theory and Design for the Instruction of Limit Concepts ��

The graph of
3 7 2( )

1
xf x

x
+ -

=
-  

has a hole. Your task is to determine the location of this hole using the approximation techniques you have learned. 
1. Identify what unknown numerical value you will need to approximate. Give it an appropriate shorthand 

name.
2. Determine what you will use for approximations. Write out your answer algebraically.
3. Draw the graph using your entire whiteboard. Depict your answers to #1 and #2 on the graph with labels for 

each.
4. What is an algebraic representation for the error in your approximations? Add a graphical representation to 

your picture.
5. List three fairly decent approximations. For each one, give a bound for the error and use this to determine a 

range of possible values for the actual value. Add one of these values to your picture and depict both the error 
bound and the range of possible values. Don’t forget to label everything!

Approximation Error Bound Range of Possible Values

6. Find an approximation with error smaller than 0.0001. Then describe all of the approximations that would 
have an error smaller than 0.0001. Add this to your picture.

7. For any pre-determined bound, can you find an approximation with error smaller than that bound? Explain in 
detail how you know.

Figure 4. A scaffolded activity on the limit of a function designed to reinforce approximation structures relevant to limit concepts.

teaching experiments, we have determined that once students are able to complete introductory activities such as the 
ones above, they are ready to begin group work on less scaffolded tasks as shown in Figure 5. With some preliminary 
discussion about average rate of change and intuitive interpretations of instantaneous rate of change, these activities 
prepare students for the introduction of the definition of the derivative.

Eventually, students are given problems with very few prompts regarding approximation structures. Consider, for 
example, the problems posed in Figure 6. Typically, such contexts would be presented to students as tasks to construct a 
definite integral and evaluate using the fundamental theorem of calculus. The slight change in this formulation requires 
students to coordinate the product, sum, and limit structures of the definite integral across multiple representations. 
Table 1 provides brief descriptions of typical responses expected of and provided by students in previous teaching 
experiments for Context 2 of Figure 6. 

Algebraic and numerical representations of the actual value, such as shown in the shaded cells of Table 1, are usually 
found last by students. Even when students attempt to begin their work by computing an integral, they are typically 
unable to determine the correct integrand until they have found and represented several particular approximations. 
Other than the shaded cells, students typically proceed sequentially down the columns by finding and representing 
the elements of each row in the table in turn (Sealey & Oehrtman, 2005). The need to express answers using all 
representations arose naturally as students needed to accomplish various sub-goals. For example, to figure out how to 
compute specific numerical values, students needed to carefully express their ideas on their picture of the dam, going 
through several revisions of their diagram and labeling. For larger computations that required a calculator or computer, 
students were forced to express their work algebraically in order to determine an appropriate command.

A typical group of Sealey’s & Oehrtman’s students wrestled with an incorrect definite integral 50
0 62.5 ,x dxò  then 

multiplied the pressure at the middle depth of the dam by its area to get what they believed was the actual answer. They 
then quickly determined how to find under and overestimates for partitions with ten subintervals then for 50 subintervals, 
and thought momentarily that they could not subdivide the partitions any further since they were now one foot each. 
Once they realized how to represent finer partitions algebraically and how to enter them into their calculators, they
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Instructions: You will approximate the instantaneous rate of change for one of the situations below by answering each of 
the following questions algebraically, numerically, and by representing each answer in your diagram:

0. Draw a large picture of the physical situation for the value of the variable given. 
1. Imagine how things are changing in this situation. List all of the quantities that you think are changing. Describe 

how they are changing.
2. On the same picture, draw several “snapshots” of the situation. 
3. Label the changing and constant quantities in your drawing.
4. Describe in more detail what you have been asked to approximate.
5. What can you use for approximations?
6. What are the errors?
7. Find an approximation and a bound for the error. What is the resulting range of possible values for your 

instantaneous rate?
8. How can you find an approximation with error smaller than a predetermined bound?

Context 1: An object is falling according to the equation h(t) = 100 – 16t2 feet (with t measured in seconds). Approximate 
the speed when t = 2 seconds.
Context 2: Approximate the instantaneous rate of change of the area of a circle with respect to its radius when the radius 
is 3 cm.
Context 3: The force of gravity between two objects is inversely proportional to the square of the distance separating them.
Approximate the instantaneous rate of change of the gravitational force with respect to distance 
when two objects are 230 km apart. (Note that all of your answers will involve the constant of 
proportionality.)
Context 4: Approximate the rate of change of the height of water in this bottle with respect to 
the volume of water when the height is 1.5. (Note that your answers will involve the size of the 
spherical portion of the bottle.) 
Context 5: The half-life of Iodine-123, used in some medical radiation treatments, is about 13.2
hours. Thus a sample that originally has 6.4 mg of Iodine-123 will decay so that the amount left after t hours will be
roughly I t

t
( ) .

/ .
= ( )6 4 1

2
13 2

 mg. Approximate the instantaneous rate at which the Iodine-123 is decaying after 5 hours.

Figure 5. Typical partially scaffolded activities developing limit and derivative structures through approximation ideas.

Instructions:	Draw a picture of the situation, labeling everything possible. Determine a way to approximate the quantity 
requested. Be prepared to explain exactly how you obtained your approximations, what your errors are, how you can 
bound the errors, and how you can find an approximation with an error smaller than any predetermined bound. Express 
your answers algebraically and numerically, labeling appropriate quantities in your diagram.
Context	1:	For a constant force F to move an object a distance d requires an amount of energy equal to E Fd= . Hooke’s 
Law says that the force exerted by a spring displaced by a distance x from its resting length is equal to F kx= , where k 
is a constant that depends on the particular spring. If the spring constant is .155k =  N/cm, approximate to within 1000 
ergs the energy required to stretch the spring from a position 5 cm beyond its natural length to 10 cm beyond its natural 
length. (Note that 1 erg = 10–5 N·cm.)
Context	2:	A uniform pressure P applied across a surface area A creates a total force of F = PA.  The density of water is 
62.5 lb per cubic foot, so that under water the pressure varies according to depth, d, as P = 62.5d. Approximate to within 
1000 pounds the total force of the water exerted on a dam 100 feet wide and extending 50 feet under water.
Context	3:	The mass M of an object with constant density d and volume v is M dv= . A 10-meter long, 10-cm diameter 
pole is constructed of varying metal composition so that its density increases at a constant rate from 3 grams per cubic 
centimeter at one end to 20 grams per cubic centimeter at the other. Approximate the mass of the pole with an accuracy 
of 100 grams. 
Context	4:	Fluid traveling at a velocity v across a surface area A produces a flow rate of F vA= . Poiseuille’s law says 
that in a pipe of radius R, the viscosity of a fluid causes the velocity to decrease from a maximum at the center ( 0)r =  
to zero at the sides ( )r R=  according to the function ( )2 2

max 1 /v v r R= - . Find an approximation of the rate that water 
flows in a 1-inch diameter pipe if max 2v =  ft/s with an accuracy of 0.01 cubic feet per second (cfs).
Context	5: The volume V of an object with constant cross-sectional surface area, A, and height, h, is V Ah= . A large 
spherical bottle of radius 1 foot is filled to a height of 16 inches. Approximate the volume of water in the bottle to within 
0.01 cubic feet.

Figure 6. Typical non-scaffolded definite integral questions in terms of approximation.

h = 0

h = 1

h = 2

h = 3
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found under and overestimates for 100 and 800 subintervals (800 was the largest number of terms allowed by their 
calculators for computing a sum). At each of these steps, they noted that the actual force was somewhere between their 
values, that the error was bound by the difference, and that it was much larger than the desired 2000 pounds thus requiring 
further work. At this point, they proceeded to determine that achieving an error less than 2000 pounds would require 
7750 subintervals. They became eager to actually try this and broke the problem into ten sub-problems with 800 or fewer 
terms each. All students in the group then agreed to find the sum for the first 800 terms to check their work, to work on 
different sums, and finally combine their results at the end. The students worked in a highly collaborative and engaged 
manner with these activities, and there was constant talk throughout that reflected the structure of both limits (finding 

Table 1. Descriptions of typical responses in multiple representations for the approximation questions applied to the question about 
the force of water on a dam. Students typically produced responses in the order of descending rows with the exception of the two 
shaded cells which were often produced last.

Contextual Graphical Algebraic Numerical

Unknown	Value:
The force of water 
against the dam

Underwater
portion of dam

force due
to water

100 ft

50 ft

50

y x= 62.5 · 100 ·

depth

pr
es

su
re

50

0

( ) ( )

62.5 100

b

a
F p x w x dx
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= ×

= × ×

ò

ò
F = 7,812,500 pounds

Approximation:
Assume constant 
pressure across strips 
and use F P A= × . 
Using pressure from 
the bottom of strips 
yields an overestimate. 
Pressure from top 
yields underestimate

overestimate of
force on strip

underestimate of
force on strip

50

y x= 62.5 · 100 ·
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10

1
62.5 100i

i
A x x∆

=

= × ×å
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-
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F » +
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+ +
+ +
=
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The difference between
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approxminus
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to the estimated force 
on the deepest strip.
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∆x
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262.5 50 100n
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>  

For an error less than 
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7812.5n>
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approximations, determining bounds for how far off they were, and determining how to achieve the desired accuracy) 
and definite integrals (breaking the problem into sections where pressure is nearly constant, computing forces using 
products, summing the results, and developing a general Riemann sum).

Results from these studies also indicate that the activities are effective in helping students systematize their 
reasoning around approximation ideas. Several of these students were able to make sense out of the epsilon-delta 
definition in terms of their approximation language, at which point they began interchanging language and symbols 
related to approximation and the formal definition and referred to them as being the same thing. This is an indicator 
of structured, scientific reasoning since it is only possible if the student is able to recognize the underlying structure 
despite different sets of terminology.

In subsequent activities, students are given progressively fewer prompts for techniques such as finding under and 
overestimates and are expected to apply these techniques appropriately on their own. For each task, they are asked to 
identify contextual, graphical, numerical, and algebraic referents for each of the following questions: 

1) What are you approximating?
2) What are the approximations? 
3) What are the errors? 
4) What are bounds on the size of errors? and 
5) How can the error be made smaller than any predetermined bound? 

Again, questions four and five are emphasized as reciprocal processes so that students see and remember the 
purpose of each. Throughout all of these materials, the structure of the underlying limit concepts determines the nature 
of the instructional activities. Further, answering these questions encourages students’ explorations into the relevant 
structures of the concept defined in terms of limits. In activities about the derivative, the need to approximate a rate of 
change to a given quantity results in the exploration of average rates of change over small intervals and the analysis of 
underestimates and overestimates based on arguments of increasing or decreasing rate derived from the context. In the 
previous activity on the definite integral and the examples shown in Figure 6, the structure of refinements to Riemann 
sums emerges as a result of engaging in the need to approximate to a given accuracy. Bob’s quote at the beginning of 
this chapter in which he interpreted the definition of the derivative in terms of approximation is illustrative of the type 
of reasoning that has emerged consistently in the teaching experiments. Exploration, presentations, and discussion of 
multiple contexts exhibiting a common structure encourage the abstraction of the limit concept within the particular 
conceptual strand of calculus being covered. Figure 6 shows an example of such an activity for students to explore 
definite integral structures.

Summary
We have outlined several approaches to instruction related to limit concepts discussed in the mathematics education 
research literature. A typical class is often not represented by any one of these approaches but reflects a mixture of 
them. Regardless of the approach, however, the literature indicates students have major difficulties understanding 
limit concepts, which in turn impedes their understanding of other fundamental ideas in the calculus. In the first 
part of this chapter, we applied Piaget’s theory of abstraction to characterize potential sources of student difficulties 
for various approaches. By highlighting these difficulties, we hope to assist individuals responsible for calculus 
instruction to address typical pitfalls. For example, an initial step in this direction might be to directly address common 
misinterpretations of imagery such as zooming in on a graph or viewing the fundamental theorem of calculus as being 
true as a result of an area collapsing in dimension to a line.

The second half of the chapter is intended to provide an example of designing an approach to calculus instruction 
that is coherent with respect to its treatment of limit concepts. The example provided uses common notions about 
approximations, is based on Piaget’s theory of abstraction, and builds a structural understanding through repeated 
engagement in activities that reflect that structure. Certainly many other approaches could be designed to accomplish 
similar results. Our research shows that this design-based approach to instruction on limits develops a rich cognitive 
structure that reflects the standard mathematical definitions and applications and is powerful in supporting instruction 
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on the other major concepts in calculus defined in terms of limits. This approach provides a facility with these major 
concepts grounded in ideas of approximation and bounding error which are the basis for many applied applications of 
mathematics (e.g., in physics and engineering) and for a rich understanding of the mathematical formulas, theorems, 
and tools used in computational techniques. Finally, students are encouraged to develop an intuitive facility with the 
structures that can form a foundation for later abstraction to epsilon-delta and epsilon-N constructions, the basis of 
formalization and proof in upper-division and graduate analysis courses and of computational techniques in many 
applied mathematics and differential equations courses.
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Divisibility and Transparency of Number Representations

Rina Zazkis
Simon Fraser University

It is easy for colleagues to agree that students’ understanding is one of the main goals of instruction. It is considerably 
more difficult to agree on what good understanding of a specific concept entails and how it is possible to achieve 
it or to assess it. I believe that understanding of any mathematical concept includes the ability to deal with various 
representations of this concept. As suggested by the title of this article, I focus here on the concept of divisibility and 
how it may be understood by considering various representations of natural numbers. 

Divisibility is one of the main concepts in elementary number theory in that it underlies the multiplicative 
structure of natural numbers. However, it is impossible to discuss divisibility without addressing the concepts of 
factors, multiples, prime and composite numbers and prime factorization. In what follows I present snapshots from 
recent research on college students’ understanding of these concepts. I then point out some common themes emerging 
in these examples and present a theoretical perspective as a lens for considering various approaches. I conclude with 
a discussion of one particular pedagogical method, consideration of “big” numbers, which I used in an attempt 
to improve students’ understanding. I describe the benefits of this method and exemplify how it can be applied to 
concepts beyond elementary number theory. 

Snapshots from Research
As stated above, I start with examples from recent research on learning topics in elementary number theory. To 
situate these examples it is important to note that, unless otherwise stated, the participants in these research studies 
were preservice elementary school teachers. The participants were enrolled in mathematics content courses designed 
specifically for this population as a part of the requirements for teaching certification at the elementary level. The topic 
of introductory number theory — factors, multiples, prime and composite numbers, divisibility and divisibility rules, 
prime decomposition and the fundamental theorem of arithmetic — was discussed in these courses before the research 
data were collected. 

Research in mathematics education has repeatedly shown that elementary school teachers’ understanding of even 
elementary mathematical concepts is weak, incomplete, and fragile. Concepts of elementary number theory are not 
exceptions. However, I believe that rather than making general claims about weak understanding, it is important for 
both teachers and researchers to get a better insight into the nature of these possible weaknesses. 

Example 1
Zazkis (2000) investigated preservice elementary school teachers’ understanding of the concepts of factors, divisors 
and multiples, focusing on the mathematical connections among these concepts. In one of the interview questions used 
in this study participants were asked to identify prime factors of 117 = 3213. Darlene systematically built a factor 
tree for 117, summarizing the results as 3313. Then the following conversation took place:
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Interviewer: And you have found 3, 3 and 13 and you have written it down as  32 13.  Now I’m asking you, 
what I wrote here before, when I gave you the number 117, I wrote it here, it is 32 13. 

Darlene: Um hm.
Interviewer: Could you use this?
Darlene: As an explanation for this? [Darlene pointed to her factor tree]
Interviewer: Not an explanation, maybe a hint. 
Darlene: Oh no, I, like just looking at that, like I didn’t, I wouldn’t understand that.

Example 2
Zazkis and Campbell (1996) studied preservice teachers’ understanding of the notion of divisibility and its relation 
to multiplication and division. In one of the interview questions participants in their study were asked to consider the 
number M, where M = 33527, and determine divisibility of M by several numbers, such as 7, 5, 2, 11, 9, 63, 15. 
Below is the excerpt from the interview with Armin in which part of this task is attempted. 

Interviewer:   I’m asking you to look at the number which is 33527, do you think this number is divisible by 
7?

Armin:   Okay, first I’m just multiplying 27257 and I get 4,725 and now I need to divide them all by 
7.

Interviewer:   Okay.
Armin:   So (I) get 675, so you have it divisible. 
Interviewer:   So this number is divisible by 7.  Could you know this without using the calculator and without 

finding out the product of all the numbers?
Armin:   Could I know it?  Um, well, I know we discussed something in class about if, if one number is 

divisible by 7, then another number is divisible, or what was it, this number is divided by 7, and 
this number is divided by 7, then the sum of those numbers should divide by 7. 

Interviewer: If I asked you whether this number was divisible by 5, what would you do?
Armin:   I’d do the same thing.

Though the responses presented in examples 1 and 2 do not represent the majority of students, they are not 
unique occurrences either. For example, 8 out of 21 participants in the Zazkis and Campbell (1996) study interpreted 
divisibility exclusively through carrying out division. 

Example 3
Similar approaches of preservice elementary school teachers were identified by Brown, Thomas and Tolias (2002). In 
one of the tasks, interviewees in their study were asked to identify multiples of 24 in the list of numbers that included 
2400, 2401 and 2412. Adam’s solution included the following:

Adam:  So take 24 hundred divided by 24 [carries this out on his calculator]. I find it does go evenly and 
it’s 100, so that tells me that 24 hundred is a multiple, um, 24 hundred and one doesn’t work 
because I don’t think that goes evenly [divides with calculator] and it doesn’t, so I know 2401’s not 
a multiple and then I do the same thing for 2412 and it doesn’t go evenly so it’s not a multiple. 

Brown et. al. commented that Adam didn’t find the expression “24 hundred” meaningful and believed it was 
necessary to carry out the division. They further pointed out that even though Adam predicted that 2401 “doesn’t 
work”, he still found it necessary to perform the calculation in order to confirm. 

Example 4
Participants in Ferrari’s (2002) study were first year undergraduate computer science students. In the tasks presented 
to these students, Ferrari defined the number M to be  M = 345376198  and asked whether M was divisible by 
63. Though the numbers were carefully chosen to avoid the use of a calculator to perform the computation, Roberto, 
as well as some of his classmates, carried out the task by performing division  (M 63) considering the prime factored 
form of the numbers; that is, representing 63 as 327 , “canceling” the terms, and finding the result of division to be 
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325375198 in order to conclude divisibility. Roberto’s approach demonstrates this student’s ability to manipulate 
the factored form of the number, but not the ability to consider the features it entails. In other words, his ability to 
consider numbers in their prime factored form appears to be limited to manipulation of symbols. 

Example � 
Zazkis & Liljedahl (2004) collected part of their data through written questionnaires rather than interviews. This tool 
made it possible to assess a larger number of participants. The following question was presented to a group of 116 
preservice elementary school teachers.

Consider F = 151157. Is F a prime number? 
Circle YES/NO and explain your decision. 

Of the 74 students who claimed correctly that F is composite only 52 justified this by its structure as a product, 
focusing the explanation on the definition of either prime or composite numbers. A popular solution was to calculate 
F and apply the learned algorithm of checking for primality. Responses from two students using this method are 
presented below:

Andy circled: NO (F is not prime.)
23707 = 153.9.  Now we check if any of the prime numbers lower than 153 divide 23707. 23707 is divisible 

by 151 and 157 so it is not prime. 

Terry circled: YES (F is prime.)
151157 = 23707,  23707 = 154.  Check all prime numbers lower than 154 to see if the number is prime 
and if none of them can divide 23707 then the number is prime. 

Terry’s response was accompanied by the list of primes up to 29. The strategy described in these responses is not 
incorrect, but rather unnecessary and inelegant in the given case; it is the incomplete implementation of the strategy 
that led Terry to a wrong conclusion. As shown here, the strategy of applying the algorithm resulted in both correct and 
incorrect conclusions, as some students checked divisibility of F only by a few “small” primes. 

Reflecting On Examples
There are several common themes that emerge in students’ responses presented in these examples. One such theme is a 
procedural disposition and search for algorithms, what is referred to in terms of the APOS theoretical lens (Dubinsky, 
1991) as an “action conception” of divisibility or of primality of numbers. Another theme that may explain the pro-
cedural disposition is a lack of connectedness of knowledge, that is, a lack of, or insufficient links in students’ under-
standing between factors, divisors and multiples or, more generally, between multiplication and division. However, 
the theme I wish to focus on in this article is that of representation and structure, that is, the lack of attention to the 
multiplicative structure of natural numbers as represented in their prime factored form.  

Many of my mathematical colleagues have been surprised not only with the students’ responses, but also with the 
questions themselves. They often consider the questions as “trivial” and not worth asking. However, this perception 
of simplicity is what guided the choice of many of the problems used in prior research: they are simple only for those 
who are attending to, or who “are seeing,” the embedded structure. It is the variety of approaches that students choose 
for seemingly simple problems that provide researchers with a “window” on their understanding.

Formalization of “Seeing”
As mentioned earlier, one of the unifying themes in the above examples is that students do not “see,” or do not attend 
to, the properties of numbers that are easily recognizable in the numbers’ representations. We say that students do not 
attend to the transparent features of representation. 

In general, a representation is transparent with respect to a certain property if this property “can be seen” 
considering the representation. Otherwise the representation is opaque with respect to the property in question. For 
example, representing the number 784 as 282 emphasizes—or makes transparent—that this number is a perfect square, 
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but de-emphasizes — or leaves opaque — the divisibility of this number by 98. Representing the same number as 13 × 
60 + 4 makes it transparent that the remainder of 784 in division by 13 is 4, but leaves opaque this number’s property 
of being a perfect square. In this sense, all the representations of natural numbers, including the canonical decimal 
representation, are opaque, however, each one has transparent features.

To exemplify further transparency in representation of numbers, Zazkis and Gadowsky (2001) invited the reader 
to consider the following five numbers:

(a) 2162,    (b) 362 ,    (c) 315552,    (d) 573143+1,    (e) 123000 + 12888

From representation (a) it is transparent that the number is a perfect square; representation (b) shows that the 
number is a perfect cube; from (c) we conclude that the number is a multiple of 3 and of 15552. Of course it is possible 
to derive that the number is a multiple of 3 from (a) and (b) as well, but (a) and (b) do not give us a clue regarding 
15552. From (d) we conclude that the number leaves a remainder of 1 in division by 5, 7, 31 and 43, a conclusion 
that is not apparent — or properties that are not transparent — in representations (a), (b) and (c). From representation 
(e) we see that the number is a multiple of 12 and, acknowledging distributivity, that it is a multiple of 3888. It is not 
apparent, however, that all these expressions represent the same number, 46656. However, following Mason (1998), 
we say that each representation shifts our attention to different properties of the number.

More Examples from Research
The above examples from research concerned numbers and their representations in prime factored form. However, the 
idea of transparency in representation presented a broader view on what can be derived from number structure. 

Example 6
Campbell (2002) discussed in detail the division theorem (also referred to as the division algorithm), that is, the fact 
that for any two whole numbers A and D, there are unique whole numbers Q and R, D > R ≥ 0, such that A=QD+R. 
A common utilization of this theorem for elementary school is in division of whole numbers, so-called division 
with remainder, where the division of A by D results in a whole number quotient Q with a remainder R and is 
denoted symbolically as A÷D=Q remainder R. A very illustrative example of participants’ lack of attentiveness to the 
mathematical meanings represented in the structure is presented in responses to a request to determine the quotient 
and the reminder in division by 6 of the number A, where A=1476+1. Fifteen out of 21 participants in Campbell’s 
study calculated the dividend A and used a long division algorithm in order to answer this question. Further, even those 
who could derive the information considering the given structure regressed to calculating A when, solving a similar 
task, they were asked to find the quotient and remainder in division of A by 2. Campbell described this as a lack of 
connection between division with remainder and multiplication with addition, which extends the previous findings 
of a weak connection between multiplication and division. This is illustrated in the following excerpt where Anita 
discusses how she sees the relationship between multiplication, division and division with remainder:

Anita:  Division is an inverse of multiplication. […]. Well, if you just, by definition sense, multiplication 
is how many groups of something there is, and division is how many groups can go in a number, 
so you’re basically just going backwards. Like um, it’s like addition and subtraction, like 3 + 4 is 
7, 7 – 4 = 3; multiplication 34 is 12, 12 divided by 4 is 3. 

Interviewer:  Alright, Um, how about division with remainder? Is there any way in which you see that as being 
an inverse to multiplication?

Anita: [pause] Well, whenever you’re multiplying, you always get a whole number, you never get a 
…, not, not a whole number, but you always, well you always have a number, you never have 
a remainder in multiplying. […] an inverse of something is just the opposite. Once you have a 
remainder it makes it totally different from multiplication. 

While Anita recognizes division as the inverse of multiplication and is able to exemplify it by drawing an analogy 
with addition-subtraction, she comments about division that “once you have a remainder it makes it totally different 
from multiplication.” This lack of connection explains students’ difficulty in recognizing quotient and remainder 
— terms connected to division — in the transparent representation of these quantities in number A, A = 147  6 + 1. 
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Example �
The multiplicative structure of arithmetic sequences was the theme of a study conducted by Zazkis and Liljedahl 
(2002). In one of the interview questions participants were asked to consider whether a given number was an element 
in a given sequence. The results revealed that participants recognized the structure in the sequence of multiples, such 
as 3, 6, 9 … or 7, 14, 21 …, but experienced difficulty when the given sequence was a sequence of “non-multiples”, 
such as 2, 5, 8 or 8, 15, 22.…  In the sequences of multiples, being a multiple of the common difference served as a 
distinguishing criteria in determining whether the given numbers were elements in the sequence. However, in most 
cases, the participants were not able to adjust this strategy when considering sequences of non-multiples. In the 
following excerpt Sally considers the arithmetic sequence 8, 15, 22… and the number 704. 

Interviewer:  So 704 is not divisible by 7, none of these elements in this sequence you believe will be divisible 
by 7, so can you draw conclusions from what you have now?

Sally:  It’s, it’s um very possibly in this set.
Interviewer:  Um hm.  What, what will convince you?
Sally:  (laugh) Well just because it’s not divisible by 7, doesn’t mean it’s in the set, right?
Interviewer:  Can you give me an example of a number that you know for sure that is not in this arithmetic 

sequence?
Sally:  Um hm, um 700…
Interviewer:  Another one …
Sally:  Um, 77.
Interviewer:  Okay.  And how about 78?
Sally:  It may be in the set, but it’s not divisible by 7…
Interviewer:  (laugh) So 77 you’re sure is not, 78 you’re not sure.
Sally:  Right.
Interviewer:  79?
Sally:  Could be …
Interviewer:  Could be.  80?
Sally:  Could be … 

Zazkis and Liljedahl (2002) noted that a number’s property of “being a multiple” or “being divisible by” gives a 
clear indication of its belonging to a sequence of multiples or not belonging to a sequence of non-multiples; however, 
the property of “being a non-multiple” identifies that a number does not belong to a sequence of multiples, but gives 
no explicit hint with respect to the number’s membership in a given sequence of non-multiples. As the above excerpt 
illustrates, Sally clearly claims that any given multiple of 7 is not an element in a sequence of “non-multiples.” 
Nevertheless, she is not able to draw a definite conclusion when testing the membership of a number that is not 
a multiple of 7. Her expressions “very possible” or “could be” suggest that she identified the dichotomy between 
multiples and non-multiples. She is aware of the multiplicative structure in the sequence of multiples, however, she 
is not attending to the inherent multiplicative structure of the arithmetic sequence of non-multiples, that is, she is not 
recognizing the sequence as “multiples of 7, plus 1.”

Pedagogical Considerations
Is it possible (and if so, how is it possible) to help students recognize the structure embedded in the representation 
of numbers? This is a pedagogical question that emerges from the aforementioned snapshots from research. Having 
introduced the terminology, this pedagogical question can be refined as follows: Is it possible (and if so, how is it 
possible) to make it transparent to the eyes of students what is transparent to the eye of a mathematician? 

I have struggled with this question in my teaching, with varying degrees of success. My students’ desire to follow 
algorithms and verify everything by computation was strongly embedded in their approaches. One of the strategies 
suggested by a colleague was to disallow the use of calculators. It was believed that this restriction could help students 
focus on structure, rather than engage in long efforts with paper and pencil. Surprisingly, students rarely attempted 
to avoid even messy and long computations. While the temporary ban on calculators had the desired effect for some 
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students, others expressed frustration with the regulation, made mistakes in computation, or used the “forbidden tool” 
under the desk. 

What if — I thought — calculators were not banned, but simply made obsolete? In what follows I introduce 
one possible pedagogical approach based on creating problem situations in which the algorithmic approach is 
unworkable.

Introducing Big Numbers
Before I introduce the pedagogical strategy that emerged, consider the approach of Armin in Example 2 and the 
approach of Roberto in Example 4. The similarity is that both participants performed division in order to conclude 
divisibility. The difference is that Roberto performed division using prime decomposition, while Armin found the 
decimal representation of the number and performed division using her calculator. It is reasonable to assume that 
Roberto, a computing science major, had a stronger mathematical background than Armin, a preservice elementary 
school teacher. However, it is unclear whether the method preferred by Roberto was due to his stronger mathematical 
background or the choice of numbers in the question, numbers that made utilizing decimal representation and the 
calculator simply impossible. What would Armin do if she were presented with a “big” number? The following 
conversation with Jenny presents a possible scenario. 

In the beginning of the interview, Jenny was presented with number M (M = 33527) and performed division 
in order to decide whether M was divisible by 7 and 15. When prompted about the possibility of dealing with the task 
without the use of a calculator, she considered pencil and paper calculations. Then she was presented with a variation 
on the original question, that invited her to consider another number, 3305207. 

Interviewer:  Could you draw these conclusions without the calculator?
Jenny I guess, It will just take me forever to do the division. 
Interviewer:   Please consider another number, let’s call it B, where B = 3305207 Is B divisible by 15? 
  [Jenny attempted to calculate B.]
Jenny:  The calculator isn’t much help here. 
Interviewer:  And why’s that?
Jenny: It gives all kinds of digits that don’t help here
Interviewer:  Do you think it is possible to draw a conclusion without the calculator?
Jenny:  I could spend a day to make this number [pause] Wait. I think 15 will go into it. 
Interviewer:  And why is that? 
Jenny:  Because 15 is 5 times 3 and we have 3 here and 5 here, so when put together, yeah, when put 

together, 15 is there, in this number. 
Interviewer:  And how about 63? 
Jenny:  [pause] Yes, it’s also there. It’s made of two 3’s and a 7, and we have here a 7 and 20 3’s. So it goes, 

I mean it’s divisible. 
Interviewer:  Let’s go back for a moment to a number we considered before,  M = 33527. Is M divisible by 

63 ? 
Jenny:  Yes, you can make exactly the same claim. 
Interviewer:  What’s exactly the same?
Jenny:  Like 63 is made of 9 times 7, you have 7 here, you don’t have 9 here, but 9 is made of two 3’s and 

you have more than two 3’s here, so that’s why it’s the same, I mean 63 can go into this M. 

In this excerpt, Jenny appeared to realize that the calculation was out of reach and therefore turned her attention 
to the structure of the number, in this case to its prime decomposition. When asked why she preferred calculation as 
her initial choice of strategy, Jenny replied, “It was easy to do so I didn’t have to think about it.” A move from small 
number M to a big number B, using yet again the terminology from Mason (1998), has shifted Jenny’s attention 
from “what the number is” to “what the structure of the number is”, a shift which is necessary in acquiring skills in 
algebra.

Algebra? Yes, algebra, accepting the idea that generalization and consideration of structure are among the 
components of algebraic thinking (Mason, 1996). Though Jenny is considering specific numbers, her reasoning can 
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be seen as algebraic; her reasoning is about form, structure and relationships. Jenny’s starting point is in arithmetic 
calculation. The instructor’s goal is to help Jenny understand that  pxqy tz is divisible by paqb tc if and only 
if ax, by and cz.  In fact, Jenny is rather close to this generalization. She has definitely recognized the factors 
appearing in prime decomposition and by saying “9 is made of two 3’s and you have more than two 3’s here” she is 
considering the exponents of 3. A handful of additional investigations may be necessary before the general conclusion 
can be drawn and expressed in “proper” mathematical terms, but Jenny is definitely on the right track. 

Working with Big Numbers
Following the pathway of generalization, the strategy exemplified above can be described simply as “working with big 
numbers.”  By “working with” I mean considering big numbers, rather than computing them. 

A natural question that arises is “What is big?” or “How big should a big number be”? This depends on the 
problem and on the pedagogical situation. In most cases the number is “big enough” if it does not invite the learner to 
engage in computation or if it is beyond the computational abilities of a hand-held calculator. An example of the latter 
is presented in the previous section. An example of the former is presented below. 

In their consideration of student-generated examples, Hazzan and Zazkis (1999) asked participants to provide an 
example of an object that satisfied certain properties. They observed that students attempted to choose an object at 
random and check whether the requested property was satisfied, rather than to construct the object such that it would 
have the desired specifications. When asked for an example of a 6-digit number that is divisible by 9, students picked 
6 digits and checked to determine if their sum was divisible by 9. Similarly, when asked to give an example of a 6 digit 
number that is divisible by 17, some students preferred to guess and check, or to adjust, that is, if the first choice of a 
number resulted in a remainder of 5, they added 12 to the choice to obtain a number divisible by 17.  

In a classroom activity with a group of preservice elementary school teachers, I attempted to increase gradually 
the numbers in the tasks. I asked for examples of 5-or-more-digit numbers that left (a) a reminder of 1 in division by 
3,  (b) a reminder of 3 in division by 5, (c) a remainder of 7 in division by 17, (d) a remainder of 56 in division by 73, 
(e) a reminder of 123 in division by 247, etc. Students who initially preferred the approach of checking and adjusting 
gradually abandoned this approach in favor of consideration of structure. 

As one example of this movement toward consideration of structure, Jill was proud to present 38,655 as a number 
that leaves a reminder of 123 in division by 247. She explained, upon request, that she obtained this number by 
multiplying 247 by 146 and then adding 123. She further explained that “146 doesn’t have to be there. It can be 
anything you wish. Just multiply 247 by something big and then add 123.”  

Though presented differently than standard algebraic notation, Jill has generated an algebraic form 247n+ 
123, where n is a whole number, as a general form for a number that leaves the remainder of 123 in division by 247. 
I suggest that this migration would not have occurred when she was using ‘small’ numbers because her computation 
was too fast and the numbers were too familiar. The examples in (a) and (b) were immediate to generate, so, for Jill, 
there was no need to explicitly acknowledge the structure. Examples in (c), (d) and (e) invited Jill to search for a 
strategy. Only after attending to the structure of large numbers could she recognize the structure of small numbers. 

Modifying Tasks
Most mathematics textbooks—texts for elementary and middle school students as well as texts for preservice elementary 
school teachers—have not yet taken into account the availability of a calculator “in every pocket.” The examples and 
the exercises in most textbooks are still utilizing “small” numbers. Standard tasks to derive divisibility can be carried 
out and verified using division, conventional tasks to find a prime decomposition of a number usually end up with 
the list of “small” prime numbers. I argue for modification of these tasks to include consideration of “big” numbers. 

A variety of examples can be designed to show how “big numbers” can be utilized so that conclusions about 
divisibility, factors, and multiples can be drawn from considering the transparent structure. One such example, which 
was presented above, considered 3305207 rather than 33527. Of course, once the possibility of computation is 
not a consideration or constraint, the options are limitless. When asked whether the number 310 is odd or even, some 
students may prefer to calculate the number. When the same question is posed about 31000, calculation is not an option. 

Let us turn again to the examples presented in the beginning of this article. Would Darlene (Example 1) have 
calculated the number and built a factor tree if she had been asked to identify prime factors of 320013, rather than 
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of 3213? Would Adam (Example 3) have attempted to perform division if asked whether 24200+12 or 241050+12 
were divisible by 24, rather than 2412? Would Andy (Example 5) have calculated the number F and checked for 
its divisibility by all the primes up to the square root of F if F had been defined as 157151, rather than 151157?  
Even with easy access to a calculator, it is impossible to calculate the decimal representation of these big numbers. 
Therefore, these students would have either been totally lost, or forced to consider the transparent features of the 
structure embedded in the representation of numbers. I suggest that with appropriate exposure to these modified tasks, 
the later option would eventually prevail. I believe — a belief that was confirmed by research and experience — that 
consideration of “big numbers” helps students understand “big ideas”, that at times remain opaque when calculations 
with “small numbers” are performed. 

Seeing and Looking
“How can you expose the genericity of an example to someone who sees only its specificity? Apart from stressing and 
ignoring, and repeating the general statement over and over again, how can the necessary act of perception, of seeing 
the general in the particular, be fostered?” (Mason & Pimm, 1984, p.287). This article suggests that a possible way 
to help students see the general in the particular is to invite consideration of particular examples that are somehow 
detached from their concrete experiences. Big numbers serve this purpose as they help in attending to transparent 
features in a given representation. 

The possibility of seeing starts with the action of looking. In this section I offer a word of caution on what there 
is to look for. In my teaching I emphasized the ideas of prime decomposition and directed students’ attention to the 
ways that conclusions about factors and multiples could be derived by considering the presented structure of numbers. 
Exposure to big numbers helped my students draw inferences on divisibility and indivisibility without carrying out 
division. They seemed to apply the criteria correctly and appeared confident in their judgment. Therefore, I believed 
that transparent features of prime decomposition of numbers had become transparent to my students. I was about to 
celebrate my pedagogical achievement. 

However, in one of the more recent experiments I asked students to look at another variation of the “renowned” 
number M (M = 33527). The students were asked to consider whether the number K = 33527+11  (yes, this is 
+, not a typo) was divisible by 7. About half of the participants claimed that K was divisible by 7 because 7 appeared, 
that is, “was seen”, in the prime decomposition. 

This response echoes and contrasts one of the findings reported by Ferrari (2002). In the same sequence of tasks 
as presented in Example 4, Ferrari (2002) asked participants in his study to consider whether the number M + 5 was 
divisible by 10. (M was given as M = 345376198). He reported that almost all the participants claimed that M + 5 
was not divisible by 10 because “there was no factor of 2 within M + 5”.

The analogy is rather ironic. My students looked for prime factors and “saw” 7, which was not a factor. Ferrari’s 
students looked for a prime factor 2 and could not conclude its existence without explicitly seeing it within the 
representation 345376198 + 5. It could be the case that some students, when exposed to big numbers, perform 
the action of “looking,” rather than the action of computing. However, unlike the case of computing, there is no 
possibility to confirm whether the conclusion reached by “looking” is a correct one. 

All this suggests a word of caution regarding what we are really looking for. From the above examples it appears 
that students’ attention was focused on looking for prime numbers—7 and 2 respectfully—rather than on prime 
factors. However, in order to draw conclusions on divisibility, one should focus on possible factors in the given rep-
resentation of a number. In 345376198 + 5 the factor 2 is “opaque” and as such was not noticed by the students. 
In 33527+11 it is transparent that 7 is not a factor, as the number leaves the remainder of 11 in division by 7. 

Based on these findings, a seemingly successful instructional practice requires an amendment. The strategy of 
looking for factors and recognizing the transparency of representation in prime decomposition should supplement the 
focus on prime factors with consideration of prime factors.  

Utility Beyond Number Theory
The “big numbers” strategy described above could be helpful when considering other mathematical topics. In what 
follows I present examples from different areas in mathematics. The first two cases are taken from Stewart’s (2003) 
study in which she was interested in “procedural change” and what may cause it. That is, Stewart observed that, in a 
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variety of cases, the algorithms used by preservice elementary school teachers were not incorrect, but rather lengthy, 
messy or inefficient. She investigated what could help participants in adopting better—that is, more efficient and more 
elegant — procedures. 

For example, one possible way to find the least common multiple (LCM) of two numbers is by listing multiples of 
each and then looking for the smallest element in the intersection of two sets. This approach is helpful in introducing 
the LCM concept, as it decodes the meaning of a multiple, then common multiples and finally the least of the common  
multiples—LCM. However, when the task becomes one of finding the LCM, rather than deciphering the meaning of 
words, this approach is time consuming and at times unfeasible. Still, it could remain a preferred approach for many 
students, often serving as a safety net. Stewart (2003) reported that what helped students give up the familiar approach 
and take advantage of a newly introduced approach—that relied on considering prime decomposition—was “big 
numbers.” That is, students were more successful in adopting the new procedure when the old algorithm appeared 
impractical. 

Even simpler arithmetic
Stewart (2003) also reported that her students, preservice elementary school teachers, automatically converted mixed 
numbers to improper fractions when asked to perform addition and subtraction. For example, when asked to add 

1
34 7+  , it was not unusual to demonstrate the following calculation:

4 22 12 22 34 111
1 3 3 3 3 3
+ = + = =

Stewart concluded that exposure to a simpler and more elegant method — wholes first — didn’t create the 
expected change in students’ approaches because they felt that conversion to improper fractions was their “safety 
net.” Students either did not want to — or simply could not — use the method introduced in their college class and 
therefore relied on their prior knowledge from grade school. However, what did help initiate procedural change was 
the strategy of big numbers.  When the addends were 7

10324  and 4
5213 , participants, or at least a majority of them, 

tended to adopt the ‘wholes first’ approach.  

“Short” Multiplication
In a similar scenario, I was unsuccessful in convincing my students to see the difference of squares in (2x–3y)2 
– (x+2y)2 as there was an almost instinctive desire to remove the parentheses by first computing the squares of the sum 
and difference. However, I found that students generated much more appreciation for the difference of squares when 
the chosen numbers were not quite “big”, but just bigger, such as (26x –15y) 2 – (24x +15y) 2. 

Beyond Numbers 
The strategy of using big numbers can also be helpful in supporting students’ understanding of structure in more 
advanced mathematical topics. Consider for example the following integral: 

( )
1 4

0
4 2 1 .x x dx-ò

It is possible to find the value by expanding the fifth degree polynomial. However, a much more efficient way 
to solve this integral is by substituting u=2x–1. The first method is usually learned by students before the second, 
and many students find it difficult to give up their tested methods — even if those are time consuming and inelegant 
— simply for the sake of efficiency. How is it possible to initiate students’ appreciation of a “better method”? In accord 
with the above discussion, the method I suggest is “big numbers.” For example, consider the following minimal 
variation in the question: 

( )
1 40

0
4 2 1 .x x dx-ò

 Carrying out the expansion method is practically impossible, but this question is no different from the previous 
one if a student chooses the substitution method. In fact, some calculus textbooks include similar examples to highlight 
the benefits of the substitution method.
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Conclusion
One general conclusion that can be drawn from looking at a variety of research reports that focus on the teaching of 
elementary number theory is that many students do not attend to structure, even when this structure is transparent 
for an expert. I presented an argument that consideration of “big numbers” can be helpful in recognizing structure, 
a recognition that allows learners to deal with problems related to consideration of divisibility and other concepts in 
elementary number theory without relying on computation. 

Small numbers are perceived by students as concrete, meaningful, and easy to manipulate. Algebraic symbols are 
often perceived as abstract, meaningless and impossible to reason with. On the one hand, big numbers can also be seen 
as abstract, as they are not available for immediate arithmetic manipulation and are, at times, beyond the computational 
abilities of a hand-held calculator. On the other hand, they are concrete by the virtue of being particular numbers. As 
such, they can serve as a bridge between arithmetic and algebraic reasoning, a bridge between the consideration 
of specific numerical examples and the consideration of general structure. Particular examples that instantiate the 
generality could lead students to develop insights into the notion of structure. However, a quest for structure will start 
for some students only when computation is seen as hard or even impossible given the available tools. If teaching 
is about creating opportunities, then here is one that is not to be missed. Working with preservice elementary school 
teachers, consideration of big numbers may not only help participants recognize the multiplicative structure of whole 
numbers, but may also introduce them to a powerful teaching strategy for their future instructional repertoire.

Unlike mathematics, mathematics education has no trusted routines to prove an argument. All that is possible is 
to exemplify the argument with a variety of examples that — mathematical logic aside — increase the chance of the 
argument being “true.” I believe I have done just that. Consideration of big numbers is not a general magic solution 
for every problem — it is just one small idea that proved helpful in a small number of instances. Readers are invited 
to test whether this idea could be implemented in their own practice.  
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Overcoming Students’ Difficulties in Learning to 

Understand and Construct Proofs

Annie Selden and John Selden
New Mexico State University

When a topologist colleague was asked to teach remedial geometry, he used Schaum’s Outline of Geometry and also 
wrote proofs on the blackboard. One day a student, who was familiar with two-column proofs having statements such 
as DABD @ DBCD and reasons such as SAS, blurted out in utter surprise, “You mean proofs can have words!” 

This geometry student’s previous experience had led him to an unfortunate view of proof.  Other students 
experience epiphanies about themselves and proof. Asked what she (personally) got out of a transition-to-proof course, 
one of our students answered, “I learned that I could wake up at 3 A.M. thinking about a math problem.” 

What do responses like this tell us? Almost all undergraduate mathematics courses are about the concepts and 
theorems of mathematics — when a matrix has an inverse, how to find it, and when to use it; when a series converges; 
the distinction between continuous and uniformly continuous; the meaning of compact. However, students in courses 
like abstract algebra, real analysis, and topology normally demonstrate their competence by solving problems and 
proving theorems. And, if students go beyond a few lower-division courses such as calculus or first differential 
equations, this usually involves constructing original proofs or proof fragments. But, often not much time can be 
devoted to helping students learn how to construct proofs. This might not lead to difficulties, if only students came to 
university understanding something about the nature of proof and already had some experience constructing simple 
proofs. Unfortunately, many students, even high-performing ones, do not. And the resulting difficulties they encounter 
may be one of the reasons many students do not continue in mathematics.

Transition-to-proof courses, also called bridge courses, are meant to ameliorate this situation. Their main focus is 
not on the concepts and theorems of mathematics, but on helping students learn to construct proofs.1 This is perhaps 
best seen as a complex constellation of content knowledge, beliefs, problem solving ability, and skills. These skills 
include identifying hypotheses and conclusions, locating relevant definitions and theorems, using them appropriately, 
isolating the mathematical “problem,” coming up with “key” ideas to solve it, and finally, organizing them into a 
logically coherent deductive argument.  Their acquisition seems to be considerably aided by practice, and the process 
of learning to construct proofs may even involve students coming to know themselves better. Indeed, the above 
student’s comment, about waking up with a math problem, suggests that she has learned to persist until she eventually 
comes up with a solution, even if that’s in the middle of the night. Unfortunately, many students believe that they 
either know how to solve a problem (prove a theorem) or they don’t, and thus, if they don’t make progress within a 
few minutes, they give up and go on to something else. 

1 However, the introduction to one transition-to-proof textbook asserts something different. It states that the purpose of such courses, often called 
something like Introduction to Mathematical Reasoning, is to gather together results concerning basic set notions, equivalence relations, and func-
tions so teachers will not have to cover them repeatedly at the beginning of courses like abstract algebra and real analysis.
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Of course, undergraduate students do not learn to construct proofs only in transition-to-proof courses. They 
tend to improve their ability to construct proofs throughout the entire undergraduate mathematics program. Some 
departments do not even offer transition-to-proof courses, and some combine them with mathematics content courses 
such as discrete structures. Occasionally, students are offered an R. L. Moore type course,2 that is, a course in which 
the textbook and lectures are replaced by a brief set of notes and in which the students produce all the proofs. To some 
extent, the emphasis in such courses is on a deep understanding of the mathematical content — however, it has been 
our experience that once students get started in such courses they often improve their proof making abilities very 
rapidly. Unfortunately, a few students may have great difficulty getting started. 

In whatever setting students are to progress in their proving abilities, one might expect the teaching to be somewhat 
special. In many university mathematics content courses, teachers can profitably explain mathematical theorems and 
why they are true, but in teaching the skills and problem solving abilities involved in proving, one should also expect 
to emphasize guiding students’ practice. In developing such teaching, it can be useful to ask: What kinds of difficulties 
do student have, and how might these difficulties be alleviated? 

We will describe some results from the mathematics education research literature that address these questions. 
However, it is important to note that this research typically makes no claim (as one familiar with other social sciences 
might expect) that all, or even most, students have the described difficulties. Instead, the main point of this literature 
is to uncover, understand, and describe features of student learning, in this case difficulties that might otherwise 
go unnoticed, at least to the degree claimed. Evidence in such work is usually directed towards being sure that the 
observations and descriptions are accurate about the particular (often, small) group of students studied. 

As we proceed, we will mention possible pedagogical reasons for the difficulties described, and when they are 
known, we will give some pedagogical suggestions. In conclusion, we will offer some additional teaching suggestions, 
based partly on the research literature and partly on our own teaching experience. 

The Curriculum and Students’ and Teachers’ Conceptions of Proof
That the concept of proof in mathematics is a difficult one for students is not surprising given various everyday uses 
of the word “proof.” To a jury, it can mean “beyond a reasonable doubt” or “the preponderance of the evidence.” To 
a social scientist or statistician, it can mean “occurring with a certain (rather large) probability.” And, to a scientist, 
it can mean the positive results of an empirical investigation. To comprehend the special way that “proof” is used in 
mathematics can take time and such everyday meanings can get in the way.

Views of High School Geometry Students 
A number of studies have documented the finding that the concept of mathematical proof is not quickly or easily 
grasped. For example, in the middle of a year-long U.S. high school geometry course, after being introduced to 
deductive proof, students in five classes were given a short instructional unit designed to highlight differences between 
measurement of examples and deductive proof. Seventeen of the students were interviewed and asked to compare 
and contrast two arguments (for different theorems) — a deductive proof and an argument containing four examples 
using differently shaped triangles. Some of these students had a nuanced “evidence is proof” view. They considered 
empirical evidence to be sufficient proof for a statement about all triangles, provided one took measurements of each 
type of triangle — acute, obtuse, right, scalene, equilateral, and isosceles. Others had a qualified view of deductive 
proof, believing that a two-column proof only proved a theorem for the type of triangle depicted in the accompanying 
figure and would need to be reproved, perhaps using the same steps, for other types of triangles. Most surprising and 
quite disturbing, especially after an instructional unit designed to help them make the distinction between empirical 
justification and deductive proof, was the result that some of these geometry students simultaneously believed that 
empirical evidence is sufficient proof and that proof is just evidence for a claim (Chazan, 1993).

The Influence of the Curriculum 
It would seem that partly, perhaps even to a large extent, how students see proof is a consequence of how it is portrayed 
by their teachers and the overall curriculum. To give a well-documented example, we turn to secondary schools in 

2 Such courses are also referred to as modified Moore Method or Texas Method courses. For more information, see Mahavier (1999) or Jones 
(1977). 
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England where a new National Curriculum, for students aged 5–16 years, was adopted following the 1982 publication 
of the influential Cockcroft Report. The new curriculum was partly “in response to evidence of children’s poor grasp 
of formal proof in the 60’s and 70’s” (Hoyles, 1997). The intent of the new curriculum was for students to test and 
refine their own conjectures in order to gain personal conviction of their truth, and to present justifications for their 
validity, that is, deductive arguments. 

Somehow, in that new National Curriculum, proof was relegated to only one of several strands, called student 
Attainment Targets (ATs), namely, to AT1: Using and Applying Mathematics.3 Unfortunately, as was found several 
years later, even high-attaining secondary students came to see proof in terms of the “investigations” that were 
undertaken in this applied strand of the curriculum (Coe & Ruthven, 1994; Healy & Hoyles, 1998, 2000). While such 
investigations were undertaken with the intention of having students see proof as less of a formal ritual demanded by 
teachers and more as a natural outgrowth of testing, refining, and verifying their own conjectures, the results were 
disappointing, even disastrous, for students entering England’s universities. Apparently, the verifications, that had 
been intended to be student constructed deductive arguments, were instead turned into standardized templates and 
empirical arguments (Coe & Ruthven, 1994). 

By 1995, the situation had caused so much concern that the London Mathematical Society issued a report on 
the problems as mathematicians perceived them. The report stated that recent changes in school mathematics “have 
greatly disadvantaged those who need to continue their mathematical training beyond school level.” In particular, the 
following problems were cited: “serious lack of essential technical facility — the ability to undertake numerical and 
algebraic calculation with fluency and accuracy,” “a marked decline in analytical powers when faced with simple 
problems requiring more than one step,” and “a changed perception of what mathematics is — in particular of the 
essential place within it of precision and proof” (London Mathematical Society, 1995, p. 2).

After the public outcry of mathematicians, a large-scale study, called Justifying and Proving in School Mathematics, 
was undertaken. The study surveyed 2,459 high-attaining Year 10 students (14–15 years old, that is, comparable to 
U.S. high school sophomores) in 94 classes from 90 English and Welsh schools. In a series of papers and reports, 
it was convincingly documented that it was the new National Curriculum, as implemented by teachers, that was, in 
large part, responsible for the perceived decline in U.K. students’ notions of proof and proving (Hoyles, 1997; Healy 
& Hoyles, 1998, 2000). 

What did this large, mostly quantitative, but partly qualitative, study find? In the Executive Summary of the 
report (Healy & Hoyles, 1998), one finds the following conclusions, amongst others. (1) Students’ performance on 
constructing proofs was “very disappointing.” These better-than-average4 students were asked to judge whether a 
number of empirical, narrative, and algebraic arguments were correct and convincing, as well as which they would 
produce and which would get the best marks from their teachers. They were also asked to prove a familiar result, the 
sum of any two odd numbers is even, and an unfamiliar result, if p and q are two odd numbers, then ( ) ( )p q p q+ ´ -  
is a multiple of 4. Only 40% of students showed evidence of deductive reasoning for the familiar result, and just 10% 
did so for the unfamiliar result. (2) Even so, most students (84% in geometry, 62% in algebra) were aware that once 
a statement is proved “no further work was necessary to check if it applied to a particular range of instances,” for 
example, the sum of two odd numbers that are squares is also even. (3) Students who expected to take the higher level 
GCSE examination at age 16, rather than the middle-level examination, were better at constructing and identifying 
correct arguments.5 In conclusion, the report stated: 

The major finding of the project is that most high-attaining Year 10 students after following the National 
Curriculum for 6 years are unable to distinguish and describe mathematical properties relevant to a proof and 
use deductive reasoning in their arguments.… at least some of the poor performance in proof of our highest-
attaining students may simply be explained by their lack of familiarity with the process of proving. (Healy 
& Hoyles, 1998, p. 6)

3 The new National Curriculum has undergone several changes in the number of attainment targets (ATs). In 1995, the other three ATs were AT2: 
Number and Algebra; AT3: Shape, Space, and Measures; and AT4: Handling Data. Relegating proof to AT1 (Using and Applying Mathematics) 
had the effect of separating the function of proof away from the other mathematical strands (Hoyles, 1997, p. 8).
4 They had scored an average of 6.56 on a national test (the Key Stage 3) whose overall average is normally between 5 and 6.
5 British students can opt for one of three levels of examination: foundation-, middle-, and higher-tier. It has been argued elsewhere that the accept-
ability (for entrance to university) of good results on the middle-tier has discouraged many students from taking the higher-tier GCSE mathematics 
examination.
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Thus, the way a curriculum conveys proof and proving is clearly crucial, but skilled and knowledgeable teachers 
are also critical for implementing such a curriculum. The current NCTM Standards (2000) advocate reasoning and 
proof across the K–12 curriculum. For example, in a section describing the Reasoning and Proof Standard for Grades 
9–12, one reads, “Students should understand that having many examples consistent with a conjecture may suggest 
that the conjecture is true but does not prove it, whereas one counterexample demonstrates that a conjecture is false.” 
(NCTM, 2000, p. 345.) Are current U.S. secondary school teachers capable of providing the rich opportunities and 
experiences with proof that would enable students to come to such an understanding? 

Secondary Teachers’ Views and Knowledge of Proof
In one recent study (Knuth, 2000a, 2000b), seventeen secondary school mathematics teachers, with from 3 to 20 years 
teaching experience, some with master’s degrees, were interviewed on their conceptions of proof and its place in 
secondary school mathematics. They were asked such questions as: What does the notion of proof mean to you? Why 
teach proof in secondary school? When should students encounter proof? They were also presented with arguments for 
several mathematical statements and asked to evaluate them. Some of these arguments were proofs; others were not. 

Although all these teachers professed the view that a proof establishes the truth of a conclusion, several also 
thought it might be possible to find a counterexample or some other contradictory evidence to refute a proof. The 
interviews produced no evidence to suggest the teachers saw proof as promoting understanding or insight. Three 
teachers did talk about the role of proof in explaining why something is true, but by this they meant understanding how 
one proceeded step-by-step from the premise to the conclusion.

In the context of secondary school, the teachers distinguished formal proofs, less formal proofs, and informal 
proofs. For some teachers, two-column geometry proofs were the epitome of formal proofs. Less formal proofs were 
not as mathematically rigorous, and informal proofs were explanations or empirically-based arguments. All the teachers 
considered proof as appropriate only for those students in advanced mathematics classes and those intending to pursue 
mathematics-related majors in college. All indicated that they accepted informal proofs from students in lower-level 
mathematics classes. However, doing only this may have the unfortunate consequence that students develop the belief 
that checking several examples constitutes proof (Knuth, 2002a). 

The teachers were given five sets of statements with 3 to 5 arguments purporting to justify them; in all, there 
were 13 arguments that were proofs and 8 that were not. The teachers rated each argument on a four-point scale with 
1 not a proof and 4 a proof and provided rationales for their ratings. Ratings of 2 or 3 were included to allow teachers 
to express alternative views of validity. In general, the teachers were successful in recognizing proofs, with 93% of 
the proofs rated as such. However, the number of nonproofs they also rated as proofs was surprising — a third of the 
nonproofs were rated as proofs. In fact, every teacher rated at least one of the eight nonproofs as a proof and eleven 
teachers rated more than one as a proof. Indeed, ten teachers considered an argument demonstrating the converse of 
the statement, If 0x> , then 1 2xx+ ³ , to be a proof of it; these teachers seemed to focus on the correctness of the 
algebraic manipulations, rather than on the validity of the argument (Knuth, 2000b).

Given this result regarding some better and more committed secondary mathematics teachers, can one expect 
that beginning U.S. university students would be reasonably skilled at proof and proving? Would they, for example, 
understand the distinction between proof and empirical argument? Probably not. 

University Students’ Views of Proof 
Undergraduate students sometimes come to see proofs and proving as unrelated to their own ways of thinking. In 
order to cope, they may employ mimicking strategies with the result that they develop various views of proof that are 
unusual from a mathematician’s viewpoint; Harel and Sowder (1998) have classified some of these “proof schemes.” 
These are not techniques of (mathematical) proof, but rather kinds of arguments, sometimes incorrect or incomplete, 
that some university students find convincing, and may even think of as proofs.6 An example of preservice elementary 
teachers’ views of proof follows.  

In the 10th week of a sophomore-level mathematics course, 101 preservice elementary teachers were asked to 
judge verifications of a familiar result, if the sum of the digits of a whole number is divisible by 3, then the number 
6 The taxonomy of “proof schemes” also includes various axiomatic proof schemes, that is, arguments that mathematicians would consider 
proofs.
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is divisible by 3, and an unfamiliar result, if a divides b and b divides c, then a divides c. For each of these, students 
were given, in randomized order, inductive arguments based on examples, patterns, and specific large numbers, and 
deductive arguments — a general proof, a false “proof,” and a particular (or generic7) proof. These students, who had 
met the idea of proof in their high school geometry courses and in the current course, rated these arguments on a four-
point scale, where 4 indicated they considered the argument to be a mathematical proof and 1 indicated it was not a 
proof. The results showed that both inductive and deductive arguments were acceptable to the students. Apparently 
the current course that had given “extensive and explicit instruction about the nature of proof and verification in 
mathematics” had not achieved its goal. In particular, each of the inductive arguments was rated high (3 or 4) by more 
than 50% of the students. For both familiar and unfamiliar contexts, 80% gave a high rating (3 or 4) to at least one 
inductive argument, and over 50% gave a very high rating (4) to at least one inductive argument. Also, while over 
60% accepted a correct deductive argument as a valid mathematical proof, 52% also accepted an incorrect deductive 
argument (Martin & Harel, 1989). 

Nonstandard views of mathematical proof can be seen as obstacles to overcome. While it is not clear precisely 
how to bring students’ views of proof in line with mathematicians’ views, it seems plausible that working towards 
mathematical sense-making, explanation, and justification on the part of students would be one possible route, provided 
one avoids the pitfall, described above, of allowing mathematical “investigations” to conclude with purely empirical 
justifications. 

Understanding and Using Definitions and Theorems
Not only are there everyday uses of “proof” that might compound students’ difficulties in coming to know what a 
mathematical proof is, students can be confused about the role of definitions in mathematics. 

Mathematical Definitions
Everyday descriptive, or dictionary, definitions8 describe both concrete and abstract things, already existing in the 
world, such as trees, love, democracy, or epistemology. They can be both redundant and incomplete, and it is never 
clear whether all aspects of a definition must apply for its proper use. In contrast, mathematical definitions9 bring 
concepts into existence; the concept, say of group, means nothing more and nothing less than whatever the definition 
says. While all parts of a mathematical definition definitely need to be considered when producing examples and 
nonexamples, other features of prospective examples need not be considered. This point is often missed. When asked 
whether 151 157F = ´ is prime, a number of preservice elementary teachers correctly, but irrelevantly noted that both 
151 and 157 are prime, before going on to conclude that their product is composite (Zazkis & Liljedahl, 2004).  
Furthermore, in proving theorems, one should consider all parts of a definition. 

Students may not be aware of, or may not make, the distinction between everyday definitions and mathematical 
definitions. One could help them become aware of this distinction by discussing it with them and by engaging them in 
the act of defining (Edwards & Ward, 2004; Chapter 17 of this volume). 

Interpreting and Using Theorems
Undergraduate students often fail to use relevant theorems or they interpret the content of theorems incorrectly [see 
Rasmussen and Ruan in this volume for a notable exception]. Below, we provide some examples that illustrate students’ 
difficulties in using and interpreting theorems. 

The Fundamental Theorem of Arithmetic, guaranteeing a unique prime decomposition of integers, is part 
of the core mathematics curriculum for preservice elementary teachers, but in practice some of these students appear 
to deny the uniqueness. Zazkis and Campbell (1996) asked preservice elementary teachers whether 173 was a square 
number or whether K = 16,199 = 97167 could have 13 as a divisor, given both 97 and 167 are primes. These 

7 A generic proof is a proof of a particular case that can be generalized in a straightforward way. For example, see Rowland (2002).
8 Dictionary definitions are also referred to as descriptive, extracted, or synthetic definitions.
9 Mathematical definitions are also referred to as stipulated or analytic definitions. Such definitions apply in an “all or nothing” sense, that is, a 
given set, together with an operation, is a group or is not a group. In contrast, one can say that two countries are democracies, yet that one is more 
democratic than the other.



100 Part Ic.  Proving Theorems

students took out their calculators — in the first instance, to multiply out and extract the square root, and in the second 
instance, to divide by 13. When asked to determine (and explain) whether 2 23 5 7M = ´ ´  was divisible by 2, 3, 5, 7, 
9, 11, 15, or 63, a majority (29 of 54) stated that 3, 5, 7 were divisors since those were among the factors in the prime 
decomposition. However, sixteen were unable to apply similar reasoning to 2 and 11, some noting instead that “M is 
an odd number” so “2 can’t go into it” or resorting to calculations (like the above) for 11. In addition, many of these 
students believed that prime decomposition means decomposition into small primes (see also Zazkis & Liljedahl, 
2004). 

Undergraduate students often ignore relevant hypotheses or apply the converse when it does not hold. A well-
known instance is the use, by Calculus II students, of the converse of: If naå  converges, then lim 0n na¥ = , as an 
easy, but incorrect, test for convergence. Some calculus books go on to point out that this theorem provides a Test 
for Divergence. But, perhaps it would be better to explicitly state the contrapositive, If lim 0n na¥ ¹ , then naå
diverges.

Sometimes undergraduate students use theorems, especially theorems with names, as vague “slogans” that can be 
easily retrieved from memory, especially when they are asked to answer questions to which the theorems seemingly 
apply. For example, Hazzan and Leron (1996) asked twenty-three abstract algebra students: True or false? Please 
justify your answer. “In S7 there is no element of order 8.” It was expected that students would check whether there 
was a permutation in S7 having 8 as the least common multiple of the lengths of its cycles. Instead, 12 of the 16 
students who gave incorrect answers invoked Lagrange’s Theorem10 or its converse. Seven of them incorrectly invoked 
Lagrange’s Theorem to say the statement was false — there is such an element since 8 divides 5040. Another two 
students inappropriately invoked a contrapositive form of Lagrange’s Theorem to say the statement was true because 8 
doesn’t divide 7. The authors go on to point out that students often think Lagrange’s Theorem is an existence theorem, 
although its contrapositive shows that it is a non-existence theorem: If k doesn’t divide o(G), then there doesn’t exist a 
subgroup of order k. Perhaps it would be good to state this version explicitly for students.

The above examples refer to students’ misuse of theorems when they are asked to solve specific problems, for 
example, determine whether a number is prime or a series converges, or decide whether a group has an element of 
order 8. However, it is not hard to imagine similar difficulties when students attempt to use theorems in constructing 
their own proofs. 

A Positive Result on Improving Students’ Mathematical Reasoning
That even young children can make remarkable strides towards proof, when challenged with appropriate tasks and 
probing questions, can be seen from one noteworthy longitudinal study (Maher & Martino, 1996a, 1996b, 1997). The 
study consisted of a series of relatively small, but coherent, long-term interventions with one group of children over a 
number of years. It led to some extraordinary instances of mathematical sense-making, explanation, and justification, 
including the development by children, on their own, of the idea of proof in a concrete case.

We describe the reasoning progress of Stephanie, one of the children with whom Maher and Martino (1996a, 
1996b, 1997) began their long-range, but occasional, interventions commencing in Grade 1. By Grade 3, the children 
had begun building physical models and justifying their solutions to the following problem: How many different 
towers of heights 3, 4, or 5 can be made using red and yellow blocks? Stephanie not only justified her solutions, she 
validated or rejected 

her own ideas and the ideas of others on the basis of whether or not they made sense to her.… She recorded her 
tower arrangements first by drawing pictures of towers and placing a single letter on each cube to represent 
its color, and then by inventing a notation of letters to represent the color cubes. (Maher & Speiser, 1997, p. 
174) 

She used spontaneous heuristics like guess and check, looking for patterns, and thinking of a simpler problem, 
and developed arguments to support proposed parts of solutions, and extensions thereof, to build more complete 
solutions. Occasional interventions continued for Stephanie through Grade 7. Then in Grade 8 she moved to another 
community and another school and her mathematics was a conventional algebra course. The researchers interviewed 

10 Lagrange’s Theorem states: Let G be a finite group. If H is a subgroup of G, then o(H) divides o(G). Here o(H) stands for the order of the group 
H, i.e., its cardinality. 
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her that year about the coefficients of (a + b)2 and (a + b)3. About the latter, she said “So there’s a cubed . . . And there’s 
three a squared b and there’s three ab squared and there’s b cubed.… Isn’t that the same thing?” Asked what she 
meant, she replied, “As the towers.” It turned out, upon further questioning, that Stephanie had been visualizing red 
and yellow towers of height 3 in order to organize the products aib j. At home, before the interview, she had written 
out the coefficients for the first six powers of a + b. Also, in a subsequent interview, she could explain how counting 
the towers related to the binomial coefficients and used Pascal’s triangle to predict the terms of (a + b)n. (For a more 
complete discussion, see Maher & Speiser, 1997.)  Her understanding prompted Speiser to remark, “I wish some of 
my [university] students were able to reason that well.” The case of Stephanie illustrates possibilities for developing 
solid mathematical reasoning early on. 

However, most undergraduate students do not come to university with such experiences. Rather, as described 
above, many come with nonstandard views of proof. In addition, they often need to acquire much of the complex 
constellation of knowledge and skills used in proving theorems.

Understanding the Structure of a Proof and the Order in which it Might be Written
Transition-to-proof course students often say they don’t know what the teacher wants them to do or where to begin. 
This is especially true of intuitively obvious results such as A B B AÈ = È , where one “follows one’s nose” logically 
and there is no “trick” or mathematical problem-solving aspect. Rather it is a matter of knowing how to use, and 
sometimes unpack, the relevant definitions, including using them in the “right” order. For mathematicians, this has 
become automatic, whereas students often don’t know what to do. For example, on the final exam in a transition-to-
proof course, students were asked to prove: Let f and g be functions on A. If f g  is one-to-one, then g is one-to-
one. In the course, the definition of f one-to-one was that if ( ) ( )f x f y=  then .x y=  However, all but one student 
unsuccessfully began with the hypothesis — f g  is one-to-one — rather than assuming that ( ) ( )g x g y= . (Moore, 
1994). They did not appear to know how to use the definition of one-to-one and relate that to the structure of their 
proofs.11  

Unpacking the Logical Structure of Statements of Theorems 
Another difficulty students have when constructing their own proofs is an inability to unpack the logical structure 
of informally stated theorems — theorems that depart from a natural language version of predicate calculus. That is, 
theorems that omit specific mention of some variables or depart from the use of for all, there exists, and, or, not, if-then, 
and if-and-only-if in a significant way. For example the statement, Differentiable functions are continuous, is informal 
because a universal quantifier and the associated variable are understood by convention, but not explicitly indicated. 
Similarly, A function is continuous whenever it is differentiable is informal because it departs from the familiar if-then 
expression of the conditional as well as not explicitly specifying the universal quantifier and variable. 

Being able to unpack the logical structure of such informally stated theorems is important because the logical 
structure of a mathematical statement is closely linked to the overall structure of its proof. For example, knowing 
the logical structure of a statement helps one recognize how one might begin and end a direct proof of it. When 
asked to unpack the logical structure of four informally worded syntactically correct statements, two true and two 
false, undergraduate mathematics students, many in their third or fourth year, did so correctly just 8.5% of the time. 
Especially difficult for them was the correct interpretation of the order of the existential and universal quantifiers in 
the false statement: For a b< , there is a c so that ( )f c y=  whenever ( )f a y<  and ( )y f b< 12 (Selden & Selden, 
1995).  

Furthermore, the ability to unpack the logical structure of the statement of a theorem also allows one to know whether 
an argument proves that statement, as opposed to some other statement. For example, eight mid-level undergraduate 
mathematics and mathematics education majors were asked to judge the correctness of student-generated “proofs” of 

11 In a rather formally written proof, one might begin something like, “Suppose f g  is one-to-one.” But (with this definition), the hypothesis is 
not used until one attempts to prove that g is one-to-one by assuming ( ) ( )g x g y= . An alternative definition, x y¹  implies ( ) ( )f x f y¹ , might have 
made this particular theorem easier to prove, but apparently the students did not think of using it.
12 If f were continuous and if it were stated that a c b< < , this would be the Intermediate Value Theorem as stated in most beginning calculus 
textbooks.
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a single theorem.13 Upon finding a proof of the converse particularly easy to follow, four initially incorrectly stated 
that it was a proof of the original statement, and two of these maintained this view throughout the interview (Selden 
& Selden, 2003). 

Understanding the Effect of Existential and Universal Quantifiers 
One source of students’ difficulties in discerning the logical structure of theorems is a lack of understanding of the 
meaning of quantifiers and that their order matters. Undergraduate students often consider the effect of an interchange 
of existential and universal quantifiers as a mere rewording. For example, in another study, when given the two 
statements: 

• For every positive number a there exists a positive number b such that b < a. 
• There exists a positive number b such that for every positive number a, b < a.

24 of 54 students in undergraduate mathematics courses, such as linear algebra and multivariable calculus, and 3 
of 9 students in a beginning graduate abstract algebra course said they were “the same” or were merely reworded 
(Dubinsky & Yiparaki, 2000). 

While understanding the logical structure of a definition or a theorem is certainly not sufficient for constructing 
a proof, it is definitely necessary. In other words, if you do not understand what something really says, you certainly 
cannot prove it. 

Knowing How to Read and Check Proofs
An integral part of the proving process is being able to tell whether one’s argument is correct and proves the theorem 
it was intended to prove. For this, one must check one’s own proof. How do undergraduates read and check proofs? 

An Exploratory Study
We conducted an exploratory study of how eight undergraduates (four secondary education mathematics majors and 
four mathematics majors) from the beginning of a transition-to-proof course validated, that is, evaluated and judged 
the correctness of, four student-generated “proofs” of a very elementary number theory theorem (Selden & Selden, 
2003). The “proofs” were real student work from a similar transition-to-proof course. The theorem was: For any 
positive integer n, if n2 is a multiple of 3, then n is a multiple of 3. Unbeknownst to the students, for later reference, 
we had dubbed the student-generated “proofs”: (a) Errors Galore, (b) The Real Thing, (c) The Gap, and (d) The 
Converse, indicating our view of them. Each of the eight students was interviewed individually for about one hour in 
a semistructured interview consisting of four phases. In Phase 1, the students were asked to explain the statement of 
the theorem in their own words, give some examples of it, and try to prove it. Two were successful, and after some 
time, those who could not complete a proof were asked to proceed with the other portions of the interview. In Phase 
2, the students were shown the four “proofs,” one after the other, and asked to think out loud as they read each one 
and decided whether it was, or was not, a proof. In Phase 3, having seen and thought about the “proofs” one after the 
other, they were given an opportunity to reread them all together and rethink their earlier decisions. In Phase 4, they 
were asked some general questions about how they read proofs. For example: When you read a proof is there anything 
different you do, say, than in reading a newspaper? How do you tell when a proof is correct or incorrect? How do you 
know a proof proves this theorem instead of some other theorem?

The students made judgments regarding the correctness of each student-generated “proof” four times, at the 
beginning and end of each of their two readings in Phases 2 and 3. At each time, there were 32 person-proof judgments. 
At the beginning (Time 1), these were just 46% (15 of 32) correct, but by the end (Time 4) 81% were correct. We 
attribute this difference to the students (at Time 4) having thought about the “proofs” several times, and perhaps, to the 
interviewer’s no longer accepting “unsure” as a response. Most of the errors detected were of a local/detailed nature 
rather than a global/structural nature, with only the two students who had proved the theorem themselves observing 
that the converse had been proved in (d). 

13 The theorem was: For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3.
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When asked how they read proofs, the students said they attempted careful line-by-line checks to see whether 
each mathematical assertion followed from previous statements, checked to make sure the steps were logical, and 
looked to see whether any computations were left out. Several said they went through the proofs using an example. 
Also, for these students, a feeling of personal understanding or not—that is, of making sense or not—seemed to be an 
important criterion when making a judgment about correctness of a “proof.” Thus, what students say about how they 
read proofs seems a poor indicator of whether they can actually validate proofs with reasonable reliability. While these 
students tended to “talk a good line,” their judgments at Time 1 were no better than chance (46% correct). 

On the other hand, even without explicit instruction, the reflection and reconsideration engendered by the interview 
process eventually yielded 81% correct judgments, suggesting that explicit instruction in validation could be effective 
(Selden & Selden, 2003). Indeed, several transition-to-proof textbooks include “proofs to grade,”14 but we think it 
would also be helpful to have students validate actual student-generated proofs.

Knowing and Using Relevant Concepts
In addition to the ability to unpack, understand, and interpret definitions and theorems correctly, and check one’s logic, 
one must have some relevant content knowledge. Constructing all but the most straightforward of proofs involves a 
good deal of persistence and problem solving to put together relevant concepts. And in order to use a concept flexibly, 
it is important to have a rich concept image, that is, a lot of examples, non-examples, facts, properties, relationships, 
diagrams, and visualizations, that one associates with that concept.15 

In many upper-level mathematics courses, students are given definitions together with a few examples, after 
which they are expected to use these definitions reasonably flexibly. To do this, students may need to find additional 
examples and non-examples and to prove or disprove related conjectures, more or less without guidance. One can 
think of these activities as helping to build students’ concept images. How does one go about building a rich concept 
image for a newly introduced concept? Do undergraduate students actively try to enhance their concept images, for 
instance, by considering examples and nonexamples? 

Getting to Know and Use a New Definition
In one study conducted by Dahlberg & Housman (1997), eleven students, all of whom had successfully completed 
introductory real analysis, abstract algebra, linear algebra, set theory, and foundations of analysis, were presented with 
the following formal definition. A function is called fine if it has a root (zero) at each integer. They were first asked 
to study the definition for five to ten minutes, saying or writing as much as possible of what they were thinking, after 
which they were asked to generate examples and nonexamples. Subsequently, they were given functions and asked 
to determine whether these were fine functions and, if so, why. Next, they were asked to determine the truth of four 
conjectures, such as “No polynomial is a fine function.” 

Four basic learning strategies were used by the students on being presented with this new definition – example 
generation, reformulation, decomposition and synthesis, and memorization. Examples generated included the constant 
zero function and a sinusoidal graph with integer x-intercepts. Reformulations included f(–1) = 0, f(0) = 0, f(1) = 0, 
f(2) = 0,… , and f(n) = 0 n  Z. Decomposition and synthesis included underlining parts of the definition and asking 
about the meaning of “root.” Two students simply read the definition – they could not provide examples without 
interviewer help and were the ones who most often misinterpreted the definition. 

Of these four strategies, example generation, together with reflection, elicited the most powerful “learning events,” 
that is, instances where the authors thought students made real progress in understanding the newly introduced concept. 
Students who initially employed example generation as their learning strategy came up with a variety of discontinuous, 
periodic continuous, and non-periodic continuous examples and were able to use these in their explanations. Those 
who employed memorization or decomposition and synthesis as their learning strategies often misinterpreted the 
14 Textbooks for such courses have from none to just a few to a moderate number of exercises involving critiquing “proofs.” The directions vary 
— students may be asked to: (a) find the fallacy in a “proof;” (b) tell whether a “proof” is correct; (c) grade a “proof,” A for correct, C for partially 
correct, or F; or (d) evaluate both a “proof” and a “counterexample.” Most of these “proofs” have been carefully constructed by the textbook authors 
so there is just one error to detect. See, for example, Smith, Eggen, and St. Andre (1990; p. 39).
15 The idea of concept image was introduced by Vinner and Hershkowitz (1980), elaborated by Tall and Vinner (1981), and is now a much used 
notion in mathematics education research.
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definition, for example, interpreting the phrase “root at each integer” to mean a fine function must vanish at each 
integer in its domain, but that its domain need not include all integers. Students who employed reformulation as their 
learning strategy developed algorithms to decide whether functions they were given were fine, but had difficulty 
providing counterexamples to false conjectures (Dahlberg & Housman, 1997).

Thus, it seems that while students are often reluctant, or unable, to generate examples and counterexamples, doing 
so helps enrich their concept images immensely and enables them to judge the probable truth of conjectures. 

Dealing with Various Symbolic Representations
Another aspect of understanding and using a concept is knowing which symbolic representations are likely to be 
appropriate in certain situations; this can be very important for success in proving. Concepts can have several (easily 
manipulated) symbolic representations or none at all. For example, prime numbers have no such representation; they are 
sometimes defined as those positive integers having exactly two factors or being divisible only by 1 and themselves. It 
has been argued that the lack of an (easily manipulated) symbolic representation makes understanding prime numbers 
especially difficult, in particular, for preservice teachers (Zazkis & Liljedahl, 2004). Similarly, irrational numbers have 
no such representation; thus, in proving results such as 2 is irrational or the sum of a rational and an irrational is 
irrational, one is led to consider proofs by contradiction — something often difficult for beginning students.  

Symbolic representations can make certain features transparent and others opaque.16 For example, if one wants to 
prove a multiplicative property of complex numbers, it is often better to use the representation ,ire θ  rather than ,x iy+  
and if one wants to prove certain results in linear algebra, it may be better to use linear transformations, T, rather than 
matrices. Students often lack the experience to know when a given representation is likely to be useful. 

It has been argued that moving flexibly between representations (e.g., of functions given symbolically or as a 
graph) is an indication of the richness of a student’s understanding of a concept (Even, 1998). Also, understanding 
an abstract mathematical concept can be regarded as possessing “a notationally rich web of representations and 
applications” (Kaput, 1991, p. 61).

Bringing Appropriate Knowledge to Mind
No one questions the need for content knowledge, sometimes referred to as resources,17 in order to solve problems and 
prove theorems. But students can have such resources and not be able to bring them to bear on a problem, or proof, 
at the right time.

Knowing, but not Using, Factual Knowledge
In two companion studies, 19 volunteer third quarter A and B calculus students, and later 28 volunteer differential 
equations students, took a one-hour paper-and-pencil test (without calculators) asking them to solve five moderately 
non-routine first calculus problems, that is, problems somewhat, but not very, different from what they had been 
taught. Immediately afterwards, they took a half-hour routine test, covering the resources needed to solve the non-
routine problems. For example, one non-routine problem was: Find at least one solution to the equation 3 44 30x x- =  
or explain why no such solution exists. Two-thirds of the calculus students failed to solve a single problem completely 
and more than 40% did not make substantial progress on a single problem. Also, more than half of the differential 
equations students were unable to solve even one problem and more than a third made no substantial progress toward 
a solution. Of those non-routine problems for which the students had full factual knowledge, just 18% of the calculus 
students’ solutions and 24% of the differential equations students’ solutions were completely correct (Selden, Selden, 
& Mason, 1994; Selden, Selden, Hauk, & Mason, 2000). 

To solve the above non-routine problem, one needs to know (1) that one might set the derivative of 
3 44 30x x- -  equal to zero to find its maximum –3 and (2) that solutions of the given equation are where this function 

crosses the x-axis (which it does not). Many of the students had these two resources, but apparently could not bring 

16 Representations can be transparent or opaque with respect to certain features. For example, representing 784 as 282 makes the property of being 
a perfect square transparent, but representing 784 as (1360) + 4 makes that property opaque. For more details, see Zazkis and Liljedahl (2004, 
pp. 165–166).
17 Schoenfeld (1985) described good mathematical problem-solving performance in terms of resources, heuristics, control, and belief systems.
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them to mind at an appropriate time. We conjectured that, in studying and doing homework, the students had mainly 
followed worked examples from their textbooks and had thus never needed to consider various different ways to 
attempt problems. Thus, they had no experience at bringing their assorted resources to mind. It seems very likely that 
a similar phenomenon could occur in attempting to prove theorems.

How does one think of bringing the appropriate knowledge to bear at the right time? To date, mathematics 
education research has had only a little to say about the difficult question of how an idea, formula, definition, or 
theorem comes to mind when it would be particularly helpful, and probably there are several ways. In their study 
of problem solving, Carlson and Bloom (2005) found that mathematicians frequently did not access the most useful 
information at the right time, suggesting how difficult it is to draw from even a vast reservoir of facts, concepts, and 
heuristics when attempting to solve a problem or to prove a theorem. Instead, the authors found that mathematicians’ 
progress was dependent on their approach, that is, on such things as their ability to persist in making and testing 
various conjectures. 

Our own personal experience of eventually bringing to mind resources that we had — but did not at first think of 
using — suggests that persistence, over a time considerably longer than that of the Carlson and Bloom interviews, can 
be beneficial. We conjecture that certain ideas get in the way of others, and that after a good deal of consideration, such 
unhelpful ideas become less prominent and no longer block more helpful ideas. This may be related to a psychological 
phenomenon that can take several forms; for example, in vision, if one fixates on a single spot in a picture, it will 
eventually disappear.  

While coming to mind at the right time can be seen as an idiosyncratic, individual act, it may sometimes be 
related to the idea of transfer of one’s knowledge. How does one come to see a new mathematical situation as similar 
to a previously encountered situation and bring the earlier resources to bear on the new situation?

Knowing What’s Important and Useful
In addition to knowing what a proof is, being able to reason logically, unpack definitions, and apply theorems, and 
having a rich concept image of relevant ideas, one needs a “feel” for the content and what kinds of properties and 
theorems are important. Knowing what’s important should go a long way towards bringing to mind appropriate 
resources.  

Not Seeing that Geometry Theorems are Useful when Making Constructions
Seeing the relevance and usefulness of one’s knowledge and bringing it to bear on a problem, or a proof, is not easy. 
Schoenfeld (1985, pp. 36–42) provides an example of two beginning college students who had completed a year of 
high school geometry and were asked to make a construction: You are given two intersecting straight lines and a point 
P marked on one of them. Show how to construct, using straightedge and compass, a circle that is tangent to both lines 
and that has the point P as its point of tangency to one of the lines. During a 15-minute joint attempt, they made rough 
sketches and conjectures, and tested their conjectures by making constructions. When asked why their constructions 
ought or ought not to work, they responded in terms of the mechanics of construction, but did not provide any 
mathematical justification. Yet the next day they were able to give the proof of two relevant geometric theorems within 
five minutes. Apparently, these students simply did not see the relevance of these theorems at the time. 

Knowing to Use Properties, Rather than the Definitions, to Check Whether Groups are Isomorphic
In another study, four undergraduates who had completed a first abstract algebra course and four doctoral students 
working on algebraic topics were observed as they proved two group theory theorems and attempted to prove or 
disprove whether specific pairs of groups are isomorphic: Zn and Sn, Q and Z, ZpZq and Zpq (where p and q are 
coprime),  ZpZq and Zpq (where p and q are not coprime), S4 and D12. Nine times these undergraduates, who were 
successful in only two of twenty instances, first looked to see if the groups had the same cardinality; after which 
they attempted unsuccessfully to construct an isomorphism between the groups. They rarely considered properties 
preserved under isomorphism, despite knowing them (as ascertained by a subsequent paper-and-pencil test). For 
example, they all knew Z is cyclic, Q is not, and a cyclic group could not be isomorphic to a non-cyclic group, but 
they did not use these facts and none were able to show Z is not isomorphic to Q, until afterwards. These facts did not 
seem to come to mind spontaneously, or in reaction to this kind of question.
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In contrast, the doctoral students, who were successful in comparing all of the pairs of groups, rarely considered 
the definition of isomorphic groups. Instead, they examined properties preserved under isomorphism. When the groups 
were not isomorphic, they showed one group possessed a property that the other did not; for example, Z is cyclic, but 
Q is not. To prove ZpZq is isomorphic to Zpq , where p and q are coprime, three of them noted that the two groups 
have the same cardinality and showed ZpZq is cyclic. None tried to construct an isomorphism (Weber & Alcock, 
2004). 

Knowing which Theorems are Important
In comparing the proving behaviors of four undergraduates who had just completed abstract algebra and four doctoral 
students who were writing dissertations on algebraic topics, it was found that the doctoral students had knowledge of 
which theorems were important when considering homomorphisms. For example, in considering the proposition: Let 
G and H be groups. G has order pq (where p and q are prime). f is a surjective homomorphism from G to H. Show 
that G is isomorphic to H or H is abelian, all four doctoral students recalled the First Isomorphism Theorem within 
90 seconds. In contrast, two undergraduates did not invoke the theorem, while the other two invoked its weaker form 
only after considerable struggle. When the doctoral students were asked why they used such sophisticated techniques, 
a typical response was, “Because this is such a fundamental and crucial fact that it’s one of the first things you turn 
to” (Weber, 2001). 

Another four undergraduates, who had recently completed their second course in abstract algebra, and four 
mathematics professors, who regularly used group-theoretic concepts in their research, were interviewed about 
isomorphism and proof (Weber & Alcock, 2004). They were asked for the ways they think about and represent groups, 
for the formal definition and intuitive descriptions of isomorphism, and about how to prove or disprove two groups 
are isomorphic. The algebraists thought about groups in terms of group multiplication tables and also in terms of 
generators and relations, as well as having representations that applied only to specific groups, such as matrix groups. 
Each algebraist gave two intuitive descriptions of groups being isomorphic: that they are essentially the same and 
that one group is simply a re-labeling of the other group. To prove or disprove two groups are isomorphic, they said 
they would do such things as “size up the groups” and “get a feel for the groups,” but could not be more specific. In 
addition, they said that they would consider properties preserved by isomorphism and facts such as Zn is the cyclic 
group of order n.

In contrast, none of the undergraduates could provide a single intuitive description of a group; for them, it was a 
structure that satisfies a list of axioms. While all four undergraduates could give the formal definition of isomorphic 
groups, none could provide an intuitive description. To prove or disprove that two groups were isomorphic, these 
undergraduates said they would first compare the order (i.e., the cardinality) of the two groups. If the groups were of 
the same order, they would look for bijective maps between them and check whether these maps were isomorphisms 
(Weber & Alcock, 2004).

It may be that undergraduates mainly study completed proofs and focus on their details, rather than noticing the 
importance of certain results and how they fit together. That is, they may not come to see some theorems as particularly 
important or useful. The mathematics education research literature contains few specific teaching suggestions on how 
to help students come to know which theorems are likely to be important in various situations. But, it might be helpful 
to discuss with them: (1) which theorems and properties you (the teacher) think are important and why, (2) your own 
intuitive, or informal ideas, regarding concepts, and (3) the advantages and disadvantages of various representations.  

Teaching Proof and Proving

Some Suggestions Emanating from Research
One very positive finding, which was described earlier, is the remarkable sophistication of reasoning reached by some 
average school students who received brief interventions over a number of years (Maher & Martino, 1996a, 1996b, 
1997). As described above, these students used a variety of spontaneously developed heuristics. Eventually, in order to 
come to agreement, these students, more or less, invented the idea of proof in a concrete case. If grade school students 
can be encouraged in this way, why not university students? Perhaps this could be done in part with relatively short 
“interventions” spread across the entire undergraduate program. 
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Another result is that younger students seem to prefer explanatory proofs written with a minimum of notation. This 
was certainly the case for U.K. Year 10 students (Healy & Hoyles, 1998). For example, instead of using mathematical 
induction to prove that sum of the first n integers is n(n+1)/2, one could use a variant of Gauss’s original argument. 
Namely, for any n, one can write the sum in two ways as (1 + 2 + 3 + … + n) and as (n + (n–1) + (n–2) + … + 1), then 
add corresponding terms to obtain n identical summands equal to n+1, so twice the original sum equals n(n+1). Hence, 
the original sum must equal n(n+1)/2 (Hanna, 1989, 1990). It seems plausible that undergraduates, and people more 
generally, might prefer proofs that provide insight to proofs that just establish the validity of a result.18 

It also appears that great care should be taken to distinguish empirical reasoning from mathematical proof. Exactly 
how this can be done effectively is not especially clear, since merely giving high school geometry students a short 
instructional unit on this distinction left some of them very unclear as to the difference between empirical evidence 
and proof (Chazan, 1993). Perhaps secondary and university teachers need to stress this distinction often and also get 
students to discuss and reflect on situations where simple pattern generalization does not work.

Since current secondary teachers’ conceptions of proof are somewhat limited and they sometimes accept non-
proofs as proofs (Knuth, 2002a, 2002b), one way to enhance preservice secondary teachers’ abilities to check the 
correctness of proofs might be to have them consider and discuss, in groups, a variety of student-generated “proofs,” 
as well as having them provide feedback on each other’s proofs.

In addition to explaining the difference between descriptive definitions in a dictionary and mathematical definitions, 
one can engage students in the defining process. For example, when using Henderson’s (2001) investigational geometry 
text, one can begin with a definition of triangle initially useful in the Euclidean plane, on the sphere, and on the 
hyperbolic plane, but eventually students will notice that the usual Side-Angle-Side Theorem (SAS) is not true for all 
triangles on the sphere. At this point, they can be brought to see the need for, and participate in developing, a definition 
of “small triangle” for which SAS remains true on the sphere.

Perhaps it would also be possible to create classroom activities to improve students’ ability to enhance their 
concept images and deal with representations flexibly. One suggestion is that upon introducing a new definition, one 
could ask students to generate their own examples, alternatively, to decide whether professor-provided instances are 
examples or non-examples, “without authoritative confirmation by an outside source” (Dahlberg & Housman, 1997, p. 
298). Another possibility might be to engage students in conjecturing which kinds of symbolic representations might 
be useful for solving a given problem or proving a specific result. Also, one could point out that when a theorem has a 
negative conclusion (e.g., 2 is irrational), a proof by contradiction may be just about the only way to proceed. 

For certain theorems in number theory, it has been suggested that the transition to formal proof can be aided by 
going through a (suitable) proof using a generic example that is neither too trivial nor too complicated (Rowland, 2002). 
Gauss’s proof that the sum of the first n integers is n(n+1)/2, done for n = 100 is one such generic proof. Done with care, 
going over generic proofs interactively with students could enable them to “see” for themselves the general arguments 
embedded in the particular instances. If the theorem involves a property about primes, 13 and 19 are often suitable, 
provided the proof is constructive and that prime (e.g., 13) can be “tracked” through the stages of the argument. A 
generic proof, but not the standard one, can be given for Wilson’s Theorem: For all primes p, ( 1)! 1(mod ).p p p- º -  
That argument for p = 13 involves pairing each integer from 2 to 11 with its (distinct) multiplicative inverse mod 13, 
noting the product of each pair is congruent to 1(mod 13), and concluding that 12! 1 1 12(mod13).º ´ ´ 19 There is one 
caveat; there is some danger that students will not understand the generic character of the proof. In an attempt to avoid 
this, one can subsequently have them write out the general proof.

Some Personal Observations and Ongoing Work
We see learning to construct proofs, especially for beginning students, as composed largely of the acquisition of a 
complex constellation of skills, content knowledge, beliefs, and problem solving ability — much of which is best 
learned by doing. As a result, we think university teachers should consider including a good deal of student-student and 
teacher-student interaction regarding students’ proof attempts, as opposed to just presenting their own or textbook’s 

18 It has been suggested that proofs have various functions within mathematics: explanation, communication, discovery of new results, justification 
of a new definition, developing intuition, and providing autonomy (e.g., Hanna, 1989; de Villiers, 1990; Weber, 2002).
19 For details of this and some other number-theoretic generic proofs, along with a description of how they were used with Cambridge University 
undergraduates, see Rowland (2002).
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proofs. Trying to teach such a complex constellation entirely by lecture seems like trying to teach someone to tie her/
his shoelaces entirely over the telephone. It might be possible, but seems unlikely to be the most effective way.

In that connection, it might be useful, and certainly could do no harm, to discuss with students some of the 
difficulties mentioned above: in particular, the difference between mathematical proof and other types of arguments 
and the difference between mathematical definitions and everyday definitions. It might be helpful to stress that 
mathematicians of today see proofs as consisting of such careful deductive reasoning that, barring mistakes, the 
results (theorems) require no further evidence, are permanently true, and can be immediately used anywhere that the 
premises hold.

Another suggestion is that, when presenting proofs, one could take a top-down approach to explanation, first 
giving a global overview of the proof’s structure to avoid the appearance of “pulling a rabbit out of a hat,” followed 
by introducing and developing concepts as needed (Leron 1983, 1985). 

Students often do not appreciate that proofs themselves can have a hierarchical structure — that there are subproofs 
(and subconstructions) within proofs, perhaps several levels deep. One could make students aware of this and illustrate 
how structure comes into thinking about how to prove a theorem. Students need to understand that proofs are not 
generally conceived of in the order they are written. Not realizing this may result in quite a few students not making 
use of the hierarchical structure of proofs in their own proving attempts and lead to some of the difficulties mentioned 
earlier. Students need to be encouraged to write parts of a tentative proof “out of order” (e.g., What will the last line 
say?), even when they sometimes resist doing so.

There seems to be quite a lot to learn about the way in which proofs are customarily written. If students were 
taught about this way of writing in some of their courses, they might not be so puzzled about how to begin a proof. 
Indeed, we take the point of view that proofs are deductive arguments in an identifiable genre. They differ from 
arguments in legal, political, and philosophical works. Within this genre, individual styles can vary, just as novels by 
Hemingway and Faulkner have differing styles, although their novels are easily seen as belonging to a single genre 
that clearly differs from newspaper articles, short stories, or poems. As part of some ongoing work, we have been 
collecting general features of the genre of proof. For example, definitions already stated outside of proofs tend not to 
be written into them. In teaching, we have found that pointing out such features, especially in the context of a student’s 
own work, can be helpful to students.

Furthermore, we have found it useful to have students carefully examine the structure of the statement that they 
are trying to prove, and even to think about how a tentative proof might be structured, before launching into it. For 
example, consider proving the theorem (mentioned earlier): Let f and g be functions on A. If f g  is one-to-one, then 
g is one-to-one. It would be useful for a prover to first unpack the meaning of g being one-to-one. Doing so can direct 
one to begin the proof by writing, “Let x and y be in the domain of g and suppose g(x) = g(y).” This also makes clear 
that the desired conclusion is “Thus x = y.” In this way, one exposes the “real, but hidden” mathematical task, namely, 
to get from g(x) = g(y) to x = y. After that, students can concentrate on how the hypothesis that f g  is one-to-one 
might help.

Concluding Remarks 
We have tried to provide readers with a coherent organization of some of the mathematics education research on proof 
and proving, but there is much more.20 Awareness of the variety of difficulties undergraduates have with proof and 
proving can make one more sensitive regarding how to help them. The above pedagogical suggestions indicate some 
steps one might take; however, more information on “what works” is needed. 
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9
Mathematical Induction:

Cognitive and Instructional Considerations

Guershon Harel, University of California, San Diego
Stacy Brown, Pitzer College

The principle of mathematical induction (MI) is a prominent proof technique used to justify theorems involving 
properties of the set of natural numbers. The principle can be stated in different, yet equivalent, versions. The following 
are two versions common in textbooks:1

Version 1: Let S be a subset of N (the set of natural numbers). If the following two properties hold, then S = N.
(i) 1 SÎ .
(ii) k SÎ , then 1k S+ Î .

Version 2: Suppose we have a sequence of mathematical statements (1), (2),P P   (one for each natural number). 
If the following two properties hold, then for every nÎ , ( )P n  is true. 
(i) (1)P  is true.
(ii) If ( )P k  is true, then ( 1)P k +  is true.

Poincaré, among others, viewed the principle of MI as intrinsic to humans’ intuition: “Mathematical induction … 
is … necessarily imposed on us, because it is … the affirmation of a property of the mind itself” (Poincaré, 1952). In 
fact, historical documents indicate that mathematicians employed this method of proof for at least 200 years before 
it was explicitly formulated by Peano. Despite its intuitive appeal and its central role within mathematics, research 
in mathematics education has documented that students have major difficulties understanding MI (Dubinsky, 1986; 
Fischbein & Engel, 1989; Movshovitz-Hadar, 1993; Reid, 1992; Robert & Schwarzenberger, 1991; Harel, 2001; 
Brown, 2003). 

In this chapter, we explore students’ difficulties with MI when taught with the standard instructional treatment and 
we present results from our teaching experiments, which employed alternative instructional approaches. We begin by 
introducing a construct central to our work, the notion of a proof scheme. We then describe the standard instructional 
treatment of MI, pointing to its possible inadequacies. Drawing from our and others’ research on students’ difficulties 
with MI when taught with the standard instructional treatment, we demonstrate how many of these difficulties are 
indicative of students’ deficient proof schemes. Having described the standard instructional treatment and the related 
student difficulties, we proceed with an account of two independent, yet related, studies, Harel (2001) and Brown 
(2003). After which, we present a synthesis of our results in the form of a three-stage model of students’ development 
of MI. We conclude with a summary and instructional recommendations.

1 In this paper we are not concerned with strong induction.
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The Concept of Proof Scheme
The notion of proof scheme was first defined in Harel and Sowder (1998), where a taxonomy of students’ proof 
schemes was drawn from a long sequence of teaching experiments with primarily mathematics and engineering 
students. Later, in Harel (2007), this taxonomy was refined and expanded to reflect the historical development of 
proof. Within this taxonomy, proving is defined as the process employed by a person to remove or create doubts about 
the truth of an observation—a process that involves both ascertaining and persuading. “Ascertaining is a process an 
individual employs to remove her or his own doubts about the truth of an observation. … Persuading is a process an 
individual employs to remove others’ doubts about the truth of an observation” (Harel & Sowder, 1998, p. 241). Thus, 
an individual’s proof scheme consists of his or her means for ascertaining and persuading. Of course, seldom do these 
processes occur separately: in ascertaining for oneself, one considers how to persuade others, and vice versa. 

To illustrate—and hopefully help the reader appreciate the pedagogical value of— the notion of “proof scheme,” 
consider the following story told by Hartshorne (2000, pp. 11–12) in his book, Geometry: Euclid and Beyond:

I choose a point A on the circle, and with my compass centered at A, and radius AO, I mark off a point B on the 
circumference. Then with center B and radius BO I mark off another point C on the circumference. I repeat 
this process, always with radius equal to the radius of the original circle, to get further points D, E, and F. 
Then I draw AB, BC, CD, DE, EF, all of which have the same length, so that ABCDEF will be an equilateral 
hexagon inscribed in the circle.

Why does this work? How would you explain this so as to convince another person? 
To get a real-life answer, I put this question to my seventeen-year-old son, then a high school senior. His 

first response was, “I have done it myself, so I know it works.” 

In this response, Hartshorne’s son seems to have applied the empirical proof scheme. With this scheme one 
convinces oneself or attempts to persuade others about the truth of an assertion by relying on evidence from perception 
or examples of direct measurements of quantities, substitutions of specific numbers in algebraic expressions, etc. 
(Harel and Sowder, 1998). The response by Hartshorne’s son seems to indicate that perception was dominant in his 
conviction that the above process of constructing an equilateral hexagon works.2 

“Yes,” I said, “from a practical point of view it works. But how do you know this is an exact solution and not 
just a very good approximation?” After a few minutes of thought he drew the lines from O to A, B, C, D, E, 
F and then explained that OAB is an equilateral triangle by construction. Therefore, the angle AOBÐ  at the 
center is 60 .°  The same is true for the next four triangles BOC, …, EOF. Thus we have five 60°  angles, so 
the remaining angle AOFÐ  must also be 60 .°  The triangle AOF having two sides the same and the same 
central angles must be the same as the triangle AOB, and so FA=AB.

The skepticism Hartshorne expressed to his son about his initial response led the son to produce a deductive proof. 
Usually, unfortunately, students do not respond to such skepticism in the way Hartshorne’s son did. Many students 
do not posses a deductive proof scheme—a scheme by which assertions are proved by the rules of deduction—and 
cannot appreciate, or have difficulty answering, such skepticism; hence, they see no need to look for a deductive proof. 
Questions such as “How do you know this is an exact solution?” or “How do you know that a pattern derived from a 
finite number of cases always holds?” seem to these students contrived and artificial. We will come back to this point 
later. For now, let us continue with Hartshorne’s story, which demonstrates the complexity of the deductive proof 
scheme.  

“Fine,” I said, “that is very convincing, assuming that your listener knows that the angles of an equilateral 
triangle are 60 ,°  and the angle of one total revolution is 360° . It seems your listener would have to know 
the theorem that the sum of the three angles of a triangle is180 .°  What if he asked you to explain why that 
is true?

I mentioned a proof of the sum of the angles by drawing a line parallel to one side AB of a triangle 
through the third vertex C. Then α α¢=  because of the parallel lines, and β β¢=  because of the parallel 
lines, so 180α β γ α β γ¢ ¢+ + = + + =  because it is a straight angle. “But then you have to know theorems 

2 Of course, this is a speculation on our part since it is difficult to determine one’s meaning on the basis of a single statement. 
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about the angles formed when a line cuts two parallel lines.” There ensued a discussion about proliferation of 
questions, like the endless “why’s of a three-year-old, and danger of getting into circular arguments.”

Hartshorne continues: 

So we see that while the notion of proof as a convincing argument may work well, it depends on who your 
listener is, and is also subject to the danger of infinite regress if your listener is uncooperative.

The dialogue further points to the fact that the person who is presenting the proof and his interlocutor must have 
some common basis for determining what constitutes a convincing argument. It also points to the role of axiom 
systems in proving. The concept of “axiom system” has evolved in the course of the history of mathematics. What is 
accepted as a proof in Euclidean geometry may not be a valid proof in a geometry that is based on Hilbert’s axioms. 

This notion of proof scheme was the basis for the design and methodologies of the two independent, yet related, 
studies—one reported in Harel (2001) and the other in Brown (2003)—which we summarize below. Before describing 
the studies, however, it is important to first consider standard instructional treatments of MI and the difficulties that 
arise for students taught with such treatments.

Standard Instructional Treatments
Typically, standard undergraduate mathematics textbooks introduce the principle of MI either after a brief statement 
about the “need” for this method of proof or after a few examples of its application in simple problems. For example, 
Barnier and Feldman (1990) start the section on MI as follows:

If consecutive odd integers, starting with 1, are added, a nice pattern emerges, namely 
n = 1: 1 = 1
n = 2: 1 + 3 = 4
n = 3: 1 + 3 + 5 = 9
n = 4: 1 + 3 + 5 + 7 = 16

where n is the number of odd numbers to be added.
It appears, then, that the sum of the first n odd integers is always equal to the square of n. But how is 

such a statement proved? Verifying an infinite sequence of statements, statement by statement, is out of the 
question. Mathematical Induction is what is needed in such cases.

Though some students see that one cannot verify an infinite sequence of statements, statement by statement, 
many others, especially those in introductory courses, possess the empirical proof scheme, and so they generalize 
patterns from particular cases. For these students, the abrupt introduction of the principle of MI leaves little time for 
the students to see the necessity for a particular method of proof, to consider what such a method might look like, 
or to consider which constraints it must satisfy. Furthermore, introductions of this type do not facilitate the students’ 
rejection of empirical approaches. As Brown (2003) noted, one consequence of this is that students in introductory 
proof courses often continue to use empirical approaches after having received instruction on MI and may even 
interpret MI as an empirical approach. 

The type of MI problems and the order they are presented in standard textbooks are also of pedagogical concern. 
In general, induction problems can be classified into two categories, recursion problems and non-recursion problems 
(see Harel, 2001). “Prove that 21 3 5 (2 1)n n+ + + + - =  for all positive integers n” is an example of a recursion 
problem because, to solve it, the left-hand side of the identity must be interpreted as a recursive representation of a 
function. In contrast, the problem, “Prove that 2nn<  for all positive integers 1,n³ ” is an example of a non-recursive 
problem because, to solve it, one does not need to involve a recursive representation of a function. The category of 
recursion problems can be further classified into two sub-categories, explicit recursion problems and implicit recursion 
problems, according to whether the recursive representation of a function is explicit or implicit in the problem statement. 
For example, in the aforementioned problem the rule, ( ) ( 1) (2 1), (1) 1,f n f n n f= - + - =  is virtually explicit in the 
problem statement; hence, it is an explicit recursion problem. On the other hand, the Towers of Hanoi problem (see 
Footnote 3) is implicit, for no recursively defined function is explicitly present in the problem statement. An analysis 
of textbook problems shows that students’ first exposure to MI is often through explicit recursion and non-recursion 
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problems of the following kind: 

(a) Identity problems (e.g., “Prove that 21 3 5 (2 1)n n+ + + + - =  for all positive integers n), 
(b) Inequality problems (e.g., “Prove that 2nn<  for all positive integers 3n> ), and 
(c) Divisibility problems (“Prove that 33 | n n-  for all positive integers n”). 

Implicit recursion problems, such as the Towers of Hanoi Problem, usually are not included or appear in a small 
number at the end of the exercises listed.

Also, textbook authors often begin with “easy” problems, such as the problem, “Prove by MI the statement, for 
any positive integer 4,  ! 2 .nn n³ > ”  Yet many students do not view such problems as problems that require MI but 
rather as problems that can be solved in an “easier” way; e.g., they argue the following:

(i) If n ≥ 4, n! = n  …  4  3  2  1 = n …(2  2)  3  2. 
(ii) Since each of the n terms of n  0°(2  2) 3  2 is greater than or equal to 2, it follows that n! ≥ 2 … 

2  2  2  2 (n times) when n ≥ 4. 

This is not to say that problems of this type do not have a place in a chapter on MI, but to say that they are 
introduced to the students in a non-suitable stage in their conceptual development. More specifically, when students 
are asked to use MI on problems that they do not view as necessitating such a method of proof, MI is viewed by the 
students as a prescription to be followed; thus reinforcing the authoritative proof scheme (a scheme by which one 
determines the truth of an assertion on the basis of a blind acceptance of what her or his teacher, textbook, or classmate 
says) and non-referential symbolic proof scheme (a scheme by which one’s conclusions are based on the manipulation 
of symbols free from meaningful referents). Thus, there is reason to consider alternatives to the standard instructional 
approach, for this approach is inadequate for enabling students to see the necessity of MI. 

Students’ Difficulties with MI
Students experience major difficulties understanding the statement of the principle of MI, when the principle is 
applicable, and how to apply it. To demonstrate and describe these difficulties, we draw from our own and others’ 
research on students’ mathematical behavior in dealing with problems involving MI .

Consider the following episode taken from Brown’s (2003) series of studies in which students from introductory 
proof courses were interviewed periodically over the duration of each course. After having been taught MI in his 
introductory proof course, a junior mathematics major at a highly-ranked university 
was shown a paper folding demonstration of the theorem “The sum of the interior 
angles of a triangle is 180°”. In this demonstration, a triangle is folded so that its three 
vertices fall on a point on one of its segments and its three angles form a straight angle 
(see the figure to the right). The student was first asked whether the demonstration 
was convincing and then asked how he would respond to a skeptic who still had 
doubts as to whether the folding approach proved the assertion. His response to the 
first question was “Yes, … [and] I would use this to convince my tutees.” his response 
to the second question was “I’d tell [the skeptic] to use [mathematical] induction.” 
When asked what he would induct on, he responded, “the number of triangles.” Thus, 
the student did not understand that the principle of mathematical induction (MI) does 
not apply to uncountable sets, such as the set of all triangles in the plane, and that it 
is used to justify theorems involving properties of the set of natural numbers. This 
episode is an example of a student having difficulty understanding when the principle 
is applicable.

Brown (2003) also found that the students in the introductory courses often failed to apply MI to problems 
involving recursive relations, such as the Towers of Hanoi Problem,3 while they frequently attempted to apply MI to 

3  The Towers of Hanoi Problem: Three pegs are stuck in a board. On one of these pegs is a pile of disks graduated in size, the smallest being on top. 
The object of this puzzle is to transfer the pile to one of the other two pegs by moving the disks one at a time from one peg to another in such a way 
that a disk is never placed on top of a smaller disk. How many moves are needed to transfer a pile of n disks?

A

B
C

The triangle is folded 
along the dotted lines.
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prove assertions about the real numbers, as the following episode illustrates. Anthony was given the problem “Prove 
that x + 1/x ≥ 2 for any positive real number x.” Anthony began by writing: 

( ){ }0 1/ 2

1 1/1 2 2 1
Given 1/ 2,  prove ( 1) 1/( 1) 2

S x x x x x

S
x x x x

+= " Î Ù > + ³

+ = ³ Þ Î
+ ³ + + + ³



 
Then he said:

I need to show … (pause) ... to show that x + 1 is in S, 
and wrote:

[ ]/( 1) 2,( 1) ( 1) 1
1/ 2,  1 1/ 2 1

xx x x
x x x x

+ ³+ + + +

+ ³ + + ³ +

Finally he asked himself:
How do I get a 1 down there (pointing to the denominator of 1/x)?

This episode and the one before demonstrate that students have difficulties recognizing when MI is applicable. 
The second episode also demonstrates another difficulty, described below in more detail, where the student views MI 
as a mere procedure for manipulating symbols—a manifestation of the symbolic non-referential proof scheme rather 
than a deductive process. 

Another area of difficulty for students concerns the statement of the principle of MI. Consider the following 
episode: “Let’s prove this statement by MI,” declared the instructor during a teaching experiment session of an advanced 
linear algebra class. As he completed the base step ( (1)P  is true) and began the inductive step ( ( ) ( 1)P n P nÞ +  for 
every positive integer n), he sensed that the class as a whole was not following him. The instructor paused, turned to 
the students, and asked if they remembered the principle of MI. “It is a proof with steps” was the only response to his 
question. “How many of you have heard the term ‘Mathematical Induction’ ” he asked. All of the students raised their 
hand, confirming that they had heard the term in previous classes. Dubinsky (1986) tells of a similar experience: “If 
you question students—even those who have had several mathematics courses—although almost all of them will have 
heard of induction, not many of them will be able to say anything intelligent about what it is, much less actually use 
it to solve a problem” (p. 305). 

Upon further analysis of this session and interviews with the students, we found that many of the students 
believed that the conclusion that an assertion is true for all positive integers n is based on the “fact” that it was proved 
for 1:n+  “We proved it for 1,n+  so we proved it for n” typified many of the students’ responses in explaining the 
principle of MI. The students viewed the inductive step as the proof that the assertion is true for any positive integer 
n. Furthermore, and as a consequence, these students saw the base step to be unnecessary. For some, it was a step one 
performs as an initial confirmation for the truth of the assertion, i.e., one evaluates the truth of the assertion for the 
case 1n =  because it is the “simplest number.” For others, it was a step needed merely to follow the rule dictated by 
the instructor or textbook. Thus, the central ideas behind the statement of MI eluded the students.

Many students can solve certain kinds of MI problems correctly, especially those typified by the explicit recursion 
problem: 

Prove that 1/(1 2) 1/(2 3) 1/( ( 1)) ( 1)n n n n× + × + + × + = +  for any integer 1n³ .

However, for these students, MI is merely a “proof procedure” where one takes an equation involving n and adds an 
expression to both sides so as to produce a similar equation with 1n+  in place of n. Though such students may, at 
times, correctly apply MI, they do so without understanding what they are doing. Specifically, they do not understand 
the meaning of the inductive step. Namely, that, for example, one adds 1/( 1)( 2)n n+ +  to both sides of the above 
equality in order to consider the truth of ( 1)P n+  given that ( )P n  is true. 

In sum, our interpretation of students’ difficulties understanding the statement of the principle of MI, when the 
principle is applicable, and how to apply it, is that these difficulties are, for the most part, a result of employing 
instructional techniques that (a) do not facilitate a need—an intellectual need—for MI and, (b) do not allow MI to 
arise as a proof technique.



116 Part Ic.  Proving Theorems

The Studies
The notion of proof scheme was the basis for the design of the studies we report in this paper. These studies, Harel (2001) 
and Brown (2003), focused on students’ development of MI as a deductive proof scheme. Both studies explored the 
conceptual changes that occurred over time as the students received one of two alternative instructional treatments. 

Methodologies
Both Harel (2001) and Brown (2003) used the teaching experiment methodology. “Teaching experiment” here is as 
defined by Cobb and Steffe (1983): Namely, a teaching experiment consists of a series of classroom observations and 
individual interviews over an extended period of time (a semester, for example). Each teaching session is analyzed in 
terms of the classroom discourse and students’ performance. The results of the analysis can, and usually do, adjust or 
amend the plan for subsequent lessons. Results accumulated from extensive analyses usually refine, and in some cases 
alter, the researchers’ theoretical perspective. These analyses are then used to develop models of what students know 
and how their knowledge evolves. 

Harel conducted a series of six teaching experiments, involving a total of 139 students. The study reported here 
is one of these experiments. Data were collected in the form of field notes, retrospective notes, written tests and 
quizzes, videotaped classroom sessions, and clinical interviews. Brown’s experiments involved a year-long series of 
observations in introductory proof courses, including interviews with cohorts of students from each course, and three 
teaching experiments. Data from the observations of introductory proof courses was collected in the form of field 
notes, student work, and videotapes and transcripts of individual student interviews. Data for the teaching experiments 
was collected in the form of field notes, retrospective notes, videotapes and transcripts of each classroom session, 
student work from each classroom session, and videotapes and transcripts of individual interviews.

Alternative Instructional Treatments
The new instructional treatments of MI used by Harel and Brown take into consideration the deficiencies of the 
standard instructional treatment (as described above). They are designed (a) to help students develop the principle of 
MI gradually through the use of a reordered sequence of traditional MI problems and the use of some non-traditional 
MI problems, and (b) to facilitate the creation of a situation in which the students can both understand and appreciate 
the need for MI while avoiding developing a non-referential symbolic interpretation of MI (i.e., one in which MI is 
performed by the students as a procedure, yet the students fail to understand what they are doing). 

 Harel’s treatment was first introduced in Harel and Sowder (1998) and a full description of the teaching experiment 
on MI can be found in Harel (2001). Briefly, the treatment consisted of three phases. Of particular relevance to this 
paper are the first two phases, before the formal statement of the principle of MI is introduced. In the first phase, 
students’ exposure to MI is through engagement with implicit recursion problems typified by:

1. Find an upper bound to the sequence 2, 2 2 , 2 2 2 ,+ + +  .
2. You are given 3n coins, all identical except for one which is heavier. Using a balance, prove that you can find 

the heavy coin in n weighings.

The students in Harel’s teaching experiments were engaged in tasks of this type for about one week, during 
which time they solved about twenty problems. The goal achieved in this phase was that these implicit recursion 
problems necessitated for the students the formation of recursive relations. For example, when solving Problem 1, 
a student demonstrated that the third item is less than 2 because it is the square root of a number that is smaller than 
4, this number being the sum of 2 and a number that is smaller than 2. She then proceeded to argue that the same 
relationship exists between any two consecutive terms in the sequence. Thus, key to her argument was the recognition 
of a recursive relation (Harel, 2001). 

In Phase 2, explicit recursion problems, such as Problems 3-5 below, are introduced.

3. Prove that for any positive integer 1 1 11,  .
1 2 2 3 ( 1) 1

nn
n n n

³ + + + =
× × × + +



4. Find a formula for the sum 2 3 .na a a a+ + + +

5. Compute the sum 1 3 2 1.n+ + + -



9.  Mathematical Induction: Cognitive and Instructional Considerations 11�

At first, the students did not appear to see any relation between this kind of problem (explicit recursion problems) 
and the kind of problems they worked on in Phase 1 (implicit recursion problems). They did not interpret the latter 
problems in terms of a sequence of propositions. But once they were explicitly asked to see if such a common structure 
existed, they understood the problems in these terms, i.e., they saw the similarity between the two problem sets. 
Accordingly, they applied the solution approaches they used to solve Phase 1 problems to Phase 2 problems. Thus, 
it is during Phase 2 that students realize that the same method of proof can be applied to both sets of problems. The 
following example (also described in Harel (2001)), illustrates how one student made this connection when solving 
Problem 5. The student argued:

…Like in Problem 1, where the relationship between two consecutive elements ak and ak+1 is 1 2k ka a+ = + ,
here the relationship is ak+1 = ak + 2k + 1. And like in Problem 1, where we used the fact that a1 is smaller 
than 2 to derive that a2 is smaller than 2, and so on, here we use the fact that a1 = 12 to derive that a2 = 22, 
because a2 = a1+2·1+1 = 12+2·1+1 = 12+2·1+12 = (1+1)2 = 22, and in a similar way to use that a2 = 22 to 
derive that a3 = 32, and so on. 

Moreover, the process of applying their method to Phase 2 problems enabled the students to recognize their solution 
approach as a method of proof.

Finally, in the third phase, the formal statement of the principle of MI is introduced as a refined formulation of 
the students’ method of proof they developed and applied in the previous two phases. Upon realizing that the same 
method of proof—mathematical induction—could be applied to all three sets of problems, the students were assigned 
additional problems to help them solidify their understanding of MI. 

Brown’s alternative curricular treatment is based on the curricular and pedagogical approaches suggested in Harel 
and Sowder (1998) and Brousseau (1997). The MI problems and their sequence resemble those suggested in Harel 
(2001). As in Harel’s alternative treatment, the introduction of the principle of MI is postponed until the students (a) 
have formulated a method of proof, (b) have discussed the criteria the method must satisfy, and (c) have characterized 
the class of problems for which the method of proof was developed. The key idea of this approach is to have the 
principle of MI arise as a means to solve a class of problems and as a response to a fundamental question: Let S be the 
set of values for which a proposition P is true. How can one show S = N? Initially, as is the case with Harel’s alternative 
instructional treatment, students are presented with and asked to solve implicit recursion problems and then explicit 
recursion problems. As the students develop solutions, specific interventions may be required to address the students’ 
robust empirical proof schemes. These interventions are described below in detail. Having progressed through these 
two sets of problems, the students are then asked to describe commonalities in the tasks and their solution methods. 
Once the students recognize that they have considered propositions whose domain is the set of natural numbers, a 
whole class discussion takes place concerning the question: Let S be the set of values for which a proposition P is 
true. How can one show S = N? As students characterize and refine their solution technique, they are then asked to 
consider how one might apply this method to other tasks, i.e., other implicit and explicit recursion and non-recursion 
problems. These activities allow the students to extend and refine the method of proof, ultimately preparing them for 
the introduction of the principle of MI. 

A Three-Stage Model for the Conceptual Development of MI
With the alternative curricular approaches described above, we found that students progress through three stages when 
developing MI as a deductive proof scheme. 

Stage 1
During Stage 1, students’ responses to MI problems are mostly a manifestation of the empirical proof scheme. Students 
at this stage convince themselves and others of the validity of a mathematical statement by observing a pattern in the 
results obtained from computations—a manifestation of the empirical proof scheme. For example, when asked to 
solve the Towers of Hanoi problem (see Footnote 3), Stage 1 students may conclude that the number of moves for n 
disks is 2n – 1 on the basis of empirical observations for a few cases. For instance, a student argued that given the data 
in her table (see below) she knew the solution was 2n – 1 because 20 – 1 = 1, 22 – 1 =3, 23 – 1 = 7, 24 – 1 = 15.
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# disks # moves

1 1
2 3
3 7
4 15
Paula’s Table

 Thus, in the eyes of Stage 1 students, the formula is valid because it follows a pattern of results they obtained 
empirically. This approach — when one generalizes from a pattern in the results — is referred to in Harel (2001) as 
result pattern generalization (RPG). Brown (2003) observed that students in Stage 1 may end up applying RPG even 
if initially they attend to the underlying structure of the pattern. For example, in solving the problem “Prove that 

21 3 5 (2 1)n n+ + + + - =  for all positive integers n, some students compute as follows: 32 + 7 = 16, 42 + 9 = 25, 
52 + 11 = 36. However, rather than generalizing the pattern of this computational process, e.g., into n2 + (2n + 1) =
n2 + 2n + 1 = (n + 1)2), they generalize only the pattern of the computed results, focusing only on 1 = 12, 1 + 3 = 4 = 
22, 1 + 3 + 5 = 9 = 32 to conclude that 1 + 3 + 5 + … + (2n–1) = n2.  

Attending to the underlying structure of the pattern is referred to in Harel (2001) as process pattern generalization 
(PPG). While in RPG one’s conviction is based on regularity in the results—obtained, for instance, by substituting 
numbers—in PPG one’s conviction is based on regularity in the process, though it might be initiated by regularity in 
the results. As we will show, it is in the third stage that students shift their focus from RPG to PPG. 

Stage 2
During Stage 2, students recognize the limitations of justifications based on (a) a set of particular cases, and (b) patterns 
derived from such cases. A student in Stage 2 will recognize, for example, the mathematical necessity of proving that 
the solution to the Towers of Hanoi is 2n –1 after having observed that 1 = 21 –1, 3 = 22 –1, and 7 = 23 –1. In other 
words, Stage 2 students do not view approaches based on a result pattern generalization approach to be convincing, but 
rather their sense of conviction begins to rely on a pattern in the process of obtaining the results—on process pattern 
generalization. Consider, for example, how a student in Stage 2 solved the problem:

Assuming no two lines are parallel and no three lines intersect at a point, how many regions are created in 
the plane by n lines?
The following is an outline of his solution:

(1) Let tn be the total number of regions created by n lines.
(2) One line creates two regions, t1 = 2.
(3) When a second line is added, two additional regions are created, t2 = 2 + 2.
(4) When a third line is added, three additional regions are created, t3 = 2 + 2 + 3.
(5) When the nth line is added to the plane, it will intersect n–1 lines and create n additional regions. 

Since we begin with one region, t1 = 1 + 1. Thus, tn = 1 + 1 + 2 + 3 + … + n.

Thus, the reasoning exhibited by students during Stage 2 is more sophisticated than that used by Stage 1 students. 
Stage 2 students recognize a recurring process and generalize the pattern observed in the process—a process pattern 
generalization. Stage 1 students, on the other hand, generalize the pattern from the results they observe in particular 
cases—a result pattern generalization. Students in Stage 2 propose arguments that resemble proofs by MI. In particular, 
they may argue P(1), P(1) → P(2), P(2) → P(3), P(3) → P(4), so P(n) → P(n+1), therefore for all n, P(n), or P(1), 
P(2), P(3), P(3) → P(4), P(4) → P(5), so P(n) → P(n+1), therefore for all n, P(n). Students’ thinking at this stage 
is, however, limited in two ways. First, they arrive at the implication P(n) → P(n+1) by generalizing from a finite 
sequence of implications. Second, they do not recognize their use of an inductive hypothesis, the premise P(n), but 
rather view P(n) as a verified statement. For example, students at this stage may find their descriptions of the identified 
processes sufficient justification; thus avoiding mathematical formulations of these processes. As a result, the students 
fail to recognize their use of an inductive hypothesis. To illustrate, consider the following excerpt from a group of 
students as they attempt to generalize a process:  
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The L-Tiling Task: Let n be a positive integer. Can any 2n  2 n grid, with one square removed, 
be tiled with an L-shaped tile that consists of three squares like the one on the right?

 Susan: Just by visually … I mean saying that you could expand … you know like you take your eight by 
eight (23  23 grid) … you use your eight … put the thing (removed square) in the corner … put the 
four of them together and you’re always going to have that because you got two to the n (2n), you’re 
always, you know, it’s basically going to be like four of the one before. 

 […]
Susan: … so based on that you’re always expanding in the same way and you could just do it infinitely …
Johan: Yeah
Susan: (continuing) … many times.

 As illustrated by Susan’s comments, these students recognized a process when constructing the 22  22 grid with 
four 21  21 grids, the 23  23 grid with four 22  22 grids, and the 24  24 grid with four 23  23 grids, and viewed 
this process as being generic, i.e., they recognized the underlying structure and viewed the examples as representative. 
They then argued that these constructions were sufficient evidence of a general solution. They did not see, however, 
the necessity of creating a representation of how one can create a tiled 2n+1  2n+1 grid, given a tiled 2n  2n grid 
(for some n). Rather, they argued that their series of examples demonstrates that one can simply use “four of the one 
before.” Consequently, they failed to recognize their use of an inductive hypothesis, namely, that the nth case could be 
tiled. In other words, the students used an inductive hypothesis without actively engaging in hypothetical thinking and, 
consequently, failed to fully recognize the logical structure of MI. 

Recognizing and understanding the use of an inductive hypothesis is nontrivial for many students. For example, 
while working on Problem 5 (see the section entitled Alternative Instruction Treatments), a cohort of students began 
to attend to the number of tiles one would add to a square of a given dimension to create the “next” square, as 
demonstrated below, when developing a geometric argument. 

Geometric Argument for 1 + 3 + 5 + … + (2n-1) = n2

Once this process was generalized “take your n minus one by n minus one (square) and add two n minus one 
(tiles)” the students decided the statement 1 + 3 + 5 + … + (2n–1) = n2 was true for all n. It was at this time that the 
instructor pointed out to the students that they were making the assumption that the statement was true for the (n–1)th 
case. As illustrated below, the students found their use of an inductive hypothesis problematic in that they viewed the 
inductive hypothesis as something to be proved.  

Paula: This is basically, this is the general formula we’ve proved (reference to “(n – 1)2 + 2n – 1 = n2”). So 
basically, all we need to prove is n minus one squared is true for all natural numbers (reference to 
“1 + 3 + 5 + … + 2(n – 1) – 1 = (n – 1)2”) and that’ll prove it because that’s the only assumption we 
made.

Stage 3
During Stage 3, the student begins to produce proofs that are, in essence, proofs by MI. Their justifications are of the 
form: P(1) and P(n) → P(n+1) for all n, therefore P(1) → P(2), P(2) → P(3), P(3) → P(4), … , and hence, P(n) for 
all n. The distinction between Stage 2 and Stage 3 is this: In Stage 2 the implication P(n) → P(n+1) is generalized 
from a finite sequence P(1) → P(2), P(2) → P(3), P(3) → P(4) and so on—usually consisting of the first two or three 
implications—where students deduce P(2) from P(1), P(3) from P(2), and so on. Of particular importance is that they 
realize that the underlying deduction process is the same in all implication cases, and so one, in principle, proceeds 
in the same manner to conclude P(n) for any given n. In Stage 3, on the other hand, the implication P(n) → P(n+1) is 
not generalized (as in Stage 2) but proven deductively, and the sequence of cases P(1) → P(2), P(2) → P(3), P(3) → 
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P(4) and so on are seen as its instantiations. For example, when working on the Two-Color Problem (below), without 
having verified a sequence of cases, Johan argued that given an arbitrary two-colored plane, he could add a line and 
create a two-coloring. The implication P(n) → P(n+1) was then used to conclude P(n) for all n. 

Two-Color Problem: Consider any map formed by drawing n straight lines in a plane to represent boundaries. 
Is it possible to color the countries using two colors, if no two adjoining countries (those with a line segment 
as a common border) have the same color?

Johan: Here’s some number of lines, and it works and here’s like a generic … a generic method of adding 
lines to it.

SB: Okay.
Johan: If this works, then whatever line we add there works also, using the same method.
SB: Okay.
Johan: So technically what we proved over here was … the first case was n … and adding a line was the n 

plus one case.

It should be pointed out that while the students in our teaching experiments developed a strong intuition about the 
validity of the principle of MI, our program did not proceed beyond Stage 3 where one raises the question about the 
status of the principle as an axiom or a theorem. To do so, we posit, one must possess the axiomatic proof scheme—a 
scheme by which one understands that, in principle, any proof must rely on a system of assertions accepted without 
proofs and terms without definitions.  

Implications for Instruction
As defined, the notion of “proof scheme” is subjective—it can vary from person to person, and, as we have learned 
from history, it varied from civilization to civilization and generation to generation. It is this subjective stance that 
makes this notion central to the works presented in this chapter. All our studies were based on the premise that it is 
only when students’ current knowledge is recognized that teachers can devise and implement instruction that can 
bring about desirable outcomes in students’ learning. Despite this subjective definition of proof scheme, the goal 
of instruction must be unambiguous; namely, to gradually refine students’ current proof schemes toward the proof 
scheme shared and practiced by the mathematicians of today. 

For this reason, we embarked on the task of understanding current teaching treatments of MI and their potential 
consequences to student learning. We found that in these treatments, the three most prevalent proof schemes among 
students are the authoritative proof scheme, the symbolic non-quantitative proof scheme, and the result pattern 
generalization, which is a manifestation of the empirical proof scheme. We conjecture that these undesirable schemes 
are the result of employing instructional techniques that do not facilitate an intellectual need for MI and do not allow 
MI to arise as a proof technique from problems students understand and appreciate. Our alternative instructional 
treatments of MI were designed to help students develop the principle of MI gradually by facilitating the creation of 
situations in which the students can both understand and appreciate the need for MI. 

A synthesis of our independent studies led to a three-stage model of the conceptual development of MI: In Stage 1, 
students prove by result pattern generalization; in Stage 2, they move to proving by process pattern generalization; and 
in Stage 3 their proving is consistent with the principle of MI. One critical question is how to facilitate the transition 
between stages. In the remainder of this chapter, we outline recommendations on how to achieve this goal.

Students often possess robust empirical proof schemes and it is this way of thinking that hinders the students’ 
transition between stages, particularly from Stage 1 to Stage 2. The empirical proof scheme should not be underestimated, 
for it stems from our tendency to generalize when making sense of the world. Thus, even when one recognizes the 
limitations of this way of thinking within mathematics, one may continue to use it in other settings. 

Our observations indicate that even in classrooms where the limitations of the empirical proof scheme have been 
demonstrated (e.g., one may show the students a formula that holds for numerous cases and still fails to be valid 
for all cases), students’ use of empirical arguments persists. It is for this reason that instructors must do more than 
demonstrate its limitations. One approach is to have students present and then compare solutions. Facilitated by the 
teacher, such discussions can lead students to recognize why certain justifications, especially those of the Stage 1 kind, 
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are insufficient. With weaker students, however, the class may be willing to accept a collection of examples as proof. In 
such instances, the teacher must create a situation in which the students see the necessity of rejecting arguments based 
on a collection of examples. For example, one may ask the students to solve the Chords of a Circle task (below): 

Chords of a Circle Task: Suppose you have a circle with n points marked on the circumference. By connecting 
each pair of points with line segments the circle can be partitioned into a number of regions. Is there a 
function for calculating the number of regions?

This task satisfies two criteria: First, a pattern is easily recognized. Second, the pattern fails to hold for some n. 
In regard to the first criteria, when one considers the cases n = 1, 2, 3, 4, and 5 (see table below), one can see that the 
number of regions can be described with the easily recognized expression 2n-1.

N number of regions

1 1
2 2
3 4
4 8
5 16

 
In regard to the second criteria, the pattern fails to hold for n > 5. In particular, for n = 6, one can obtain either 30 

or 31 regions depending on whether or not the chords align in such a way that three meet at a point.4 Tasks that satisfy 
these criteria surprise the empirically focused student, who is often convinced of a solution’s validity after testing three 
to four cases. For example, such students are often surprised when they do not obtain 32 regions for the case n = 6 and 
assume they have made a computational error. When repeated attempts to correct this error fail, the students are forced 
to both examine other possibilities and recognize that their expectation that the pattern would continue was not met. 

It should be noted, however, that it is critical that the students are asked to solve this task as opposed to having 
it demonstrated to them, for they must actively engage in the act of assuming that a pattern exists in the results if a 
conflict is to arise between their results and their anticipations. As demonstrated in the excerpt below, where Jill argues 
with Calvin that a series of examples are insufficient, the students’ experiences with the Chords of a Circle problem 
may instill in them a sense of skepticism about empirically derived results.

Jill: But how do you know at one point it might not … it might not happen? I understand what you’re 
saying here, if it works for this one it’s going to work for that one but it … what if at one point it 
doesn’t? Like the circle thing?

We found that once students reject empirically-based results, they turn to the processes through which they 
generated their results to gain a sense of conviction, which in turn helps them transition into Stage 2. For example, 
when Calvin tried to convince Jill of the validity of his approach to the Towers of Hanoi Problem, he first used a series 
of examples. Following her remarks, he reconsidered his approach and argued:

Calvin: Suppose it (the formula 2n –1) works for some stack, then we know the next stack takes (writes
(2n –1) + 1 + (2n –1) = 2n+1 –1) since we know the two k plus one formula works. So, if it works for 
five it works for six and we have all of these (reference to their data table) so we know it always 
works. We don’t have to worry about the circles. 

During Stage 2, the intuitive validity of a solution may hinder the students’ formulation and articulation of a 
solution. For example, students may wish to include a series of examples demonstrating a process by which one 
creates successors and phrases such as “and so on …” when describing their solution. It is critical at this point, 
therefore, that the teacher facilitates the students’ formulation of these processes through whole class discussions and 
activities aimed at the refinement of justifications presented by the students. One can achieve this pedagogical goal by 
introducing tasks that foster the students’ formulation of their solution technique, or by explicitly asking students to 

4  The stipulation that no three chords meet at a point is often included in textbook versions of this problem. It is intentionally not included in this 
version of the problem so as to create a specific problem situation for the students.
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describe the solution technique that was used to solve a set of problems. Once formulated, however, students may feel 
uncomfortable using an inductive hypothesis or they may, psychologically, view the inductive hypothesis as a verified 
statement. To address the issue of facilitating Stage 2 students’ recognition of the need for a statement in the form of 
an implication, and therefore an inductive hypothesis, one can ask the students to solve tasks that satisfy the following 
criterion: For relatively small n, one cannot visualize or compute all of the possibilities for a particular case. The Two-
Color Problem is an example of a task that satisfies this criterion (for n = 17, for example, P(n) concerns the set of 
all planes with 17-lines, arranged according to the constraints described above). In this case, unlike a mathematician, 
Stage 2 students often view the various possibilities as being distinct. Consequently, when the student formulates the 
implication P(n) → P(n+1), and assumes P(n), the premise functions as a pure hypothesis. Johan’s comments (see the 
section entitled Stage 3) followed his realization that he could not produce a sufficiently generic sequence of the form 
P(1) → P(2), P(2) → P(3), P(3) → P(4), ... because each statement P(n) had numerous (in his eyes, infinitely many) 
possibilities. Consequently, he realized that, in order to show the statement was valid for sufficiently large n, he needed 
a general way to create a two-colored map with n+1 lines from any two-colored map with n lines. 

Another task that facilitates Stage 2 students’ recognition of the need for an inductive hypothesis is the general L-
Tiling Problem (below). This task satisfies the criterion that for relatively small n, one cannot visualize or compute all 
of the possibilities. For n = 5, for example, generating a solution involves visualizing the placement of the 341 L-tiles 
along with the 1024 possibilities for the missing tile.5 

(General) L-Tiling Problem: Let n be a positive integer. Can any 2n × 2 n grid, with one square 
removed, be tiled with an L-shaped tile that consists of three squares like the following?

Initially one may want to ask students to solve the modified L-Tiling Problem (below) and then, when the students 
are prepared to transition from Stage 2 to Stage 3, ask the students to solve the general L-Tiling Problem (above). 
Though the distinction between the two tasks — removing any tile as opposed to removing a corner tile — may appear 
trivial, it is significant to students. The modified L-Tiling Problem fosters students’ use of recursive relations, which is 
important during Stage 1, but does not necessitate, in the eyes of the student, the use of hypothetical thinking, which is 
necessary to progress from Stage 2 to Stage 3. In particular, the inductive hypothesis for the general L-tiling Problem 
is such that one must assume the existence of a class of objects — the set of tiled 2n × 2 n grids with a tile removed. 
In contrast, the inductive hypothesis for the modified L-Tiling Problem simply involves assuming the existence of an 
object — a tiled 2n × 2 n grid with a corner tile removed. To carry out the latter, the student may simply generalize from 
smaller cases (e.g., the case n = 4), as is typical of Stage 1 students, whereas to solve the general problem the student 
must engage in hypothetical thinking by assuming the existence of a tiling for each member of the set of all 2n × 2 n 
grids with a tile removed. The general problem, therefore, necessitates treating the inductive hypothesis, P(n), as a 
hypothesis rather than as a generalization — one of the key aspects of Stage 3.

(Modified) L-Tiling Problem: Let n be a positive integer. Can any 2n × 2n grid, with a corner tile 
removed, be tiled with an L-shaped tile that consists of three squares?

Thus, as can be seen from our recommendations, facilitating the transition from one stage to the next involves 
taking into consideration the student’s current proof scheme and then creating a context that supports its refinement 
into a more desirable proof scheme. Through iterations of this process one can create a context for students to develop, 
understand, and appreciate the need for MI.
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In this chapter we consider the challenge of promoting students’ ability to develop their own proofs of geometry 
theorems. We have found that students can make use of transformations and symmetries of geometric figures to gain 
insight into why a particular theorem is true. These insights often have the potential to form the basis for rigorous 
proofs. In the following classroom vignette, we see the excitement that comes from discovering an idea that seems to 
explain exactly why a theorem is true, followed by the realization that there is significant work to be done in order to 
develop a rigorous proof based on such an idea. 

Classroom Vignette
Setting: A college geometry class using the Henderson (2001) text has been asked to work in groups to prove the 
isosceles triangle theorem (ITT). That is, given two sides of a triangle are congruent, prove that the angles opposite 
those sides are congruent. After about 3 minutes without much progress, the group of Alice, Emily, and Valerie burst 
into activity.

Alice: The book says to use symmetries.
Emily: Symmetries?
Valerie: That angle equals that angle —
Alice: Okay! Yeah! Yeah.
Valerie: And then this angle —
Alice: If you have, yeah! If you have, like, a bisected angle —
Emily: You do the angle bisector —
Alice: Yeah! And then this matches this [rotates her right hand from palm-up to palm-down across her triangle 

drawing] because it can lay right on top of it! [Moves her left hand to land (at word “top”) on palm-up 
right hand.] Because then you like rotate it.

Emily: You do a reflection over the perpendicular bisector of the angle. [Throws pencil down.]
Alice: Yes! [Leans back in chair.] And then it proves it! 
Emily: Or, not the perpendicular, but the bisector angle.
Alice: The, the bisector angle. But you do make it. I make it. But it is perpendicular. That’s why you can do 

it. It’s ‘cause it’s like this line’s perpendicular here.
Emily: It becomes perpendicular to the —
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Alice: Yeah, so these are the same, and this folds right onto that.
Valerie: So, I agree with the perpendicular, but you know she’s [the teacher’s] going to ask, “Well, how do you 

know that the angle bisector is also a perpendicular bisector to the line?” 

Introduction
Alice’s excited declaration that, “it proves it!” indicates that she believed she had found the key to the proof. On the 
videotape we see Alice lean back in her chair and Emily throw down her pencil indicating their satisfaction that they 
had found a way to prove the theorem. Note that although we already see the students beginning to work out the 
details of their argument (Is the line they are interested in an angle bisector or a perpendicular bisector or both? Is the 
transformation a rotation, a reflection, a folding?), they are already convinced that their argument establishes the truth 
of the theorem. The conviction precedes the details needed to make their argument a formal proof, but it anticipates 
that those details can be worked out. 

The discussion that follows involves students working to clarify Alice’s argument for why the theorem is true 
and beginning to check whether the initial idea can in fact be turned into a fully justified proof. The fact that these are 
typical points for discussion in this class is hinted at by Valerie’s phrase, “you know she’s going to ask…”

However, as we will see in more detail below, Alice’s confident statement that “the bisector angle … is 
perpendicular” was, for Alice, self-evident and did not require further explanation. This self-evidence turned out to 
have a coercive effect on her ability to complete the proof, despite heated discussions with Valerie and Emily who did 
not believe that this statement could be used in the proof without further justification. 

The classroom episode beginning with our opening vignette, and described in detail below as Group 1, is illustrative 
of a process in which students work on developing a rigorous argument beginning with an intuitive idea. This chapter 
documents three examples of students engaged in the activity of proving by starting with intuitive, informal ideas 
and moving toward deductive proofs with claims supported by appropriate arguments. Below we will discuss several 
ideas from the mathematics education literature that we have found helpful for studying this type of student activity. 
Then we will consider in more detail three different ways in which students engaged in this activity using notions of 
congruence, symmetry and transformations to work toward proving the Isosceles Triangle Theorem. We will conclude 
with some thoughts for practice.

Explanation of Terms

Intuitions and Key Ideas
Efraim Fischbein (1982, 1987, 1999) described several kinds of intuitions, including affirmatory and anticipatory 
intuitions. He stated that intuitive cognitions are self-evident and coercive. With affirmatory intuitions, the self-
evidence may be persistently coercive in that an individual with this intuition may not be able to consider other 
alternatives. Anticipatory intuitions “appear during a solving endeavor, usually, suddenly after a phase of intensive 
search … [and] are associated with a feeling of certitude, though the detailed justification or proof is yet to be found” 
(Fischbein, 1999, p. 34, his italics). Notice that Fischbein emphasized ‘yet’ because the intuitions anticipate a further 
refinement into the “formal, analytical, deductively justified steps of the solution” (Fischbein, 1999, p. 34).

We note that Alice’s idea for the proof (that a reflection across the angle bisector will cause the triangle to land on 
itself) is an anticipatory intuition in that it occurs during a solving process and is associated with a feeling of certitude, 
not only on her part, but also Emily’s, that this idea can be used to complete the proof. Alice’s related idea, that the 
angle bisector will be the perpendicular bisector of the opposite side of the triangle, functions more as an affirmatory 
intuition for Alice because she finds it self-evident and, as we will see below, this has a coercive affect on her ability 
to complete the proof.

Earlier we stated that Alice believed she had found the key to the proof. Raman (2003, 2004) has used the phrase 
“key idea” in the sense of a single idea that holds the “key” to a proof. A key idea answers the question, “Why is this 
claim true?” in a way that connects or has the potential to connect an intuitive answer to the question with a rigorous 
answer to the question. 

Raman’s (2004) development of key idea was focused on the role of the key idea as a connector between what she 
called the public and private aspects of proof. She explained that a procedural idea in proof production is public in the 
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sense that it generates a formal, deductive argument suitable for a textbook or journal article. Whereas a heuristic idea 
in proof production is private in the sense that these ideas are used “behind the scenes – for instance, as a mathematician 
tries to develop an intuition for why a claim is true” (p.635, Raman, 2004). In summary, Raman states:

A key idea is a mapping between heuristic idea(s) and procedural idea(s). It links together the public and 
private domains, and in doing so provides a sense of understanding and conviction. The key idea is the 
essence of the proof, providing both a sense of why a claim is true and the basis for a formal rigorous 
argument. (p. 635) 

Note that often in journals, mathematicians will publicly discuss the heuristic ideas that contributed to their 
production of a proof. Thus, private aspects of proof production may sometimes be publicly displayed (or at least 
described retrospectively). The real distinction between a procedural idea and a heuristic idea is that a procedural idea 
generates a formal deductive argument that satisfies the standards of rigor set by the mathematics community whereas 
heuristic ideas are more informal or intuitive ways of reasoning that need not satisfy the standards of rigor set by the 
mathematics community. Since Raman’s (2004) notion of key idea is a bridge between heuristic ideas and (deductive) 
procedural ideas, the bridge may serve in both directions. Not only can one use a key idea to help move from a 
heuristic idea to a procedural idea, but one can also use a key idea as a way of describing heuristically, intuitively, the 
main ideas of a preexisting deductive proof. Fischbein (1987) described conclusive intuitions as summarizing “in a 
global, structured vision the basic ideas of the solution to a problem previously elaborated” (Fischbein, 1987, p. 64). 
We see key ideas as being able to serve not only as anticipatory intuitions but also, in other situations, as conclusive 
intuitions. 

Raman’s earlier papers (2003, 2004) focus on the notion of key idea in terms of already completed proofs. In 
more recent work, Raman and Zandieh (2007) elaborate the role of a key idea in student proving activity in terms of 
the powerful and problematic ways that a key idea influences students’ development of a proof over the length of a 
class period. In this chapter we consider three proof attempts, each of which seems to start from the same affirmatory 
intuition or potential key idea — that one can fold or reflect an isosceles triangle over a line that bisects the angle 
between the two congruent sides and that doing so will cause the two angles opposite the congruent sides to land on 
each other, exhibiting their congruence. Alice states this more casually and kinesthetically in the opening vignette.

Alice: If you have, yeah! If you have, like, a bisected angle —
Emily: You do the angle bisector —
Alice: Yeah! And then this matches this [rotates her right hand from palm-up to palm-down across her triangle 

drawing] because it can lay right on top of it! [Moves her left hand to land (at word “top”) on palm-up 
right hand.]

However, each of the three proof attempts discussed below takes a different path. In the end, Group 2 and Group 
3 have partial proofs based on different key ideas even though they seem to have had similar starting points. 

Transformational Reasoning 
As students search for key ideas and work to relate a key idea to the arguments needed to provide a rigorous proof, 
they often need to develop an intuitive sense of how the system in question works. Simon (1996) explains that one 
can develop this sense through the use of transformational reasoning. For Simon, transformational reasoning is “the 
mental or physical enactment of an operation or set of operations on an object or set of objects that allows one to 
envision the transformations that these objects undergo and the set of results of these operations” (p. 201). A key to 
this type of reasoning is being able to deal with dynamic processes as opposed to static elements. Similarly, Harel 
and Sowder (1998) differentiate between arguments that call on a static visual perception to provide justification 
(taken as indicative of a perceptual proof scheme) and arguments based on dynamic or transformational observations 
(which are necessary for a transformational proof scheme). Both Simon and Harel and Sowder see transformational 
reasoning (observations) as goal oriented and anticipatory. However, Harel and Sowder go further when they discuss 
a transformational proof scheme, stating that it is a deductive argument that considers the “generality aspects of the 
conjecture” (p. 261). 

Alice’s revelation in the opening vignette is a type of transformational reasoning. Notice that Alice did not take 
the hint of symmetry to simply state that there was a static sense of “sameness” on either side of the figure, including 
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the matching angles that were to be proved congruent. Instead she imagined a transformation, “Yeah! And then this 
matches this because it can lay right on top of it! Because you like rotate it.” As she stated this, she moved her hand 
to indicate motion. This operation and its result provide insight into how the system works, yielding an answer to why 
the claim is true with some hints as to how to develop this key idea into a more rigorous proof.

Mathematizing 
To further develop these intuitive beginnings into something that has more of the structure of formal mathematics, 
students engage in mathematizing. Mathematizing is a process of taking informal reasoning and making it more 
“mathematical” by clarifying terms or statements, converting ideas into more formal mathematical language or 
symbols, delineating relationships between terms or ideas and justifying statements using increasingly more formal 
mathematical arguments. Examples of mathematizing include defining, algorithmatizing, symbolizing, generalizing 
and formalizing (Rasmussen et al., 2005). Following Rasmussen et al. we believe that informal and formal are relative 
terms and that mathematizing is a process of moving from relatively less formal to relatively more formal reasoning. 

We can see the mathematizing process beginning in the above vignette. As Alice excitedly laid out the key idea, 
Emily interspersed comments that sought to clarify the statement of the key idea. At the end of the vignette, Valerie 
reminded her group that one of their claims, “that the angle bisector is also a perpendicular bisector,” was a claim that 
required further justification. 

Mathematizing and transformational reasoning occur in many different mathematical settings. Examples from 
the research literature include transformational reasoning in precalculus and calculus (Carlson, Jacobs, Coe, Larsen, 
Hsu, 2002) and geometry and algebra (Simon, 1996); transformational observations and proof schemes in geometry, 
linear algebra, and number theory (Harel & Sowder, 1998); and mathematizing in geometry and differential equations 
(Rasmussen et al., 2005; Zandieh & Rasmussen, 2007) and elementary school arithmetic (Cobb, Gravemeijer, Yackel, 
McClain, & Whitenack, 1997). However, our setting was a particularly rich source of such reasoning because of four 
factors. 

1. The content of geometry is inherently visual. 
2. Our text, Henderson (2001), emphasized an approach in which students were expected to work extensively 

with notions of symmetry and transformation. 
3. Henderson’s tasks for students began very intuitively starting with asking students to look to their own personal 

experience for notions (including symmetries) that can be used to understand geometric constructs and make 
arguments about relationships in geometric settings.

4. Our pedagogical approach, following Henderson, pushed students to formalize these intuitive notions by 
always asking students how they knew that their intuitive insight was in fact true.

Valerie’s last statement in the opening vignette, “So, I agree with the perpendicular, but you know she’s going 
to ask …” pointed to her awareness of the teacher’s emphasis on justifying any new assertion. The teacher for this 
class worked to establish norms for classroom interactions that included students questioning each others’ arguments 
and justifying all statements or assumptions that had not been previously established in class. Within this context the 
teacher emphasized a process of creating more formal mathematics from more intuitive notions that were personally 
meaningful to the students.

A Note on Symmetry
Informally, if we speak of the symmetry of a figure, we might be referring to a perception of “sameness” about parts 
of the figure, for example that the figure looks “the same” on either side of a dividing line. There are two different, but 
closely related, ways to think about mathematizing this notion of sameness. To most closely match this initial intuition 
one may speak of the symmetric parts of the figure as being congruent and define an appropriate sense of congruence. 
Depending on the definition of congruence or the method for determining congruence this would allow for a non-
dynamic mathematization of sameness. Another way to consider this sameness is to define a symmetry of a figure as 
an isometry (a transformation that preserves distances and angle measures) that takes the figure onto itself (Henderson, 
2001). This is a dynamic view of symmetry. 

In asking students to prove the isosceles triangle theorem, we put them in the position of thinking about the 
sameness on either side of this figure. They are given that two sides are congruent (i.e., “the same”) and they are asked 
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to prove that the corresponding angles are congruent. In an exchange moments before the opening vignette, Alice, 
Emily and Valerie’s discussion shows that they have no problem accepting that the figure has congruent angles.

Emily: Yeah, given that we have two sides congruent, we have to prove that the two angles — 
Alice: OK. Prove that the two angles are congruent.
Emily: The two opposite angles —
Alice: On a plane. They just have to be.
Emily: That’s just the way it is.

The students’ confidence in the statement may have been due to seeing this theorem before in high school, but it 
was probably also due to the fact that the angles looked the same in their sketch of the figure. Later, when they read 
in the book the hint to use symmetries, they thought of a reflection over a dividing line. This group (Group 1) was 
never able to overcome the coercive affect of Alice’s affirmatory intuition that the dividing line was both an angle 
bisector and a perpendicular bisector. As a result, we were never able to learn whether the group intended to focus 
on the symmetry of the figure in a static sense (by attempting to show that two parts of the figure were congruent), 
or in a dynamic sense (by attempting to mathematize their reasoning about a transformation). On the other hand, 
the proof attempts of two other groups of students (Group 2 and Group 3) may be distinguished from each other by 
the fact that Group 2 mathematized the sameness or symmetry by trying to work out the details of proving that the 
transformation makes the figure land on itself, whereas Group 3 mathematized the sameness or symmetry of the figure 
using congruence definitions and theorems.

In the following section we describe the proof attempts of all three groups. Each of the proof attempts starts 
with the notion of a reflection of the triangle across the angle bisector of the angle between the two congruent sides. 
However, each group works to formalize its initial intuitive idea in different ways. 

Three Attempts to Prove ITT

Background
In this section, we describe three different attempts to prove ITT. These attempts took place in the context of a 
college geometry course. The course text (Henderson, 2001) takes the approach of asking students to look to their 
own personal experience for notions (including symmetry) that can be used to understand geometric constructs and 
make arguments about relationships in geometric settings. Our pedagogical approach, following Henderson, pushed 
students to formalize these intuitive notions by always asking students how they knew that their intuitive insight was 
in fact true. Instruction generally followed an inquiry-oriented approach, and classroom interactions fell into three 
main categories: whole-class discussion with the teacher in front of the class, whole class discussion with a student in 
front of the class, and students working in small groups. 

Innovative aspects of the course included: daily use of group work for problem solving and group proof 
construction; student presentation of proofs to the class with subsequent questioning and critiques by other class 
members; student writing and rewriting of paragraph proofs closely critiqued by the teacher; and discovery activities 
using plastic spheres. During small group discussion the teacher usually moved from group to group. Her interactions 
focused both on listening and responding to questions from the students. Although “hints” were sometimes offered, the 
teacher tried not to “give students the answers.” Much of the interaction involved listening to hear what the students 
were thinking. Part of this information fed into her coordination of the whole class discussion that followed. 

The vignette transcribed above occurred on Day 12 (out of 28 teaching days) of the semester. Previously the 
students had created definitions, conjectures, counterexamples and proofs for a number of topics on both the plane and 
the sphere, including defining a straight line, an angle, a triangle, and exploring the side-angle-side and angle-side-
angle congruence theorems. On Day 12, three of the seven groups of students were assigned to prove the isosceles 
triangle theorem while the other four groups were assigned to prove its converse. The groups worked on their proofs 
for about 30 minutes followed by whole class discussion focusing on the proof sketches written on poster paper by 
each group and displayed at the front of the classroom. Although only one of the three groups working on ITT was on 
camera during the group work, we will use data from the posters and whole class discussion to discuss the other two 
proofs as well.
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Group 1: The Coercive Nature of Affirmatory Intuitions
From the vignette at the beginning of this chapter we saw that the group consisting 
of Alice, Emily and Valerie had a key idea for the proof, i.e., that folding over the 
angle bisector of angle B will cause angle C to land on angle A showing that the 
two are congruent (See Figure 1.). Note that previously in class the students had 
worked with several different definitions for angle congruence including that angles 
are congruent if they coincide exactly (excluding length of the rays) or can be made 
to coincide using isometries such as reflection or rotation.

In the next section we will see how Group 2 worked to mathematize the 
reflection over the angle bisector to make an argument that angles A and C (Figure 
1) would coincide. Then in the discussion of Group 3 we will see how those students used the reflection as an idea 
that led them to a deductive proof that circumvents the details of the transformation. Group 1, however, took neither 
of these approaches.

Group 1 spent the entire half hour of group work circling around the issue of whether the angle bisector of angle 
B was the same line as the perpendicular bisector of the line segment AC. The last sentence of the opening vignette 
shows Valerie’s concern about Alice’s assumption.

Valerie: So, I agree with the perpendicular, but you know she’s going to ask, “Well, how do you know that the 
angle bisector is also a perpendicular bisector to the line?”

Alice’s immediate response was to explain how to do a ruler and compass construction to create a perpendicular 
to AC through B. Valerie questioned whether this line was the angle bisector of B. Alice countered by imagining 
reflecting over this line “since this side equals this side we can do a reflection, so that means that AB is going to lie 
on top of AC.” (Note that although she incorrectly refers to AC, she was pointing to the correct side BC.) Valerie and 
Emily still did not seem convinced, so Alice introduced the idea of the midpoint of AC, labeled P, to add detail to her 
reflection line. 

Alice’s comments suggest that she had a strong affirmatory intuition that there was a line that went through P 
and B, was perpendicular to AC, bisects B and would reflect one side of the triangle exactly onto the other side of the 
triangle. She saw the line having these properties holistically without feeling the need to separate out the properties, 
i.e., without a need to assume one or two of the properties and then prove the other properties. When she did entertain 
such a separation, she stated that it must be so or that the transformation of folding showed it to be true.

Valerie:  Okay so if you make it a perpendicular bisector and forget about it being an angle bisector. So if we 
start with a perpendicular bisector how are you going to guarantee that it even goes through B and it 
doesn’t go— 

Alice:  We’re saying given some point B, given vertex B where the intersection of AB and BC.
Valerie:  So you’re drawing a perpendicular line from B to AC. How do you know it’s the midpoint?
Alice:  We’re going to fold it in half.
Valerie:  So how do you know it’s perpendicular and it’s at the midpoint?
Alice:  Well we’re going to say that we know that P is the midpoint.
Valerie:  How?
Alice:  We’re just going to say that.
Emily:  You can’t.
Alice:  Well then why can’t we just take it and just fold it? If we assume that AC is just a straight line, if we 

assume that AC is the shortest distance that connects them or even just a straight line that connects A 
and C together, fold that line in half then it has to be in the middle, doesn’t it? If you just look only at 
the line to begin with just the line by itself, fold that line in half so that point A lands directly on point C 
that will give you the midpoint of AC which would be point P given the vertex B draw a perpendicular 
line that goes through B and P.

Valerie:  How do you know that’s possible?
Alice:  Because I can do it. I can get a piece of paper and do it.
Valerie:  But you can only do it because the sides and angles are congruent. You couldn’t do it otherwise.

A

B

CP
Figure 1. Sketch for ITT as 
labeled by Group 1.
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This group was never able to clarify what it is about the sides being congruent that allows this procedure (described 
by Alice) to work. Alice then reverted to a focus on using constructions to create the midpoint of the line. While she 
stepped away from the table to go get a compass, Emily made a discovery.

Emily: Oh. Oh. Oh, wait a minute. Okay. You have a triangle. You know this is equal to this. How do you draw 
an angle bisector? You stick them at each end and make your little hash marks and you draw a line. 
How do you draw the perpendicular bisector of this? Put it at each end… So you’re doing both at the 
same time. 

Emily recognized that if one constructs an angle bisector at B by using the length AB to create your hash marks, 
then this construction is identical to the construction for the perpendicular to AC that passes through B. Valerie agreed 
but was concerned about another issue.

Valerie: [Laughs] But how do you know… one thing she [the teacher] did last time though. How do we know 
that that really does bisect the angle? I mean, we know it does because we’ve done it so many times, 
but how do we really know that it does? That’s what she’s going to ask. But I totally agree with that.

Constructions had not been an intentional part of the curriculum for this class. They were only discussed briefly 
on one previous day of class in response to a suggestion from a student. At that point the teacher indicated that the 
students would need to prove that a construction did indeed construct what it was stated to construct. Although not 
discussed in class, it turns out that the proof that these two constructions work is usually done using the isosceles 
triangle theorem that these students were trying to prove.

The coercive nature of Alice’s affirmatory intuitions was a source of frustration for the group. Emily and Valerie 
became increasingly frustrated with Alice’s inability to see a need to prove that her assumptions were true. 

Alice tried to explain her view again by doing the physical construction for the perpendicular bisector of AC and 
claiming that it will go through B, even though her construction did not. Without irony (but correctly) she blamed this 
on the inaccuracy of her skill with the compass.

Alice: Okay, so then the reason we know this is an angle bisector is by reflection. We’re going to take AB 
which we know is equal, is congruent to BC, and so we’re going to take AB and reflect it over the 
perpendicular line and it’s going to lie exactly on top of BC.

Note that it is true that AB and BC can be made to lie on each other by some set of isometries because they are 
congruent, but it is not automatically given that this particular isometry will make them land on top of each other 
instead of next to each other.

Valerie remained unconvinced that Alice had proven that the constructed perpendicular bisector of AC goes 
through B.

Valerie: So, this is your B, A, C. So, we’re finding the midpoint of that line. Let’s pretend it doesn’t go through 
B because we haven’t officially proven that it does go through B. Right? Not officially.

Alice: Using the fact that you’re making that, you can’t just assume that that’s the thing. You have to make it 
using these two.

Valerie: Right. But let’s pretend we did. Okay?
Alice: It has to go through B.
Emily: Why?
Alice: Because your two hashes — since these are equal sides
Emily: I don’t like that.

At this point Emily and Valerie buried their faces in their hands in frustration.

Alice: That’s the rule! Look at it. I just did that. I mean, I just made the hashes there and there.
Valerie: Okay. Prove to me that what you did creates a perpendicular bisector.
Alice: I just did.
Emily: The only reason she said was proving it was the reflection. I don’t like that. Say okay, since when we 

reflect it, it evens out.
Alice: That’s all it is. No, it’s not that I just, I didn’t reflect the whole triangle. I used the given properties. I 

just I made the bisector here and here and actually first by doing this and doing this and then drawing 
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the line, you actually have only made the midpoint. And that point there where it intersects AC is the 
midpoint. And since these two lines are the same it’s going to go through point B.

Valerie: I know it does.
Emily: I understand it. I understand that. I just don’t think that proves it. 
Valerie: I agree.

Valerie and Emily remained unconvinced and Alice remained unable to understand their concerns. Valerie and 
Emily suggested that Alice write up her proof on the posterboard. Because members of the group were still writing 
when the class moved to whole class discussion, Group 1 did not end up posting their solution nor was it discussed 
with the rest of the class. For homework Emily and Valerie wrote proofs similar to that of Group 3 (see below) while 
Alice wrote a proof using her arguments from the small group discussion.

Group 2: Mathematizing Transformational Reasoning
In Figure 2 we reproduce the proof sketch that Group 2 wrote and posted for class discussion. This proof sketch is 
evidence of a process in which the students tried to directly mathematize the transformational reasoning involved in 
the key idea of their proof. In this case, the key idea involved a transformation in which the triangle was folded so that 
one side of the triangle lands on the other.

A

C

BP

Side 1 Side 2

Create an angle bisector through angle C. If we reflect (fold) over the angle bisector then Side 1 
will land on Side 2 because the angle bisector created two congruent angles. Given this, point A 
will land on point B. Every point on the line AP will land on the line PB. Points A and B are the 
same perpendicular distance from the angle bisector. Therefore the angles are congruent.

Figure 2. Group 2 ITT Proof Sketch.

The students’ attempt to mathematize their key idea included explicitly describing the transformation, analyzing 
the results of the transformation, and providing justification for their conclusions. In the first sentence, the students 
described the transformation itself by specifying that they were thinking of a reflection (or fold) across an angle bisector. 
Then in the second sentence, the students indicated that they analyzed the results of applying this transformation 
and determined that “Side 1 will land on Side 2.” They then further mathematized their reasoning by justifying this 
conclusion, citing the fact that the bisector created two congruent angles. The students then deduce from this that 
the points A and B land on each other. Note that the students could have supported this particular deduction more 
convincingly if they also cited the fact that the point C stayed fixed under the transformation and the fact that the two 
sides were the same length.

In working to further mathematize their reasoning, the students attempted to prove that one half of the base of 
the triangle landed on the other half. This justification attempt referred to the “perpendicular distance” between the 
points A and B. During the whole class discussion, one of the students in the group, Penny, explained their uncertainty 
with this part of the proof. In the excerpt that follows, we see that at least one other group, represented by Matt, had 
struggled with similar questions. Penny also indicated that she was now considering the SAS theorem as a possible 
way to deal with this issue. 

Penny:  I think with us, our main concern was once we did the angle bisector, did the angle bisector actually cut 
the line AB in half? And if you fold it over does A land on B? That’s what our main concern was. And 
we were trying to prove that the line PB and AP are both perpendicular to the angle bisector, that was 
our main concern when we were doing it. We didn’t even think about using the Side Angle Side. [Like 
Group 3 who had just presented their proof.] 
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Teacher: Were you able to prove that?
Penny:   Um, well we just stated that we were thinking that every point on the line AP will—
Teacher: Where is P?
Penny:  P is that little tiny blue dot.
Teacher:  Oh, I see. There’s P. I don’t know if you guys saw that this is P.
Penny:  So what we were saying is every point on the line AP will land on the line PB and therefore points A 

and B are the same perpendicular distance from the angle bisector.
Matt:  So you guys constructed the angle bisector?
Penny:  Yeah, it’s like the really, really light blue one.
Matt:  So that every point on AP will land on PB only if the angle bisector is perpendicular to AB right?
Penny& Josh: Yes.
Matt:  And how do we know that it’s perpendicular?
Penny:  Yeah that’s what we had trouble trying to—
Matt:  Same here.

Note that in the discussion above, both Penny and Matt were explicitly talking about mathematizing the 
transformational observation that AP and PB of the triangle landed on top of each other. In general, Group 2 examined 
the details of the reflection across the angle bisector with a focus on determining whether the parts of triangle CBP 
would in fact land on the corresponding parts of triangle CAP under this transformation. This can be contrasted with 
the following story in which a group of students thought about a transformation, but actually ended up mathematizing 
a congruence (a static view of symmetry).

Group 3: Seeing a Transformation, but Mathematizing Congruence 
In their poster (reproduced in Figure 3) Group 3 referred to the same transformation of the triangle that the students in 
Group 2 tried to mathematize (a fold of one half of the triangle onto the other half). However, Group 3 did not directly 
mathematize this transformation or any transformational reasoning they may have used in their small group discussion 
to convince themselves the theorem was true. Instead, they mathematized the symmetry of the figure as seen in the 
congruence of the two half-triangles.

A

B

Cm
Fold the triangle in half such that the fold is through point A and the line AB lands on top of AC. 
The fold creates two congruent angles (BAM & CAM). Now we have two congruent triangles 
because of SAS [Side-Angle-Side congruence theorem]. Therefore ACB ≡ ABC.

Figure 3. Poster of ITT Proof Sketch (Group 3).

In the following excerpt one of the students, Abby, described the proof and the group’s thinking to the class. 
Notice that their reference to a transformation in the first line was their only reference to a dynamic process. The rest of 
their description dealt with a static figure consisting of a pair of congruent triangles that formed the larger triangle.

Abby:  Okay, ours was sort of the fact that we would fold this triangle like in half sort of creating the angle 
bisector up here. And then we would know that this angle and this angle are congruent and that this line 
right here since it’s the same line for both triangles that it’s also like a congruent type line and by Side 
Angle Side those would be congruent too. 

During the class discussion that followed, a student from another group questioned only one aspect of this proof 
— the reference to the fold.
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Alexis: Does that work, the first proof?
Teacher: What do you guys think? Eric, do you have a comment?
Eric: I think it works, I just wouldn’t have used folded in half, I would have just said the angle bisector of 

angle A. Every other step seems to work though. Just because folding in half— 
Martin: It assumes something.
Eric: It assumes that you can fold it in half. It seems like it’s symmetric to me anyways.
Teacher: Well, yeah it’s like saying folding “in half” sort of assumes something.
Eric: But I’m not taking anything away from them. That was a great proof.

Notice that Eric did not believe that his objection invalidated the proof and in fact he saw the reference to the 
transformation as being unnecessary. Furthermore, the group that presented the proof did not feel compelled to defend 
it against this objection. We interpret this as evidence that they did not think of their proof as mathematizing the 
transformational reasoning stated in the first line of the proof. Instead, the transformational reasoning seemed to play 
a very minor role, perhaps limited to the production of a picture that emphasized the sameness of the two sides of the 
figure. It was this property that the group mathematized, along with its consequences, by proving that the two “halves” 
of the triangle were congruent. As Eric noted, the reference to the folding could be interpreted as an assumption that 
the triangle could be folded in half. However, the students’ proof did not depend upon this assumption but instead it 
consisted of a mathematization of the observation that the two sides of the figure were the same. 

Discussion
In summary we can see that the idea of reflecting or folding the triangle along the angle bisector played an important, 
but differing role, for each of the groups. For Group 2, the notion that this transformation would cause the figure to 
land on itself served as the key idea for their proof. It is the key idea in the sense that it answers the question of why 
the theorem is true, and it is the idea that they mathematized to construct their proof.

In the case of Group 3, the folding of the triangle seemed to function as an idea that led them to see the two halves 
of the triangle as congruent. This latter observation then functioned as the key idea for their proof. That is, in answer 
to the question, “Why is ITT true?” this group could answer, “Because the angle bisector divides the original triangle 
into two congruent triangles.” Notice that this is a static sense of sameness and can be contrasted with the dynamic 
transformational reasoning involved in describing a figure being folded and landing on itself.

Because we do not have video of these two groups working on their proofs, it is hard to tell to what extent the 
reflection functioned as an anticipatory intuition for these two groups. The retrospective view, however, does allow us 
to see the key idea of a completed (or nearly completed) proof. Viewing a completed proof through the lens of a key 
idea is brought out in Raman’s (2004) work and is compatible with Fischbein’s (1987) notion of a conclusive intuition 
as a global, holistic way to recall the essence of a proof. 

On the other hand, our video of Group 1 clearly shows them starting out by using the reflection over the angle 
bisector as an anticipatory intuition. However, they became bogged down in trying to prove that the angle bisector 
and the perpendicular bisector are the same line. For this group the idea of folding the triangle led to an affirmatory 
intuition about the line that was extremely coercive for Alice and kept the group from moving toward a proof of ITT.

While static and dynamic views of symmetry are strongly related mathematically (the two triangle halves are 
congruent if and only if the one side of the triangle lands on the other after it is folded along the angle bisector) the 
process of mathematizing to create a more formal proof can look very different depending on which idea is used. 

Implications for Practice
A primary goal of the college geometry course described in this chapter was to help students develop the ability to 
construct proofs. One way (but certainly not the only way) that mathematicians approach proving theorems is to 
first try to get a feel for why a statement is true prior to working out the details of the proof. For example, Weber 
and Alcock (2004) asked mathematicians how they would prove or disprove that two groups were isomorphic. The 
mathematicians said that they would first “size up the groups” or “see what they looked like” in order to determine 
whether the groups were essentially the same before working out the details of the proof. Weber and Alcock argue 
that it is important for students to develop the ability to use this kind of approach (in addition to learning to use more 
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procedural approaches to proving). It is this kind of process that has been the focus of this chapter. The three proof 
attempts that we described in this chapter all began with students getting a feel for why the theorem was true and then 
trying to work out the details. These proof attempts seem to indicate that the process of developing a proof starting 
from an informal or intuitive idea consists of two phases:

1) Getting a feel for why the statement is true. This phase includes coming up with and refining an idea that seems 
to explain why the statement is true. When the informal idea involves symmetries and/or transformations, this may 
take the form of a thought experiment in which the students imagine transforming a geometric figure and drawing 
conclusions about the results of the transformation.

2) Working out the details. After the students have an idea that seems likely to work, they need to make this argument 
more rigorous. During this phase students may have to work to overcome the coercive nature of their intuitions so that 
they can dig in and question their assumptions as they fill in the details of their proof.

The examples illustrate the fact that this process can be quite complex and that supporting students as they learn to 
construct proofs in this way is a significant pedagogical challenge. We conclude the chapter by discussing two aspects 
of this challenge and sharing some thoughts about how a teacher might support students as they learn to develop proofs 
starting from informal or intuitive ideas. 

Getting a feel for why a statement is true: Finding a potential key idea
Recall Emily and Alice’s excitement when they came up with their idea for proving ITT. All teachers would like their 
students to experience the excitement and satisfaction that these students exhibited when they found what seemed 
to be the key idea for the proof. These are the kinds of moments that encourage students to keep taking on new 
mathematical challenges. In addition to this significant emotional benefit, this idea also represented a good foundation 
for developing a rigorous proof. The idea gave the students something to mathematize—a blueprint for constructing 
the proof if only they could work out the details. But what can teachers do to help students develop these kinds of 
ideas? 

Simon’s (1996) notion of transformational reasoning seems to describe the kind of thinking that is necessary to 
develop an idea like the one the students developed. Each of our three groups of students seemed to have engaged 
in transformational reasoning, imagining the triangle being reflected or folded across an angle bisector and then 
analyzing the results of this transformation. In the second example, the students’ transformational reasoning provided 
the structure for their proof. Beginning with the image of folding the triangle in half, the students were able to work 
through some of the details needed to complete their proof and eventually to isolate a key remaining issue they needed 
to address. For the third group, the transformational reasoning seemed to play a different role, the production of a 
suggestive static image. While they seemed to be imagining the same fold as the other groups, what they focused on 
in their proof was the sameness of the two sides of the triangle — a sameness that seemed to be suggested and verified 
by the dynamic image of folding the triangle. 

Working out the details
As Fischbein (1987) observed and our first example illustrated, intuitions can have a coercive effect. Because the 
approach to proving that we have been exploring in this chapter often relies on intuition, students can get stuck because 
they are unable or unwilling to seriously question what seems obvious to them. So while intuitions can often supply a 
good foundation for a proof by giving students something to mathematize, intuitions can often exert a coercive affect 
that may make students reluctant to dig in and work out the necessary details. How can teachers help students to 
overcome the coercive nature of their intuitions so that they serve as the foundation for more rigorous proofs?

The examples we have explored illustrate the potentially powerful role of discourse in overcoming the coercive 
nature of intuitions. Discourse played an important role in the geometry course described in this chapter. The teacher 
worked to create an environment where students were comfortable sharing and discussing their thinking. Students 
were expected to respect the thinking of their classmates, but also to ask questions and offer critiques of proposed 
proofs. In the three examples, we see students taking on these roles by challenging each other both in small group 
discussions and in whole class discussions. 
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In the first example we have the opportunity to watch Group 1 have numerous exchanges in which Valerie and 
Emily push Alice to justify her arguments more carefully. Although this was not totally successful in this case with 
Alice, they do force her to make further attempts to justify her claim. For Group 2 and Group 3 we do not have data 
from their small group work, but we see a representative from each group presenting their proof and describing issues 
that had not been resolved in their small group. Additionally we see other students in the class questioning claims in 
the proofs and commenting on the validity of the proofs. Zandieh and Rasmussen (2007) and Raman and Zandieh 
(2007) provide further examples of the power of classroom discourse as students move from less formal to more 
formal reasoning in the context of a Henderson geometry course. 

Conclusion
In this chapter we have explored the process of constructing proofs starting from informal notions involving symmetry 
and transformations. This process is one that is often employed by mathematicians—they begin by getting a feel for 
whether and why a statement is true and then work out the details. We have observed that it is important for students 
to be able to prove theorems using this kind of approach in addition to more procedural and formal approaches. 

We presented three groups of students’ attempts to prove the isosceles triangle theorem. Using these examples, 
we elaborated some of the complexity involved in constructing proofs starting from informal or intuitive notions. In 
particular we observed that intuitive ideas can both aid and hinder students’ efforts. Intuitive ideas can provide good 
starting points because they can offer insight into why the statement is true and provide an overall structure for a proof 
provided the students can work out the details. Intuitive ideas can hinder students because they can be coercively 
self evident and students may be unwilling or unable to engage in the task of examining their ideas to unearth hidden 
assumptions that need to be justified. 

The context of transformational geometry seems to be well suited to helping students develop their ability to 
engage in transformational reasoning, although we point out that transformation reasoning can play an important 
role in other contexts as well. However, more research needs to be done to increase our understanding of how to help 
students learn to reason in this way. We also described the important role of classroom discourse in helping students 
to overcome the coercive nature of their intuitions. Challenges from other students and the teacher can bring hidden 
assumptions to the surface so that the process of making a proof more rigorous can continue.
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Teaching and Learning Group Theory

Keith Weber, Rutgers University 
Sean Larsen, Portland State University

Abstract algebra is an important course in the undergraduate mathematics curriculum. For some undergraduates, 
abstract algebra is the first mathematics course in which they must move beyond learning templates and procedures 
for solving common classes of problems (Dubinsky, Dautermann, Leron, and Zazkis, 1994). For most undergraduates, 
this course is one of their earliest experiences in coping with the difficult notions of mathematical abstraction and 
formal proof. Empirical research studies attest to students’ difficulties in abstract algebra; these studies have shown 
that many students do not understand fundamental concepts in group theory (e.g., Leron, Hazzan, and Zazkis, 1995; 
Asiala, Dubinsky, Mathews, Morics, and Oktac, 1997) and have difficulty writing proofs in a group theoretic context 
(e.g., Selden and Selden, 1987; Selden & Selden, this volume; Hart, 1994; Weber, 2001; Harel & Brown, this volume) 
after completing an abstract algebra course. The purpose of this chapter is to use the research literature to illustrate 
some of undergraduates’ difficulties in group theory, the primary content area in most abstract algebra courses, and to 
describe alternative forms of pedagogy that may be useful in overcoming these difficulties. 

Undergraduates’ Difficulties in Group Theory
In this section, we present four episodes that illustrate undergraduates’ difficulties in understanding and reasoning 
about concepts in group theory.  We will begin each section by presenting an excerpt from a clinical interview in which 
undergraduates were asked to describe a concept in group theory or complete a group theoretic task. We will then use 
these transcripts as a basis to discuss general difficulties that undergraduates have in group theory and to state some of 
the reasons that undergraduates have these difficulties.

Episode 1. Students’ Understanding Of Cosets And Normality
Asiala et al. (1997) interviewed a group of 31 students who participated in an experimental abstract algebra course. 
After the course, some students met with researchers for interviews in which they discussed central group theoretic 
concepts. Below, one student, Carla, was asked how she would determine if K (a 4-element subgroup of S4) was a 
normal subgroup of S4.

Carla: OK, you just have to check if when you multiplied two elements together if it is the same that you did 
them in the reverse order. Like if you take (1234) and compose it with (1432)[…] see if you get the same 
thing as when you take (1432) and compose it with (1234).

I:  So it’s um …
Carla:  Commutative […] 
I: Now if it is not commutative.
Carla: Then it is not normal.



1�0 Part Ic.  Proving Theorems

Later in the interview, Carla realized that what she described above was a commutative subgroup. She revised her 
description of a normal subgroup as follows:

Carla:  You take an element of S4 and multiply it times an element in K. And if you get, if you take the element 
in S4, like say the permutation (12), and multiply it times the element in K, (12)(34), if whatever you get 
for that is the same as when you take (12)(34) and multiply times the element in S4.

I:  So this has to be done for every element in S4.
Carla:  Right. Times every element in K.
I:  And each time, element by element, they have to be the same.
Carla:  Yes.
In this excerpt, Carla appears to be saying K is normal if every element of K commutes with every element of 

S4. In other words, K would be a subset of the group’s center. Still later in the interview, Carla was able to describe a 
correct method to determine if a subgroup was normal. According to Asiala et al., these interview segments (and other 
data) suggest that Carla has three competing notions for what it means for a subgroup H of a group G to be normal: 
H is commutative, every element of H commutes with every element of G, and gH = Hg for every g in G. Carla’s 
difficulties in understanding normality were not unique to her. In interviews with 20 students who recently completed 
a standard abstract algebra course, Asiala et al. (1997) found that most of these gave responses that revealed a poor 
understanding of the concept of normality and only one student was able to state and correctly interpret the definition 
of a normal subgroup. (See Asiala et al. (1997) for a more detailed account of their findings).

One can interpret the cause of Carla’s difficulties in multiple ways. Asiala et al. propose an intriguing hypothesis. 
In order to understand what it means for a subgroup H to be normal, one must be able to evaluate (i.e., attach a truth 
value to) expressions of the form aH=Ha and then must imagine checking the truth values for all a in the group G. 
However, in order to determine whether aH=Ha is true, one must think of the cosets aH and Ha as mathematical 
objects that can be compared with one another (Dubinsky et al., 1997). If one can only see the symbol aH as a prompt 
to compute a coset, but not as the result of applying this process, one will have difficulty understanding what it means 
to evaluate aH = Ha. A later interview segment suggests that Carla does not yet understand cosets as objects:

I:  When you take an element of S4 and multiply it by everything in K, you said you get a set […] Does that 
set have a name?

Carla:  Probably. Well it should be the same as K. 
I:  Well try it… Take your (12) and multiply it by everything in K.
Carla:  OK (pause) Guess you don’t (pause) You get that, unless I did something wrong.
I:  It’s different from K.
Carla:  Right.
I:  Does it have a name?
Carla:  I don’t know. I don’t think so.
I:  Could you write a notation for using that single element from S4 and K?
Carla:  Well it’d be like (12)K.
I:  OK, and does (12)K, does that have a name?
Carla:  It just tells me that you take (12) times every element in K. And you get that subset.
I:  What is a coset?
Carla:  I don’t know. That’s what it is, huh? (They laugh) It’s when you take an element and you multiply it 

times every element in the subgroup. That would be a coset.
From this interview segment, it is clear that Carla is still developing her understanding of cosets. In particular, 

she did not initially see the symbol (12)K as representing the object that is the result of coset formation. Asiala et al. 
(1997) hypothesize that this weak understanding of cosets may have contributed to her unstable understanding of 
normality. Later in this chapter, we describe instruction designed to help students construct an understanding of cosets 
and normal subgroups.

Episode 2. Undergraduates’ proving processes
Weber (2001) asked undergraduates who had just completed an abstract algebra course to think aloud as they proved 
non-trivial group theoretic propositions. One of these propositions was:
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Let G be a group of order pq where p and q are prime. Let f be a surjective homomorphism from G to H. Prove 
that either H is abelian or isomorphic to G.

In some respects, this is not a difficult theorem to prove. Its proof is short and is a relatively direct consequence of 
applying a weak form of the first isomorphism theorem (i.e., |G| / |ker f |= | f(G)|).  An excerpt of one student’s response 
is given below. 

“I’m not quite sure what to do here. Well, injective, if G and H have the same cardinality, then we are done. 
Because f is injective and f is surjective.  G is isomorphic to H … OK, so let’s suppose their cardinalities are 
not equal. So we suppose f is not injective. Show H is abelian. OK f is not injective so we can find a distinct 
x so that f(x) is not equal to f(y)” 

The student then made a series of valid inferences, concluding with xy–1ker f, before giving up on the problem. 
Earlier observations of this student indicated that he possessed an accurate conception of proof and he was able 
to prove more basic statements. Further, a subsequent paper-and-pencil test revealed that this student could state 
and apply the facts that were required to prove the proposition. When the interviewer told the student specifically 
which facts to use, he was able to construct a proof. Weber concluded that this student’s initial inability to prove the 
proposition was not due to a lack of factual or procedural knowledge, but his inability to apply the knowledge that he 
had in a productive manner.

This student’s performance was typical of the undergraduates whom Weber observed. In two studies, Weber 
(2001, 2002) asked eight undergraduates to think aloud while proving five statements. There were 25 instances in 
which the undergraduates were aware of the facts necessary to prove a particular statement. In only eight of these 
instances could the undergraduates construct a proof without prompting from the interviewer. Like the student in the 
excerpt above, most of the participants in Weber’s study took a seemingly reasonable approach to the problem and 
drew valid inferences, but these inferences were often not useful for proving the proposition that the students were 
attempting to prove.

Weber’s explanation for why the undergraduates could not prove these statements was that they lacked effective 
proof-writing strategies and heuristics. Based on his observations of doctoral students proving the same statements, 
Weber concluded that these doctoral students were aware of what theorems in group theory were important and 
when they were likely to be useful. To illustrate, when proving the proposition above, all four doctoral students 
immediately used the first isomorphism theorem. When the interviewer later asked them why they had done so, 
participants responded that this theorem is often useful when one is reasoning about homomorphisms, especially 
when the homomorphism in question is surjective. The undergraduates in Weber’s study did not have this strategic 
knowledge. Weber suggests that as a result, the undergraduates’ choice of which facts to use was more random and they 
were less likely to make use of important theorems. The undergraduates’ proof attempts largely consisted of unpacking 
definitions and pushing symbols. In a subsequent teaching experiment, Weber demonstrated that strategic knowledge 
can be taught to undergraduates, and that such instruction improved their ability to construct proofs substantially. 
Details of this study can be found in Weber (2006), but for the sake of brevity, this teaching experiment will not be 
reported in this chapter.

Episode 3. Undergraduates’ methods for reducing abstraction
Hazzan (1999) interviewed students from a standard lecture course in abstract algebra. In the following excerpt, Tamar 
is explaining why Z3 is not a group.

Tamar: [Z3] is not a group. Again I will not have the inverse. I will not have one half. I mean, I over…I mean, if 
I define this [Z3] with multiplication, I will not have the inverse for each element. […] It will not be in 
the set. […] I’m trying to follow the definition. […] What I mean is that I know that I have the identity, 
1. What I have to check is if I have the inverse of each…I mean, I have to see whether I have the inverse 
of 2 and I know that the inverse of 2 is ½. […] Now, one half, and on top of that do mod 3[…], then it 
is not included. I mean, I don’t have the inverse of… My inverse is not included in the set. Then it’s not 
a group. I do not have the inverse for each element.”

Tamar appears to be interpreting the binary operation to be multiplication, rather than the operation that is 
traditionally associated with the group Z3 (addition modulo 3). Hazzan suggests that Tamar made this interpretation 
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in order to reduce abstraction. In group theoretic contexts, the notation used for the binary operation of the group is 
usually the same as multiplication for standard number systems. Tamar attempted to make the question that she was 
asked more concrete by retreating to a familiar context (in this case, numbers and multiplication). Selden and Selden 
(1987) also found that students tend to reason about abstract algebraic systems as if they were working with familiar 
number systems. 

Hazzan describes other techniques by which students reduce abstraction. For instance, she found that when 
students were presented with tasks in abstract algebra, they tended to avoid using their conceptual knowledge of the 
relevant mathematical objects by relying upon well-known (canonical) procedures. An example of this is provided in 
Hazzan (2001). In this article, she illustrates how when students were asked to produce an operation table for a group 
of order 4, some students relied on a procedure that (some of them admitted) they did not really understand:

Step 1: Choose an identity element and fill in the first row and column accordingly. 
Step 2: Choose a result for one of the remaining boxes without violating the law that each element must appear 

exactly once in each row and column. 
Step 3: Fill in the remaining boxes without violating the law that each element must appear exactly once in each 

row and column.   
Note that this procedure does not work in general (it is based on the cancellation law which is not equivalent to the 

definition of a group). From Hazzan’s perspective, it is significant that the students relied on this canonical procedure 
rather than their conceptual knowledge. In particular, students did not use the fact that the desired group must either 
be isomorphic to Z4 or the Klein-4 group. 

Similarly, Findell (2002) found that abstract algebra students use operation tables to “mediate” abstraction. He 
describes a student who recognized isomorphisms between groups of order four but relied on a procedure involving 
renaming elements and re-ordering operation tables. Findell described this student’s methods as “largely external, in 
the sense that it was based in the table and in procedures that required the operation table be present rather than in 
reflection on the binary operation.” (p. 241, emphasis is Findell’s).

Episode 4. Undergraduates’ understanding and reasoning about group isomorphisms
Weber and Alcock (2004) presented four undergraduates who had recently completed an abstract algebra course with 
five pairs of groups and asked them to think aloud while attempting to prove or disprove that the pairs of groups were 
isomorphic. One such question asked participants to prove or disprove if (Q,+) was isomorphic to (Z,+), which seems 
to be a relatively straightforward proof once one recognizes that the second group is cyclic but the first group is not. 
One undergraduate’s response is given below:

“I think Q and Z have different cardinalities so, no wait, R has a different cardinality, Q doesn’t. Well, I guess 
we’ll just use that as a proof. Yeah so I remember seeing this on the board […] There’s something about being 
able to form a homomorphism by just counting diagonally [The student proceeds to create a complicated 
bijection between Z and Q by using a diagonalization argument—similar to the one used by Cantor to prove 
that Z and Q shared the same cardinality] Yeah I don’t think we’re on the right track here. What you are 
describing here is a bijection, but not a homomorphism”.

This undergraduate’s behavior was typical of the participants in Weber and Alcock’s study. Collectively, the 
undergraduates were only able to prove two of the twenty propositions that they were given. This outcome was despite 
the fact that, for the majority of these propositions, the undergraduates possessed the factual knowledge required to 
write these proofs. In nearly all cases where the participants made progress on proving or disproving that two groups 
were isomorphic, they first determined if the groups in question were equinumerous. If they were, the participants 
then attempted to form a bijection between the two groups. In most cases, this approach was unsuccessful, leading the 
participants to abandon their proof attempt as they did not know how to proceed. 

Weber and Alcock hypothesized that the undergraduates used this strategy because they did not intuitively under-
stand isomorphic groups as being algebraically the same, but understood isomorphic groups at a purely formal level 
(i.e., groups G and H are isomorphic if there exists a mapping from G to H that is both bijective and a homomorphism). 
Interviews with (other) undergraduates corroborated this explanation; these undergraduates indicated that they had no 
informal ways of thinking about groups other than by reciting the group axioms. Further, they could offer no intuitive 
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description of what it meant for two groups to be isomorphic. One undergraduate remarked, “my intuition and formal 
understanding of isomorphic groups are the same.”

Weber and Alcock also interviewed doctoral students and mathematicians and found a sharp contrast between 
their responses and those of undergraduates. Mathematicians indicated that they thought of isomorphic groups as 
being “essentially the same” or that one group was a “re-labeling of the other group.” When asked how they would 
prove or disprove that two groups were isomorphic, the mathematicians indicated that they would “size up the groups” 
and “see what they looked like.” When doctoral students were observed doing these tasks, they would uniformly begin 
by determining which properties both groups shared and which properties they did not. If one group had a property 
that the other did not share, the doctoral students would immediately deduce that the groups were not isomorphic. If 
they did share important characteristic properties (e.g., if the groups were equinumerous and cyclic), they would use 
this as a basis for proving the groups were isomorphic. 

Innovative Approaches To Teaching Abstract Algebra
In the last section, we highlighted some of the difficulties that undergraduates have in reasoning about group theoretic 
concepts. In response to these findings, a growing number of researchers have designed and evaluated innovative 
pedagogy to help overcome these difficulties (Leron and Dubinsky, 1995; Hannah, 2000; Larsen, 2004; Weber, 2006). 
In this section, we will discuss two of these teaching approaches. Due to space limitations, we will not be able to give a 
comprehensive description of each teaching method. Instead, we will attempt to provide the reader with the theoretical 
ideas behind the teaching approaches, a general description of how each approach is implemented, and some evidence 
suggesting that these approaches can be effective. Throughout our descriptions, we will provide references where the 
coverage of these teaching approaches is more thorough.

Learning abstract algebra by using ISETL to program group theoretic concepts
Leron and Dubinsky (1995) contend that students’ difficulties in learning abstract algebra are largely due to their 
inability to understand fundamental processes and objects. They further argue that the lecture method may be 
insufficient to overcome these difficulties, because for most students, simply “telling students about mathematical 
processes, objects, and relations is not sufficient to induce meaningful mathematical learning.” Leron and Dubinsky 
propose an alternative instructional approach that has been developed through two cycles of experimentation, analysis, 
and modification. The first cycle was described and reported in Dubinsky et al. (1994) and the second in Dubinsky 
(1997).

This instructional approach is based on APOS theory, a general theory of mathematical learning. (The acronym 
APOS stands for Action-Process-Object-Schema). Put simply, Leron and Dubinsky believe that group theory (and most 
of mathematics) can be understood in terms of actions and processes that can be applied to mathematical objects. A 
concept can be understood in terms of an action, or a set of explicit mechanical steps that can be applied to mathematical 
objects in response to an external cue. By reflecting on the application of an action, the student may conceive of the 
actions as a process, or a mathematical transformation that links particular inputs to particular outputs. That process 
can itself become a subject of mathematical investigation or can be the input of other mathematical processes. When 
students can conceive of the process in this way, they are said to have constructed an object conception. A schema is a 
coherent collection of processes, objects, and other schemas that is invoked to deal with a mathematical situation.

In group theory, the concept of coset can involve an algorithm (action) that a student can apply when he or she is 
given an element of a group and a (finite) subgroup of that same group. A coset can be thought of more abstractly as 
a general process that maps a group element and a subgroup to a subset of the group (a process conception of coset). 
Cosets can also be thought of as objects that can be compared with one another (e.g., they do have the same cardinality 
and left cosets may or may not be equal to corresponding right cosets) or may be the inputs to subsequent mathematical 
actions (such as applying binary operations to cosets of normal subgroups, a critical idea that must be grasped to 
understand quotient groups). A more complete discussion of these ideas is given in Dubinsky and McDonald (2001). 

The instructional approach that was described by Leron and Dubinsky (1995) relies on computer programming 
activities to promote students’ conceptual development. To encourage the development of process conceptions, students 
are asked to program a computer to perform that process. To encourage the development of object conception of this 
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process, students are then asked to have this process serve as an input for other processes. All programming activities 
are done collaboratively with other students. In a typical computer activity, a new concept is explained to students (in 
non-technical language) and students are asked to write a computer program that can check whether a given input is a 
member of that concept. For instance, early in their course, students are asked to write a program that could determine 
whether a binary operation on a set of elements satisfied the closure and identity properties. An example of student-
generated code is provided below:

is_closed := func(G,o);
 return
   forall a,b in G| a .o b in G;
  end;

has_identity := func(G,o);  $G has left identity
 return
   exists e in G|(forall a in G|e .o a = a);
  end;
(Note: Here G denotes a set of elements and o denotes a binary operation.)

The computer language used by students, ISETL (Interactive Set Language), has a syntax similar to the syntax 
of formal mathematics (see Leron and Dubinksy, 1995 for more examples of ISETL code). Hence, in writing these 
programs, students are to some extent engaged in the process of defining the concept. Leron and Dubinsky concede 
that students find some of the programming tasks to be quite difficult. However, they argue that the difficulties that 
students experience are usually due to the complexity of the underlying mathematical ideas, not the syntax of ISETL. 
So when students struggle to write the programs, they are actually grappling with the difficult mathematical ideas of 
group theory. 

Other activities ask students to explore particular group theoretic situations by making conjectures, using the 
computer to test these conjectures, and forming explanations for why some of these conjectures are true. For instance, 
after students in Leron and Dubinsky’s (1995) class wrote programs that could determine if a set and a binary operation 
on a set satisfied each of the group axioms, they were asked to “Explore the modular systems Zn, both with and 
without zero, relative to addition and multiplication mod n. Formulate some conjectures, test them, and try to come 
up with some explanations” (p. 230). These activities provide students with the opportunity to assess and refine their 
understanding. 

Between these activities, the class may meet as a whole to discuss important or troublesome ideas or the teacher 
may provide a (short) lecture in which formal definitions are given, formal proofs are provided, or key ideas from 
the previous activity are summarized. While these discussions and lectures are important, it is primarily the computer 
activities themselves that are expected to lead to students’ learning.

Leron and Dubinsky list four benefits of their instructional approach:

• First, by programming a computer to do a process, the students are necessarily describing and likely discussing 
and reflecting upon the process that they are programming. This provides a powerful opportunity for the 
students to construct a process understanding of the concept they are studying. “If the students are asked 
to construct the group concept on the computer by programming it, there is a good chance that a parallel 
construction will occur in their mind” (Leron and Dubinsky, 1995, p. 230). 

• When students are asked to anticipate the output of a computer command, this provides them with the 
opportunity to evaluate and, if necessary, refine their understanding of group theoretic ideas and discuss this 
unanticipated result with their classmates. This does not help students’ progress through the Action-Process-
Object-Schema learning trajectory per se, but allows them to address misconceptions that they may have 
developed.

• In struggling to define group theoretic concepts by programming them on a computer, students will develop 
an experiential basis to understand the more abstract and formal treatment of these concepts that they will 
encounter later in the course. Students often find the formalism of abstract algebra courses to be strange 
and intimidating. With an experiential basis, the formalism can be viewed as a formalization of previous 
experience. 
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• ISETL allows functions, processes, and sub-routines to be inputs into (and outputs of) other processes. By 
seeing how a computer program acts upon processes, students may come to construct these processes as 
mathematical objects. Understanding concepts such as group and coset as mathematical objects is essential for 
understanding fundamental concepts in group theory, but such an understanding proves very difficult for most 
students to achieve (Dubinsky et al., 1994). Programming in ISETL may facilitate this transition.

To teach the specific concept of normality, students are first asked to construct a program called PR(a,b), where 
each of the input variables a and b can either be a group element or a subgroup of the group. This program can be used 
to calculate specific cosets. Asiala et al. (1997) report that students have serious difficulty in writing this program. 
However, they also argue that in their struggles to produce the program, they construct an understanding of what it 
means to be a coset, and hence are less likely to develop the misunderstanding that Carla exhibited in Episode 1.

Students are then given five relations and are asked to determine whether given groups and subgroups satisfy 
these relations. These five relations are all equivalent definitions of normality, but students are not initially aware 
of this. Writing a program that will perform these checks requires students to enter expressions such as: For all a in
G| PR(a, H)=PR(H, a).

In Dubinsky et al.’s (1994) framework, producing such code should theoretically help solidify students’ under-
standing of cosets as objects (since they are using the coset expressions PR(a,H) and PR(H,a) as an input into the process 
of comparing cosets) and should require students to realize the iterative role of the variable a in coset construction. 
After checking which groups and subgroups satisfied the relations (different but equivalent normality conditions), 
the students were asked to state which relations were equivalent and to justify their hypothesis. The equivalence of 
some definitions was explicitly proved by the instructor, but most equivalences were proven by the students. Asiala et 
al. (1997) found that the majority of students who engaged in these activities were able to accurately explain what it 
meant for a subgroup to be normal and did not experience the difficulties that Carla experienced in Episode 1.

Learning group theory by re-inventing concepts

Introduction .  Larsen (2002, 2004) reports an ongoing effort to develop an approach to teaching abstract algebra in 
which the formal mathematical concepts are developed beginning with students’ informal knowledge and strategies. This 
approach is being developed through a series of developmental research projects (Gravemeijer, 1998). Developmental 
research projects cycle through two related phases, called the developmental phase and the research phase. During the 
developmental phase, activities and instruction are developed based on an evolving instructional theory. The research 
phase involves the analysis of classroom activity as the evolving instructional approach is implemented. This analysis 
then informs the next development phase by informing both the development of the instructional theory and the design 
of specific instructional materials.

While developmental research results in the production of an instructional sequence, the goal is to produce some-
thing more generalizable than a specific sequence of instructional activities—a local instructional theory. (Note that 
the word local refers to the fact that the instructional theory deals with a specific mathematical topic.) The purpose of 
the local instructional theory is to provide a rationale for the instructional activities. Drawing on the local instructional 
theory, a teacher can adapt the instructional approach to his or her specific situation. Local instructional theories 
feature three key ingredients. The following description of these ingredients is adapted from Gravemeijer (1998).

• Students’ informal knowledge and strategies on which the instruction can be built.
• Strategies for evoking these kinds of informal knowledge and strategies.
• Strategies for fostering reflective processes that support the development of more formal mathematics based 

on these kinds of informal knowledge and strategies.

These components of a local instructional theory will provide the framework for our discussion of Larsen’s 
instructional approach. For the interested reader, we note that this description of a local instructional theory draws on 
the theoretical perspective of realistic mathematics education (See Gravemeijer, 1998).

The instructional approach is still under development as Larsen continues to cycle through phases of development 
and research. The ongoing work is concerned with (among other things) the challenges of adapting the instructional 
approach to a traditional classroom setting.  Here we will focus on Larsen’s first teaching experiment (Cobb, 2000) as it 
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was particularly important to the development of the local instructional theory. This is because one of the participating 
students produced an unexpected solution strategy that turned out to be particularly productive in terms of supporting 
the development of the group concept. Analysis of this first teaching experiment guided the development of activities 
designed to evoke this particular strategy and activities designed to promote reflection on this strategy to support the 
development of the formal group concept.

Description of the Teaching Experiment .  The two students who participated in the teaching experiment were 
Jessica and Sandra. Neither student had received prior instruction in abstract algebra, but both had recently completed 
a transition-to-proof course in which they learned to construct basic set-theory proofs. The students met with Larsen 
for seven sessions, each of which lasted between ninety minutes and two hours. Each of these sessions was videotaped 
and all of the students’ work was collected. 

The first task given to the students was to describe and symbolize the symmetries of an equilateral triangle.  
Jessica and Sandra developed the following table (Figure 1) to illustrate the six symmetries of an equilateral triangle. 

Figure 1. The students’ table illustrating the symmetries of an equilateral triangle.

Calculating	combinations	of	symmetries	using	rules:	A	spontaneous	solution	strategy.	 After the students identified 
the six symmetries of an equilateral triangle, they were asked to compute each composition of two symmetries.  
Larsen expected that the students would eventually develop an operation table to record their results (determined 
by manipulating a cardboard triangle that was provided). The students’ table in Figure 1 makes this approach quite 
feasible since they could start with their triangle in the standard position (denoted by 123), manipulate their triangle, 
and then look up the result. However, although the students did develop an operation table to record their results, their 
method for determining these results was unexpected. Jessica immediately started making observations about the 
relationships between various symmetries and then used these observations to calculate the combinations.

Identity property of N:
Jessica:  So if we do “do nothing” and one of these other ones, it’s gonna be the same thing.
Inverse relationship between CL and CC:
Jessica: If you go CL CC that gives the same…
Sandra: Right because you’re just doing the opposite. 

Jessica then began using her observations to calculate more complex combinations and, after hearing Jessica’s 
explanation, Sandra is able to perform a similar calculation herself. 

Calculation of the combination F FCL
Jessica: If you combine F and FCL you’re just going to get clockwise. Cause you’re going to flip and then you’re 

going to flip again and then so those cancel each other out so you’re going to have these left over. 
Sandra: You’re going to flip…
Jessica:  You’re going to flip and then you’re going to flip it again so both of those flips cancel each other out so 

this is all your going to have left is this move, clockwise. 
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Sandra: Do we want to assume the opposite for the other one?
Jessica:  Yeah.
Sandra: So if we do flip as our first term and flip counterclockwise for our second term then you get 

counterclockwise.

This calculation makes implicit use of the associative law, uses the identity property, and takes advantage of 
the fact that F is its own inverse. The students proceeded to fill out their table, relying primarily on calculations of 
this type. Although Larsen did not anticipate that the students would use calculations to determine their results, after 
Jessica started doing it, Sandra seemed to think that this was what they were supposed to do.

Jessica: I’m just noticing these rules.
Sandra: That’s great. That’s what we’re supposed to be doing. This [filling in the table] is just the monkey 

work.

This strategy that Jessica spontaneously brought to the task was very exciting from an instructional design 
perspective. It clearly represents a good foundation for the development of the group concept as it involves the use of 
group axioms—the identity property of N and associativity are used fairly explicitly along with particular inverses. As 
it turned out, it was fortunate that Jessica participated in this teaching experiment because it does not appear that her 
approach to the task is typical. The participants in the second and third teaching experiments of Larsen’s dissertation 
study did not spontaneously use calculations to compute combinations of symmetries. Additionally, in subsequent 
uses of the activity in three group theory classes (approximately 70 students), no student has spontaneously used this 
approach to the extent that Jessica did.

Evoking	the	strategy	of	using	rule-based	calculations	to	compute	symmetries.  One of the important goals of the 
retrospective analysis of the teaching experiment data was to understand what conditions promoted Jessica’s use of 
rule-based calculations. The analysis revealed that a number of factors seemed to support this.

The	students’	use	of	the	compound	symbols	FCL and FCC . Jessica and Sandra used the term “compound moves” 
to refer to FCL and FCC since each was expressed in terms of two simpler movements. Note that it is not necessary 
to express these two symmetries as compound moves—they can be expressed as simple reflections (generally they 
are expressed this way in abstract algebra texts). It is important that these compound moves were included because 
otherwise all of the compositions of two symmetries would have been expressed as strings of only two symbols, 
leaving no room for intermediate steps between expressing the combination to be determined and expressing the 
result. It is the strings of three and four symbols that create the opportunity to perform calculations by grouping 
elements that cancel (e.g., F FCL). Subsequent work with the equilateral triangle activity suggests that students who 
have familiarity with symmetry tend to not use compound symbols. In Jessica’s case, she discovered these symmetries 
first as compound movements and in fact had difficulty seeing them as simple movements. 

Based on these observations, newer versions of the equilateral triangle sequence include a task in which students 
are asked to express all of the symmetries using combinations of flips across the vertical axis (denoted by F) and 120 
degree clockwise rotations (denoted by R). The result of this is that the students convert their six symbols to a new 
set of symbols that includes what Jessica and Sandra called compound moves. Since in a typical classroom, different 
groups of students are likely to generate different symbols, this task also sets the stage for the adoption of a common 
set of symbols for the entire class to use.

While a set of symbols that contains compound symmetries may make it more likely that students will begin 
to perform rule-based calculations, it may also be necessary to employ other pedagogical strategies to promote the 
development of this approach. For example, the teacher could identify students who do use rule-based calculations 
spontaneously and then ask those students to share the strategy with the class. Another approach would be to present 
the students with a combination that lends itself to easy calculation. The first combination that Jessica calculated, F 
FCL, is an example of such a combination. The students could be asked whether they actually need to manipulate the 
triangle find the result of this combination. Either strategy should set the stage for asking the students to create a set 
of rules that can be used to calculate all 36 combinations. Jessica and Sandra compiled such a set of rules. An early 
version of their list is shown in Figure 2. (Note that the students had refined their notation to express CL as R and CC 
as R–1.)
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Developing the formal group concept 
The list of rules in Figure 2 does not include all of the group 
axioms and also includes more rules than are necessary to 
completely determine the group of symmetries of an equilateral 
triangle. Here we will discuss some strategies for developing 
the formal group concept based on this starting point. 

Paring down the rules to a minimum set .  Since many of 
the calculations needed to compute the 36 combinations of 
two symmetries require the use of grouping (associativity), it 
is not difficult to raise this property to a more explicit status 
(a discussion can be started by asking students to explain 
and justify their use of grouping). With the addition of the 
associative law, the list of rules in Figure 2 is sufficient to 
calculate the 36 compositions. In order to highlight the key 
structural features of this group of symmetries, it is helpful to 
pare this list down. The students can be asked whether any of 
the rules are unnecessary in the sense that they can be obtained 
using other rules. This task gives students a chance to begin 
using the group axioms in proofs as they reduce their list of 
rules. When Jessica and Sandra had eliminated all of their 
unnecessary rules, they were left with the rules in Figure 3. 

Figure 3. Reduced list of rules for the symmetries of an equilateral triangle.

Establishing closure and the existence of inverses as rules .  Jessica and Sandra paid special attention to inverses 
in their work. They figured out what the inverse of each element was and listed these inverses. And they included the 
existence of inverses on their list of rules. These particular students were unusual in this regard. It is not necessary 
to observe that each element has an inverse in order to calculate the 36 combinations. So, attention to the existence 
of inverses does not naturally arise from the activity of calculating combinations. However, while completing their 
operation tables, students often notice that each symmetry occurs exactly once in each operation table. Students can be 
asked whether they can easily prove this property using their set of rules, or whether they should add additional rules. 
To make their proofs work, students will need to assume closure and the existence of inverses.

Formulating	a	definition	of	group.  Once the list of rules has been refined to include all of the group axioms and only 
a minimal set of relations for the group of symmetries of an equilateral triangle, it is useful to have students explore 

Figure 2. The students’ list of rules for calculating 
combinations of symmetries.
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other systems including other groups of symmetries and arithmetic groups. The group axioms then come to the fore as 
the set of invariants across these various systems, setting the stage for the formulation of a definition of group. Figure 
4 shows some of Jessica and Sandra’s work as they formulated their definition.

Figure �. Working to formulate a definition of group.

Learning group theory by reinventing concepts: A discussion
The instructional approach described above is one of reinvention. First the students are engaged in activities designed 
to evoke powerful informal understandings or strategies. Then the students are engaged in activities designed to 
support reflection on these informal notions in order to promote the development of the formal concepts.  In the case 
of the group concept, the key informal strategies are the development of an operation table to record results and the 
use of rule-based calculations of symmetry compositions. These two strategies were the basis for the development of 
the formal group concept and eventually the isomorphism concept (see Larsen 2002, 2004). 

Certainly it can be challenging to teach abstract algebra via reinvention. It clearly takes longer to have students 
reinvent the group concept in the manner described above than it does to write the definition on the board and give 
a few examples. We would not recommend that every concept in abstract algebra be learned through reinvention. 
However, it may be worthwhile to teach some fundamental concepts in this way. Here we will discuss some of the 
possible benefits.

Freudenthal (1991) argues that, “knowledge and ability, when acquired by one’s own activity, stick better and 
are more readily available than when imposed by others” (p. 47). In the instructional approach described here, the 
students actively participate in developing the symbols and notation systems that they use. Thus it is expected that 
these symbols and notation systems are meaningful and useful to the students. Additionally, since the formal notions 
are developed from the students’ informal ideas, it seems likely there will be a stronger connection between the 
students’ informal understandings and the formal concepts. Thus it seems likely that the students will be able to rely 
on their informal understandings to help them develop formal arguments in much the same way as the mathematicians 
described by Weber and Alcock (2004).

We see some evidence of these phenomena in Jessica’s proof of her conjecture that the identity element of a group 
is unique (see Figure 5). When asked to prove this conjecture, she argued that it was a consequence of each element 
appearing exactly once in each row and column of the operation table. She was able to use this idea and a generalized 
operation table to develop her proof. 

Jessica’s approach can be contrasted with phenomena illustrated in Episode 3 and Episode 4. First, Jessica was 
able to use her intuitive understanding of groups to develop a formal proof. She thought about why the identity had 
to be unique, and realized that if it were not unique then an element would have to appear twice in a row of the 
operation table. She was able to express this situation using equations, and then work out the details of the proof.  
Second, Jessica’s use of the operation table contrasts sharply with that of the student described by Findell (2002) 
whose reasoning was largely external and required the presence of the entire table. Jessica modifies the table for her 
purposes—using arbitrary elements and only including aspects that she needs to support her reasoning.  This suggests 
that she was using the table as a tool to support her reasoning and not merely as a crutch for recalling the steps of a 



150 Part Ic.  Proving Theorems

Figure 5. Jessica’s proof that the identity element is unique.

procedure.  

Conclusions
In the first section of this paper, we described research findings that highlight some of the difficulties that students have 
with understanding and reasoning about group theoretic concepts. Several researchers have argued that highly formal 
lecture-based abstract algebra courses may contribute to these difficulties, since they deny students the opportunity to 
engage in activities that might be used in developing conceptual understanding and effective reasoning processes (e.g., 
Leron & Dubinsky, 1995).  Such activities include attempting to define central group theoretic concepts, reflecting on 
the processes used in group theoretic calculations, forming and evaluating conjectures, and participating in meaningful, 
informal mathematical activities that students can later use to understand the more formal treatment of abstract group 
theoretic concepts. 

In the second section, we described two different, innovative instructional approaches that have been used to engage 
students in these activities and to have students develop a stronger, more meaningful understanding of group theory. 
While these instructional approaches are different in important ways, they do share some fundamental properties. 
Both approaches involve actively engaging students with the important concepts of group theory. Furthermore, 
both approaches devote considerable time to developing an informal or experiential basis for understanding these 
ideas. Special emphasis is given to connecting the formal treatment of these ideas to this experiential basis. In the 
instructional approach developed by Dubinsky and his colleagues, this is done by asking students to implement the 
informal ideas in the ISETL environment - using a computer programming language that is much like the language 
of formal mathematics. In the case of the instructional approach developed by Larsen, this is done by having students 
develop important ideas informally in the context of geometric symmetry and then formalize their informal ideas and 
methods to reinvent the formal theory. 
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Teaching for Understanding: A Case of Students Learning to Use 

the Uniqueness Theorem as a Tool in Differential Equations

Chris Rasmussen, San Diego State University
Wei Ruan, Purdue University Calumet

Students in many undergraduate mathematics courses tend not to readily and appropriately use theorems as tools 
for making arguments and solving problems (Schoenfeld, 1989; Hazzan & Leron, 1996). Students’ reluctance to use 
theorems as tools is a problem that is not only cognitive in nature (that is, the difficulty is in how students conceptualize 
particular mathematical ideas), but also social in nature (that is, the nature of class discussion, the interpretation of 
tasks and ideas, etc.). In this chapter we highlight results from a classroom-based research program in differential 
equations that has resulted in some positive progress on the problem of students’ reluctance to use theorems as tools 
for reasoning and solving problems. 

The main result of the analysis of student learning and use of the uniqueness theorem for first order differential 
equations is the delineation of four interrelated cognitive and social factors that help account for why students actually 
made progress in using the uniqueness theorem as a tool for making arguments and solving problems (Rasmussen, 
2004). The intention is that readers might, after understanding the details of this particular case, find the four factors 
useful more generally as an orienting framework for thinking about ways in which they can promote their students’ 
use of theorems as tools for reasoning in other content areas. Thus, even if one does not regularly teach differential 
equations, this chapter intends to offer useful information for those who want their students to develop and use formal 
mathematics with understanding.

We begin by describing the results of one of the individual student problem solving interviews conducted as part 
of the study. The interview occurred just prior to students’ first day of instruction in differential equations, and hence 
responses to the tasks posed in the interview are not a result of any instruction in differential equations. The research 
purpose for conducting the interviews was to glean insights into what informal or intuitive thinking students have 
about the issue of uniqueness before receiving any formal instruction. The task shown in Figure 1 was posed to Joe, 
who turned out to be one of the most mathematically able students in the class. All student names in this chapter are 
pseudonyms.

Joe rewrote the rate of change equation as dL/dt = –0.1L + 7 and determined that dL/dt is –3 by inserting the value 
of 100 for L. He then represented this work graphically and orally addressed the question posed. 

A scientist developed the rate of change equation dL/dt = –0.1(L – 70) in order to make predictions about 
the future temperature for a particular hot liquid (where L is the temperature of the liquid). Suppose 
one vat of this hot liquid has initial temperature of 100°F and a different vat of this hot liquid has initial 
temperature of 120°F. According to the rate of change equation, will there be a time when the two vats 
have the exact same temperature?

Figure 1. Interview task
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Joe:  Let me put it like this. This would be temperature versus time. [Sketches a graph similar to that 
shown in Figure 2]

L

t

Figure 2. Joe’s sketch of temperature versus time.

Joe:  Given what I know about physics, I would say yes because at some time they both would have to 
reach room temperature. And they both should stop cooling at that point. 

Interviewer: That connects with our everyday experience, right?
Joe:  That connects with our everyday experience. But when I look at this equation [circles the rate 

of change equation dL/dt = –0.1L + 7] mathematically speaking, I see this [points to the rate of 
change equation] as telling me that it’s [gestures with his hand in a way that re-creates his graph 
of temperature versus time] just going to get colder and colder and colder, infinitely colder. So I 
would say, no, there is no way for the second one to catch up with the first because at no point is 
this going to stop decreasing, it’s just going keep getting colder and colder and colder.

Interviewer:  So could you draw me a graph of the temperature versus time for both vats?
Joe:  I would expect it to be a parallel line. That it’s constantly lagging by a constant amount of whatever 

20 degrees difference ends up causing. That it will always be that far behind.

There are two things to notice in Joe’s response. First is the fact that Joe makes two conclusions, one based on his 
expectations of the real world situation and one based on his interpretation of the mathematical equation. The former 
conclusion is an empirically based argument, and the latter is a mathematically based argument. Second is the way in 
which he thinks about rate of change. In particular, Joe appears to think about rate of change as a constant, non-varying 
quantity. He does not immediately view dL/dt as a quantity that changes as the temperature of the vat, L, changes. 
Effective reasoning in differential equations requires one to coordinate changes in quantities such as dL/dt and L, and 
represents a sophisticated form of covariational reasoning (see Oehrtman, Carlson, and Thompson, this volume). 

As will be detailed in the main section of this chapter, shifts in the source of one’s arguments (empirical versus 
mathematical) and shifts in how one thinks about a central idea, such as rate of change, are two significant factors that 
contributed to students’ progress on using a theorem (in this case, the uniqueness theorem) as a reasoning tool.

In the sections that follow we first provide some background on the research approach and the mathematical goals 
of the project. We then describe and illustrate the social and cognitive factors that help account for students’ progress 
in using the uniqueness theorem as a reasoning tool. We conclude the chapter with some reflections on instructional 
design and how it relates to the social and cognitive factors. 

Background
Advances in technology and an increased interest in dynamical systems are prompting new directions in many first 
courses in differential equations. These new directions include qualitative, geometric, and numerical analyses as 
complements to the traditional emphasis on analytic techniques. The MAA Notes #50, Revolutions in Differential 
Equations, edited by Kallaher (1999) and the special issue of the College Mathematics Journal edited by West (1994) 
offer excellent examples of these new directions. At the same time, research is beginning to illuminate students’ thinking 
about central ideas and methods of analysis associated with these new directions. A recent review of the literature by 
Rasmussen & Whitehead (2003) highlights the primary findings to date, including a delineation of students’ strategies, 
understandings, and difficulties with (a) coordinating algebraic, graphical, and numerical representations, (b) creating 
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and interpreting various representations including phase portraits and bifurcation diagrams, and (c) making warranted 
predictions about the long-term behavior of solution functions. Noticeably missing are research reports on students’ 
use of and thinking about the uniqueness theorem. In general, mathematics education research has concentrated on 
proof construction (see Selden & Selden, this volume) rather than on theorem use. The chapter reported here makes a 
contribution to this important, yet under-researched area of mathematical reasoning. 

Originating in the seventeenth century as a technique for solving geometrical and mechanical problems, the 
study of differential equations initially centered on attempts to find analytic solution techniques. As scientists moved 
toward increasingly analytically intractable differential equations arising in physical and graphical situations, they 
became motivated to ask the questions of first existence and then uniqueness of solutions. The first to draw attention 
to the unspoken assumption that there exists a solution to a given differential equation was Cauchy, who in the 1820s 
gave a rigorous proof for the existence of a solution. Several decades later, the Lipschitz condition provided the first 
guarantee of unique solutions to first order ordinary differential equations (Boyer & Merzbach, 1989; Kline, 1972).

The following is a formal statement of the uniqueness theorem in terms of the Lipshitz condition for the differential 
equation of the form dy/dt = f(t, y):

If f(t, y) is continuous on a < t < b, c < y < d, and there exists a constant L such that | f(t, y) – f(t, z) |  
L |y – z| for all t  (a, b), and all y, z  (c, d), then the initial-value problem dy/dt = f(t, y) with y(t0) = y0 
where t0  (a, b) and y0  (c, d) has at most one solution for all t  (a, b) such that y(t)  (c, d).

Often the uniqueness theorem (together with the existence theorem) is stated for students in terms of continuity of f 
and f

y
¶
¶  

in the hope that they would use it as a tool for making arguments and solving problems. The extent to which 
this happens, however, is typically not encouraging (Raychaudhuri, 2007). Students usually do not understand the 
theorem and hence do not use it as a tool for making arguments or solving problems. We conjectured that one reason 
for this discouraging result is that the more typical requirement of continuity (rather than Lipschitz) does not, from 
students’ perspective, express mathematical relationships that are relevant to them. Although students are familiar with 
continuity, why continuity of f and f

y
¶
¶ are needed appears to be a mystery. We have found, however, that the Lipschitz 

condition is much more likely to connect to students’ thinking about relevant mathematical relationships when given 
problems that raise their intellectual curiosity about the issue of uniqueness.

In the research reported here we set the following two instructional goals for the uniqueness theorem: First, 
students would come to view the issue of uniqueness as personally relevant (historically this took a very long time). 
Second, the Lipschitz condition for uniqueness of solutions would be a relevant, formal description of students’ 
manipulation of vectors and their corresponding explanations for why graphs of solutions do or do not intersect. 
Students in our study essentially framed their observations and analysis in terms of the condition | ( , ) |y f t y L∂

∂ £  rather 
than in terms of | f(t,y) – f(t,z) |  L |y – z|. The teacher of course must play an active and direct role in connecting these 
two statements for students. 

Two forms of evidence indicate that we made reasonably good progress in achieving these two goals. First, a 
review of student work after instruction on the uniqueness theorem revealed several instances of students spontaneously 
invoking the uniqueness theorem to make arguments, even though the task did not specifically request such arguments. 
Second, a quantitative analysis of students’ understanding in more traditional classes versus project classes found that 
students who received instruction similar to that described here used the uniqueness theorem as a tool for solving 
problems significantly more so than students who received more conventional instruction (Rasmussen, Kwon, Allen, 
Marrongelle, & Burtch, 2005). 

Research Approach
This chapter is based on analysis of data collected during a 15-week introductory course in differential equations 
conducted at a mid-sized public university. The data collected included classroom video recordings of each class 
session from two cameras, copies of students’ written class work, copies of exams and homework, and video recordings 
of individual student problem solving interviews. The project team consisted of the teacher, who was an experienced 
research mathematician with expertise in partial differential equations (and the second author of this chapter), and 
two mathematics education researchers who attended each class session, taking field notes and listening carefully 
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to student thinking. The research method used is one referred to in mathematics and science education as design 
research (Cobb, 2000; Kelly, 2003). Central characteristics of design research include (1) the study of learning and 
teaching while simultaneously designing teaching tasks and teaching interactions; (2) the use of continuous cycles 
of design, testing, analysis, and redesign; and (3) the creation of knowledge for practitioners and other researchers in 
mathematics education.

Typical class sessions consisted of cycles of small group work on challenging problems and whole class discussion 
of students’ work on these problems, however tentative. Sharing, presenting, and discussing student work was typical 
in this class, and the teacher regularly sought to support and encourage students in their efforts to explain and justify 
their thinking. The course materials, largely developed in previous design research projects, were modified as needed 
as the semester progressed. An essential characteristic of the course was the creation of a learning environment in 
which students could reinvent important mathematical ideas and methods as they solved problems and explained their 
reasoning (Freudenthal, 1991; Gravemeijer, 1999; Rasmussen, Yackel, & King, 2003). 

At the completion of the semester, the research team analyzed the data through cycles of reviewing videorecordings, 
creating transcripts, and writing interpretive notes. This iterative process resulted in the identification of four overarching 
cognitive and social factors that help explain why students were successful in using the uniqueness theorem as a tool 
for reasoning and solving problems. Sample episodes from this iterative process are used in this chapter for illustrative 
purposes. To sharpen the discussion even further, we focus primarily on the reasoning of three students, Bill, Adam, 
and Joe. 

In general, the analysis draws on theories of learning in which students’ mathematical reasoning is viewed as 
constrained and enabled by both their current understandings and the nature of the learning environment (Cobb & 
Yackel, 1996). As emphasized by Piaget (1970), learning is a process involving a constant interaction between the 
learner and her environment. This involves the integration of things to be known with existing ways of thinking and 
the reorganization of these ways of thinking as students participate in and form the patterns of argumentation that 
become routine in their mathematics classrooms. Given this theoretical orientation, we were interested in changes in 
student thinking and shifts in what counts as an acceptable justification. In keeping with an emphasis on framing the 
evolution of thinking in the context of classroom learning, this chapter describes important cognitive and social factors 
that facilitated students’ progress in developing and ultimately using the uniqueness theorem as a tool for reasoning 
and solving problems. 

Using Theorems as Tools
The framework for capturing progress in students’ use of the uniqueness theorem as a tool is traced in terms of four 
interrelated social and cognitive factors. We characterize a factor as social when we want to emphasize the process of 
interaction between students, the teacher, and the mathematics. The two social factors we identified are the negotiation 
of acceptable justifications and the familiarization with mathematical terminology and meaning. On the other hand, 
we characterize factors as cognitive when we want to emphasize particular conceptions that students engage. The 
cognitive factors we identified are the engagement of an intuitive theory and a conceptual reorganization about rate 
of change.

In this chapter we illustrate and clarify the social factor pertaining to justification and both cognitive factors, while 
only briefly discussing the social factor of familiarization with mathematical terminology and meaning. Whenever 
possible, we point to connections between these factors and the role of the teacher in their evolution. The concluding 
section relates the evolution of these factors to the overall instructional design.

Negotiation of Acceptable Justifications — A Social Factor
Analysis of the classroom videotape data points to an important interplay between empirically based justifications 
and justifications based on mathematical relationships. Justifications were deemed empirical if they were (1) based on 
observed or imagined graphs or (2) based on an imagined, real-world phenomenon. By design, instructional sequences 
drew heavily on geometric approaches and the framing of problem situations in terms of real world phenomena. Thus, 
it is perhaps not surprising that students’ justifications were, at least initially, grounded in observed or imagined graphs 
or imagined real world events. What is significant is that there was a shift in the nature of students’ justifications over 
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the course of the semester — from those with an empirical basis to those with a basis in mathematical relationships. 
For example, prior to work on the sequence of tasks dealing explicitly with the uniqueness theorem, the class 

discussed whether or not an imagined solution graph, one that was initially increasing, would ever actually reach 
or touch the equilibrium value of 12.5. Under scrutiny was the differential equation ( )12.50.3 1dP P

dt P= - , which was 
intended to model population growth. Tangent vector fields generated by a computer program (without curve sketching 
capabilities) and analysis of the differential equation itself were the primary mathematical ideas and tools available to 
students. The following whole class excerpt succinctly captures the interplay, and tension, between empirically based 
and mathematically based justifications.

Bill: What Jeff and I were thinking was that eventually, ideally, this would seek an equilibrium, fluctuating 
up and down around 12.5. But obviously, you can’t have half a deer running around, so, you know, it’s 
gonna at some point go above 12.5, then it goes in negative, in the uh slope, so it’ll drop below 12.5. 
Then, then you’re back positive, and it’ll, so it’ll be rising and falling up and down around, around 
12.5. 

Joe: How do you rise up and down when you have a zero tangent?  
Adam: Maybe theoretically, but that’s not what our equation’s saying. Our equation’s saying that uh 12.5 is 

gonna be the limit. It’s gonna go up, it’s gonna, it’s gonna be what’s it called, asymptotic to 12.5 or, I 
think that’s —   

Joe: Well, it’s not actually [inaudible] It’s when P to the 12.5 is one. 
Adam: Yeah. Yeah.  
Teacher: Okay. What’s so important for this 12.5? It seems that some of you think it’s positive if P is less than 

12.5? 
Stds: Yes.
Joe: It’s positive if it’s less than 12 and a half. It’s negative if it’s greater than 12 and a half, and it’s zero at 

12 and a half. And so I have a problem with it being able to fluctuate around 12.5 because if you have 
a zero. If you had zero change, 

Bill: Okay, well, my thinking was —
Joe: I mean, it doesn’t change over time no matter [inaudible].  
Bill: Well, my thing was that you talk about a population, you’re talking about a population, you have to 

have whole numbers.

Bill explained that his group’s initial idea was that the graph would oscillate around 12.5 with decreasing amplitude. 
No justification for why such asymptotic behavior might be the case was offered. Bill said that he and Jeff then rejected 
this conclusion that the population would settle down to 12.5 because “you can’t have half a deer.” Joe and Adam 
immediately rejected any kind of oscillation based on the mathematical relationship between the slope of a graph as 
dictated by the differential equation (in particular there should be a tangent with zero slope at 12.5) and the shape of 
the graph. This clarification was, in part, solicited from the teacher when he asked, “What’s so important about 12.5?” 
In response to Adam and Joe’s point, Bill then clearly stated that his reasoning was based on the need to have “whole 
numbers” due to the population setting. Bill’s justification falls within the realm of empirically based justifications, 
while Joe and Adam’s justification falls with the realm of justifications based on mathematical relationships.

As the discussion continued, Joe, Adam, and a third student, Jake, argued further against Bill’s conclusion. 

Joe: What you think a population would be doesn’t mean that that’s what that equation is going to do.
Adam: We’re talking about a model here.
Jake: Yeah, that’s just a representation, I mean like that’s like a thousand times 12.5, or three thousand times 

12.5.  
Teacher: So it’s like a very large number and uh,  
Adam: So the fluctuation wouldn’t really, you wouldn’t see it.  
Joe: Yeah. 
Adam: It’s just a model! 
Jake: It would be at equilibrium at 12.5. It would level off as it approaches 12.5, the rate of change.
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Teacher: Yes, certainly we cannot have half fish, or half deer. But you’re saying that if we have a huge number 
for population then, then this, although it’s not really a smooth curve, but for the model, we have a, we 
have a smooth curve. Is that what you’re saying? 

Jake: Yes.  
Teacher: Yes.

In addition to Adam’s argument that the differential equation is something other than an exact fit to the population 
setting (“it’s just a model”), Jake argued that 12.5 could very well be 12,500, for example. The teacher clarified for 
the class that in terms of actual population values, which would be discrete, the solution graphs of interest to the class 
are continuous. The previous excerpts point to how norms for argumentation are co-constructed between students 
and the teacher. They are not rules set out in advance by the teacher. We also point out that, although the teacher’s 
voice is less prominent in these excerpts than the students’, he played an essential and proactive role in shaping the 
classroom discussion and norms for justification. Among other functions, he was the one who selected and made 
possible the conversation about whether or not a solution graph would touch 12.5, he was the one who worked to set 
up a classroom environment in which students felt safe to voice their ideas, even if they turn out to be rejected, and he 
was the one who at once honored Bill’s conclusion (“Yes, certainly we cannot have half a fish, or half a deer”) while 
implicitly reinforcing the need for conclusions to be based on mathematical relationships. 

As the semester progressed, justifications based on mathematical relationships and concepts such as rate of change 
became more and more routine, even though the problems posed to students were often framed in terms of imagined 
real world settings in which prediction of future quantities was important. The significance of this social factor in the 
evolution of using the uniqueness theorem as a reasoning tool in relation to the cognitive factors is that it (a) creates 
opportunities for the teacher to become aware of students’ intuitive theories, and (b) makes explicit discussion about 
central mathematical ideas (in this case rate of change) more viable, which in turn opens spaces for students to refine 
and reorganize their conceptions of these ideas. 

Engaging Intuitive or Informal Theories — A Cognitive Factor
Students exhibited an intuitive theory that non-equilibrium solution functions will approach equilibrium solution 
functions asymptotically (Rasmussen, 2001). Students’ intuitive theory about asymptotic behavior in this classroom 
took on one of two forms, either oscillations with decreasing amplitude toward a fixed value or strictly increasing/
decreasing behavior toward a fixed value. Both of these intuitive theories were evident in the excerpts provided in the 
previous section. Recall the following statement made by Bill: “What Jeff and I were thinking was that eventually, 
ideally, this would seek an equilibrium, fluctuating up and down around 12.5.” Adam, on the other hand, assumed that 
the graph of the solution would approach 12.5 asymptotically in a strictly increasing manner. Recall Adam’s statement 
that the graph is “gonna go up, it’s gonna, it’s gonna be what’s it called, asymptotic to 12.5.” Later in this same excerpt 
Jake also stated that the graph “would level off as it approaches 12.5.” 

Which of the two forms of asymptotic intuition was engaged appeared to depend on the imagined real-world 
setting. For settings in which oscillation of quantities was reasonable, we saw both types of asymptotic intuition. In 
other settings, like the one discussed in the next section, only strictly decreasing asymptotic intuition was engaged. 

Although asymptotic behavior is the outcome in many cases, it is not always the case (e.g., consider solutions 
to y´ = –y1/2). From a student’s perspective, such intuitive theories make sense because they originate in extensive 
mathematical experiences. In his seminal work on intuition, Fischbein (1987) characterized intuitions as self-evident 
statements that exceed the observable facts. Being self-evident, justifications often do not accompany statements that 
engage intuitive theories, as was the case in the previous excerpts. When pushed for justification, students tended to 
provide circular arguments. For example, as the conversation about solutions to ( )12.50.3 1dP P

dt P= -  continued, the 
teacher asked students what should be the graph of the solution if “we base it just on the differential equation model?” 
To which Bill responded,

Bill: Then I agree that P approaches 12.5, and as it gets closer and closer to 12.5 the rate of change will get 
smaller and smaller and yeah, I don’t think it would ever reach 12 and a half. I would just keep getting 
closer and closer, but never quite make it.

Teacher: Why do you think that?
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Bill: Because, because, the closer it gets, the rate of change keeps decreasing. You know, never going to 
zero. But it keeps, it keeps holding it back. The rate of change does not let it get to 12 and a half.

From an instructional design and teaching perspective, awareness of students’ intuitive theories is important 
because it informs subsequent work with students in efforts to promote cognitive refinements and reorganizations (see 
next section). Students’ intuitive theories, although often not generalizable to all situations, can serve an important 
function in the learning process. In particular, when students encounter instances that conflict with their intuitive 
theories, that is, when they encounter disequilibrium, they are more likely to become explicitly aware of—and search 
for—refined and reorganized conceptions. The point is not to replace the intuitive theory, but rather to use students’ 
intuitive theories as opportunities for refining and reorganizing their thinking about a central mathematical idea, such 
as rate of change. Consistent with Brousseau’s (1997) theory of cognitive obstacles, engaging intuitive or informal 
theories points to how such theories can function not only as a constraint, but also as a resource.

Reorganizing a Central Mathematical Idea — A Cognitive Factor
Students’ thinking about rate of change as expressed in a differential equation was initially either a “descriptor” (that 
is, an adjective) that characterizes the slope or steepness of an observed or imagined solution curve, or a “controller” 
of the direction a solution graph should take. Bill’s previous excerpt speaks to both of these ways of thinking about 
rate. Specifically, Bill had a solution graph in mind (one that is increasing toward 12.5) and he used rate of change as 
a descriptor of the graph. “… as it [the graph] gets closer and closer to 12.5, the rate of change will get smaller and 
smaller …”. Here rate of change is an adjective for an already imagined graph. Rate of change is used to describe 
qualities of the graph. Bill also used rate of change as a mechanism or controller for how the graph should proceed. 
For example, in this same excerpt, Bill stated, “But it [the rate of change] keeps, it keeps holding it [the graph] back. 
The rate of change does not let it [the graph] get to 12 and a half.” In this last quote, rate of change acts as control 
mechanism for how the graph will unfold, rather than as a descriptor of an already unfolded graph. The descriptor and 
controller metaphors for rate offer specificity on how students coordinate a quantity and its rate of change. 

In subsequent problems students compared graphs of solutions to two different differential equations and reasoned 
about the rate of change of the rate of change to account for why one set of solutions touched an equilibrium solution 
and the other set did not. That is, the issue of uniqueness was a concern for students, even though the theorem had yet 
to be introduced. In accomplishing this comparison goal, rate became an object with its own properties that needed to 
be described. 

To clarify, consider the analogy of a red ball. Initially the ball is the primary object of interest. Red is an adjective 
or a descriptor that characterizes the ball. This is analogous to an imagined solution function and its slope or rate. Now 
imagine there is another ball. The new one is a deep, intense red and the old is a pale, pinkish red. Through comparison 
we develop a need to describe redness itself. So we might say, “That is a deep red” or an intense red. Now deep is a 
descriptor (i.e., adjective) modifying red. The focus of our attention has shifted to red. The ball is in our subsidiary 
awareness while our focal awareness is on the nature of redness. This is analogous to shifting one’s attention from an 
imagined graph where rate or slope is a descriptor of that graph or controller of a graph to analysis of rate of change 
with its own properties that need to be described. For example, as one student commented, “The rate of change of the 
rate of change increases as y approaches zero.” In this quote, rate is not a property of a solution graph, but rather an 
object analyzed for its own properties. 

The differential equations under scrutiny were dh/dt = –h and dh/dt = –h1/3, both of which were offered as models 
for the height of a descending airplane and both of which have constant solutions h(t) = 0. Students used software that 
provided a tangent vector field in which the user could activate and drag a vector that continuously changes direction 
per the differential equation. We found it important for the software not to actually sketch solution curves because this 
would take away from a focus on changes to the tangent vector. A snapshot of the click and drag tangent vector field, 
with activated vector shown near the point (.08, .27) is given in Figure 3. 

Students used the software to make conjectures as to if one, both, or neither differential equation predicts a 
landing for the plane. The issue of uniqueness therefore became relevant to students since landing would mean that 
two solution graphs touch (in particular there would be two different solutions that meet at the solution h(t) = 0). As 
illustrated in the following quote, Adam used rate as descriptor and rate as controller to argue that graphs for dh/dt = 
–h would not touch zero.
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Figure 3. Tangent vector field for dh/dt = –h1/3.

Adam:  If you plot your vector field or whatever, your slope is gonna gradually taper off. As your number gets 
smaller and smaller, your slope’s gonna get smaller and smaller [rate as descriptor]. So there’s no way 
you’re ever gonna be able to get to zero on your height because your slope is gonna slow it down [rate 
as controller]. 

Adam also stated that the other differential equation is “kind of the same as the first one.” It is likely that his 
conclusions for both differential equations engaged asymptotic intuition. Other students claimed that dh/dt = –h1/3 
predicts that the plane would touch ground. The justification for this claim was the observed vector field, in which 
students experienced and observed vectors change very quickly from a nonzero slope to a zero slope. To clarify, 
imagine dragging the activated vector shown in Figure 3 down to the h-axis, moving parallel to the dh/dt axis. What 
students observed is that, as they moved the tail of the vector onto the h-axis, the vector makes a sudden and abrupt 
change to the horizontal position. They referred to this sudden change in slope as “snapping to zero.” This sudden 
change in slope does not occur for vectors associated with dh/dt = –h.

Relying on observed vectors snapping to zero is a form of empirical justification. Accounting for the snap 
then became a topic of conversation and further analysis. Part of this analysis involved finding analytic solutions, 
which yielded conclusive evidence that solutions to dh/dt = –h do not touch zero while solutions to dh/dt = –h1/3 do 
touch zero. The analytic solutions did not, however, offer students insight into why solutions were or were not unique. 
This insight was gleaned by reexamining the “snapping” of tangent vectors near zero (or not snapping) in light of how 
the rate of change changes. That is, framing the snapping in terms of the rate of change of the rate of change. 

Adam:  Okay, um on our slope field it looks like the rate of change of our, the differential equation, is going 
down kind of slow for the –h1/3. Then after it passes, what is it, one, it snaps. It starts snapping to zero 
[Lynn: Why?] Why? When you re-write the derivative of your differential equation. So it’s negative 
one third, uh, ‘h’. Well, next to the three, pull out your, yeah, there you go. Yeah, when you look at that 
[d(–h 1/3)/dh] of we can see that, um, as h gets smaller, it just blows up. But that means that the, when 
you’re at zero it’s undefined. But as you go to zero it’s getting bigger and bigger and bigger. As you 
get close to zero, you get a really big number. So as you go to zero it’s not defined.
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Teacher:  What’s the ‘it’ that is undefined?
Joe:  The rate of change of the rate of change becomes infinitely large. As you approach zero the rate of 

change of the rate of change goes to infinity.

This cognitive reorganization in rate (from rate as descriptor or controller to rate as object with its own properties 
that need to be described) created an opportunity for the teacher to then relate student thinking to the formal, symbolic 
expression ( , ) ,y f t y L∂

∂ £  a short step away from conditions for uniqueness. From the students’ perspective, this 
“formalization” was a recognizable recasting of their analyses of the rate of change of the rate of change. Put another 
way, the observation that vectors for one of the differential equations snapped to zero functioned as a key idea (Raman, 
2003) that provided a way to connect observations, predictions, and intuitions to formal, conventional mathematical 
expressions. In general, awareness of how key ideas function is important in mathematical reasoning, from using 
theorems as tools, to creating and using definitions, to proving. We hope that this chapter offers readers some insights 
into the processes that enable movement between students’ ways of thinking and more conventional or formal 
expressions of that thinking.

The Familiarization with Mathematical Terminology and Meaning — A Social Factor
Expressing students’ thinking about the rate of change of the rate of change in terms of the criteria ( , )y f t y L∂

∂ £  
was critical to formally stating the uniqueness theorem. The process of becoming increasingly more familiar with 
the theorem, however, continued even after the introduction of the formal statement by the teacher. This process 
involved application of the theorem in other settings, a revisiting of how to interpret ideas such as boundedness and 
partial derivatives, and what one can logically infer (or not) when the conditions of the theorem are not met. For the 
most part, the teacher gave clear and explicit instruction on these issues. Because the issues were genuine concerns 
of students, the insertion of new, conceptual information from the teacher appeared to be effective. We characterized 
these conversations between the teacher and students as a social factor because it is the teacher who takes the lead 
in familiarizing students with conventional terminology and the intended mathematical meaning. We think that it is 
important for the teacher to find those times when the telling of new information (see Marrongelle and Rasmussen, this 
volume) can help students further organize and sharpen their understandings. In addition to reinventing mathematical 
ideas with the guidance and support of the teacher, students are also expected to adopt conventional terms and meanings 
and thus part of a teacher’s job is to familiarize students with the language of mathematics. 

To recap, the social and cognitive factors that help account for the process by which students came to use 
the uniqueness theorem as a tool are: (1) The negotiation of what counts as an acceptable explanation, (2) The 
engagement of an intuitive theory, (3) A cognitive reorganization about a central idea, and (4) The familiarization with 
mathematical terminology and meaning. These four factors offer a way to conceptualize the process of developing 
formal mathematics and use of formal mathematics, such as theorems, in a way that values both cognitive and social 
realities of classroom life. As such, we hope this particular example inspires readers interested in engaging their 
students in formal mathematics in other content areas. 

Reflections on Instructional Design
We describe the sequence of tasks by which students came to use the uniqueness theorem as a tool for reasoning 
and solving problems in terms of four types of tasks: Prediction, Exploration, Mathematization, and Generalization. 
Prediction tasks required graphical predictions for the behavior of solution functions. We saw examples of this with 
the differential equations dP/dt = 0.3P(1 – P/12.5), dh/dt = –h, and dh/dt = –h1/3. Exploration tasks used technology 
so that students could graphically explore tangent vector fields and make inferences about solution function behavior. 
Whether or not graphs of solutions with positive initial conditions touched the zero solution was, for many students, 
an open question. Exploration type tasks tended to lend themselves to varied and useful conjectures by students.

Mathematization tasks required students to pursue analytic work to solve the differential equations, and to make 
comparisons between the analytic solutions and their graphical predictions. Because of the analytic solutions, students 
knew that solutions to dh/dt = –h with positive initial conditions never touched the constant solution h(t) = 0, while just 
the opposite was the case for solutions to dh/dt = –h 1/3. The analytic solutions revealed the difference between solutions 
to the two differential equations. It did not, however, offer students insight into why there was this difference. 
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In need of further insight, students returned to exploration tasks in which the teacher directed their observations 
to how a vector changes as they dragged it toward y = 0. It is at this point that students noticed that the vector “snaps” 
onto the horizontal line y = 0. Some students made the connection that this snap indicates that the solution curve 
makes a kind of “jump” to get to the constant solution curve. Further mathematization of this connection resulted 
in symbolically expressing the snap in terms of the partial derivative of the rate of change function f(t, y). Finally, 
generalization tasks, which came after this re-exploration and further mathematization, led to a generalized statement 
of the uniqueness theorem. Students further applied and used the uniqueness theorem to reason about solutions to a 
variety of different differential equations. 

The boundaries between prediction, exploration, mathematization, and generalization tasks are of course not 
strict. Student work on a particular task, for example, might involve prediction as well as exploration. We also find it 
useful to plan for cycles of exploration and mathematization tasks because useful conclusions can often then be drawn, 
resulting in more robust generalizations. 

To conclude the chapter we offer Figure 4 as a way to relate the four types of instructional tasks to the cognitive 
and social factors that contributed to students’ use of the uniqueness theorem as a tool for reasoning and solving 
problems. The placement of the rectangles representing the cognitive and social factors under the various types 
of tasks indicates that we saw evidence of these factors when the class was engaged in the corresponding tasks. 
For example, there were instances of negotiating what counts as an acceptable mathematical argument at various 
times throughout the prediction, exploration, and part way into the mathematization tasks. Reorganization of student 
thinking about the central idea of rate of change, on the other hand, occurred primarily during the exploration and 
mathematization cycles. The familiarization with conventional terminology occurred near the end of the prediction-
exploration-mathematization-generalization sequence. 

Prediction Exploration Mathematization Generalization

Negotiation of acceptable arguments

Engagement of intuitive theories

Reorganize central idea

Familiarization with terminology

Figure �. Relating cognitive and social factors to instructional design.

The overlap in the rectangles that represent the social and cognitive factors and the cyclical nature of the 
exploration-mathematization tasks point to the complexity of the learning environment. Our intention is that Figure 
4 puts some structure or organization to this complexity. Teaching for understanding is indeed a complex endeavor, 
especially when teaching and instructional design explicitly attend to (1) social interactions in which meanings are 
established, (2) emerging and negotiated norms for convincing arguments, (3) student conceptions that can be built 
on and extended, and (4) processes in which students can connect more formal mathematical developments to their 
personal experience.

Finally, helping students become users of theorems as tools is of course made easier by using well thought out 
and research-based instructional tasks. As reported elsewhere (Rasmussen & Keynes, 2003) a similar sequence of 
prediction, exploration, mathematization, and generalization tasks proved useful for student reinvention of analytic 
solutions to systems of linear differential equations. It is important to keep in mind, however, that the tasks themselves 
do not guarantee that students will actually be engaged in predicting, exploring, mathematizing, and generalizing in 
ways that lead them to ownership of formal mathematics. The teacher has primary responsibility for enlisting the 
social and cognitive factors in ways that make this possible. 



12.  Teaching for Understanding 163

References
Boyer, C. & Merzbach, U. (1989). A history of mathematics. New York: Wiley.
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Kluwer Academic 

Publishers.
Cobb, P. (2000). Conducting classroom teaching experiments in collaboration with teachers. In R. Lesh & E. Kelly 

(Eds.), New methodologies in mathematics and science education (pp. 307–334). Mahwah, NJ: Erlbaum.
Cobb, P. & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental 

research. Educational Psychologist, 31, 175–190.
Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, The Netherlands: Reidel.
Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht, The Netherlands: Kluwer Academic 

Publishers.
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical 

Thinking and Learning, 2, 155–177.
Hazzan, O. & Leron, U. (1996). Students’ use and misuse of mathematical theorems: The case of Lagrange’s theorem. 

For the Learning of Mathematics, 16, 23–26.
Kallaher, M. J. (Ed.) (1999). Revolutions in differential equations: Exploring ODEs with modern technology. 

Washington, DC: The Mathematical Association of America.
Kelly, A. E. (2003). Theme issue: The role of design in educational research. Educational Researcher, 32, 3–4.
Kline, M. (1972). Mathematical thought from ancient to modern times. New York, NY: Oxford University Press.
Piaget. J. (1970). Psychology and epistemology. New York: Viking Press.
Raman, M. (2003). Key ideas: what are they and how can they help us understand how people view proof? Educational 

Studies in Mathematics, 52, 319–325.
Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students’ understandings 

and difficulties. Journal of Mathematical Behavior, 20, 55–87.
Rasmussen, C. (2004). The evolution of formal mathematical reasoning: a case study of the uniqueness theorem in 

differential equations. In McDougal, D. (Ed.), Proceedings of the Twenty-Fourth Annual Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education. (Vol. 2, pp. 959–
968). Toronto, Canada.

Rasmussen, C. & Keynes, M. (2003). Lines of eigenvectors and solutions to systems of linear differential equations. 
PRIMUS, Volume XIII(4), 308–320. 

Rasmussen, C., Kwon, O., Allen, K., Marrongelle, K. & Burtch, M. (2006). Capitalizing on advances in mathematics 
and K–12 mathematics education in undergraduate mathematics: An inquiry-oriented approach to differential 
equations. Asia Pacific Education Review, 7, 85–93.

Rasmussen, C. & Whitehead, K. (2003). Learning and teaching ordinary differential equations. In A. Selden & J. 
Selden (Eds.), MAA Online Research Sampler. (http://www.maa.org/t_and_l/sampler/rs_7.html)

Rasmussen, C., Yackel, E., & King, K. (2003). Social and sociomathematical norms in the mathematics classroom. In 
H. Schoen & R. Charles (Eds.), Teaching mathematics through problem solving: Grades 6–12 (pp. 143–154). 
Reston, VA: National Council of Teachers of Mathematics.

Raychaudhuri, D. (2007). A layer framework to investigate student understanding and application of the existence and 
uniqueness theorems of differential equations. International Journal of Mathematical Education in Science and 
Technology, 38, 367–381.

Schoenfeld, A. (1989). Explorations of students’ mathematical beliefs and behavior. Journal for Research in 
Mathematics Education, 20, 338–355.

West, B. (Ed.). (1994). Special issue on differential equations [Special issue]. The College Mathematics Journal, 
25(5).



16� Part Ic.  Proving Theorems

Acknowledgements .  Support for this paper was funded in part by the National Science Foundation under grant No. 
REC-9875388. The opinions expressed do not necessarily reflect the views of the foundation. The authors thank Karen 
Allen, Kevin Dost, and Jennifer Olszewski for their assistance in the data collection and analysis.



Part II
Cross-Cutting Themes

a. Interacting with Students





16�

13
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Mediate between All Lecture and All Student Discovery
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A growing number of postsecondary mathematics educators are exploring teaching strategies other than lecture 
(Holton, 2001). The motivations for such change include personal dissatisfaction with student learning, students’ 
poor retention of knowledge, student dissatisfaction with their undergraduate experiences in science, mathematics, 
and engineering (National Science Foundation, 1996; Seymour & Hewitt, 1997), as well as efforts to rethink core 
courses such as calculus, linear algebra, and differential equations. As postsecondary educators make changes to their 
practice they often struggle with many of the same issues that K–12 mathematics teachers encounter as they attempt 
to change their practice. In this chapter we address one of these issues, namely the role of teacher lecture (or telling) 
and strategies that teachers can use to balance student discovery and teacher telling.

Navigating a new terrain of teaching practice is particularly tricky for any teacher, elementary or university, who 
may never have experienced as a learner an approach to teaching other than lecture and demonstration. For example, 
some teachers believe that changes in practice must be dramatic and involve a total abandonment of lecture (where 
the teacher has all the responsibility for developing the mathematics) to a form of practice that leaves students to 
discover all ideas and techniques for solving problems. These are two ends of a continuum from all student discovery 
to all teacher telling. How, why, and when a teacher positions him or herself along this continuum is a source of 
tension for teachers. This was the case for Heaton (2000), an accomplished fourth-grade elementary school teacher, 
university teacher educator, and educational researcher. In the quote below, Heaton reveals her own doubts about her 
new approach to teaching mathematics.

I had stopped all telling and eliminated any type of evaluation of students’ answers. I tried to do nothing 
but ask questions and remain neutral.… I accepted all individual answers but was at a loss for how to move 
forward. I was beginning to feel that math needed to be more than just a time to share ideas…I had begun to 
feel as if I ought to be doing something more with responses. I was a teacher. I was supposed to teach. (p. 
61, italics in original)

Heaton’s account underscores two important points for teachers interested in creating classrooms in which students 
are more actively involved in the building and creating of ideas and methods for solving problems. First, changing 
teaching practice does not mean wholesale abandonment of past practice. This means that teachers must go beyond 
simply replacing old strategies with new ones; rather teachers must determine how to integrate new strategies into 
their existing repertoire. Second, the role of the teacher needs to include more than bringing tasks to the classroom and 
standing back as students solve problems. 

But how might a teacher continue to develop mathematical ideas with students when students’ meaningful 
constructions appear to be inadequate for the bigger picture the teacher envisions? Reflecting on her experiences with 
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third graders, Ball (1993) posed the question in the following way:

How do I create experiences for my students that connect with what they now know and care about but that 
also transcend their present? How do I value their interests and also connect them to ideas and traditions 
growing out of centuries of mathematical exploration and invention? (p. 375)

In this chapter we address this challenge by first highlighting two studies from the literature on the role of telling in 
teaching. Then we describe our research in which we developed two teaching strategies for navigating the all discovery 
— all telling continuum. Finally, we present two different examples of these teaching strategies and highlight how 
they can be used to engage students’ current thinking while moving forward the mathematical agenda (Rasmussen 
& Marrongelle, 2006). For each example we offer commentary on the specific teacher actions that we believe help 
teachers move the class forward and navigate the all discovery — all telling continuum.

Navigating Along the All Discovery–All Telling Continuum: Lessons from Research
The previous quotations provide evidence that teachers struggle with the action of telling. We have noticed in our own 
teaching and in our work with other university mathematics faculty a tendency to make radical changes in practice, such 
as avoiding telling students information and abandoning many past practices. Effective and lasting shifts in teaching 
practice, however, rarely involve such drastic changes. Certainly the teacher action of telling has been downplayed as 
transmission models of teaching give way to models influenced by contemporary views of learning (Lobato, Clarke, 
& Ellis, 2005; National Council of Teachers of Mathematics, 2000). Research into mathematics teachers’ struggles, 
on the other hand, provide insight into the more nuanced changes that teachers make as they move along a continuum 
from all student discovery to all teacher telling (Chazan & Ball, 1999; Fennema & Nelson, 1997; Heaton, 2000; 
Herbst, 2003; Lampert, 2001; Leinhardt & Steele, 2005; Lobato et al., 2005; Nelson, 2001). 

In order to promote purposeful movement along the all discovery—all telling continuum, we explicitly name 
two teaching strategies: transformational record and generative alternative. By naming these teaching strategies, and 
thus making the work of teaching more explicit, teachers can begin to identify and plan to use such strategies in their 
instruction. 

We begin by examining the study conducted by Chazan and Ball (1999) that examines a teacher’s struggles with 
how to intervene when a class discussion begins to move in the direction of a debate void of reflection on important 
mathematical ideas. We juxtapose this research with a review of Lobato, Clarke, and Ellis’s (2005) recasting of the 
telling action of teaching while keeping student thinking at the forefront of teachers’ decision making.

Chazan and Ball (1999) analyze a case study of a high school algebra class during a lesson in which students 
debated how to average pay bonuses across 10 people when one person received a bonus of $0. The authors use this 
case study to illustrate problems with characterizations of teaching that emphasize what teachers ought not to do, in 
particular that teachers ought not to tell. In the case under study, students engaged in a debate about whether or not to 
include the $0 entry in the calculation of the average. One student suggested calculating the average by adding up the 
values and dividing by 9 (ignoring the person who received the $0 bonus). Another student argued – by analogy to 
computing grade averages – that the $0 must count in the computation of the average because to do otherwise would 
ignore a person. Other students chimed into the discussion agreeing either that you included or didn’t include the $0 in 
the calculation of the average. The teacher characterized his feelings about this discussion as follows:

I was enjoying the discussion and appreciating students’ engagement, when I began to grow uneasy. I 
wondered about where the class would go with the disagreement over the zero. Now that the views had 
been presented, would students be willing to reflect on their own views and change them or would each 
argue relentlessly for his or her own view? Would they be able to come to some way to decide whether these 
averages were correct? (p. 3)

In other words, the teacher was worried that the discussion was degenerating into simple position taking, rather 
than leading to a resolution for why a particular approach was mathematically appropriate. Thus the teacher was 
faced with a decision about what to do next in the class — allow the discussion to continue when it was unlikely that 
a mathematically grounded solution would result (one extreme of the all discovery — all telling continuum) or tell 
the students how to compute the average (the other extreme of the all discovery — all telling continuum). Rather 
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than position himself on one or the other extreme, the teacher positioned himself in the middle of this continuum and 
redirected the discussion to the interpretation or meaning of $500 or $555.56 (the results obtained by calculating the 
average using 10 and nine people, respectively). A redirect is an example of a teaching strategy that takes charge of 
the mathematical agenda by moving students away from a calculation to the fundamental mathematical issue under 
discussion.

The teacher’s dilemma of how much to tell, what to tell, and when to tell is salient in the previous example. 
Other researchers have taken up the particular strategy of telling in light of contemporary theories of learning and the 
emphasis placed on non-telling strategies by reform-based policy documents. Typical conceptions of telling involve 
teacher telling as a one-directional action: the teacher tells and the student listens and tries to make sense of the 
information. Such typical ideas about telling tend to ignore the role of the student in the learning process. In particular, 
conceptualizing telling as simply a one-directional action fails to take into account the manner in which students 
interpret teacher utterances. Many teachers have experienced instances where they have told students some bit of 
information (be it directions about a class activity, a fact or definition, or an explanation of a process to solve a 
problem) and students didn’t “get” it. One way to interpret students not “getting” what a teacher told them is that we 
cannot assume students understand what teachers tell them in the way that teachers might anticipate. 

Lobato, Clarke, and Ellis (2005) offer an alternative way to think about telling in which the teacher follows up 
her/his utterances with other actions designed to make explicit or further students’ thinking. These researchers start 
from the premise that teachers have experience teaching students by telling or lecturing — that is they already know 
how to tell — but struggle with when to tell, what to tell, and why to tell (p. 109). By focusing on the role or function 
of telling, rather than telling as a form of instruction itself, the researchers describe a ‘reformulation’ of telling that 
is fundamentally concerned with student interpretation or understanding of the ideas being told. This is similar to 
Heaton’s (2000) revelation that telling has a place in new forms of teaching.

Perhaps showing or telling did have a place in this teaching. I could decide when and why to do it. The telling 
I did…was a move in response to a child’s understanding. This is quite different from the kind of telling I did 
in my past practice, independent of students’ understanding (p. 64).

Lobato, Clarke, and Ellis describe a sequence of teaching actions in which teacher utterances or telling of 
information are followed up with (and often preceded by) instances of the teacher soliciting student thinking. The 
authors detail the following teacher actions, all of which are strategies that teachers can use to navigate along the all 
discovery — all telling continuum:

•	 describing a new concept, 
•	 summarizing students’ ideas in order to provide a new idea, 
•	 providing information for students to test their ideas,
•	 presenting a counterexample, 
•	 presenting work from another (possibly hypothetical) student,
•	 engaging in Socratic questioning, and 
•	 presenting a new representation. 

For example, the authors present an episode in which the teacher describes a new concept in order to support a 
student’s learning of division as partitioning. In this particular episode, a student was working on a problem in which 
she was asked to find the rate at which a faucet was leaking given that 16 oz. of water collected in 24 minutes. The 
student attempted to answer this question by dividing 24 by 16, resulting in an answer of 1.5, which she could not 
appropriately interpret. Based on prior experiences with this student, the teacher attempted to assess and move forward 
this student’s thinking about the connection between division and partitioning by posing a simpler problem (How far 
does a duck travel in 1 second given that the duck travels 7cm in 3 seconds?). The student correctly computed the 
distance traveled in 1 second as 7/3cm, dividing both 7cm and 3 seconds by 3. The teacher then asked the student 
to partition a line segment representation of the event to represent her calculation (the student had previously used 
line segment representations in her work). The student proceeded to partition the line segment into seven equal parts 
instead of three equal parts and located her ‘answer’ of 7/3 by estimating on the portioned line segment. In response 
to this student’s action, the teacher showed the student her own representation of the connection between division by 
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three and partitioning the segment (see Figure 1). In her explanation of her diagram, the teacher said, “One thing that 
dividing by 3 does is split this number line or drawing into three equal parts” (p. 119). The teacher then asked the 
student some questions to connect her previously calculated answer of 7/3 to the teacher’s representation. 

The authors point out that the teacher did not “provide [the student] with a step-by-step method for determining 
which number to divide” (p. 119), rather, she described an idea: the connection between division and partitioning. 
Additionally, rather than assume that the student constructed the same meaning of the representation as the teacher, 
she posed a follow-up task to ascertain the student’s thinking. As it turned out, the student was not able to successfully 
complete the task, indicating that she did not construct an understanding as hoped for by the teacher. We stress that the 
follow-up task probing the student’s interpretation of the teacher’s utterances was equally as important as the teacher’s 
utterances themselves. 

Rethinking the role of telling in teachers’ repertoires of teaching actions is an important line of inquiry in 
mathematics education research. Too often, reform-based teaching recommendations are interpreted as implying that 
acceptable teacher actions are only those toward the all student discovery end of the continuum. We do not concur 
with such interpretations. Teachers naturally struggle with questions of telling, both in terms of breaking away from 
traditional conceptions of telling and resolving new ideas of teaching in terms of new conceptions about telling. 

Rethinking the role of teaching builds on contemporary views of learning, which emphasize that learning is a 
process involving constant interaction between the learner and her environment (Blumer, 1969; von Glaserfeld, 1995). 
Such perspectives on learning recognize that learning entails a process of becoming a member of a mathematical 
community — that is, developing ways of communicating, reasoning, and providing arguments to defend ideas — and 
a process of active individual participation (Cobb & Bauersfeld, 1995; Cobb & Yackel, 1996). In particular, we take 
symbolizing and participating in argumentation as learning and as such developed teaching strategies to promote 
symbolizing and argumentation. 

Developing Teaching Strategies for Navigating the Continuum
As teachers of undergraduate mathematics, we are keenly aware of the tension between, on the one hand, fostering 
a classroom environment in which students’ ideas are valued and supported, and on the other hand, moving forward 
students’ thinking. Our work as teachers of undergraduate mathematics and researchers of undergraduate mathematics 
learning and teaching provides us with opportunities to carefully investigate the types of teacher interventions that 
build on students’ ideas and further students’ mathematical reasoning. In this section we describe a research project 
in which we identified two strategies that teachers use to connect to student thinking while moving forward their 
mathematical agenda; in other words, strategies for navigating the all discovery–all telling continuum. 

The basis for the teaching strategies we describe below is rooted in Freudenthal’s (1991) instructional design 
theory of Realistic Mathematics Education (RME). Part of the intent of RME is to offer heuristics to guide the creation 
of activities in which students develop important mathematical ideas and methods by solving a series of interesting 
problems. This intention is captured in Freudenthal’s (1991) adage that, first and foremost, mathematics is a human 
activity. Freudenthal’s adage has mostly been used to refer to how students should experience mathematics learning. 
We think that this adage applies equally well to the role of teachers. The point we want to bring out is that an important 
part of mathematics teaching is responding to student activity, listening to student activity, notating student activity, 
learning from student activity, etc. In this sense, mathematics teaching is a human activity about human (i.e., student) 
activity (Rasmussen & Marrongelle, 2006). 

The research we report here is part of a larger design research project in differential equations. Design research 
consists of a cyclical process of designing instructional activities and researching the learning and teaching that takes 

7 cm

3 sec

Figure 1. Teacher’s representation of the connection between division by 3 and portioning into three equal pieces. 
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place in conjunction with classroom implementation of the activities. An important feature of this cyclical process 
is the capacity to generate, test, and refine hypotheses about learning and teaching. In our design research project, 
we worked with a variety of undergraduate differential equations teachers who were implementing course materials 
inspired by the instructional design theory of RME. Instruction in these classes generally followed an inquiry approach 
in which important mathematical ideas and methods emerged from students’ problem solving activities and discussions 
about their mathematical thinking. As such, these classes provided an appropriate setting to examine strategies teachers 
used as they navigated the all discovery — all telling continuum. The data we collected included: video-recordings of 
each class session, copies of students’ written work, video-recorded interviews with individual students, and audio-
recorded weekly project meetings that included the classroom teacher and at least one other researcher who attended 
each class session.

During our review of classroom videorecordings and audiorecordings of project meetings, we developed a 
hypothesis about two types of strategies the differential equations teachers used to navigate the all discovery — all 
telling continuum. One strategy we identified was based on our observation that teachers used notations, diagrams, 
or other graphical representations initially to record student thinking and then later students used the teacher’s record 
to solve new problems. We call this strategy a transformational record (Rasmussen & Marrongelle, 2006), as the 
teacher’s record of students’ thinking is transformed by students as a means for further reasoning.

A second strategy we identified was based on our observation that teachers introduced alternate symbolic 
expressions or graphical representations for the purpose of promoting student explanation and justifications for the 
validity of these alternatives. We call this strategy a generative alternative (Rasmussen & Marrongelle, 2006), as the 
alternative representation offered by the teacher generates students’ explanations and justifications and allows for 
progress to be made through logical reasoning. 

We identified occurrences of the transformational record strategy when (1) some form of notation (typically 
informal or unconventional notation) was either used by a student in whole class discussion or introduced by the 
teacher to record or notate student reasoning and (2) this notational record was then used by students in achieving 
subsequent mathematical goals. We also developed two criteria for identifying episodes of generative alternatives. 
Students in the differential equations classes were often asked to make graphical or symbolic predictions, and on 
numerous occasions the teacher invited students to consider alternatives, either student-generated or invented by the 
teacher, to one or more of their predictions. We coded such episodes as examples of generative alternatives when 
the alternatives functioned to (1) contribute to the classroom expectation that students provide explanations for their 
responses and (2) elicit or generate justifications for why students believed particular graphs or symbolic expressions 
to be mathematically correct or incorrect. That is, these alternatives generated explanations and justifications1.

In the remainder of this chapter, we illustrate the transformational record strategy with an example from one of 
our differential equations project classes and we illustrate the strategy of generative alternative from a senior capstone 
course for prospective secondary mathematics teachers taught by the second author. We encourage readers to imagine 
situations in which they could use either type of strategy in other content areas. 

Transformational Record: Developing and Using Slope Fields
As the person who knows the discipline, a teacher has the obligation of enculturating students into the language and 
conventional representations of the broader community while at the same time honoring and building on student 
contributions. In other words, a teacher frequently needs to navigate the all discovery — all telling continuum in 
her work for the purpose of ensuring that students are fluent in mathematics vocabulary and conventions. Similar to 
Lobato et al.’s (2005) claim that teacher telling needs to be followed up with tasks to ascertain students’ thinking, we 
demonstrate how the results of teacher telling (in this case the introduction of a mathematical convention) can be used 
by students to further their thinking about mathematical ideas. However, instead of introducing the mathematical idea 
and then posing a task to ascertain students’ thinking, the teacher in this example initiates a class discussion around 
one student’s idea and then, when he feels the class has reached consensus, introduces a conventional mathematical 
notation to fit the class’s idea. Students demonstrate that the mathematical convention fits with their idea when they 
use the notation to further their thinking. 
1  The distinction between explanation and justification can be subtle. Explanation includes describing how one solved a problem, describing one’s 
thinking, or clarifying another person’s solution. Justification involves providing reasons why a solution is correct or incorrect or why an argument 
is valid or invalid.
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The example we discuss occurred on the second day of a differential equations class in which students were asked 
to make predictions about the shape of a population versus time graph for a single species of fish that reproduces 
continuously and has unlimited resources. No differential equation was provided. Students worked on the task in small 
groups, after which the instructor led a whole-class discussion of students’ responses to the task. The typical response 
to this task was an exponential or quadratic-like shaped graph (see Figure 2a) positioned above the t-axis. 

The first topic of conversation initiated by the teacher about students’ graphical predictions was whether or not 
the initial slope at P = 10 and t = 0 should be zero or have a positive value. The first student to speak up on this issue 
argued that the slope should be positive. The teacher received a “correct” response and could have moved on with the 
lesson, exercising a move situated more toward the all telling end of the continuum. However, he led a whole class 
discussion about the initial slope issue that lasted over eight minutes representing a slide along the all discovery — all 
telling continuum. 

The fact that the teacher led a discussion of a student’s initial response is significant for two reasons. First, it allowed 
for students to express alternative viewpoints and in the process important mathematical issues and interpretation were 
discussed, such as exponential growth, the existence of the fish pond prior to time t = 0, and the meaning of continuous 
reproduction. Second, it enabled other students in the class to take ownership of the positive slope idea. This is 
important because the research literature suggests that when students take ownership of mathematical ideas, they 
are more likely to develop deep understandings of them rather than think of them as memorized facts (c.f., NCTM, 
2000). 

Thus, at the end of the eight minute discussion, the teacher drew a tangent vector with positive slope at the point 
where P = 10 and time t = 0 (see Figure 2b), and his tangent vector served the function of recording the reasoning 
that emerged from the ideas put forth by students during class discussion. The teacher’s move along the continuum 
toward the all discovery end, evidenced by his choice to give students the opportunity to discuss their ideas rather than 
immediately draw a tangent vector on the chalkboard, led to an idea that was more representative of the whole class’s 
thinking, rather than the thinking of one student. In this case, the teacher’s proactive role in the notating process was 
far more complex than simply providing a record that fit with one student’s thinking for the purpose of introducing a 
particular conventional mathematical representation. 

Subsequent topics of conversation about students’ graphical predictions for population over time included how 
the rate of change at this initial point compared to the rate of change at a later time, how (and why) the rate of change 
would compare to the other rates if the initial population was greater than what was originally sketched (e.g., if 
at t = 0, P = 20), and what the rate of change would be if the population at time t = 0 was P = 0. As was the case 
with the teacher’s initial tangent vector record of students’ reasoning, these additional conversations provided further 
opportunities for the teacher to continue to record students’ reasoning with additional tangent vectors, such as that 
shown in Figure 2c. We refer to Figure 2c as an emerging tangent vector field because it is a consequence of classroom 
discourse and it is beginning to resemble what an expert in differential equations would recognize as a slope field (or 
tangent vector field). 

The class discussions surrounding students’ graphical prediction for the population versus time scenario and 
the teacher’s resulting records of this reasoning resulted in important consequences. One important consequence is 
that they provided an opportunity for the teacher to record students’ reasoning in a way in which the conventional 
inscription of a slope field began to take form. Thus, the teacher was able to connect conventional mathematical ideas 
with student thinking. The point we want to make next is that the slope field, which was initially the teacher’s record of 
students’ reasoning, subsequently became a means for students to reason about the symbolic form of the rate of change 
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Figure 2. Population versus time graphs and records of student reasoning about rate.
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equation. Thus, not only did students demonstrate their understanding of the mathematical ideas behind the teacher’s 
record, but a transformation in the teacher’s record took place as well.

A critical idea that facilitated this transformation emerged out of students’ arguments for why, if the initial 
population is 20 at time t = 0, the initial slope would be the same as the slope directly to the right on the 10-curve (the 
solution curve starting at t = 0, P = 10; see Figure 2c). Students’ reasons for this horizontal invariance in slope relied 
on their imagery of the scenario. The basic argument put forth by the class was that it didn’t matter whether you called 
time zero Wednesday, Friday, or Labor Day, the population of fish would be increasing at the same rate for a given 
initial population. What mattered was the number of fish; what you decided to call time zero is arbitrary. As shown in 
Figure 2c, this line of reasoning was recorded by the teacher with two different tangent vectors that had the same slope 
at P = 20 but at two different t-values.

All the mathematical work up to this point occurred without the symbolic expression for the differential equation. 
Developing the symbolic expression was the next task in the sequence of instructional activities. The task began 
with the teacher inviting students to consider whether the rate of change, dP

dt , should depend explicitly on just the 
population P, just time t, or on both P and t. That is, if dP

dt =  ‘something’, what should the “something” consist of? 
Should it contain just P, just t, both P and t? Conceptually, this tends to be a challenging task for students for two 
reasons. First, students need to explicitly distinguish between the rate of change of a quantity and the quantity itself. 
Second, P stands for both an unknown function and a variable in the rate of change equation. Reasoning about what 
the explicit variables are in a rate of change equation involves conceptualizing rate as a function, which is cognitively 
more complex than conceptualizing rate of change as the slope of the tangent line at a point (Rasmussen, 2001). 

During the whole class discussion, one student, Bill, pointed to the emerging tangent vector field (which is still 
on the chalkboard) to support his argument. In other words, the teacher’s previous record of student reasoning shifted 
function and served as a means for students to reason about why the rate of change equation should depend explicitly 
on just P.

Bill: Ok. We’re trying to find what the rate of change is. This differential should tell me the rate of change. 
That’s the question. The something that is the right side of this, uh, the graph, or the right side of the [rate of 
change] equation. When we looked at our [P vs. t] graphs, we all agreed that, when the population reaches a 
certain size, all the rates of change are going to be the same. Doesn’t matter what time they reach that, that 
change.

Notice that Bill’s argument relies on the previous conclusion that 
“we all agreed that, when the population reaches a certain size, all the 
rates of change are going to be the same.” This statement is significant 
because horizontal invariance of slopes now becomes the basis from 
which Bill argues that the rate of change equation should only depend 
on P, supporting our claim that the teacher’s initial record is transformed 
into a means for reasoning about a different mathematical idea. As Bill 
continues to discuss his reasoning, the instructor, without comment, adds 
additional tangent vectors to the graph on the board, as illustrated in 
Figure 3. These additional markings serve to record Bill’s thinking and to 
further develop the emerging tangent vector field into a slope field.

As Bill articulates in his argument, the idea and record that for a set population value the rate of change is 
invariant across time, is transformed into a means for reasoning that the differential equation should explicitly depend 
only on P and not on time t. 

The teacher’s proactive role in initiating and refining the tangent vector field record of student reasoning also 
included making important decisions about when to withhold making a record of student reasoning. As illustrated in 
this example, the teacher initially chose not to make a tangent vector record of the reasoning expressed by the first 
student. This created an occasion for the classroom community to develop a line of reasoning for which the emerging 
tangent vector field was a fit. This emerging tangent vector field then served as a means for students to reason about 
what the differential equation should explicitly depend on. We propose that the students likely would not be able to 
reason in the ways that they did when they were attempting to develop the symbolic form of the differential equation 
if the teacher did not allow adequate discussion time before drawing the tangent vector on the chalkboard. His decision 
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Figure 3. Emerging tangent vector field
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to allow for adequate discussion time stemmed from his concern that more than just one or two students think deeply 
about the mathematical ideas and from his desire to foster a classroom environment in which students routinely 
explained and justified their thinking. 

Generative Alternative: Opportunities for Justification that Clarify Underlying Concepts
Sometimes the tension that occurs as a teacher navigates the all discovery — all telling continuum arises from obvious 
classroom situations. For example, the teacher in the study by Chazan and Ball (1999) faced a palpable dilemma in 
his classroom as he deliberated on how to ensure that students were discussing mathematically significant ideas while 
at the same time supporting students’ engagement in the class discussion. Other times, the teacher must leverage 
her judgment and experience when making instructional decisions with less than obvious data. For instance, in the 
previous example, a student responded to the differential equations teacher’s first question with a correct response. 
The teacher’s strategic decision to hold back from drawing a tangent vector resulted in more students taking ownership 
of the concepts underlying the creation of a slope field. Consequently, students were positioned to provide sound 
arguments for what the symbolic form of the differential equation would look like. In this next example, we further 
highlight the proactive role of the teacher in connecting student thinking to the intended mathematical ideas. 

This next example, which illustrates the strategy of generative alternative, occurred during a unit on function in 
a course for prospective high school mathematics teachers. Both teaching strategies of transformational record and 
generative alternative are grounded in the research literature. Both strategies were derived from work in differential 
equations (Rasmussen & Marrongelle, 2006), but the power of such research is that these strategies can be used by 
the reader in his or her own classroom in content areas other than differential equations. To illustrate this point, we 
use an example from a class other than differential equations in which the teacher was consciously aware of the 
generative alternative strategy and used the strategy intentionally to create a situation which pressed students for 
justification. Thus, although the example is not from the published research literature, it is grounded in the ideas from 
the literature. 

Students were given the Bottle Problem (Oehrtman, Carlson, & Thompson, this volume), as shown in Figure 4. 
The teacher used the problem to highlight the covariational nature of functions and to emphasize that one does not 
necessarily have to have an algebraic rule to discuss a functional relationship. 

Students worked on the problem in class and through cycles of small group work and whole-class discussions. 
During these sessions, the students gave sound reasons explaining why the portion of the graph (up to the beginning 
of the neck) would look similar to that shown in Figure 5. Most students also reasoned appropriately that the graph 
corresponding to the neck of the bottle would be linear. Based on prior research with this problem (Carlson, Jacobs, 
Coe, Larsen, & Hsu, 2002), the teacher anticipated that students would find it a challenge to determine the slope of the 
graph that depicts the transition from the round portion of the bottle to the neck of the bottle. Indeed, many students 
had not carefully considered the transition point at the beginning of the neck of the bottle. The teacher initiated 
three options: graph B (linear graph with same slope at the transition point), graph C (linear graph that is steeper 
than the slope at the transition point), and graph A (linear graph with slope less than that at the transition point) as 
shown in Figure 5. Students’ assignment for the next class was to write up a convincing argument for or against each 
alternative. 

By providing different graphs to consider, the teacher offered an occasion for students to provide explanations 
and justification for why they favored one option over another. They had to listen to their classmates’ justifications 
and give reasons why they agreed or disagreed. The invitation for the students to consider different graphs opened up 

neck

C

A

B

volume

height

Figure 5. Alternative graphs to consider.

Imagine this bottle filling 
with water. Sketch a graph 
of the height of water as a 
function of the amount of 
water that is in the bottle.

Figure �. The bottle problem.
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an opportunity for them to further explore relationships between the diameter of the neck of the bottle and the rate of 
change of the height of the water with respect to volume, as the bottle fills up. 

We point out that the teacher assumed more responsibility for the direction of the mathematical content when 
he directed the class to consider the three possible graphs. The teacher’s actions here are significant because he did 
not have to wait for students to offer diverse ideas; rather he was able to draw upon his content expertise to further 
question students’ thinking. This is consistent with the notion that teachers’ mathematics expertise is an essential 
aspect of making pedagogical decisions (Ball, Lubienski, & Mewborn, 2001; Fennema & Franke, 1992). 

In response to this task, one student made connections to the formula for the volume of a cylinder in his response. 
In the quote below, the student indicated that v2 represents the volume of water exactly at the neck of the bottle 
transition point and vf stands for the final volume of water when the bottle is completely filled. Similarly, h2 and hf 
stand for the respective height of water at the respective locations.

Now as the volume increases at a constant rate from v2 to vf, the height will grow at a constant rate as well. 
More specifically, 2

2
1 .V r h h V

r
π

π
= Þ = ×   This begins at height h2 [the neck of the bottle], so we can

see from the function h(v) above that h will grow  at a constant rate of 2
1 .V

rπ
×  Since 2rπ stays constant

from h2 to hf , height CANNOT accelerate or decelerate its growth rate, and therefore from h2 on, the slope 
is constant.

This student reasoned within the context of the bottle problem, using his knowledge of the volume formula for 
a cylinder. We argue that because he had to consider multiple graphs, this student broadened his reasoning to include 
connections between graphical and symbolic representations of functions. 

This task also provided an opportunity for the teacher to gain insight into student thinking that he may not have 
been privy to otherwise. Consider the following response to the Bottle Problem task from another student who argues 
for Choice C:

I would pick (C) to be the extension of the graph because once the water is being poured at a constant rate at 
that point the volume is going to increase since that portion of the bottle is the thinnest, therefore, the water 
will overflow at a faster rate.

We see from this student’s response that he is correct in reasoning that the volume is going to increase and that 
the height of the water in a thin bottle will increase at a faster rate than a stouter bottle (“the water will overflow at a 
faster rate”). However, this student did not seem to make a connection between the diameter of the bottle at the “top” 
of the spherical portion and the diameter of the cylindrical portion.  

The teacher’s proactive role in providing three graph options for the Bottle Problem provided opportunities for 
students to further their reasoning about rate of change and make connections between graphical and symbolic function 
representations. For some students, the opportunity to provide arguments for or against the graphical choices gave the 
teacher insight into their thinking that otherwise might not have been exposed. 

Conclusion
We illustrated two strategic decisions by teachers in the previous examples. The differential equations teacher led 
a whole class discussion about slope before he recorded the students’ thinking. His decision to lead a whole-class 
discussion about slope enabled his vector notation to emerge as a record of students’ collective thinking. We refer to his 
strategic move as a transformational record (Rasmussen & Marrongelle, 2006). Transformational records can support 
a teacher’s proactive role in furthering students’ mathematical reasoning in ways that are increasingly compatible with 
the reasoning and symbolizing of the broader mathematical community. 

The teacher of the capstone class introduced the class to three possible graphs of the height of the water versus the 
volume for the bottle’s neck. We refer to his strategic move as a generative alternative (Rasmussen & Marrongelle, 
2006). The generative alternative construct serves the dual function of furthering students’ mathematical reasoning 
and contributing to the ongoing constitution of the norms for explaining and justifying one’s thinking, listening to and 
attempting to make sense of others’ thinking, and responding to challenges and questions. In this second example, the 
generative alternative offered an occasion for students to provide explanations and justification for why they favored 
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one option over another and how they made sense of the connections between rate of change and the diameter of the 
bottle. 

Some readers may have recognized features of their own teaching in the examples presented. We do not claim that 
the ideas of recording students’ ideas with informal or formal notation and presenting students with alternative examples 
are novel; master teachers have been practicing these strategies for years. Rather, the innovation in transformational 
record and generative alternative is that by giving these strategies names, we are making the work of teaching more 
explicit. Thus, a teacher can begin to name the strategies in her/his repertoire and thoughtfully and consciously plan for 
the use of such strategies. This has significant impact for the work of teaching, impact that goes beyond what transpires 
in the classroom. For example, as a teacher plans her lesson, she might devise alternatives to have on hand in the case 
where students do not bring out a particular mathematical idea. Alternatively, as a teacher hypothesizes about potential 
student misconceptions that might surface during a lesson, he can leverage the tool of generative alternative to surface 
or address misconceptions.

The strategies of transformational record and generative alternative offer teachers a way to think about how she 
or he can slide along the all discovery—all telling continuum. In the two examples provided, we see the teacher act 
proactively to provide information, promote student reasoning, and offer occasions for students to explain and justify. 
Through such actions, teachers are able to engage students’ current thinking while moving forward the mathematical 
agenda. We invite readers to reflect on how they could use these two teaching strategies in an intentional way that 
allows them to express their expertise, but in a way that mediates between all lecture (or teacher telling) and all student 
discovery.
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Examining Interaction Patterns in College-Level 

Mathematics Classes: A Case Study

Susan Nickerson and Janet Bowers
San Diego State University

While discussing the pedagogical challenges of teaching an undergraduate discrete math course, one of our colleagues 
recently lamented that

 Students are ill-prepared for this course…but this ill-preparation is a curious issue. I think it has more to do 
with the way they learned mathematics than with the content of the previous courses.

In this chapter, we propose a response to his comment. In particular, the goal of our discussion is to illustrate 
that the ways in which teachers and students interact can profoundly affect the attitudes students form as well as the 
content they learn. 

Why Study Interaction Patterns?
This view of the importance of interaction styles is consistent with a conclusion reached by Stigler and Hiebert (2004) 
regarding their recent international study of teaching patterns across the world:

A focus on teaching must avoid the temptation to consider only the superficial aspects of teaching: the 
organization, tools, curriculum, content, and textbooks. The cultural activity of teaching — the ways in which 
the teacher and students interact about the subject — can be more powerful than the curriculum materials 
that teachers use. … We must find a way to change not just individual teachers, but the culture of teaching 
itself. (p. 16)

In short, not just what we teach, but how we teach and communicate with students — what we call interaction 
patterns — appears to have great influence on student learning. In this chapter, we describe several interaction patterns 
that educational researchers have identified. These constructs can be seen as analogous to the measures of central 
tendency that statisticians use to describe the general shape of a data distribution in that the constructs don’t completely 
describe the classroom culture but still provide information about the ‘shape.’ We then illustrate how two novel 
interaction patterns that emerged in one college mathematics classroom supported not only students’ strong conceptual 
development, but their development of a revised view of the nature of mathematics itself. 

Past Studies of Classroom Interaction Patterns
Many prominent theories in educational research are based on the view that learning is an inherently social process 
(cf., Cobb, 1996; Lave, 1997; Vygotsky, 1978; Au, 1993; Arcavi, Kessel, Meira, & Smith, 1998; Boaler, 2000; Cazden, 
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1988; Puro & Bloome, 1987; Stephan & Rasmussen, 2002; Wood & Turner-Vorbeck, 2001). Therefore, examining the 
ways in which various educative discourses affect student learning is critically important. One of the pioneers in the 
study of classroom dynamics was Mehan who analyzed the patterns used during classroom interaction from the point 
of view of the function that it played during a lesson (Mehan, 1979). His research, which has since been confirmed by 
many other studies (c.f., Dillon, 1990; Medina, 2001), revealed that the predominant pattern found in most classrooms 
involves three distinct moves: First, a teacher initiates a question, next, a student responds, and finally there is an 
evaluative interaction. As Medina (2001) describes, Mehan went on to pose four distinct types of questions:

1) Choices, which are those that dictate the student agree or disagree with a statement provided by the teacher; 

2) Products, which require students to provide factual responses; 

3) Processes, which call for students’ opinions or interpretations; and 

4) Metaprocesses, which are elicitation questions that ask students to reflect upon the process of making 
connections between a question and a response to formulate the grounds of their reasoning. 

These four sub-categories enable researchers to further distinguish the nature of discussions. For example, 
researchers have documented that in the majority of mathematics classrooms observed, teachers incorporated either 
choice or product elicitations. The distinction between these first two elicitations and the second two (process 
elicitations and metaprocess elicitations), can be seen as parallel to the distinction between calculationally-oriented 
teachers and conceptually-oriented teachers developed by Thompson, Philipp, Thompson, and Boyd (1994). These 
researchers claimed that there was a direct correlation between different teachers’ views of mathematics and the 
types of interaction patterns that emerge in their classrooms. They distinguished between calculationally-oriented 
teachers, who expect their students to offer explanations in the form of procedural descriptions, and conceptually-
oriented teachers, who tend to encourage rich mathematical discourse. Applying Mehan’s four sub-categories to these 
two distinctions, it follows that calculationally-oriented teachers often follow the Initiate, Respond, and Evaluate 
(IRE) pattern and utilize either choice or product elicitations. In contrast, conceptually-oriented teachers often use 
process or metaprocess elicitations. For example, Thompson et al. report that during rich exchanges in which real 
mathematical proofs and refutations are offered (c.f., Lampert, 1990; Lakatos, 1976 ), students offer explanations 
that go beyond procedural descriptions of steps taken to compute an answer. In other words, whereas the patterns of 
interaction in the classroom of a calculationally-oriented teacher’s classroom tend to focus on the means of computing 
an answer, the interaction patterns that emerge in conceptually-oriented teachers’ classrooms begin with answers, but 
also include justifications for the answer or explanations of the process couched in contextually-relevant ways. The 
value of such interaction patterns is that they encourage students’ serious justification of their thinking and hence can 
support students’ efforts to develop increasingly sophisticated ways of reasoning. 

 Other researchers have documented other types of interaction patterns that rely on recall rather than student-
initiated reasoning. For example, Wood (1994) described the funneling and focusing patterns, both of which aim 
to increase student participation in the development of an answer from mere recall and evaluation (as in the IRE 
patterns) to more detailed explanations of how an answer could or should be computed. The funneling pattern 
involves having the teacher ask a series of directed questions designed to narrow the students’ responses until the 
correct one emerges. The focusing pattern is similar in that the teacher again uses a series of narrowing questions, 
but they are designed to scaffold the student’s effort to arrive at a final answer. One similarity between these two 
patterns and the IRE pattern is that the students’ role is generally one of giving single-word answers or following a 
fill-in-the-blank script that the teacher has laid out for formulating a justification. However, unlike the IRE patterns, 
teachers’ goals when using the funneling and focusing patterns are to use a series of probing questions to scaffold 
students’ explanations.

In summary, the conclusions reached by Wood and her colleagues as well as many other discourse pattern research 
groups (c.f., Steinbring, 1989; Wood, 1999; Stigler & Hiebert, 2004) support Mehan’s general assertion that the 
preponderance of discourse in most mathematics classrooms can be described as teacher-generated questions with a 
paucity of student-initiated comments. Thus, it seems logical to explore the degree to which this pattern (or any of 
its derivatives) is effective, or if there are other more effective patterns that can promote and support students’ deep 
conceptual understandings.
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The Relation between Interaction Patterns and Student Learning
Although Mehan’s (1979) goal for analysis was to document discourse form and function, he did not attempt to 
make any type of evaluative judgment on the degree to which any particular type of teaching led to more productive 
learning. However, other researchers have suggested that the IRE patterns (especially those involving the first two 
types of elicitations) can actually be deleterious to student learning. Their arguments are based on the view that if 
students in class are not required to think on their own (beyond recitation of known information) or engage in serious 
justifications of their own thinking, they do not learn the art of argumentation itself, which is a cornerstone of “doing 
mathematics” (Cobb & Bowers, 1999; Lampert, 1990; Voigt, 1995). A second argument against the IRE pattern itself 
is that a teacher may interpret various students’ participation in these ritual discourse patterns as evidence that they are 
making sense of the mathematics when, in reality, they are only learning to play academic charades. 

A third theoretical argument regarding IRE patterns (at least choice and product elicitations) is that the overall 
importance of personalizing new knowledge may appear to be devalued. In other words, some contemporary learning 
theories maintain that learning is both a cognitive and social process. On the one hand, it is a cognitive process by which 
students “actively construct their ways of knowing as they strive to be effective by restoring coherence to the worlds 
of their personal experience” (Cobb, 1996, p. 34). Thus, from a cognitive perspective, learning and understanding are 
constructed. If students believe that they are expected to merely recall memorized facts, then they are acknowledging 
that they have not truly constructed understandings. On the other hand, learning is also viewed as a social process 
wherein “an individual’s mathematical activity, for example, is profoundly influenced by his or her participation in 
encompassing cultural practices such as completing worksheets in school, shopping in a supermarket, selling candy 
on the street, and packing crates in a dairy” (Cobb, 1996, p. 34). Thus, from a social perspective, if learning is seen as 
the activity of filling in worksheets as opposed to personally constructing arguments, then the value of mathematical 
argumentation – and the personalization of knowledge — is implicitly devalued.

These theoretical arguments suggest that empirical evidence is critically needed to explore the relation between 
interaction patterns and student learning. In their recent work, Wood and her colleagues (Wood & McNeal, 2003; Wood 
& Turner-Vorbeck, 2001) have developed a two-dimensional framework that considers (1) students’ responsibility for 
thinking and (2) students’ responsibility for participation. Within this framework, the authors distinguish between 
Conventional Classroom Cultures and Reform Classroom Cultures. In Conventional Classroom Cultures, students are 
responsible for recalling answers and prescribed procedures. This is indicated by teacher prompts such as “What is the 
answer? Two plus three is _____” (Wood & McNeal, 2003).

In contrast, Wood and McNeal note that in Reform Class Cultures, students are responsible for recognizing, 
building, and constructing arguments. Teacher prompts for mathematical thinking include phrases such as

• “Any comments on the answer or method?”
• “Is there a different way that you could do this?”
• “How do you know that? Why do you think that?” 

These empirical results illuminating the distinction between conventional and reform-based classrooms enabled the 
authors to draw some conclusions on the relation between the various cultures and students’ mathematical thinking. 
Their analysis revealed that 

[t]he frequency and complexity of teacher prompts for mathematical thinking progressively increased across 
the types of class cultures with the conventional environment, both textbook and problem solving, being 
predominantly situations of prompts for recall for children… [In contrast] In inquiry/argument classes, teacher 
prompts for mathematical thinking were most frequent questions focused on synthesis building. (p. 439)

The work of Wood and her colleagues provides empirical evidence to support the claim that some interaction 
patterns are positively correlated with the emergence of deeper understandings and students’ efforts to offer more 
conceptually-oriented thinking. In particular, while the interaction patterns found most predominantly in conventional 
classrooms are marked by questions requiring only fact recall (hence resemble IRE patterns), the patterns that are 
found in reform-based cultures (such as Strategy Reporting and Inquiry/Argument) are more highly correlated with 
sophisticated thinking as evidenced by the proofs and justifications students give when explaining answers and making 
conjectures. 
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Examining the Teacher’s Role in Establishing Productive Interaction Patterns
Given the empirically-based correlation between interaction patterns and student learning, the next logical 

question to discuss is the role that the teacher can play in establishing “productive” patterns. Our view is that although 
the role of a teacher is certainly critical, the process by which a classroom community develops specific modes for 
inquiry is not one-way. In fact, we maintain that interaction patterns must be mutually negotiated through successive 
iterations of give-and-take between the teacher and students. 1  This mutual negotiation process is of particular interest 
as a subject to be included in this volume because, if college-level teachers can become aware of the implicit messages 
that students may be forming during classroom discussions, they might develop a better understanding of the views of 
mathematics their students are forming and, ultimately, address the situation our colleague was describing. 

In the remainder of this chapter, we describe excerpts from a case study that illustrate the teacher’s role in 
establishing productive interaction patterns. In particular, we describe how a conceptually-oriented teacher guided 
his class in the process of developing two patterns of interaction that represent distinct departures from the IRE and 
funneling and focusing modes. 

Case Study
The motivation for this case study was to study the expertise of one mathematics teacher who was internationally 
known for both his mathematical theories and his pedagogical skills. At the university in which he worked, he was 
extremely well respected by students and colleagues alike. Hence, our goal for studying his practice was to answer a 
simply-stated research question: “How does he succeed in helping so many people understand and appreciate advanced 
mathematics in such a deep way?” We refined our questions more specifically to focus on two areas: (1) How does he 
use technology to enhance his students’ imagery, and (2) How does he encourage students to form strong mathematical 
arguments? Thus, unlike large, quantitative studies that involve pre-determined hypotheses and many classrooms 
in order to minimize any one teacher’s contributions, the goal of our case study was to examine this one particular 
teacher’s expertise (see Bowers & Nickerson, 2001, for a full description of this study). 

Case Study Methodology
In order to address our basic question of “How does he do it?” we chose to conduct a naturalistic inquiry (c.f., 
Moschkovich & Brenner, 2000) in which we, as researchers, were nonparticipating observers (and videographers) 
during each class session. Although we were clearly visible in the classroom, we did not participate in any discussions 
or interact with the students during class. After class, the teacher debriefed us in order to clarify our working hypotheses 
regarding the goals of his instruction. But, as the teacher has verified, we did not affect his instructional trajectory 
for ensuing classes in any significant way. To ensure truth value for the analysis, we observed all the classes during 
the semester and triangulated our hypotheses with each other and with the teacher. This is critically important as it 
was only through these triangulation discussions that our efforts to paint a picture of what we saw through empirical 
observation could be verified. During our analysis phase, we compared sets of field notes and videotapes and conferred 
with some of the participants via email or face-to-face discussion to ensure further validity (cf. Cobb & Whitenack, 
1996). 

Setting
The class that served as a setting for the study was a mathematics course for upper-division mathematics majors 
and graduate students that the teacher himself had designed and molded over the past nine years. The course was 
specifically designed to help prospective (and practicing) secondary mathematics teachers think about mathematics 
in a deeper way. In our discussions with the teacher both before and during the course, we learned the teacher had 
two goals. His mathematical goal was to enhance the students’ images of the concept of functions. Because the 
students were future (and practicing) teachers, he also had a pedagogical goal of challenging the students’ beliefs about 
effective teaching. 

1 We use the word “negotiation” here to denote a social process by which the students and teacher talk and react to each other’s actions and 
words, as opposed to the connotation of two opposing parties bargaining or bartering for disparate agendas. 
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Phases of Analysis
In the first phase of our analysis, we collected three types of data: classroom observations and artifacts, student 
questionnaire data, and follow-up student interview questions. The classroom data included two sets of field notes 
from each of the 29 class sessions, videorecordings of 17 class sessions, and photocopies of students’ work (including 
written reports, weekly homework assignments and reflection pieces, and written examinations). Although it may 
appear redundant, we chose to each take separate field notes of the whole-class interaction patterns for several reasons: 
First, the mathematics was sufficiently complex as to warrant close attention, and second, the discussion was often 
fast-paced and overlapping—thus, having two people record the action was often helpful in later interpretation phases. 
Approximately halfway through the semester, we asked participants to complete an anonymous written survey. We 
completed the data collection by surveying teachers who taught the students during the following semester. All of 
these types of data from varied perspectives served as a form of triangulation.

After running through the notes for a first interpretive pass, we engaged in a second phase of analysis wherein we 
decided that the construct of interaction patterns would enable us to best address our second question regarding how 
the teacher was able to encourage his students to form strong mathematical arguments. To this end, we developed a 
methodological framework to help us identify various patterns with consistency and reliability.

1. A pattern must be inclusive enough to characterize how all participants engaged in the discourse.
2. A pattern must be descriptive enough to be distinguished from other patterns previously defined. 
3. A pattern must be repeated several times so that its robustness can be verified.

We then each set off with our own notes and copies of the videotapes to identify various patterns. Once these 
were initially selected, we met with each other and with the teacher to refine our constructs and triangulate our 
conclusions.

Findings
After conferring with the teacher a number of different times, we developed a strong sense of his mathematical 
goal, which was based on Thompson’s (1994) contention that students’ difficulties with the Fundamental Theorem of 
Calculus can be traced to their impoverished images of rate. More specifically, the teacher emphasized that students 
construct an understanding of a function as a relationship between covarying magnitudes, and algebraic expressions 
as descriptions of that relationship. He also emphasized that students think of graphs as sets of points (as opposed to 
lines or “wires” or moveable objects), so that the coordinates of each point are viewed as a record of the magnitude’s 
value at any given moment during their simultaneous variation. 

The teacher’s pedagogical goal was to challenge his students’ beliefs about effective teaching as being a practice 
of providing clear examples and rules to follow (cf., Ambrose, 2004; Ball, 1990; Richardson, 1996). His approach 
for reaching this goal was to model mathematical justifications that were conceptual rather than calculational in 
nature, and encourage his students to describe justifications of their thinking that went far beyond simply answering 
a question. To this end, he developed and implemented a carefully crafted series of instructional activities that were 
devised to both support the conversations the teacher hoped to have with students and to initiate questions that would 
demand further investigation. 

Identification of ERE and PD patterns
Based on the research literature mentioned above, we believed that we would find one interaction pattern that would 
characterize the ways in which this conceptually-oriented teacher and his class interacted. To our surprise, we identified 
two recurring interaction patterns, one that occurred when the teacher initiated a new idea or concept, and one that 
emerged as the students became more familiar with the idea. 

The ERE Pattern . The pattern that was evident each time the teacher introduced a new activity. In these cases, the 
teacher Elicited observations, students Responded, and the teacher Elaborated on their comments. We have called 
this trend an ERE pattern to acknowledge its relation to Mehan’s (1979) IRE (Initiate, Respond, Evaluate) pattern 
described earlier. Our elaboration of Mehan’s pattern is deliberate. We want to contrast two specific differences. First, 
whereas Mehan’s construct involved having teachers initiate a question (that usually involves getting the student to 
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offer particular bits of information), the teacher in this class elicited observations — that is, he encouraged students to 
look at the graph or relation of interest and observe various properties about it. The second difference between Mehan’s 
IRE pattern and the ERE pattern we describe is that teachers falling into the IRE pattern evaluate the correctness of an 
answer without asking where or why a student arrived at the answer given. In contrast, the teacher in this case study 
consistently elaborated students’ responses in an effort to encourage longer, more thoughtful discussions and to model 
potentially appropriate means of justification. 

The PD Pattern . For their part, the students initially offered short responses and then worked toward building and 
describing their own imagery in conceptual terms that others could understand. As they developed more sophisticated 
imagery, a second pattern appeared to emerge. In this case, the teacher or a student would make a proposition, and 
others would discuss it. This PD (proposition-discussion) pattern was generally marked by students’ efforts to either 
explain their own thinking or ask a classmate for clarification.

We identified four distinct ERE→PD phases over the course of the semester. Each is briefly outlined below. 
Phase I. During the first phase, the teacher introduced and helped the students refine their views of what 

constitutes a sound mathematical explanation. In particular, he introduced the concept of a “conceptual explanation” 
and juxtaposed this with a “calculational” explanation. During ERE conversations, the teacher would elicit comments 
and observations to help the students develop vocabulary and experience recognizing conceptual explanations. As the 
class transitioned into the PD phase, the students and teacher entered into more animated discussions such as a debate 
over how a conceptual explanation differs from simply giving a formulaic answer, and why such a skill would be 
valuable to a mathematician or teacher. The mathematical context of these discussions involved describing graphs in 
terms of the phenomena they portrayed, rather than their superficial shape.2 

Phase II. During the second phase, the teacher and students focused on developing a conceptual orientation 
toward learning mathematics that involved using one’s own words to justify an answer, and also learning to question 
or follow up on others’ thinking. The mathematics discussed during this phase included describing a graph as a set of 
points and considering translations and dilations of the functions in terms of effects on individual points rather than 
as stretching lines. 

Phase III. During the third phase, the class expanded their views and, eventually, conceptual explanations of 
complex mathematical ideas, such as the Fundamental Theorem of Calculus, through the imagery of covariation of 
functions. 

Phase IV. During the final phase the students in this class, most of whom were prospective teachers, were asked 
to “try on the hat of a teacher” in order to design, implement, and analyze lesson plans. To this end, each student 
was required to develop a lesson plan and then use it to tutor one child. The mathematical goal of the lessons they 
constructed was to highlight dependency relations. The pedagogical goal was to apply their conceptual orientation for 
learning toward an orientation for teaching.  

Given space limitations, it is not possible to present examples of EREPD exchanges that occurred during each 
of the phases of the semester. In what follows, we present one brief example from Phase II during which the class 
developed a conceptual orientation for learning mathematics.

Example of an EREPD transition
Phase II began during the third week of the semester. The teacher introduced an instructional sequence in which the 
students were asked to describe the graphical behavior of novel functions. Examples of functions the class considered 
include f(x)= x2 mod (x) and f(x, y) = xy. The teacher’s purpose for using these non-conventional and non-intuitive 
examples was to support the students’ efforts to visualize relationships between changing quantities and to challenge 
their beliefs regarding the value of purely calculational instruction. In the following episode, the teacher’s objective 
was to encourage students to visualize how individual points on the Cartesian graph of sin( )y bθ=  can be related to 
a varying arc length of measure q on the unit circle. 

2 These activities were specifically designed to elicit a “Graph as Path” misconception wherein students favor graphs of functions that “look like” 
the situation being represented rather than a graph showing the relation between time and position or speed of a traveling object (cf., Dugdale, 
1993).
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Episode IIa: Refining a conceptual explanation through the use of visualization (ERE pattern). To begin this 
discussion, the teacher used the Geometer’s Sketchpad software to create a unit circle with a free point on the circle 
that controlled two arc lengths: q, the independent variable, and bq (measured in radians) for some value of the 
parameter b. The imagery that the teacher was hoping to support required that the students focus on the covariation 
of two quantities: the arc length of q and the length of sin(bq), which the students identified as line segment BF in 
Figure 1. During class, the teacher changed the value of q and asked the students to visualize the Cartesian graph that 
coordinated the arc length, q, with the length of line segment BF.

Figure1. Teacher’s GSP sketch showing q and sin(bq).

Next, the teacher asked the class to consider the Cartesian graph of the function y = sin(30x). We claim that the 
discussion followed an ERE (Elicitation-Response-Elaboration) pattern because the teacher first elicited a number 
of observations from the students regarding the graph they were envisioning. After each student gave a response, the 
teacher engaged students in a discussion, elaborating on their observations by asking them to consider the mathematical 
causality underlying them.

Teacher: What will happen when I increase b?
Hugh: It will stretch it, make it higher [sic].
Teacher:  Let’s consider a slightly different question: What happens if we have y = ax2. What would happen if we 

increase the value of a? Valerie?
Valerie: The graph [of the parabola] would get thinner and thinner.
Teacher: We have a tendency to talk about graphs being ‘skinny’ and ‘stretching.’ But we are not making them 

skinnier; we are dilating the graph [teacher’s emphasis]. For each x, a times f(x) dilates f(x) by a factor 
of a. Now, how does this relate to the changing of b in the graph of y = sin(bq)?

In this exchange, the teacher was questioning Hugh’s imagery but instead of simply evaluating it (saying, for 
example, “No, that is not correct”), the teacher chose to challenge the students to consider the causality behind their 
observations. In particular, he was challenging them to elaborate their observations by illustrating the difference 
between describing a graph’s visual shape (e.g., ‘getting thinner’ or ‘going higher’) and describing its point-dilations 
(e.g., relating it to how f(x) varies as the parameter varies). 

This episode illustrates another critical issue that we have found to be very important in the evolution of students’ 
revised views of the nature of mathematics and mathematical argumentation. Although the teacher may appear to be 
telling the students what language to use, we argue that he was not telling them what to say but what imagery to focus 
on and how to describe their imagery more conceptually by focusing on the mathematical causality that supported 
their observations. In later debriefing sessions with the teacher, we discussed the issue of telling the students what 
to say versus helping them develop their imagery. He pointed out that students do not know how to talk in ways that 
are conceptual for the reason that they have not thought this way before. From his perspective, even if he had told 
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the students exactly what to say, he would have expected a period of interpretation and negotiation during which the 
students’ constructed images would be internalized. This type of social insight characterizes the elaboration stage of 
ERE pattern exchanges and offers a sharp contrast with the shorter, more evaluative answers that are generally found 
in IRE or funneling/focusing pattern exchanges.

Episode IIb: Developing ways to describe novel functions (PD Pattern). The next few activities in the sequence 
led to a transition from an ERE to a PD (Proposition-Discussion) pattern transition. During a class that occurred two 
days later, the teacher asked the students to discuss their methods for finding the equation of “mystery” polar graphs 
such as the one shown in Figure 2. After completing several of these tasks for homework, the students noted that the 
“trial and error” method was ineffective and that they had to rely on their imagery and notions of the mathematical 
relationships to identify the equations. 

During one episode, Eric volunteered to explain his reasoning for determining the equation of the graph shown 
in Figure 2:

Figure 2. Graph of mystery function.

Eric: I just broke it down into sections of how [the graph] varies from 0 to 2p. I asked myself, “What is the 
distance doing?” Basically, we see that when q = 0, we have distance = 6. So f(0) = 6. As we go around 
from 0 to 2p, we see distance getting smaller and smaller. Distance is decreasing at a steady rate. This 
suggested to me a linear relation. So I tried several linear equations with f(0) = 6; f(2p) = 0. I was 
also imagining the relation like this [draws an imaginary line in the air with his hand as if making a 
Cartesian graph of a line with a negative slope].

Hugh: Is it possible for the graph to go from 0 out?
Eric: We are starting at 0, but the point does not start at the origin! As I go up, imagine what happens to the 

values of the graph. It does not matter what you do to theta; it is also going to be changing linearly in 
relation to the trip. 

Hugh: So you imagined a line graph and then translated this back to polar coordinates?
Eric: I just watched it in my mind and saw it was a linear function.

We classify this and the ensuing discussions (in which the class went on to discuss two other mystery graphs) as 
PD in nature because Eric’s proposition led to a relatively long debate during which others attempted to understand 
Eric’s method for describing the behavior of the mystery function in terms of one quantity that was varying. Eric’s 
contribution in this excerpt can be seen as initiating a shift from the ERE to the PD patterns in that, before this, the 
teacher might have been trying to help Eric elaborate. Instead, Eric now used such an elaboration to both think about 
and explain his understanding of the mystery graph. This description of causality appeared to help other students, like 
Hugh, who picked up on Eric’s emphasis of looking at the covariation of one quantity with another in terms of thinking 
about Cartesian graphs to explain polar graphs. 

Focusing on Implicit Messages
As noted in the introduction to this chapter, we believe that a focus on the implicit messages that students receive as 
they participate in the evolution of various interaction patterns can be a key to explaining students’ difficulties learning 
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new material. When students were asked to reflect on their learning after Phase II, many indicated that they were not 
only learning about the material, but also learning how to learn in a new way. For example, one student wrote: 

I find it very helpful to think about graphs in this way because now I have a better understanding of the graphs 
I looked at. Before when I saw the graph of sin(x), I just thought, “Okay that is or is not a correct graph of 
sin(x),” and verified it by plugging points. But then I began using the unit circle to relate to the graph to see 
as x varies what the sine or cosine graph looks like.

In contrast, another noted: 

My training has been biased toward a calculational approach; therefore I am unable to think of functions in 
this way. It confuses me. I have to keep my mind on too many things. It is easier to visualize “a sine graph” 
than it is to visualize angles, cosines, sines, and hypotenuses shifting and changing against one another. It 
provides insights to people who can think in that way, but I have difficulty thinking in those terms. Everyone 
approaches problems in different ways.

While this student’s overall mid-semester assessment was somewhat reluctant, it was clear that he was indicating that 
he felt a challenge to explain in ways that he had not done before. We found it particularly gratifying to read that same 
student’s final reflection:

In sum, the primary idea behind the Analyzer, MacFunction, and Geometer’s Sketchpad homeworks is the 
idea of “covariation.” Students studied covariation by examining and tracing “dependency relations” (among 
variables or geometrical elements) and seeing how these variables or elements are tied to the others by a web 
of such dependencies. Thus, the student obtains a clear understanding of how every aspect of a given problem 
or phenomenon is related to every other aspect. This, then, is precisely the deep, full, detailed understanding 
of the phenomenon that “conceptually based” instruction is intended for. In contrast, an algorithmic approach 
would allow the student to get a correct answer (such as the optimal values in Analyzer #1) but would not 
force the student to understand the phenomenon or its intricacies.

Here it becomes clear that this student had developed a strong understanding of the value and structure of a conceptual 
explanation. Moreover, although he had voiced his opposition (in terms of unfamiliarity, discomfort, etc.) to PD type 
exchanges earlier, his final reflection indicated that he did come to develop meaningful insights and an appreciation 
for making meaning of mathematics. It is particularly important to note that he came to realize the value of conceptual 
explanations for him as both a learner and a teacher. For example, he reported that when he worked with his tutee in 
phase IV, he demanded conceptual explanations and that this effort opened his eyes to the superficial understandings 
that students generally have. The other students’ write-ups also indicate, to varying degrees, a general consensus 
supporting the value of a conceptual orientation for both learning and teaching. 

Conclusions
The goal of this chapter has been to discuss the value of having college-level mathematics teachers become aware 
of the ways a class may become encouraged to negotiate a productive culture with fruitful interaction patterns and 
to provide one rich example of an established pattern that was shown to have a positive effect on students’ attitudes 
and understanding. Our use of the example and case study was not designed to offer a prescription or template for 
effective mathematics teaching. Instead, we used the data to illustrate how one classroom community developed 
patterns of interaction that were not characteristic of the traditional ERE or funnel patterns found in many classrooms. 
In so doing, we hope to point out that other patterns can emerge and be recognized once a teacher attempts to adopt a 
conceptual rather than calculational orientation toward teaching. 

One result from the study was our somewhat surprising conclusion that two distinct patterns of interaction emerged: 
the ERE (Elicit observations, Respond, Elaborate) pattern, and the PD (Propose, Discuss) cycles that worked together 
to engage the class in the process of developing appropriate methods of justification and supporting more sophisticated 
means of reasoning. Of course, we do not mean that all interactions followed the same template, or that every student 
had developed the same sense of expectations for what types of answers were considered appropriate. However, we do 
claim that both the ERE and PD patterns working in a cyclic manner facilitated the robust discussions of mathematical 
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ideas and eventually provided a social basis for changing not only the students’ mathematical understandings, but their 
abilities to explain mathematical relations and their overall views of mathematics as well.

A second result of this work has been the development of a methodology for identifying patterns of interaction, 
which, we hope, might help teachers and researchers identify classroom interaction patterns. In short, we found that 
the patterns we identified were inclusive, descriptive, and repeated. These characteristics are consistent with the 
identification of practices described by Bowers (2001).

When reviewing this chapter, one mathematician told us that the most surprising conclusion to him was that 
interaction patterns cannot simply be implemented or dictated by the teacher alone. Our claim is based on the view that 
all communication practices are inherently social and therefore follow the rules of all interpersonal communication: 
the messages that are received are not necessarily those intended by the sender, and meanings are often implicitly 
negotiated between speakers (in this case, the students and the teacher). For these reasons, classroom communication 
patterns cannot be explicitly laid out by the teacher alone. Instead, they are negotiated through an implicit process of 
trial and error by which the students might offer an explanation that serves the implicit function of an opening offer: in 
essence, the student is asking, ‘is this acceptable?’ The reaction — from both the teacher and the students — sends an 
implicit message back to the student and the rest of the class which, in turn, moves the process of negotiation forward 
one more round. It is not surprising, therefore, that the same teacher may see different patterns emerge in different 
classrooms due to the differences in student compositions. 

In summary, we believe that a study of classroom interaction patterns can enable a mathematics teacher to identify 
the types of implicit messages that students might be forming regarding what it means to “understand” a math topic. 
For example, teachers can determine the degree to which they are asking calculational or conceptual questions and 
assess whether the patterns of interaction resemble Mehan’s IRE patterns or the EREPD patterns identified in this 
study wherein students are first asked to wrestle with ideas, and then use them in a proposition-discussion mode. 

If students become accustomed to engaging in conceptually-based interaction patterns (as opposed to 
calculationally-based IRE or funneling/focusing patterns), our research suggests that they will be able to write more 
effectively on exams, respond better to open-ended tasks such as those involved in technology explorations, and, if 
they are prospective teachers, encourage their own students to think more deeply about mathematics. In this way, we 
hope to make some headway in addressing Stigler and Hiebert’s (2004) strong recommendation that real improvement 
in mathematics education comes not at the superficial level of textbooks, but at the deeper, cultural level of teaching 
practices. 
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Mathematics as a Constructive Activity: 

Exploiting Dimensions of Possible Variation
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Introduction
Mathematics is often seen by learners as a collection of concepts and techniques for solving problems assigned as 
homework. Learners, especially in cognate disciplines such as engineering, computer science, geography, management, 
economics, and the social sciences, see mathematics as a toolbox on which they are forced to draw at times in order to 
pursue their own discipline. They want familiarity and fluency with necessary techniques as tools to get the answers 
they seek. For them, learning mathematics is seen as a matter of training behaviour sufficiently to be able to perform 
fluently and competently on tests, and to use mathematics as a tool when necessary. 

Unfortunately this pragmatic and tool-based perspective may cut people off from the creative and constructive 
aspects of mathematics, making it more difficult for them to know when to use mathematics, or to be flexible in their use 
of it. On its own, this perspective can reinforce a cycle of de-motivation and disinclination. The result is a descending 
spiral of inattention, minimal investment of energy and time, and absence of appreciation and understanding, leaving 
learners disempowered from pursuing their discipline through the use of mathematics.

By contrast, mathematicians see mathematics as a domain of creativity and discovery in its articulation, proof, 
and application. Full appreciation of a mathematical topic includes the exposure of underlying structure as well 
as the distillation and abstraction of techniques that solve classes of problems, together with component concepts. 
Mathematicians construct objects as examples of concepts, as illustrative worked examples of the use of techniques, 
and as possible examples of or counter-examples to conjectures. As Paul Halmos put it,

A good stock of examples, as large as possible, is indispensable for a thorough understanding of any concept, 
and when I want to learn something new, I make it my first job to build one. … Counter-examples are 
examples too, of course, but they have a bad reputation: they accentuate the negative, they deny not affirm. 
… the difference … is more a matter of emotion.  (Halmos, 1983, p. 63)

If I had to describe my conclusion [as to a method of studying] in one word, I’d say examples. They are to 
me of paramount importance. Every time I learn a new concept I look for examples … and non-examples. … 
The examples should include wherever possible the typical ones and the extreme degenerate ones. (Halmos, 
1985, p. 62)

Halmos is one of many authors who express a similar sentiment. Feynman expressed it this way: “I can’t understand 
anything in general unless I’m carrying along in my mind a specific example and watching it go” (Feynman and 
Leighton, 1985, p. 244). 

We take the view that mathematics can be presented and experienced as a constructive activity in which creativity 
and making choices are valued, not just for their own sake, but in order to stimulate learners to use their own powers 
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to make sense of phenomena mathematically, whether in the domain of mathematics itself, or in cognate disciplines 
that make use of mathematical tools and mathematical thinking. By powers here we mean things like imagining and 
expressing, specialising and generalising, conjecturing and convincing, and so on (Mason, Burton, & Stacey, 1982; 
Mason, 2002; Mason & Johnston-Wilder, 2004a, 2004b). 

For example, presenting learners with the function x |x| as an example (often the only one) of a function 
which is differentiable everywhere on the reals except at one point, invites them to see it as a monster to be barred 
(Lakatos, 1976), as a pathological object to be ignored (MacHale, 1980). Yet there is an opportunity to invite learners 
to use it to construct whole classes of functions which have the same property at (0, 0), such as x l|x| + xg(x) for 
any differentiable function g. They can also construct for themselves a function that is differentiable everywhere 
except at some other specified point, and then extend this to non-differentiability at several points (e.g., x  l|x – a| + 
m|x – b| where ab and lm0). Not only does this invite learners to make use of their control over functions through 
translation and scaling, but it demonstrates that any example can be expanded to whole classes of functions. 

We suggest that seeing mathematics as a constructive activity requires a small but important shift in thinking 
that can have significant impact on the interest and commitment of learners, the way they use their acquired concepts 
and tools, and hence the way they use mathematics in their own discipline. After many years of teaching in high 
school and university contexts, often working with disaffected students, and countless experiences working with 
others on mathematics, we take it as axiomatic that people who are encouraged to use their powers not only experience 
pleasure, but sharpen and extend those powers. They can become more motivated to enquire further. Learners who are 
encouraged to be creative and to exercise choice respond by becoming more committed to understanding rather than 
merely automating behavioural practices.

Finally, we suggest that mathematics seen and presented as a creative and constructive activity can engage and 
motivate those who might pursue mathematics further. It can also yield insight into how learners are thinking in ways 
that complement what teachers discover from learners’ responses to routine tests on standard exercises.

This chapter begins by showing that many, or most, tasks and exercises presented to students for pedagogic 
purposes can be seen as constructions, and that adopting this view can assist learners in appreciating what the 
problem is asking, as well as finding solutions and also motivating them. The second section shows how the notion 
of dimensions-of-possible-variation can be used to inform the structuring of tasks, so that learners can be induced to 
move from exercising in order to train their behaviour, to exploring in order to sharpen their thinking and deepen their 
awareness of underlying mathematical structure. The third section moves beyond exercises as tasks, and considers 
problems in the two forms identified by Pólya. The fourth section shows how the same principle of dimensions-of-
possible-variation can inform the way learners encounter mathematical concepts as they develop rich example-spaces 
which will, it is hoped, come to mind when they encounter future problems. The fifth section briefly comments on 
the need to prompt and provoke learners to shift from the metaphor of learning mathematics as exercise, to learning 
mathematics as exploration.

The chapter is theoretical in nature, presenting possibilities for practice based on mathematical structures. Thus, 
the warrants for this approach are to be found in mathematics itself rather than in empirical research1. Nevertheless, 
the practices arise from our extensive, evaluated, self-critical experience as mathematicians, teachers and educators, 
and they have been used with learners ranging from adolescents to adults, in school and university. Our method of 
enquiry is to observe the behaviour of people as they explore and learn mathematics: our own behaviours, as well as 
those of our students and colleagues. We intentionally construct, and put ourselves and colleagues into, mathematical 
situations that appear to be analogous to what learners encounter. From these we gain insight into strategies based on 
mathematical thinking of which learners may be unaware. We test, in many contexts, both the strategies and ways 
of drawing them to the attention of learners who do not yet use them spontaneously. For example, this chapter arises 
from some eight years of work during which we focused on the potential contribution the construction of mathematical 
objects can make to an enhanced experience of mathematics. We always seek feedback from workshop and teaching 
sessions. A particularly powerful form of feedback comes from teachers who are energised to use our ideas in their 

1 Our method (Mason 2002a) relates to both action research and design research paradigms. It takes place in naturalistic settings; we evaluate and 
develop actions in a deliberate and cyclic manner. Ideas are not only put back into practice, but also to critical audiences of peers and learners; the 
path of our enquiry branches frequently; the opportunities to work on ideas arise during our normal working lives. To those who want detail about 
numbers of cycles, numbers of students, numbers of occasions we can only answer ‘hundreds’. 
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next teaching sessions and report back to us of their experiences. We do not carry out quantitative controlled studies 
because these are not appropriate in a domain that is highly sensitive to the world views of teacher and learners, the 
relationship between them, and their propensity to reflect on their experience. 

Pedagogic Phenomena Being Addressed
The particular pedagogic phenomena we are addressing can be summarised as the tendency for many learners to 
do as little as necessary in order to complete what they are asked to do, and the widespread assumption that ‘doing’ 
the tasks they are set will mean that they will learn. This is the basis for the implicit didactic contract between 
teacher and learners described and elaborated by Brousseau (1984, 1997). Too often ‘doing’ means ‘getting answers’ 
rather than using the task to appreciate general concepts and methods as exemplified by the particular. There is a 
tendency for learners to be satisfied with the particular rather than trying to see through the particular to the general 
(Whitehead, 1919), or, on the other hand, leaping to vast generalisations without checking particular cases. Learners 
are often satisfied by assenting to what they are told, by trying to work out what the teacher thinks rather than 
(re-) constructing for themselves, by using worked examples as templates in doing assignments without probing 
the underlying reasoning, and by internalising as little as possible. This response to the didactic contract is rarely 
sufficient to reach what Skemp (1976) described as instrumental understanding (knowing enough to succeed only at 
routine tasks), much less the more desirable relational understanding (appreciating connections and knowing enough 
to be able to respond flexibly in novel situations). Christiansen and Walther (1986) observed that “Even when students 
work on assigned tasks supported by carefully established educational contexts and by corresponding teacher-actions, 
learning as intended does not follow automatically from their activity on tasks” (p. 262). As human beings, learners 
respond well to being asked to make choices, including creating mathematical objects for themselves. It gives them a 
sense of involvement and it enriches the space of examples to which they have access when someone else is talking 
in generalities. Indeed, understanding of concepts and techniques can usefully be thought of in terms of the richness 
of the example space that comes to mind (Watson & Mason, 2002, 2005), and the complexity of transformations 
learners can use to modify those examples. We have found that with prolonged exposure to an atmosphere in which 
learners are expected to construct examples, their example spaces become both more extensive and more richly 
interconnected. 

We have also found that learners respond well to being called upon and expected to use their own powers to 
specialise and to generalise (Pólya, 1945, 1962), to imagine and to express, to conjecture and to convince, to organise 
and to characterise. This is born out by numerous studies, such as Boaler (2002), Senk & Thompson (2003), and 
Watson, De Geest & Prestage (2003): when learners’ powers are engaged, they display behaviour beyond what is 
normally expected. Thus the challenge is to promote a movement from merely assenting to what they are told or asked 
to do, to taking the initiative and asserting (in the form of making, testing and validating conjectures, constructing 
examples which illustrate conditions, and generalising particular tasks to a class of ‘types’ of tasks) through using and 
developing their natural powers (Mason & Johnston-Wilder, 2004a).

An atmosphere of competitive seeking of single correct answers does little to foster mathematical thinking. Calling 
upon learners to make choices, to act creatively and to use their powers is best supported in a conjecturing atmosphere, 
in which what is said by anyone is treated as a conjecture uttered with the intention of possibly modifying it according 
to critique and counter-examples. There are close analogies with what Legrand (1993) calls scientific debate. Among 
other things this implies that learners are constantly challenging, constantly seeking examples and counter-examples. 
It means that learners use examples in order to re-construct generalisations and to appreciate mathematical reasoning 
for themselves. 

Our theoretical position can be summarised as follows:

• promoting mathematical thinking improves motivation and confidence, and hence both competence and 
effective use of mathematics as a tool, even among those only taking mathematics as a service subject.

• trusting learners to make choices and so to exercise creativity and to explore available freedoms enriches their 
mathematical understanding and appreciation of concepts, techniques, and heuristics, as well as fostering 
involvement in and getting pleasure from learning mathematics.
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Exercises as Construction Opportunities
A set of exercises may be seen by a learner as an obstacle, a necessary hurdle to be overcome as quickly as possible, 
but it can also be seen as an opportunity to develop fluency and facility by reducing the amount of attention required to 
get solutions using a standard technique, to the point of automating that technique. A set of exercises can also be taken 
as an opportunity to seek generality which encompasses all of the particulars. This turns it into a construction task: to 
re-construct the question space2 from which the particular questions have been drawn. This view of exercises as an 
opportunity to appreciate generality has a long history, since the earliest written records contain worked examples of 
mathematical calculations. Babylonian cuneiform tablets and Egyptian papyri often include statements such as ‘do 
thou like this’ and ‘thus it is done’ (Gillings, 1972) suggesting that the learner is intended to do more than simply 
‘follow’ the template. The point of doing exercises is to appreciate the generality of a method, and to internalise and 
automate its functioning. Girolamo Cardano (1501-1576) writing in Latin in his famous work Artis Magnae Sive de 
Regulis Algebraicis includes phrases such as

In accordance with these demonstrations, we will formulate three rules and we attach a jingle in order to help 
remember them; We have used a variety of examples so that you may understand that the same can be done in 
other cases and will be able to try them out for the two rules that follow, even though we will there be content 
with only two examples; It must always be observed as a general rule … ; So let this be an example to you; 
by this is shown the modus operandi …. (quoted in Cardano, 1545/1969, p. 36–41)

Thus the point of a set of exercises can be seen as a behavioural aspect of the didactic contract, or it can be seen as an 
opportunity to construct not only solutions to the particular tasks, but the general class of which these are particulars.

Take for example, the factoring of the difference of two squares. The basic idea is straightforward, but it can be 
masked by varying different features. Asking learners to factor the following expressions 

x2 – 1,      a2 – b2,      4x2 – 9y2,      64a4 – 81b4,      4x2a6 – 25y4b10,      (2x + 3a)2 – (3x – 2a)2

could be intended to expose learners to the variety of possibilities for factoring the difference of two squares. Most 
texts would have several examples of each type; some would mix them up, and others would arrange similar ones 
together. The former are probably intending learners to detect similarities from amongst apparent differences, whereas 
in the latter case the intention is probably to get learners to detect what is the same about several so as to appreciate 
a range of possibilities. In both cases there is an implicit aim towards speed and accuracy, but to gain speed one has 
to recognise and exploit similarity, while to gain accuracy one has to focus on specific details. But unless learners are 
prompted to reflect on what is changing and how, they are unlikely to appreciate the various aspects which can change, 
nor what changes are permissible to maintain the underlying structure. Here, constants and multiple letters can change, 
but each must be raised to an even power. Perhaps it is no wonder that learners often fail to recognise the difference of 
two squares outside of the section of text devoted to it.

Seeing sets of exercises as construction opportunities opens the way to further meta-tasks intended to promote 
reflection and construal by learners. Karp (2004) provides an excellent illustration in the context of quadratic equations 
that have been obscured by the use of reciprocals, linear expressions, and square roots. In almost every topic, learners 
can be asked to construct:

• another example like the ones they have done;
• one which obscures the use of the technique as much as possible;
• one which shows that they know how to do ‘questions of this type’ (and they can be asked to describe how they 

would recognise a ‘question of this type’);
• one which would be a good test for learners next year;
• one which they think might challenge the teacher (or some other relative expert);
• the most general question of this type;

and so on. Focus and emphasis switch from doing particular questions to appreciating the technique as a general 
2 A term introduced to us by Chris Sangwin (personal communication) arising from his project to use software to generate random questions for 
learners from a space of possible questions but paying attention to internal structure and constraints within that space (e.g., quadratic equations with 
real or complex roots).
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method and appreciating the whole exercise as representative of a space of possibilities. This is where Marton’s notion 
of dimensions of variation is so useful.

Dimensions of Possible Variation, and Related Ranges of Permissible Change
Marton proposed that learning can be seen as extending awareness of what constitutes an example (Marton & Booth, 
1997; Marton & Trigwell, 2000; Marton & Tsui, 2004, see also Runesson, 2005). He observed differences in learning 
according to the nature and range of variation to which learners were exposed. To capture this, he introduced the 
notion of dimensions of variation to refer to the different aspects of an object which can be varied and still that object 
remains an example of a specified concept. For example, in meeting limits, learners need to be aware that a limit 
can be approached from one or the other side only, or from both sides, depending on the context. This constitutes a 
dimension of variation that is vital to appreciating limits. Other more elementary dimensions include the fact that the 
variable expressing the limit can be something other than x or h; that the point being approached can be specific (a 
number) or general (a letter); that the function whose limit is sought may have other variables and parameters present; 
and that in any case, there may or may not be a limit. In group theory, learners need to be aware that not all groups can 
be displayed as the symmetries of objects in two or three dimensional space; that the same group can be generated by 
different actions on different objects; that a finite cyclic group can be of any finite order; and that the generators can 
be denoted by any symbol.

Since teachers and learners are usually aware of different dimensions, and since the same person may be aware 
of different dimensions of variation at different times, in Watson & Mason (2002, 2005) we extended the notion of 
dimensions to dimensions of possible variation of which someone may be aware. Thus a teacher may be aware of 
many more possibilities than learners, but may not be aware of this difference. By being explicitly aware of important 
dimensions of possible variation, a teacher can choose to direct learner attention to relevant dimensions as they 
develop their sense of a concept. Furthermore, within each dimension of possible variation, learners may be aware 
of different ranges of permissible change. For example, learners might have encountered |x – a| for various integer 
values of a but it may never have occurred to them that a could be any real number. Indeed, their sense of ‘any real 
number’ may itself have a limited range of permissible variation. If learners only see systems of equations with integer 
coefficients, they may never think of the possibility that they could be other numbers.

The notion of dimension of possible variation is, in some sense, the dual to an important and ubiquitous theme 
in mathematics, that of invariance in the midst of change. Any theorem in mathematics can be seen as a statement 
of what remains (relatively) invariant when other things are permitted to change. Usually it is some relationship or 
property which is being preserved. However, it is not always clear that learners are aware of what it is possible to 
change.

Seeing generality through particular instances is basically detecting some features to keep invariant while others 
are permitted to change. A useful pedagogic strategy that calls upon this theme is to ask learners to look for what is 
the same, and what is different between two or more objects (Watson & Mason, 1998; Coles & Brown, 1999; Brown 
& Coles, 2000) as well as with the problem solving strategy of asking yourself ‘what if … were to change’ (Brown & 
Walter, 1983).

Applied to a set of exercises, looking for dimensions of possible variation and the associated range of permissible 
change within each dimension calls upon the learner to go beyond merely solving each individual exercise. It draws 
attention to the exercises as representative of a potential question space and invites learner re-construction of such a 
space. Next time learners encounter a similar question, they are much more likely to recognise the type and so have 
access to a solution approach or technique than learners who have contented themselves with obtaining solutions 
solely to the particular questions in the exercise set. 

For learners, aspects of exercises that could vary include context, explicit numbers, implicit structural numbers, 
and choices of which elements of a task are given as data and which are to be found. This last opens the mathematical 
theme of doing & undoing, in which learners attempt to characterise all the similar questions that have the same answer, 
and all the possible answers to similar types of questions. A learner who has explored dimensions of possible variation 
is much more likely to recognise the structure of a novel task rather than being misled by superficial similarities with 
previously solved tasks.
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For teachers, in addition to these dimensions, the order of presentation can take into account a supposed hierarchy 
of complexity, a supposed order of conceptual development, or significant aspects, which is essential for learners to 
appreciate in order to understand the topic, concept or technique (as illustrated in Karp, 2004).

Problems as Construction Opportunities
Users of mathematics are more in need of experience of using mathematics to resolve problems in their own domain 
of interest than they are of rehearsing to mastery a collection of techniques. Techniques can be quickly automated if 
there is need for repeated and efficient use. But the same is true of the mathematics student: “The mathematician’s 
main reason for existence is to solve problems, and that, therefore, what mathematics really consists of is problems 
and solutions.” (Halmos, 1980, p. 519)

What constitutes a problem is a non-trivial matter. What is a problem to learners is not usually problematic for the 
author or setter. For example, in a recent study Lara Alcock & Keith Weber asked learners in a university course to 
prove that if f is an increasing function on R to R, then there is no real number c that is a global maximum for f (Alcock 
& Weber, 2005). An experienced mathematician has an instant intuition that can be translated into a formal argument 
with only a minimum of refinement. A learner may not find the technical terms ‘speak to them’, may lack intuition 
or insight and so may have to explore, and is very likely to be unfamiliar with writing formal reasoning. They may 
experience some or all of this as ‘not knowing what is expected of them’. 

The ‘problem’ for most learners is simply ‘how to get the answer as quickly and painlessly as possible’, whereas 
the author or setter sees it as an opportunity for learners to re-construct and appreciate techniques and concepts, and to 
experience mathematical thinking. Learners need to be supported in moving from a ‘don’t – can’t – won’t try’ frame 
to one of ‘can take on as a challenge to use my powers of thinking’ (Dweck, 1999). If the word problem is only applied 
to tasks set by a teacher, we lose the importance of the learner’s perception of worthwhile challenge. It is the learner 
who problematises tasks, for until the learner experiences the task as a mathematical problem to understand and make 
sense of (rather than a problem of getting an answer), tasks are simply tasks that ‘have to be done’. Tasks which 
bring learners into contact with significant themes and concepts without requiring teacher intervention are known as 
adidactical situations (Brousseau, 1997).

When you encounter an unfamiliar problem, or when a problem involves unfamiliar technical terms, it can be very 
helpful to construct a specific example. To be useful, such an example must be confidence inspiring if not familiar. 
The purpose of this specialising as Pólya called it (Pólya 1945, 1962) is to develop confidence and to try to see what 
is going on so that you can re-generalise for yourself (Floyd, Burton, James & Mason, 1981, Mason & Johnston-
Wilder, 2004b). You don’t just ‘do calculations’, you watch what you do and try to see what is particular and what is 
general. By seeing through the particular to the general (Whitehead 1919) learners come to appreciate the generality, 
and to solve not just the particular problem, but other problems like it. Clearly experience of and disposition towards 
constructing examples both help in tackling new and unfamiliar problems. George Pólya (1945) famously divided 
problems into two kinds: problems to find (something), and problems to prove. In the following subsections we argue 
that both kinds can usefully be seen as construction opportunities. 

Problems to Find
The language of find has the potential to summon up an image of someone looking around in dusty corners for 
something that someone, probably someone else, has mislaid. It is of course intended to signal the creative side of 
mathematics, but most often such problems come across to learners as a requirement to ‘find the right technique and 
to apply it correctly’. An alternative perspective is to see ‘problems to find’ as construction tasks. Asked to solve some 
simultaneous equations in n variables, the challenge is to construct an n-tuple which satisfies all those constraints; 
to solve a differential equation the challenge is to construct functions which meet the constraint; to find an extremal 
value of a differentiable function on an interval the challenge is to construct a point that lies on the function and 
is a local extremum for that function; to find the definite or indefinite integral of some function the challenge is to 
construct a number, but more than that, a way of looking at the function which makes it amenable to one or more 
integration techniques.

Seeing a ‘problem to find’ as a construction task, which may be facilitated by the use of some familiar, and perhaps 
some not so familiar tools, is completely different psychologically from trying to work out the answers at the back 
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of the book and from worked examples, what sequences of symbols of varying degrees of meaningfulness to write 
down and in what order, so as to satisfy the marker. Consider for example the following apparently simple ‘problem’: 
find 2

0
( 1)x dx-ò . This might appear at the beginning of a collection of integrals of polynomials, with the intention 

that learners rehearse integration and evaluation of definite integrals. It is hardly ‘a problem’, except to learners who 
perhaps have no mental images and so are unaware that geometrically the answer is clearly zero, or to learners who are 
not overly confident in integrating and substituting correctly. Seen as one of many hurdles to overcome in sequence, 
it requires getting an answer. Alternatively, the task can be seen as a challenge to construct something. Seen this way, 
questions begin to arise about what sort of an object is sought (a number) and what this number might mean (apart 
from being ‘the answer’). The number being sought is not just any number, but one which meets the constraint that it 
measures the area calculated by the integral. 

Thinking in terms of dimensions of possible variation leads to questions such as how the number depends on 
the various parts of the question that could be altered. What if one or both of the limits were changed? What about 
changing the constant in the integrand? A learner approaching the task in this vein might be encouraged to find a 
general class of integrals, all of which give the same answer, such as ( )2 ,b a b

a
x dx+-ò  which highlights the role of the 

arithmetic mean of the limits of integration and stimulates questions such as: ‘what about changing the integrand?’; 
‘what possibilities are there for a general quadratic with the same answer?’ One could go further and try to use 
geometric insight to predict the shape of multiple integrals and line integrals that also give zero as the answer, and 
to ask oneself about the significance of the zero. It is well known for example, that learners are often perplexed by 
‘negative areas’ (Mason 2002). Suddenly what looks like a routine question turns into a possibility for exploration, for 
encountering important mathematical ideas, and for clarifying the mathematical meaning of ‘area’. In the process of 
investigation, learners are likely to do several integrations (presumably the original intention) while at the same time 
making choices as to what functions to integrate, and using their own powers to specialise and generalise, conjecture 
and convince. 

Problems ‘to find’ may sometimes have only a single answer, but often there are several or even infinitely many 
possibilities, all of which constitute a potential example space. Where learners are asked to construct not just a single 
example, but several examples from that space, one after another, we have found that they begin to appreciate the 
extent of that space, so that their thinking changes from being satisfied with the first (usually simple) example that 
comes to mind, to looking for the scope and breadth of generality possible. As this appreciation grows, as they consider 
more and more extreme or ‘peculiar’ examples (Bills, 1996a; Bills, 1996b) they can give rein to their creativity. For 
example, learners exposed to |x| as a continuous function differentiable everywhere except at one point often do not 
appreciate the class of functions in the teacher’s example space. By prompting them to use that idea to construct others, 
such as |x| + |x – 1| + |x – 2|, inserting coefficients, and then creating other cusps for themselves from other functions, 
they are likely to appreciate both cognitively and affectively the plethora of examples over which they have control 
(as distinct from a foreboding sense of functions lurking in the shadows of which they have no idea!). Appreciating 
the significance of a general solution to a differential equation as producing a class of functions which (in the case of 
first order at least) do not intersect and which ‘cover’ the space, makes the selection of a particular example, according 
to initial conditions, much more meaningful. Comparing what is the same and what different about different members 
of a general class can help learners comprehend the differential equation as a property being satisfied by a class of 
functions that differ in other ways.

Problems ‘To Prove’
Pólya’s distinction between ‘find’ and ‘prove’ is not rigid, because of course you can argue that a problem ‘to prove’ 
is a problem ‘to find a proof’, but this playfulness fails to appreciate the significant psychological difference between 
trying to find something you don’t know, and trying to find a chain of reasoning that justifies something you do 
know (or conjecture). Perhaps the clearest example of the distinction is found in induction problems. There is a huge 
difference between

(a) Find  
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(b) Prove that 
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The former requires an element of creativity, with access to ‘partial fractions’ coming to mind, or else the construction 
of some particular cases and the formulation of a conjecture on the basis of these. Once there is a conjecture, the 
problem becomes one of proving. The problem ‘to prove’ expects learners to have ‘induction’ come to mind, or else 
to deconstruct 11 n-  as a telescoping sum: 

1 1 1 1 1 1 1 11 1 .
2 2 3 2 1 1n n n n n
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Note that during the induction step it is often difficult to gain insight into ‘why’ the proof works, into the structural 
underpinnings that make the statement true. See Harel and Brown (this volume) for a further discussion of students’ 
conceptions of inductive proofs.

Learners who are satisfied with getting the answers to a suite of exercises are likely to learn much less than learners 
who develop the confidence that they could ‘do another question of this type’ in the future. The former can dwell in the 
particular, but the latter are engaging with the general, with “what does it mean to be a problem of ‘this type’?”. In our 
view, this is what constitutes mathematical thinking, as opposed to clerical proficiency. This perspective is supported 
by Vadim Krutetskii’s research (Krutetskii, 1976). He found that learners who were quick at mathematics tended to 
remember numbers and structure, whereas learners who were not so quick tended to remember contexts and other 
surface features of the tasks they encountered.

Constructive Approach to Solving
When asked to solve a particular problem, usually through the use of a technique recently encountered, a typical 
strategy for learners is to find a worked example which looks similar. As Chi & Bassock (1989), Sweller & Cooper 
(1985), and Anthony (1994) have pointed out, the problem with worked examples is that choices are made as to what 
action to take at each step, and the basis for that choice may not always be clear to learners. Consequently, using the 
worked example as a template may achieve a solution, perhaps involving some tinkering due to slightly different 
setting, but it may not shed any light on ‘how the technique is used’, much less on when and why it ‘works’. When 
problem solving is seen as construction, metaphors such as bricolage are available, where an attempt at a solution is 
assembled from available bits and pieces, which might at least shed light on where the real difficulty lies, or even on 
how to then set about constructing solutions systematically. 

Alcock (2004) found through interviewing mathematicians that learners do not use examples in the same ways 
as mathematicians. Whereas mathematicians use examples to illuminate through instantiation, to see through the 
particular to the general, and to consider possible counter-examples, many learners see them at best as templates and at 
worst as ‘more stuff to learn’. They often select examples for reasons which do not appear to be mathematically robust, 
relevant or informative, and to use them as demonstrations as if this constituted a proof. She goes on to suggest ways 
in which learners could be supported to make more effective use of the examples they do encounter, and in particular 
to get learners to construct their own examples (see also Dahlberg & Housman 1997, Watson & Mason 2002, 2005).

Freedom and Constraint
A pervasive theme throughout mathematics concerns the imposition of constraints on some otherwise general object, 
leading to characterising the collection of objects (if any) that satisfy those constraints. For example, starting with the 
freedom of an arbitrary pair of numbers, you can follow Diophantos (1964) and impose constraints such as that the 
sum is given, or perhaps that the sum of their squares is itself a square. An additional constraint can be included, such 
as that the difference is given, or that the numbers are also to be in a given ratio. Instead of searching around for a 
template to deal with the specific task, learners can become accustomed to starting from an unconstrained generality, 
and then imposing the constraints sequentially, seeking as general a solution as possible at each stage. For example,

• to find a number that leaves a remainder of 1 on dividing by 2, 3, 4, and 5, it can be useful to start with n as any 
integer, then to impose the constraint the remainder be 1 on dividing by 2, and to construct the most general 
number possible, and so on.
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• to construct a solution to three simultaneous linear equations in three unknowns, it can be useful to think first in 
terms of a general triple of numbers with no constraint, as a point roaming through three dimensions. Imposing 
one constraint limits the movement to a plane, and expressing one variable in terms of the others effectively 
‘solves’ one equation. A second constraint then confines the point to the intersection of two planes (if they are 
not parallel), and the first solution can be substituted in the second to yield a general expression for all those 
points.

The effect may be the same as using a prepared technique, but the psychological experience can be quite different 
as the learners’ powers are made use of to develop a resolution. Sometimes the heuristic of trying particular cases 
can be useful as a means to locate underlying structure; sometimes a single particular case can be used as a generic 
example, as Hilbert is reported to have done:

He [Hilbert] was a most concrete, intuitive mathematician who invented, and very consciously used, a principle; 
namely, if you want to solve a problem first strip the problem of everything that is not essential. Simplify it, specialize 
it as much as you can without sacrificing its core. Thus it becomes simple, as simple as can be made, without losing 
any of its punch, and then you solve it. The generalization is a triviality which you don’t have to pay much attention to. 
This principle of Hilbert’s proved extremely useful for him and also for others who learned it from him. Unfortunately, 
it has been forgotten. (Courant, 1981, p. 161)

By attending to the actions taken in a particular case, it is sometimes possible to create your own template that 
can be generalised.

Seeing a problem in terms of constructing an object that satisfies a number of constraints not only evokes a 
spirit of construction, but opens the way to identifying and dealing with those constraints. Starting from the most 
general unconstrained object can be followed by expressing the most general object satisfying one constraint, then two 
constraints, and so on until a solution is found or shown not to exist. This is certainly powerful in algebra, where it can 
help learners to locate and express constraints symbolically in order to produce a symbolic statement of the problem. 
Isaac Newton was one of those who worked at a time when the mathematical focus of solving problems shifted from 
expressing constraints in symbols, to developing techniques for solving the resulting equations and inequalities. Many 
learners may not realise that the techniques they encounter in textbooks and lectures are the fruits of this kind of 
labour. But techniques are only useful once the problem has been expressed symbolically.

Geometry is a domain in which it often helps to see construction tasks such as: ‘given three distinct concurrent 
lines, construct all the triangles for which these are the medians, or the altitudes, or the angle bisectors’. Even the 
problem that stimulated much of Schoenfeld’s (1985) work, ‘find a circle tangent to a given pair of lines and passing 
through a specified point on one of those lines’, can fruitfully be seen not just as a construction task, but as a task with 
constraints imposed on initial freedom. The problem is to construct a circle. That is easy enough, but what matters is a 
sense of the freedom available: choice of centre and radius. Then it must pass through a specified point. Then it must 
be tangent to a given line through that point. Then it must also be tangent to another given line as well. By becoming 
aware of the possibilities at each stage, the solver not only gets a sense of the impact of the constraints, but also, by 
looking for the most general class of solutions at each stage, may find access to the consequences of each constraint in 
turn. Choosing the constraints in a different order is sometimes more helpful, but learners need to be aware that they 
are dealing with a sequence of constraints before they can change the order.

Some geometry problems succumb to the removal of one constraint and the construction of a locus that captures 
the freedom available without that constraint. Where the locus is recognisable (a straight line, a circle, …) it may 
suggest a conjecture that can then be used to complete the construction (Love, 1996). The algebraic version of this is 
to let go of one or more constraints and express the general class of all objects before imposing further constraints.

Concept Development as Construction
Exercises are the most visible, but by no means the most significant, aspect of learners’ pedagogic experience (see 
the chapter by Weber, Porter, and Housman in this volume for a further description of the pedagogical advantages 
of using examples). Every concept — indeed every idea — has behind it a culturally rich collection of images and 
connections that Tall and Vinner (1981) call the concept-image (see also the chapter by Edwards and Ward in this 
volume for a further description of concept images). Indeed, it seems a reasonable conjecture that every technical 
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term in mathematics signals an important shift in the way of perceiving and thinking that someone made in the past, 
and has to be re-experienced by each learner. A significant component of a person’s concept image is the collection 
of examples and non-examples to which they have access, what Watson and Mason (2005) call their example space. 
Awareness of dimensions of possible variation can inform both the teacher in preparing encounters for learners, and 
learners as ways to probe their understanding of concepts.

The notion of dimensions of possible variation is particularly powerful when learning is seen as appreciating 
variation. Only if you know what can be varied can you appreciate the delicate relationship between particular and 
general, between an example and that which is exemplified.

Trying to understand a mathematical concept or theorem is much like trying to make sense of a mathematical 
problem. You have to ground yourself in something familiar, and this usually takes the form of an example that is 
sufficiently familiar to enable you to proceed with confidence. By following the theoretical or the general through 
the particularities of an example, it is possible to get a sense of what the theorem is saying or what the concept is 
encapsulating. 

However, when a teacher offers an example and works it through, it is the teacher’s example. Learners mostly 
assent to what is asserted. In a textbook, the words and examples become ‘yet more to be learned’, or ignored: yet more 
to which to assent, en route to the tasks. When learners construct their own examples, they take a completely different 
stance towards the concept or theorem. They ‘assert’; they actively seek to make sense of underlying relationships, 
properties and structure which form the substance of the theorem or concept.

Developing appreciation of a mathematical concept involves finding yourself using the concept to express what 
you are thinking. As has been pointed out by many people (e.g., Lakoff, 1987), concepts are inextricably entwined with 
examples of those concepts. The richer the range of examples and the more extensive the sense of how to construct 
examples, the richer the appreciation of the concept. Halmos raises the important question of sources: 

Where can we find examples, non-examples, and counter-examples? Answer: the same place where we find 
the definitions, theorems, proofs and all other aspects of mathematics — in the works of those who came 
before us, and in our own thoughts. … we find them first, foremost, and above all, in ourselves, by creative 
thinking. (Halmos, 1985, p. 64)

Furthermore, awareness of, or being able to construct examples which lie ‘just over the boundary’ of the concept, or 
providing counter-examples to weakened conditions of a theorem, alerts the learner to difficulties that may arise when 
the theorem is applied. A task or mathematical situation initiates a space of examples that may be given in the text 
(Michener, 1978), and may be enriched through learners being stimulated to construct their own examples (Watson 
& Mason, 2002, 2005). The richer and more complex that space, the richer the connections and sense of appreciation 
of the concept.

If learners are in the habit of constructing their own examples, and if they are supported in seeking generalities 
that encompass a range of examples, then they are likely to feel more secure in the use of the concept, as well as 
having access to a range of possible examples on which to test conjectures and through which to seek structure. For 
example, as was pointed out in the introduction, many learners treat f(x) = |x| as an isolated, even perverse, example of 
a function, designed just to ‘give them trouble’ because they want continuous functions to be differentiable. Whereas 
it is easy and even natural to monster-bar a single example, it is much harder to do this to a huge class of examples. 
Whenever a counter-example is offered, what matters is whether learners are aware of how the single counter-example 
is just one illustration of a class or space of such examples, and how those other examples could be constructed. 
Klymchuk (2005) provides not only a wealth of counter-examples to erroneous but common learner conjectures and 
assumptions in the calculus, but also points to ways of making the most of the examples.

From Exercising to Exploring
One of the features of developing facility in the use of a technique is to reduce the amount of attention required to 
carry out the technique. The novice requires full attention to each step, with the result that they may not have enough 
free attention to watch out for slips, and they may lose their sense of direction overall. By contrast, having automated a 
technique, the expert has free attention both to catch slips and unusual features arising, and also to maintain a sense of 
the overall plan. As Jerome Bruner (1986) points out, a skilled teacher can act as consciousness for two by retaining a 
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sense of the overall plan while the learner engages with particular details. Developing fluency in a technique involves 
becoming familiar with the overall flow and procedure. Gaining facility requires practice.

Traditionally, facility is developed through the doing of a large number of repetitive exercises, literally ‘exercising’ 
the fluent use of a technique or way of thinking about a problem. The trouble is that it is possible to do repetitive 
tasks without actually gaining facility, indeed without even thinking very much about anything! When doing a set of 
exercises, learners are rarely interested in the answers, but only whether they conform with those provided at the back 
of the book. Learners are not often supported and provoked into treating exercises as the raw material for mathematical 
development.

A much more effective approach advocated by Caleb Gattegno (1987) and developed by, among others Dave 
Hewitt (1994), is to engage learners in an exploration which, en passant, involves them in constructing examples 
for themselves in order to try to see what is going on. For example, finding the points in the plane through which a 
specified number of tangents can be drawn to a given curve such as y = x(x – 1) or y = x(x – 1)(x + 1) invites learners 
to choose points, to construct lines, to make them tangent to the curves, and to try to locate some overall pattern to 
the results which they might then be able to justify. In the process they are likely to gain considerable practice in 
differentiating and constructing straight lines. There is an opportunity to appreciate the growth of functions as x gets 
large (positively and negatively) in relation to potential tangents. Similarly, finding the distance between pairs of 
straight lines in three dimensions can be tedious as a set of exercises, but finding the minimum distance between two 
ruled surfaces amounts to the same thing, except that the learner is the one who constructs the pairs of straight lines, 
and is furthermore induced to work as generally as possible rather than being content with particular distances between 
particular pairs of lines.

If the particular examples that learners construct for themselves require the use of a technique with which they 
have some fluency, then it is in their interest to ‘get the answers’ because it will contribute to working out what is going 
on in the exploration. Thus learners can be induced to rehearse a technique on examples constructed by them rather 
than imposed from outside, and whose solutions matter to them. 

Summary
In order to appreciate a concept, it is vital to be aware of the variation it entails, and the invariance that is preserved. In 
order to make sense of a technique for solving a class of problems, it is vital to be aware of the range and scope of that 
class. Learners who focus their attention on getting through tasks as quickly and painlessly as possible do themselves 
an enormous disservice, for they hasten the moment when they decide that mathematics is too much for them, and they 
cut themselves off from the pleasure of creativity which mathematics affords, and which is necessary in order to use 
mathematical concepts and techniques flexibly.

In order to promote learners’ encounters with mathematical creativity, teachers can look for opportunities for 
learners to make choices, to construct objects as examples, and to articulate generalisations of particulars. When 
exercises, problems, examples of concepts, and counter-examples to obvious conjectures always come from the 
teacher or the text, learners are cut off from access to the creative and constructive aspects of mathematics, which are 
the sources of pleasure and the desire to find out more. Learners are dis-empowered and it becomes even more difficult 
for learners to shift from mere assenting to full engagement. We have argued, above all, that by seeing and posing 
tasks as construction tasks, using whatever familiar mathematical objects and techniques are at hand, learners’ whole 
attitude toward the learning of mathematics can be altered for the good.
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Introduction
This article is aimed toward faculty in mathematics departments who are working to increase the number of high-
achieving mathematics students from racial and ethnic minorities and for researchers investigating these endeavors. 
The Emerging Scholars Program (ESP) is one of the most widespread models for supporting such increases. It is also 
one of the oldest, so there is a considerable body of research, both quantitative and qualitative, related to its impact. 
Whether or not one chooses to implement an ESP, this discussion of the history, philosophy, structure, impact, and future 
of the program will highlight important and emerging themes that any related student support efforts must confront.

Individuals, departments, and colleges are invested in issues related to diversity for a number of reasons. One 
reason is a belief that all students should have the opportunity to pursue a satisfying career path. While acknowledging 
that personality plays some role in student academic choices, research and practice point to systemic factors that also 
affect students’ choices (some of which we elaborate in the section below, A Brief Look at the Emerging Scholars 
Program Model). This implies that institutions themselves have a responsibility to address such factors. Another reason 
for attention to issues of diversity is the increased health that disciplines experience from drawing on diversity—e.g., 
a variety of backgrounds, goals, and perspectives. This reason grows ever more important as minorities continue to 
constitute an increasing proportion of the U.S. population. The effects of diversity in the discipline reach beyond 
mathematics and researchers in science and engineering fields. In fact, the large majority of mathematics majors go on 
to jobs in industry and into teaching jobs at the K–12, community college, and university levels. The effectiveness of 
minority mathematics teachers at these levels has not been definitively researched. However, small-scale qualitative 
studies have found that 

Students of color tend to have higher academic, personal, and social performance when taught by teachers 
from their own ethnic groups. (However, this finding does not suggest that culturally competent teachers 
could not achieve similar gains with students of color from different ethnic groups.) (National Collaborative 
on Diversity in the Teaching Force, 2004, p. 6)

Moreover, calculus in particular is a significant filter for premedical tracks, so the effects of student success—
and particularly the success of minority students—in calculus cascade into the makeup and health of the medical 
professions.



206 Part 2a. Interacting with Students

For all these reasons and many others, many institutions and individuals are taking active responsibility for the 
high achievement of minority students in mathematics. This paper offers an overview of recent related research, 
as well as lessons learned during thirty years of work in Emerging Scholars Programs, some of which have been 
documented in the literature and some of which have been passed on as program folklore. This paper also documents 
some of the most recent relevant changes in the social and political landscape.

The year 2004 marks the 30th anniversary of the first piece of research directly related to the ESP model. It was an 
ethnographic study started in 1974 by Uri Treisman (Treisman, 1985, 1992; Fullilove & Treisman, 1990; Treisman & 
Asera, 1990), who was then a graduate student in mathematics at the University of California at Berkeley. The timely 
observation, based on an analysis of academic transcripts, that even high-achieving, high-potential minority students 
were struggling in freshman calculus, led to the question, “what was the overall experience of African-American and 
Hispanic students in calculus at UC Berkeley?” (Asera, 2001, p. 9). More details about Treisman’s study and the 
resultant ESP model are provided in the next section of this paper, A Brief Look at the ESP Model. 

The last thirty years have seen many attempts across the country to adapt ESP to local conditions. These decades 
have also seen the birth and growth of a variety of programs. Gándara (1999) offers an instructive overview of 
other program models that have documented systematic analysis of impact. In this study of 20 programs (including 
ESP), Gándara identified five strategies that such programs typically employ: “mentoring, financial support, academic 
support, psychosocial support, and professional opportunities” (p. 29). In this scheme, ESP strategies were classified 
as academic support and psychosocial support. Other programs have used different combinations of strategies and 
have successfully addressed different needs, goals, and target populations (e.g., graduate students). Throughout the 
report, Gándara stressed the need for more programs that emphasize excellence (as opposed to non-failure).

There have also been many changes in the social and political landscape since the beginning of ESP. One of 
the most encouraging changes has been the increase in bachelor’s degrees awarded to black and Hispanic students. 
According to the latest comprehensive surveys performed by the National Science Foundation, there was an impressive 
increase between 1990 and 2001 in the absolute number of bachelor’s degrees earned by underrepresented minorities, 
both overall and specifically in science and engineering. The proportion of bachelor’s degrees earned by blacks and 
Hispanics has increased noticeably as well (see Table 1). We see slower growth when we focus on mathematics 
degrees, but there is still an increase in the proportion of mathematics degrees awarded to blacks and Hispanics. 
However, despite the general improvement in numbers, the proportion of blacks and Hispanics graduating with 
bachelor’s degrees in science and engineering still lags far behind their respective proportions of the population as 
a whole. Nonetheless, the efforts of individuals, departments, and colleges to increase the success of minorities in 
mathematics-based fields have made a noticeable difference.

We must offer one caution. The existing research on minority academic performance is in its first stages. Issues 
with effect size, replication, and scalability thwart attempts to be absolute about conclusions, despite calls from the 
mathematics community to be definitive. In short, educational research on minority advancement in higher education 
is not in a mature state where any definitive results can be claimed.

 
Table 1. Bachelor’s degrees earned by Blacks and Hispanics in 1990 and 2001 
(National Science Foundation, 2001, 2004; U.S. Census Bureau, 2001b)

Blacks
(1990)

Blacks
(2001)

Hispanics 
(1990)

Hispanics 
(2001)

Number of Bachelor’s Degrees
All Fields 59,301 106,648 43,864 89,972
Science and Engineering 18,230 33,869 13,918 29,262
Mathematics 720 845 413 668

% of Total Bachelor’s Degrees
All Fields 5.6% 8.5% 4.1% 7.2%
Science and Engineering 5.3% 8.1% 4.0% 7.0%
Mathematics 4.9% 7.2% 2.8% 5.7%

% of Population 11.7% 12.1% 9.0% 12.5%
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To complicate matters, any results and recommendations considered from research need to be analyzed and adapted to 
local history and resources. In fact there is often a practical disconnection between educational research and practice. 
The reasons for this disconnection are many and well summarized elsewhere (e.g., Burkhardt & Schoenfeld, 2003). 
Indeed, this disconnect has been the general experience of ESP practitioners and program designers. They are often 
working at the edge of their time and material resources and cannot hope to be simultaneously immersed in the 
sprawling mathematics education literature on minority academic performance. 

Despite these cautions, educational research can strengthen and refine practice. Excellent research and theory can 
call attention to hidden structures and subtle phenomena that have practical implications for program design. Research 
can also reframe one’s understanding of the practical terrain in which programs are implemented or bring to mind 
fruitful and essential questions. As an example of research-informed practice, this paper begins with a brief description 
of the ESP model and an overview of the documented effects of programs based on this model. We will then discuss 
three major questions that can be addressed from new research around minority academic performance of the last 15 
years. We conclude with a look at future challenges both for program designers and for education researchers hoping 
to make more practical impact with their work.

A Brief Look at the Emerging Scholars Program Model
The original version of the ESP model, the Professional Development Program Mathematics Workshop at the 
University of California at Berkeley, was designed in the 1970s in response to ethnographic research at UC Berkeley 
that described the contrasting study habits of black students and Chinese students (Fullilove & Treisman, 1990; 
Treisman, 1985, 1992; Treisman & Asera, 1990). In particular, the black students, who were more likely to fail or 
barely pass calculus, tended to study in isolation, separating their academic lives from their social lives. In contrast, 
their Chinese classmates, who were more likely to achieve high grades in calculus, tended to form cohesive support 
groups that factored heavily in the ability of these students to navigate the system. The first workshops began in Fall 
1977, and the program that developed from this research proved to be not only successful, but portable. This section 
summarizes some of the literature on implementations at public research universities. 

The overall goal of a mathematics workshop program is to increase student achievement by creating small diverse 
communities of learners who work on challenging mathematics in visible and collaborative ways. A key aspect of 
the program is that it emphasizes honors-level mathematics, not remedial. It is also important to note that across 
ESPs there is little uniformity of theoretical frameworks around group work and classroom culture (cf. the excellent 
overview of theoretical perspectives on classroom interaction in this collection by Bowers and Nickerson). This lack 
of uniformity is a result of the decentralized, spontaneous, and pragmatic spread of the ESP model. Some structural 
features, however, are much the same from one instantiation to another (Alexander, Burda, & Millar, 1997; Asera, 
2001; Moreno, Muller, Asera, Wyatt, & Epperson, 1999; Murphy, Stafford, & McCreary, 1998; Treisman & Asera, 
1990). In general, students in calculus at large research universities attend a lecture along with several hundred other 
students. They also enroll in a recitation section. During traditional recitations, a graduate teaching assistant answers 
homework questions at the chalkboard. In the ESP model, however, these recitations are replaced with sessions that 
have come to be known as workshops. Students in these workshops continue to attend the same lectures and take 
the same exams as the students in the traditional recitations. However, workshops typically are not only smaller than 
traditional recitations (12–20 students instead of 25–30), but also meet for longer blocks of time (75–120 minutes 
instead of 50) and more often (2–3 times per week instead of 1–2), a commitment for which students may receive 
additional credit hours.

For each workshop session, the graduate teaching assistant (GTA) constructs a worksheet, sometimes with the 
aid of a problem database (Hsu, 1999), composed of challenging problems. Asera (2001) characterized the features of 
the problems used on ESP worksheets: good problems pull ideas together from across multiple chapters, fill in gaps in 
student preparation without resorting to remediation, and are challenging enough to incite student collaboration and to 
teach students to persevere. During the workshop class time, students work individually and collaboratively on these 
problems (not on homework), while the GTA keeps the conversations moving forward without directly answering 
students’ questions (Alexander, Burda, & Millar, 1997; Kline, 1994). Although the ESP literature does not tend to 
discuss GTA training and development in detail, many programs have in-house training sessions (e.g., Hsu, 1996) or 
send their GTAs to an annual session at the University of Texas at Austin (Epperson, 2003). 
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Several journal articles provide evidence of the ESP model’s success and identify several kinds of effects. For 
example, ESP participants tend to achieve higher grades in calculus than underrepresented students who do not 
participate in the program—and often ESP participants receive higher grades than their (nonparticipant) white and 
Asian classmates (Alexander, Burda, & Millar, 1997; Bonsangue, 1994; Fullilove & Treisman, 1990; Moreno, Muller, 
Asera, Wyatt, & Epperson, 1999; Murphy, Stafford, & McCreary, 1998). ESP participants are more likely to complete 
the calculus sequence than nonparticipants (Alexander, Burda, & Millar, 1997; Murphy, Stafford, & McCreary, 1998). 
Furthermore, underrepresented minority students who participated in an ESP are more likely to persist in a calculus-
based major (Bonsangue, 1994; Murphy, Stafford, & McCreary, 1998). The studies have had issues with defining 
appropriate control groups, if for no other reason than not being able to control for self-selection bias, i.e., the fact that 
ESP students choose to enter the program. Nevertheless, for the most part, the outcomes cited in these studies cannot 
be explained by preexisting differences in admissions criteria (e.g., SAT scores) between the ESP participants and the 
control groups. While there is scant research examining which program features contribute most to which outcomes 
and for what reasons, Herzig and Kung (2003) attempted to isolate the effects of cooperative learning and length of 
time in class. They concluded that “it is likely that the success of ESP results from some combination of the various 
aspects of the program, including length of time, use of group learning, types of students, and community-building 
activities” (p. 46).

Another question that arises regarding participant selection is the question of race identification. On the one hand, 
in the current post–affirmative action political climate, identifying potential ESP participants can be nontrivial. On 
the other hand, ESP has always emphasized diversity, recruiting students from all ethnic and racial backgrounds. For 
the most part (with the exception of Fullilove and Treisman [1990], which is outdated), details related to recruiting 
participants have been left to oral tradition and have not been systematically documented in the publicly available 
literature. It is believed that personal interactions with other units on campus and with high school teachers can facilitate 
the participant selection process. Some ESPs target specific high schools or geographic regions. Some work closely 
with units on campus that serve incoming freshmen. Several of the existing programs contact potential participants by 
letter. Then during summer freshmen advising time, ESP personnel meet with these students to explain the structure 
and philosophy of the program and, in some cases, ask students to pledge participation in the program. 

In many cases, ESPs make use of both graduate and undergraduate teaching assistants. Although, again, this has 
not been the subject of research in the context of ESP, there is a belief among some program personnel that employing 
former participants as undergraduate teaching assistants has benefits at multiple levels. It is likely that the current ESP 
participants benefit from interacting with an upperclassman role model. It is also likely that the undergraduate teaching 
assistants themselves benefit both by mastering the course content at a new level and by experiencing teaching as a 
profession. This structure, where newcomers participate in increasingly legitimate and central ways, parallels that of 
the successful sites of stable communities of practice discussed in varied settings by Lave and Wenger (1991) and in 
mathematics teacher settings by Hsu (2004).

The process used to select graduate teaching assistants (GTAs) seems to be even more varied. For example, some 
coordinators identify potential graduate teaching assistants through informal conversations with department staff who 
interact with the GTAs and can discuss personalities and interests. Other departments rotate the teaching assignment 
through the GTAs so that it is not seen as a special teaching assignment (which might marginalize the program). The 
impact of these various processes has not been systematically investigated. However, teaching an ESP workshop is 
considerably more difficult than teaching in an average section, and we believe that ESP GTAs need to be carefully 
chosen for skill and diligence. Analogous to the belief that undergraduate teaching assistants themselves benefit, there 
is a belief that ESP experience can positively affect the teaching philosophy that graduate students take into their 
positions as teachers (Kung, in press).

In her milestone report, Asera (2001) was one of the first researchers to document the role of the ESP coordinator. 
She noted that, behind the scenes, the ESP coordinator is responsible for the program environment. In practice, 
this means that the coordinator is responsible for identifying and recruiting students, and perhaps GTAs, as well as 
monitoring the structures that enable a community to form. Other coordinator responsibilities include student advising 
and organizing social events. In the ESP context, there is a need for research related to each of these aspects, including 
the role of the coordinator and the relative importance of program features such as use of challenging problems, use of 
group learning, length of class time, designated space, student advising, and social events. Some of these features have 
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been studied in other contexts, including college in general (Light, 2001; Tinto, 1993), but the relative importance 
of each to the success of ESP is as yet undetermined. Nevertheless, twenty years after the initial ESP workshops, 
Seymour and Hewitt (1997) published work in which minority participants characterized programs that work best: 
“well-advertised, departmentally-based, field-specific, open to all students and accessible” (p. 389). Although this 
description was not specifically referring to ESP, the ESP model certainly emphasizes all of those features.

Essential Questions from Recent Research
As noted above, the initial research base for ESP began in 1974. More than three decades have passed since then, with 
several important key issues emerging from careful research and the hard-earned wisdom of practitioners. Anyone 
who hopes to support high minority achievement in collegiate mathematics can expect to grapple with these issues 
or risk repeating the mistakes of the past. This section is devoted to considering these questions in detail, pointing to 
relevant research and examining the ways ESP has wrestled with these emerging issues.

Question 1: Do Your Introductory Courses Introduce? Do Your Preparatory Courses Actually Prepare? 
The original Emerging Scholars Programs, located at research institutions, focused on calculus courses as being the 
most important and tractable. The calculus courses’ importance stemmed from their being the primary filter course for 
mathematics majors, with research revealing that African-Americans and Hispanics were failing calculus courses at a 
higher rate than their Caucasian and Asian counterparts despite strong preparation and high test scores. The calculus 
courses were tractable in the sense that they were viewed by the mathematics departments as important enough to the 
major that resources could be directed to building a community around complementary workshops. Many ESPs found 
success focusing on first-time calculus takers, mainly first and second-year students. The rationale was that newer 
students were vulnerable due to lack of experience, but also not yet scarred by failing calculus, so one could still build 
around them a community with a challenging honors environment.

While ESPs have historically focused on calculus, research has increasingly called attention to the role of the 
preparatory mathematics courses in determining a student’s future trajectory in the field. It is worth noting that what 
counts as preparatory varies from one institution to another. In some institutions—for instance, research universities—
the preparatory course might be precalculus; at other institutions—for instance, community colleges—it might be 
college algebra or below. In any case, minority students tend to begin their coursework one course before the official start 
of the mathematics major (Ruddock, 1996). In fact, national data reveal that underrepresented minority undergraduates 
disproportionately place into remedial mathematics courses in college (see Table 2). This is symptomatic of a national 
phenomenon, as reported in a study by the National Science Foundation (1999):

The mathematics course-taking patterns of black students have an effect on their participation in other science, 
mathematics, and engineering fields. Participation rates are high at both the precollege level and at the levels 
of college algebra and precalculus. The participation rate is lower in calculus and lower than it should be in 
finite/discrete mathematics given the proportion of black students who major in computer science. (p. 44)

Certainly not all students who enroll in mathematics courses at the developmental, algebra, trigonometry, and 
precalculus levels intend to continue into calculus. However, these courses serve many students who do intend to 
pursue a calculus-based major (e.g., about 69% in Bergthold and Ng, 2004), and these courses are disproportionately 
populated with minority students. Thus, the experiences of minority students taking preparatory classes should be 
rethought. This may mean redistributing department attention and energy. Often mathematics departments value, in 
decreasing order, graduate courses, upper-division courses, lower-division courses, introductory major courses, and 
preparatory courses. That is, departmental investment tails off as one looks earlier into the major sequence—from 
courses that are seen to produce majors to courses that are not seen as feeding the mathematics-major pipeline. To 
effectively support the success of minority students, however, we need to work on the courses in which these students 
actually begin.

If one frames the obstacle to building diversity in mathematics as high failure rates, a tempting solution is to 
achieve low failure rates by helping students not fail, as opposed to the ESP philosophy of pushing students to excel. 
Ruddock (1996) reframes the problem in terms of the course trajectories of students, showing that one must worry 
not just about how students do in preparatory courses, but about how they do in subsequent courses. Ruddock studied 
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Table 2. Percentage of first- and second-year undergraduates who reported (1999–2000) ever 
taking remedial mathematics courses (National Center for Education Statistics, 2002, p.132)

Ethnic Group % Taking Remedial Mathematics
White 13.3%
Black 19.5%
Hispanic (any race) 20.4%
Asian/Pacific Islander 12.6%

All Undergraduates 15.0%

the success of students at the University of Texas at Austin who began their mathematics careers in precalculus 
compared to those who began in calculus. The course title precalculus emphasizes its role not as a proper subject of 
study, but as preparation for success in calculus. Thus, Ruddock tracked the success of groups of precalculus-first 
and calculus-first students. Defining success as receiving an A or B in a course, she found the precalculus group had 
a significantly lower percentage of success in both first-semester and second-semester calculus. This result held even 
when she restricted the study population to students scoring between 500 and 600 on the SAT Mathematics test to 
control for mathematics aptitude. The result also held when disaggregated by ethnic group. One particularly intriguing 
result was that students who scored a B in first-semester calculus were less likely to succeed in second-semester 
calculus if they were precalculus-first. She also examined mathematics major graduates to see what their beginning 
course was. Overwhelmingly, they began in calculus. Ruddock found similar results from the available data at the 
University of California at Berkeley. Schattschneider (2006), in a study of two four-year colleges and two two-year 
colleges, also found that between one-half and two-thirds of all students who passed precalculus did not pass first-
semester calculus. 

Attempts to adapt the ESP model to address underpreparation have met with varying degrees of success. For 
example, at the University of California at Santa Barbara, the initial ESP calculus results were so encouraging that they 
began including participants with lower and lower levels of preparation. The effect was negative both for the students 
and for the workshops as a whole. On the one hand, some students were put into a situation that was outside their 
capacity at that time; on the other hand, the workshops suffered under the strain of trying to support these students. 
The guideline seems to be that students in a calculus workshop need to be within one standard deviation of the mean 
in terms of their mathematics background. In a more positive example, the University of Kentucky successfully took 
advantage of local history and resources to focus on precalculus as well as calculus. This work continues there as 
the successful MathExcel program. The strength of ESP lies in emphasizing excellence, but the details of how to 
implement this philosophy successfully and broadly in courses that precede calculus have yet to be pinned down.

Question 2: How Salient Should One Make a Student’s Minority Status?
Minority academic performance is typically framed as an issue requiring the institution to serve its minority students 
differently, with solutions then framed as the creation of special programs for minority students (e.g., Minority 
Engineering Programs). Often, students are recruited for their minority status, and this status is highlighted throughout 
the proceedings. Over the last three decades, this has been a pragmatic, simplified approach to the complicated issue of 
ethnic identity. Yet this approach is really too simplistic. In a seminal study, Seymour and Hewitt (1997) interviewed 
science, mathematics, and engineering (S.M.E.) undergraduate majors at seven institutions (none of which had an 
ESP). Among the 335 participants were 88 students of color—black (27), Hispanic (20), Asian-American (35), and 
Native American (6). From these interviews, Seymour and Hewitt identified areas that specifically affect students 
from these populations: “differences in ethnic cultural values and socialization; internalization of stereotypes; ethnic 
isolation and perceptions of racism; and inadequate program support” (p. 329). They also caution, however, that 
despite research efforts to characterize issues common to all students, and additional issues common to minority 
students, it is naive to think of minority students, or any group of minority students, as a uniform population. Seymour 
and Hewitt emphasized that

differences among and within different racial and ethnic groups have greater significance for the chances 
of success than had previously been assumed. ... Failure to take such differences into account may, in and 
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of itself, explain why programs intended to recruit or support “minority students” have not improved their 
chances of survival in S.M.E. majors. ... [Indeed], any statement purporting to summarize the experience and 
attrition risks of all non-white S.M.E. students tends to distort and mislead. “Minority programs” based on 
presumption of needs common to all “minorities” tend to founder, quite largely, because they do not address 
the needs of specific racial and ethnic groups. (p.322)

Race and ethnicity have always been much more complicated than can be captured by the simple categories used 
to track students. But race is more complicated today than it was even a decade ago. Indeed, the ethnic landscape 
has been changing. Racial integration of neighborhoods has been steadily increasing, and the number of multiracial 
families is growing rapidly. Furthermore, recent research calls attention to the idea that the act of highlighting people’s 
identity (gender or ethnicity) can have unexpected and unintended negative consequences. Also, one cannot ignore 
the significant shifts in the political landscape with respect to affirmative action, which have large implications for 
many race-targeted programs. In the following sections, we present four themes from research related to the question 
of minority status: (1) Stereotype threat, (2) Multiethnic and multicultural racial identities, (3) Legal and political 
challenges to race-targeted programs, and (4) The changing landscape of race.

Stereotype	threat.		A fascinating series of experiments show that by making students’ minority status salient, one 
can influence their test performance measurably. The original series of studies by Claude Steele, Joshua Aronson, and 
Steven Spencer used difficult questions from a GRE verbal test (Steele & Aronson, 1995). Two groups of students were 
given the same test. Each group had both white and black sophomore college students of equal academic qualifications 
randomly assigned. However, one mixed-race group was told the test measured their ability, and the other group was 
told it was not a test of ability but was instead designed to discover how students approached these problems. The 
performances of all the white participants and the “non-ability-measured” African-American students were similar, 
but the “ability-measured” group of African-American participants did measurably worse. 

The theoretical explanation is that African-American students in the “ability-measured” group felt significant 
pressure not to confirm the negative stereotype about African-Americans having low intellectual abilities. This 
pressure, dubbed stereotype threat, caused them to underperform on the test. Neither the “non-ability-measured” 
group nor the white students experienced stereotype threat, and their performance was as expected. To show that 
students were actually experiencing a heightened awareness of negative stereotypes, Steele and Aronson repeated the 
original experiments with two intriguing pre-tests. First, participants were given a series of words with some letters 
known and some unknown, and were asked to complete the word by finding the missing letters. The twist was that 
in some cases there were multiple correct responses, some of which were related to stereotypes and some not. They 
found African-American participants in the “ability-measured” group answered with significantly more words relating 
to racial stereotypes than the “non-ability-measured” African-American participants or any of the white students. 
Students were also given a sports and music preference survey right before the test, and African-American students in 
the “ability-measured” group reported considerably less interest in stereotypically African-American preferences like 
basketball and hip-hop compared to the “non-ability-measured” group. This last result was interpreted to mean that 
students about to take an “ability-measured” test were unusually intent on not being stereotyped by their race. 

One question left open by the original work was whether stereotype threat was the result of internalized self-
doubt within African-American students or whether stereotype threat was triggered externally by making negative 
stereotypes salient. Later experiments extending the original work seem to have settled the question in favor of 
external triggers (Steele, 1997; Aronson, Quinn, & Spencer, 1998). For instance, white male students (who, as a 
group, are supposed to not have the same internalized self-doubt) had their mathematics test performance depressed 
when they experienced external triggers. That is, when they were told that Asian students outperformed whites, they 
experienced an externally induced stereotype threat (Aronson et al., 1999). Stereotype threat performance depression 
has been replicated for high-achieving female mathematics students (Spencer, Steele, & Quinn., 1999) and Hispanic 
students (Aronson & Salinas, 1997) as well. One intriguing small-scale study by Inzlicht and Ben-Zeev (2000) showed 
that female mathematics test performance decreased in proportion to the number of males in the room, even though 
verbal test performance was unaffected. In a fascinating experiment with Asian-American women, participants were 
given one of three questionnaires that induced external stereotype threats: Questionnaire 1 made their female identity 
salient by asking questions about their sex and gender identity, Questionnaire 2 made their Asian identity salient, 
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and Questionnaire 3 (the control condition) asked questions unrelated to sex or race. Once these questionnaires were 
completed, all of the groups were given a quantitative test. The results revealed that the “female” group (those receiving 
Questionnaire 1) performed worse than the control group, while the “Asian” group (those receiving Questionnaire 2) 
outperformed the control group (Shih, Pittinsky, & Ambady, 1999).

There is some evidence that telling participants explicitly that stereotype threat could affect them can eliminate its 
effects. For instance, Johns, Schmader, and Martens (2005) performed a test comparing performance on a mathematics 
test by women in a “non-ability-measured” group, the usual threatened “ability-measured” group, and a threatened 
“ability-measured” group that was then informed about stereotype threat and its likely effects on performance. While 
the second group performed worse than the first and the third, the “informed” group performed as well as the first. 
Another study (McIntyre, Paulson, & Lord, 2003) showed that reading about successful women helped alleviate the 
effects of stereotype threat.

Multiethnic and multicultural racial identities .  A good deal of research and practice makes a simplifying assumption 
that when we assign students to an ethnic category, they themselves identify with that categorization. This can be a 
helpful working assumption, and indeed some ESPs make this working assumption, but research has shown that it is 
becoming increasingly problematic. In what follows, we present four recent trends that complicate issues of race.

First, this generation of students entering college, regardless of ethnicity, is more likely than past generations to 
have grown up in a racially diverse community. To be certain, racial integration is not occurring at a constant level and 
is not ubiquitous. According to the Lewis Mumford Center’s analysis (2001) of census data, both urban and suburban 
neighborhoods still tend to be segregated by race. However, there was a decrease in segregation in the 1980s, and a 
smaller, but still significant, decrease in the 1990s. Though the Mumford Center expresses worries about the slowing 
rate of diversification of neighborhoods, the fact remains that segregation continues to decrease, and the effects have 
been cumulative. Hence, our students may have very complicated ethnic identities compared to those who grew up 
with greater segregation a generation ago.

Second, this generation of students is more likely to identify with multiple or mixed ethnicities. Since 1960, 
rates of intermarriage between ethnicities have increased in every ethnic category. In 1960, 0.4% of all marriages 
were interracial; in 1980, 2% were interracial, and by 1992, 2.2%. In 2000, the census began recording a wider range 
of multiethnic identifications, and interracial marriages (including situations with two partners of mixed race) were 
recorded as 7.4% of total marriages. Interracial cohabitation made up 15% of the cohabitation responses (U.S. Census 
Bureau, 2003a). These rates are higher when restricted to the college-educated population (Qian, 1997, and Kalmijn, 
1998), which makes this effect even more significant for college settings, as college-educated families are more likely 
to send children to college.

Third, what constitutes “black” identity continues to evolve. While a number of programs focus on urban poor 
African-Americans, there continues to be a growing African-American middle class. Pattillo-McCoy (1999) surveys 
the current research on the black middle class, and finds that the proportion of blacks with white-collar jobs has been 
increasing since World War II. At first the growth was explosive, triggered by the post-war economic expansion 
and the Civil Rights movement; growth slowed in the recession of the 1970s and has not to date recovered its rapid 
pace. Nonetheless, the percentage of African-Americans in middle class occupations rose from 39.6% (1980) to 
44.9% (1990) to 49.8% (1995). Alba, Logan, and Stults (2000) argue that middle-class African-Americans live in 
neighborhoods that are significantly more integrated than the neighborhoods of inner-city blacks. To be sure, there 
is still significant racial inequality between the black and white middle classes: the black-white income gap remains, 
black middle class jobs are lower paying, and the black middle class lives on average in less safe neighborhoods. By 
almost every economic and social measure, the black middle class lags behind its white counterpart. Nonetheless, the 
black middle class continues to grow, is socially distinct from the urban black lower class, and is overrepresented in 
the college population. Sacks (2003, p. B7) reports that among black students at elite colleges, “60 percent of their 
fathers and more than half of their mothers were college graduates. One-third of their fathers had advanced degrees” 
(citing Massey, Charles, Lundy, & Fischer, 2002) and “nearly nine of 10 African-American students admitted to the 
most competitive colleges had come from families in the top two tiers of the social and economic ladder” (citing 
Bowen & Bok, 1998). 

Another recent phenomenon affecting “black” identity is the new attention to subgroups of African-Americans: 
blacks whose ancestors were forcibly taken to America for slavery, immigrants from the West Indies, and immigrants 



16.  Supporting High Achievement in Introductory Mathematics Courses 213

from Africa. Students from each of these different subgroups are treated the same as African-Americans, despite the 
subgroups having completely different social histories. In fact, tensions between American blacks and West Indian 
blacks over jobs and culture date back to the early 20th century (Woodbury, 1993). In a provocative article, Phelps, 
Taylor, and Gerard (2001) claim that descendents of slaves have increased levels of cultural mistrust and attachment to 
their ethnicity compared to West Indian and African immigrants. These issues will only intensify in the coming years, 
as U.S. Census Bureau data (see Table 3) show that the percentage of the U.S. foreign-born population born in Africa 
has approximately doubled every decade. This immigrant group is more educated (88% with a high school education) 
and more affluent (more than a third more per-capita income) than native-born Americans and Asian immigrants 
(Speer, 1994). Half of the African-born immigrants are black.

The growth in the numbers of blacks who are voluntary immigrants from the West Indies and Africa has led to 
increasing debate over what constitutes black identity and the purposes of affirmative action programs (Johnson, 
2005). Rimer and Arenson (2004) report from Harvard that Professors Lani Guinier and Henry Louis Gates caused an 
uproar when announcing “the majority of [the 530 black Harvard undergraduates] — perhaps as many as two-thirds 
— were West Indian and African immigrants or their children, or to a lesser extent, children of biracial couples.” 
Furthermore, Rimer and Arenson cite a study of selective universities which showed “41 percent of the black students 
identified themselves as immigrants, as children of immigrants or as mixed race.” Careful studies of this phenomenon 
at any one site are made difficult by the general aggregation of all these groups in campus statistics as “black”. 

Table 3. African-Born Living in the U.S. (U.S. Census Bureau, 1999, Table 2; 2003b)

Year 1960 1970 1980 1990 2000
Number of African-born living in U.S. 35,355 80,143 199,723 363,819 ~870,000

Fourth, the composition of the Hispanic population is changing rapidly. It is well-known that the Hispanic 
population is the fastest growing minority group in America. The Hispanic population in the United States grew 57.9% 
between 1990 and 2000, increasing from 22.4 million to 35.3 million (U.S. Census, 2001a). One striking finding from 
the census was that the national makeup of the Hispanic population is changing. Historically, most Hispanics have 
been of Mexican, Puerto Rican, or Cuban descent. However, in the last decade, Hispanics from other countries nearly 
doubled from 5.1 million to 10.0 million, and the proportion of all Hispanics has increased from 22.7% to 28.3%. 
Prominent subgroups were Salvadorans, Guatemalans, Hondurans, Colombians, Ecuadorians, and Peruvians. One 
should not underestimate the effects of identification with distinct subgroups of the Hispanic population. Students may 
resent being lumped in with other subgroups with whom they feel no identification, or worse, rivalry. For instance, 
developers of bilingual educational software for the Los Angeles public schools reported friction from test groups 
over voiceovers in multimedia. The conflict was over the perception that the choice of regional Spanish accent showed 
bias towards either students of Mexican descent or students from other Hispanic groups, who considered themselves 
distinct and rival subgroups. 

We only have space to mention briefly that an analogous issue affects the lumping together of students as “Asian”. 
This paper itself is an example of this error. We have concentrated mainly on issues affecting black and Hispanic 
students, ignoring the fact that there are wide differences in academic performance among Asian subgroups. These 
subgroups have differences in socioeconomic status, national identity and immigrant experiences. Even within these 
subgroups, students will have had widely varying amounts of time since their family’s immigration to the U.S. 

Legal and political challenges to race-targeted programs .  The Hopwood v. Texas decision made a splash nationally 
upon its issuance in 1996, and again in 2001, when the University of Texas declared an end to its legal appeals. The 
decision itself was fairly limited: it forbade the use of race-based admissions criteria in higher education institutions 
in the 5th Circuit of Appeals (Texas, Louisiana, and Mississippi). Furthermore, the Supreme Court refused to hear an 
appeal on the technical basis that the University of Texas Law School had changed the admissions policy in question, 
leaving open the possibility of revisiting the question of the merits of the appeal in the future. Nonetheless, the 
Hopwood case signaled a broader shift in the political climate against affirmative action. For instance, the University 
of California system ceased the use of race for admissions decisions even before Proposition 209 was passed in 
1996.
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Colleges and universities are increasingly choosing to stop the use of racial preferences, even for admissions 
to internal programs, in response to the political atmosphere rather than out of any specific legal obligation. The 
Supreme Court did revisit the issues of racial preferences in the twin 2003 decisions on Gratz v. Bollinger and Grutter 
v. Bollinger, and the Court issued a subtle (and puzzling to many) dual decision which allowed administrations to use 
race as a factor in admissions, but not in a mechanical way. This decision gives some legal maneuvering room for race-
based programs, but the practical climate remains negative, and as a trend, campuses are putting pressure on programs 
to justify targeting students by race, which is why ESP has had an advantage over most other interventions aimed at 
supporting minority success in that the program has always recruited students from all ethnicities.

ESP and the changing landscape of race .  One of the essential features of ESP is the need for a truly diverse 
classroom. Part of the effectiveness of the workshops comes from having students seeing other students from a wide 
range of ethnicities struggling and then succeeding with the same mathematics. For example, deep stereotypes can be 
broken when an African-American sees a Chinese student struggling and gets a more realistic measure of the work of 
mathematics. It is possible that this aspect of ESP helps to defuse the effects of stereotype threat. It certainly facilitates 
exposure to a variety of perspectives, approaches, attitudes, and values.

To these ends, ESP workshops have always recruited students of all races, and aimed for a mix of students. 
Because of this, at the University of Texas, ESP suffered less than most other programs aimed at supporting minorities 
in the post-Hopwood era. The University of Texas ESP does recruit black and Hispanic students more heavily, but it 
also targets rural whites, another “at-risk” group, and aims for an “ideal” calculus classroom in which minorities are 
more represented than they are usually, but are by no means the only students. Undoubtedly, ESP will need to evolve in 
response to the increasing mixing of ethnicities and increasing complexity of black and Hispanic identity. However, in 
principle, the ESP workshops have already been constructed to bring together a rich mix of students from many ethnic 
backgrounds, and it seems possible that this mix will only grow richer as student ethnicity evolves. 

Question 3: How Can One Design a Program That Lasts?
In many ways, this is the most important practical question to be answered. ESP is an interesting program because 
many people in many different settings have attempted to adapt ESP to their local setting. Hence, the ESP community 
has gained experience with a wide array of locales. While we will focus on the experience of Emerging Scholars 
Programs, the structural analysis will be relevant for any campus efforts to increase student achievement in specific 
disciplines.

One might think that with all the experience of the years of work on ESP, there might be some kind of algorithm 
for optimally designing a local ESP. But the reality is that the reasons for success and failure at different sites are 
still mysterious. There are, of course, some principles and patterns that have emerged, but this is not the same as a 
systematic exploration of the factors that contribute to lasting effectiveness of a program. The most definitive work on 
the factors contributing to ESP’s effectiveness is by Asera (2001). However, Asera cautions:

When [ESP] staff described the program in comprehensive detail, other campuses tended to reproduce those 
details as exactly as possible, which was usually inappropriate. But when the staff resorted to describing 
instead the program’s driving principles, that strategy, too, proved problematic, since the principles without 
the weight of specific examples were far too easily misunderstood. (p. 29)

The first step in designing a successful program is understanding local conditions. We present here a framework 
the authors have found useful for this purpose. One often refers to a system’s potential to change as its capacity. Such 
a notion is more productive when broken into the components of human capital, social capital, material resources, 
and the structural support of the institution. These components change with time; it is crucial to understand them not 
just as resources at hand, but ones with a local history and a future trajectory.

Human capital refers simply to the knowledge, skills, and goals of the people available to do the work of a 
project. In the case of ESP, this means the project staff, the campus faculty and administrators that support and guide 
the project, and the graduate instructors who teach in the program. Social capital refers to the bonds of trust and 
reciprocity residing in a social network—e.g., the extent to which the members of a department cooperate internally, 
with the administration, and with other departments and student support units on campus. Material resources refers 
to funding, physical space, equipment, and other tangible resources. Structural support refers to the institutional 
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arrangement of hierarchical relations, obligations, and incentives—e.g., policies encouraging joint work between 
academic departments and student support units, the process of reviewing and altering the sequence and the content of 
courses, and the college incentives for doing service or building innovative programs. 

Starting a program requires a different configuration of resources than maintaining and developing a program. The 
experience of ESP is that there needs to be at least one driving advocate, and that advocate should be a senior faculty 
member. Such a person will have a better understanding of the structural supports available and, through reputation 
and history, wield more social capital in the department and campus social network. It is important to gain the help of 
people who have experience and access to the higher campus administration and national networks of scholars. 

Compatibility with a college’s structures of support is a crucial consideration. A program can exist briefly on 
short-term resources, such as a heroic individual leader (human capital), outside grants and other soft money (material 
resources), or the piecemeal support of sympathetic faculty and staff (social capital). However, for a program to last, 
it must ensure a future flow of each of these resources. Good structural support ensures the future resources that keep 
a program thriving and growing. What this means will change depending on the campus. But there are several themes 
that have emerged across many ESP projects.

First, as quickly as possible, the initial efforts should take the form of departmental committees given the power to 
develop the project. Committee work is a framework that can attract further human capital and invoke a broader sweep 
of a department’s social capital. Perhaps most importantly, departmental committee work fits into the usual work and 
reward structure of a college institution. Furthermore, a committee institutionalizes a project as a departmental priority 
and helps a program survive turnover in faculty leadership. 

Similarly, it is important for ESP workshops to be given for mathematics department course credit (as opposed to 
no credit or general education credit) as a lower-division seminar attached to a calculus course. Giving course credit 
structurally commits the mathematics department to devoting ongoing and future resources to the program in a way 
that is impossible if the program is housed in a non-departmental student support unit or in some other administrative 
unit. It commits the department to assigning teachers and staff (human capital) and classrooms and materials (material 
resources) into the future.

Some ESPs have designated office and class space on campus, and anecdotal evidence shows it is a great advantage 
to have this. It certainly adds an air of stability and legitimacy to an effort. Students and staff come to consider the 
physical location a “home” and it gives people a common site to establish continuity across different generations of 
staff and students. Structurally speaking, once an academic program has a physical location, it takes more effort for 
an institution to move it or eliminate it. If a program is lucky enough to get a physical foothold someplace, it will be 
under continual pressure from different sides to justify the use of the space. Nonetheless, having a site is a powerful 
way to ensure future access to space and equipment material resources. 

One common structural obstacle is institutional discouragement of cooperation between departmental efforts and 
student support units. In principle, the student support units are potential resources in any effort to support minority 
students. In practice, they exist in a historical context. Often, support programs are underfunded and live on the edge 
of being merged or eliminated. It is not uncommon for such programs to develop an adversarial attitude toward both 
the administration and the academic departments. Historically, departmental initiatives may have proceeded without 
input from the support unit and served to sap both resources and students from the support units. In these cases, it will 
take work and real collaboration to avoid “turf wars”. Unfortunately, many colleges don’t give incentives or support 
for such difficult efforts, often using the excuse that such partnerships already ought to exist. If members of the 
department have good relations with the support units, that would be powerful social capital to draw upon. 

One enduring challenge to ESP is dealing with turnover in human capital. For instance, ESP workshops are run by 
graduate instructors, and thus are guaranteed turnover in the classroom leadership. Naturally, different ESPs address 
this issue differently. The ESP at the University of Texas at Austin holds multiday teaching assistant orientations run by 
veteran workshop leaders. Workshop mathematics problems are passed from generation to generation in paper copies 
and in Internet-accessible searchable databases (Hsu, 1999). However, as ESP has become institutionalized in certain 
locations, it has been a challenge to maintain the highest standards for workshop leaders. In the early stages of such a 
program, often the first instructors are highly committed educators, sometimes drawn from the mathematics education 
group on campus. As the program becomes less novel and more routine, there is a danger the mathematics department 
will see the program as just another piece of its academic program and either make little effort to recruit excellent 
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instructors for the program, despite the increased difficulty of the teaching task, or, in the worst case, intentionally 
randomly distribute graduate instructors out of a misguided sense of fairness. 

The recurring, underlying caution is that every project must suit local institutional goals and culture. Indeed, it 
is essential that early in the process the leadership for a new ESP investigate the department and college’s true needs. 
This means investigating the backgrounds and aspirations of the students one means to support and getting a true 
picture, both historical and projected, of the landscape of the different components of capacity mentioned above. What 
courses are students taking? What preparation do they have? Are there enough students to fill a calculus workshop, 
or are the students placing into precalculus or directly out of first-year calculus with Advanced Placement credit? 
Are majors getting weeded out in a course later than calculus? Because of the diversity of local situations, there 
is no simple formula for designing a program that lasts. The one thing that is certain is the better one understands 
institutional history, resources, and needs, the better one’s chances at making an enduring difference.

Conclusion: Thirty Years of Research to Practice
ESP was created in response to a practical crisis at the University of California at Berkeley of overwhelming fail-
ure at the calculus level of black and Hispanic students, but was rooted in ethnographic research on black and 
Chinese communities of mathematics students. The last three decades have seen significant progress for minorities 
in mathematics, but there is still farther to go, and the issues are evolving with time and new knowledge. Research 
has highlighted the importance of different hidden structures in people’s relationships to their ethnicity and academic 
environments, the landscape of race relations has been changing over time, and the political landscape has shifted as 
well. 

Although ESP and its adaptations have evolved, the underlying philosophy remains much the same: “the 
philosophical stance that informs all the essential elements of the ESP model is that its purpose is not to ‘fix the 
students,’ but rather to change at least a small part of the university environment, by making it more welcoming, both 
socially and academically” (Asera, 2001, p. 19). In particular, the model continues to emphasize excellence, diversity, 
and community.

Along with the general trends and issues identified in this paper, three other major challenges are emerging 
specific to ESP. First is the issue of creation of mathematics majors. ESP has documented great success at having its 
students succeed in calculus and go on to science and engineering majors. However, in practice, it takes a significant 
mentoring structure to encourage ESP students to major in mathematics. In fact, this issue afflicts mathematics as a 
college discipline nationally. From 1993 to 2001, the absolute number of mathematics bachelor’s degrees awarded 
has decreased every single year, from 14,870 in 1993 to 11,748 in 2001 (NSF, 2004), to the point where mathematics 
constitutes a mere 2.8% of all science and engineering bachelor’s degrees. ESP has in fact produced a number of 
mathematics majors, but mainly in situations where extraordinary opportunities were created for students to engage in 
the work of mathematics, such as independent study and summer internships. 

A second challenge is one of cooperation across ESP sites. One of the strengths of ESP has been its adaptability 
across diverse institutions. However, this has led to a lack of systematic and sustained cooperation across ESP sites. 
There has been cooperation to be sure, but it has tended to be ad hoc, e.g., the gathering of ESP veterans from the 
University of Wisconsin, the University of California at Berkeley, and the University of Texas at Austin to categorize 
and annotate the database of worksheet problems described in Hsu (1999). Other efforts have been informal, e.g., the 
sending of graduate teaching assistants to the new-GTA training at the University of Texas at Austin ESP. There is a 
growing movement by ESP sites to share experiences and resources as well as to document collectively the findings 
of practice. 

A final challenge is the issue of leadership transition. The most successful programs are starting to encounter the 
issue of generational change in the program leadership. The University of California at Berkeley, the University of 
Kentucky, and the University of Illinois at Urbana-Champaign have seen the recent departure of the original torch-
bearing faculty who established the local ESPs. Time will tell how these ESPs and others evolve and how well 
they continue to show resilience as a second generation of leadership takes charge, in a climate that is socially and 
politically different than it was thirty years ago. 
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Introduction
One of the earliest subjects of undergraduate mathematics education research was students’ difficulties in writing 
formal mathematical proofs. Some research focused on the heuristics involved in proof-writing, but early attempts to 
show that the teaching of heuristics and strategies benefited students’ proof-writing skills (Bittinger, 1968; Goldberg, 
1973) failed to produce statistically significant results. Other difficulties have been identified, including students’ 
weak understanding of logic and/or mathematical concepts and their definitions (cf. Hart, 1986; Moore, 1994). Several 
recent studies have looked further at students’ proof-writing skills (cf. Dreyfus, 1999, Harel & Sowder, 1998; Selden & 
Selden, 2003); this topic is also addressed in this volume in chapters by Selden & Selden, Harel & Brown, and Zazkis. 
The purpose of this chapter is to look closely at one topic that arose from research on proof-writing, mathematical 
definitions, and most importantly, the role that these definitions play in the mathematical enterprise as well as in the 
teaching of undergraduate mathematics courses. 

Mathematical definitions are of fundamental importance in the axiomatic structure that characterizes mathematics. 
The enculturation of college mathematics students into the field of mathematics includes their acceptance and 
understanding of the role of mathematical definitions, that the words of the formal definition embody the essence 
of and completely specify the concept being defined. But definitions also play a role in the students’ experiences 
in mathematics courses themselves, in the sense that definitions are often used as a vehicle toward a more robust 
understanding of a given concept.

In this chapter we first discuss a framework for thinking about mathematical definitions derived from literature in 
the fields of mathematics, mathematics education, philosophy and lexicography. Next, we discuss research on student 
understanding and use of definition and on the role of definitions in the teaching of mathematics. Finally, we discuss 
the implications of this research and important pedagogical decisions that should govern the use of mathematical 
definitions in the teaching of mathematics.

Definitions
Definitions play a key role in mathematics, but their creation and use differs from those of “everyday language” 
definitions. This distinction is outlined by philosopher Richard Robinson (1962) and lexicographer Sidney Landau 
(2001), and from their work we derive the terms we use in our work. We distinguish between extracted definitions and 
stipulated definitions. According to Landau, extracted definitions are “definitions that are based on examples of actual 
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usage, definitions extracted from a body of evidence” (2001, p. 165). Robinson describes extracted definitions (which 
he refers to as lexical definitions) as “that sort of word-thing definition in which we are explaining the actual way in 
which some actual word has been used by some actual person” (1962, p. 135).

In contrast, stipulated definitions are an “explicit and self-conscious setting up of the meaning-relation between 
some word and some object, the act of assigning an object to a name (or a name to an object)” (1962, p. 59). Their 
chief advantage is “the improvement of concepts or the creation of new concepts, which is the key to one of the two 
or three locks on the door of successful science” (1962, p. 68). Landau says such definitions “are imposed on the basis 
of expert advice” with the goal of “ease and accuracy of communication between those versed in the language of 
science” (2001, p. 165).

Thus, as we observed in Edwards and Ward (2004), extracted definitions report usage, while stipulated definitions 
create usage, indeed create concepts, by decree. Moreover, when a term is defined by stipulation, it is to be free 
from connotation, that is, free from all the associations the term may have acquired in its non-technical use. Finally, 
stipulated definitions have no truth value. Extracted definitions have a truth value. They either accurately report usage 
or they do not. Along with Robinson and Landau, we think of mathematical definitions as stipulated, whereas most, 
“everyday language” definitions are extracted.

It is important to note here that mathematical definitions frequently do have a history — that is, they can and 
do evolve. The definition we use for function, for instance, may not be the one that mathematicians favored two-
hundred years ago; the concept of connectedness has two definitions, path-connected and set-theoretically connected. 
However, in formal mathematics we do not leave the meaning of a term to contextual interpretation; we declare our 
definition and expect there to be no variance in its interpretation in that particular work.

Mathematical definitions have many features, some critical to their nature and others, while not necessary to the 
categorization of mathematical definitions, preferred by the mathematics community. Van Dormolen and Zaslavsky 
(2003) outline the features of a good mathematical definition as follows.

Necessary	Features
• Criterion of hierarchy: According to Aristotle, any new concept must be described as a special case of a more 

general concept — a square is a quadrilateral (general concept) with four congruent sides and one right angle 
(special case).

• Criterion of existence: Also required by Aristotle this criterion demands proof that at least one instance of the 
newly defined concept exists.

• Criterion of equivalence: If one gives more than one definition for the same concept, one must prove that they 
are equivalent.

• Criterion of acclimatization: A definition must fit into and be part of a deductive system.

Frequently	Preferred	Features
• Criterion of minimality: Only the minimal number of properties necessary to “reconstruct” the concept should 

be mentioned. Thus the definition of a square requires one right angle, not four.
• Criterion of elegance: When choosing between two equivalent definitions we want the one that uses fewer 

words and symbols, or the one that “looks” nicer.
• Criterion for degenerations: Sometimes the consequences of a definition allow degenerate cases that one may 

wish to exclude (or not).
The role and use of mathematical definitions is deeply imbedded in the culture of working mathematicians. 

However, to think about the use of definitions by novices in the field, a well-known framework that describes how 
mathematical knowledge in the form of conceptual ideas and their definitions is “stored” and used is helpful. This 
framework, known as Concept Image/Concept Definition (Tall, 1992; Vinner, 1991), describes the interplay of the 
individual’s understanding of a particular mathematical concept and its formal definition. The concept image is the set 
of all the mental pictures associated in one’s mind with the name of a particular concept as well as all the properties 
that characterize them. The concept image may be incomplete or mathematically incorrect, and can include naïve, 
non-mathematical associations with the concept name. For example, the notion of speed limit on a highway may be 
associated with the concept image of a mathematical limit.
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On the other hand, the concept definition is the mathematical definition of the given concept. This may be 
known to the individual, he/she may be able to repeat a correctly memorized definition for a concept, or he/she may 
“remember” an incomplete or incorrect version of the definition. When faced with a task involving a given concept, 
rigorous mathematics demands that students base their solutions on the concept definition. Vinner (1991) postulated 
that students often rely instead upon the concept image. In the section that follows we discuss research on student 
understanding of the role of definitions, including some that have shown that even post-calculus mathematics majors 
may rely more on their concept images than on the concept definition when doing mathematical tasks. 

Student Understanding of the Role of Definitions
It seems to be common knowledge in mathematics departments that many students do not “know” the definitions 
they need to know in order to perform mathematical tasks such as proving theorems. Often, in an attempt to solve 
this problem students are asked to memorize the pertinent definitions in the course and sometimes they are given 
credit in examinations for repeating those definitions. However, there has been research that shows that just knowing 
the definition may not be enough. Rasslan and Vinner (1998) studied 180 Israeli Arab high school students and their 
concept definitions and concept images of the increasing/decreasing function concept. One result of this study was 
that although 68 percent of the students could state the definition, only 36 percent of the students applied the definition 
successfully and well. Another 28 percent of the students applied the definition with varying levels of success.

The notion of “operable definition” is discussed by Bills and Tall (1998) in a report on their study of five students 
(three mathematics majors and two physics majors) in a twenty-week real analysis course that included work with 
the least upper bound property. The authors define operable in the following way: “A (mathematical ) definition 
or theorem is said to be formally operable for a given individual if that individual is able to use it in creating or 
(meaningfully) reproducing a formal argument” (p. 104). Bills and Tall found that forming operable definitions is a 
task beyond that of just knowing the words of a definition and that “some students meet concepts at a stage when the 
cognitive demands are too great for them to succeed, others never have operable definitions, relying only on earlier 
experiences and inoperable concept images” (p.104).

It was necessary for the students in both of these studies to work with a concept definition that they could evoke 
from their own understanding. Their “success” (or lack thereof) in the given tasks thus depended at least in part upon 
their ability to remember and apply the appropriate definition. What if students could be relieved of that cognitive 
load and asked to work with definitions that were available to them throughout the tasks that they were asked to do? 
Edwards (1997a, 1997b) postulated that if students had mathematically correct definitions in front of them at all times 
during interviews and written tasks, it would be possible to see evidence of their understanding of how mathematical 
definitions should be used, unencumbered by worry about the actual wording of a particular definition.

Edwards’ original study involved eight mathematics majors enrolled in an introductory real analysis course that 
had as one of its goals helping students learn to write proofs. Specifically, the course was described as an introduction 
to rigorous analytic proofs in the context of the properties of real numbers, continuity, differentiation, integration 
and infinite sequences and series. Although the nature of mathematical definitions was implicit in the delivery of the 
course in which the eight students were enrolled, the teacher did not explicitly draw attention to that issue. We will 
discuss the methodology and results of this study later, but briefly, Edwards found that even with the definitions in 
front of them, many of the undergraduate mathematics majors of her study had some difficulty using mathematical 
definitions in a mathematically appropriate way. The question arose, however, whether this result could have been 
influenced by the fact that many of the definitions in Edwards’ study were of concepts that students had encountered in 
elementary calculus or were in some way related to those concepts (e.g., absolute continuity). Would this familiarity 
cause students to misread definitions and cause some uncertainty in the results? Although there was no evidence of this 
in the original study, these questions led to the second study conducted by Edwards and Ward (2004).

The Edwards and Ward study involved eight mathematics majors enrolled in an abstract algebra course taught 
by one of the researchers and observed by the other. In this study, the definitions that were chosen for the task-based 
interviews conducted by the observer were designed to minimize the chance of previous mathematical connections, in 
other words, students would be forced to work from the definitions that were provided for them because they would 
supposedly have no other mathematical “memories” to use in performing the tasks. 
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We discuss the methodologies and results of the two studies together since the findings from the second study 
corroborated those of the first. In our description and discussion of the two studies we will henceforth refer to the 
Edwards study as the analysis study and the Edwards and Ward study as the algebra study.

Design of the Studies 
The purpose of both studies was to look beneath students’ understandings of the content of mathematical definitions to 
discern their understandings of the role played by formal definitions in mathematics. This is somewhat tricky since it 
is possible that a student might apply a definition in a mathematically incorrect way for at least two reasons.

• A student could have an incomplete or faulty understanding of the content of a particular definition; or
• A student could have a mathematically incorrect understanding of the role or nature of mathematical definitions 

in general.
For example, a student may decide that f(x) = 3 is not a function because the symbolic form “has no x in it” (a faulty 
understanding of the function definition itself); or he may decide that the particular example is not a function even after 
reading the definition because the requirement of having an x is something we just know and it does not need to be 
mentioned in the definition (a faulty understanding of the role and character of mathematical definitions in general). 

A further difficulty influencing the design of these studies arose from the possibility that, if asked directly, 
students might profess a seemingly adequate understanding of the role of formal definitions in mathematics without 
really understanding this role. It is not uncommon for students (or people in general) to repeat something they have 
heard without full understanding. For instance students may say, perhaps to please their teachers, that “mathematics 
is necessary in all walks of life,” without being able to cite even one non-trivial example beyond the day-to-day 
interactions involved in commerce.

Both studies employed similar research methods, which we now briefly outline. Participants in both studies were 
volunteers from an upper division mathematics course, introductory real analysis or abstract algebra. Participants in 
both studies were in the last two years of an undergraduate major in mathematics. Each participated in task-based 
interviews spaced through the course. The intent of these interviews was to investigate each student’s understanding 
and strategies in dealing with definitions including ones that the students had previously encountered, ones that students 
were currently encountering in their course, and ones that students had not encountered before. 

The format of the interviews depended upon the student’s familiarity with a given definition. For instance, if 
the definition had been encountered before but had not been discussed in the course, the students were asked first to 
explain in their own words their understanding of the associated concept and then to provide a definition for it if they 
could do so. The students were then given a copy of the stipulated definition and were asked to explain its meaning 
and to discuss how their previous explanation agreed or did not agree with their understanding of the given formal 
definition. Such was the approach used with the definitions of continuity and infinite decimal in the analysis study, 
for example. When students had no familiarity with a concept, the interview began with the student considering some 
stipulated formal definition. The definitions of “group” and “coset multiplication” from the algebra study fall into that 
category.

In all cases, following the introduction of the stipulated definition, students were given tasks to complete which 
required use of the definition. Two of the tasks were determining if a given function was continuous and determining 
if the set of cosets of a given subgroup formed a group under the operation of coset multiplication. In the latter case, 
definitions and tasks were selected because the researchers’ experience and that of others suggested they would be 
difficult for the students (Asiala, Dubinsky, Mathews, Morics, & Oktac, 1997; Brown, DeVries, Dubinsky, & Tomas, 
K, 1997). In all the tasks, the goal was to observe in what ways the students used, or did not use, the definitions to 
complete the task and to overcome their difficulties. Students had access to the written definitions at all times during 
the interview; thus, the researchers hoped that inaccurate memories of the mathematically correct definitions would 
not compromise the students’ ability to do the given task in a way that was not consistent with the goals of the study. 

In addition, in one of the interviews, all students were asked: “What is mathematics?” which was an indirect way 
for the interviewer to probe students’ understandings of the role of mathematical definitions. The interviews were audio-
taped and video-taped. Verbatim transcripts of the interviews were then made and analyzed by the researchers.1

1  For a description of the analysis process for the analysis study see (Edwards, 1997a or 1997b).
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Results 
The results of both studies are discussed in detail in Edwards & Ward (2004). Briefly, both studies showed that many 
undergraduate mathematics majors do not categorize mathematical definitions as stipulated, and that they may, under 
some circumstances, defer to their image of a concept rather than the definition if the two do not agree. Further, the 
algebra study showed that some students do not use definitions the way mathematicians do, even in the apparent 
absence of any other course of action.

Participants in both studies were analyzed in light of what they said about the role played by definitions in 
mathematics as well as how each one used the definitions to complete the tasks involved in the interviews. Students 
were not necessarily consistent in their views and actions. For instance some students would seem to understand 
the role of mathematical definitions, but later on in the interview would use or not use a definition in a way that was 
mathematically inappropriate. 

It is important to note that the students in both studies had all successfully completed at least one advanced 
mathematics course prior to their involvement in one of our studies and that all of the students comfortably passed the 
courses in which they were enrolled during the two studies. Thus our research indicates that some undergraduates with 
advanced mathematical training and decent, sometimes excellent, grades do not completely understand the nature and 
role of mathematical definitions.

We will illustrate the results of our studies with one example from each study, beginning with Jesse in the analysis 
study and his work with the definition for a point-wise continuous function. Before seeing the formal definition Jesse 
said he remembered a definition from high school for continuity, that a function was continuous at a point “if the 
limit at the point equals the actual value of the point.” After some discussion Jesse and the interviewer formalized his 
(mathematically acceptable) definition and wrote it out in the following way.

 A function f is continuous at a point x = a if f(a) exists and if limx a f  exists and if lim ( ).x a f f a =

He was then given the standard stipulated definition which was also the same definition that soon would be 
discussed in his introductory real analysis course.

Definition: Let f be a real-valued function whose domain is a subset of R. Then f is continuous at x0  
dom( f ) if for each e > 0 there exists d > 0 such that x0  dom ( f ) and | x – x0 | < d imply | f(x) – f(x0) | < e.

When Jesse read the standard stipulated definition he remembered seeing it at one time and he was able to discuss the 
first two function tasks of the interview using both forms of the definition (although he preferred his version). The third 
task was to state whether or not the following function was continuous at x = 0.

( )f x x=

Jesse considered his definition and the “epsilon/delta” definition, and said,

Jesse: Cusps, or there were a whole bunch of things that were not continuous. And, I think this is one of them. 
Although, it looks pretty continuous…. I’m pretty sure I remember that this is not continuous and my 
definition isn’t cutting it, so I’m looking at the, at the real one. [Jesse pointed to the “epsilon/delta” 
definition. His definition wasn’t “cutting it” because it was telling him that the given function was, in fact, 
continuous.]

For several minutes he went back and forth between “knowing” that this function was not continuous and seeing that 
both definitions before him indicated that the function was continuous. Finally, he said,

Jesse: But that, but I know cusps, and sharp peaks are not, but from the definition, if we’re saying that the limit 
of these two equals that, and f of a equals that, then that would be continuous. (Short pause.) But it’s not.

Clearly, although Jesse seemed to understand the definition (especially his own version), was able to refer to it during 
the interview at any time, and had used it in previous tasks, he based his mathematical decision on (misleading) 
memories from his elementary calculus class.2 It is interesting to note a comment that Jesse made about definitions 
toward the end of this interview — that they were a “lot of jargon.” During the second interview Jesse had indicated, 
“After about the first day in calculus, we didn’t care about this [formal definition] … if you had the concept right, 

2 The following day he reported that he had remembered that the absolute value function was in fact continuous, it just was not differentiable at 
x = 0. The fact remained however that it was not the definition that convinced him.
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not really the definition, that was all that really mattered.” Although several current popular calculus texts and many 
calculus teachers (including the authors of this chapter) do not focus on formal definitions in elementary calculus, 
one must consider the impact of these pedagogical decisions and perhaps do something to mitigate against later 
misunderstandings by the student.3

Heidi, a student from the algebra study, represents another example of a student who seemed not to categorize 
mathematical definitions as stipulated. (See Edwards & Ward, 2004, for more details.) However, analyzing her 
understanding was more difficult. Sometimes she seemed to be exhibiting a mathematically correct view of definitions, 
as when she talked about a hierarchy of definitions and axioms being used to prove theorems. But a few lines later 
she said, “You have to make the definitions from what something actually is,” which would seem to indicate a view 
of definitions as extracted. While doing a task involving cosets in the second interview she pointedly avoided using 
the definitions that were available to her. She tried instead to do the task by remembering how she had done similar 
tasks before.

Heidi seemed to teeter on the cusp of understanding, however, and we see her case as evidence that a student’s 
understanding of the categorization of mathematical definitions is not necessarily clear cut. Students do not fit nicely 
into one group (those who understand) or the other (those who do not understand). This notion is consistent with 
what Burger and Shaughnessy (1986) describe as transitional stages of students’ understanding between van Hiele 
levels in geometry. According to Burger and Shaughnessy, it is possible that students may exhibit different levels of 
understanding on different tasks and some may even oscillate between levels of understanding on the same task. 

For us, Heidi’s case is evidence that the notion of mathematical definitions may be a “teachable” concept. 
According to Vygotsky (1978) each individual’s understanding of a given concept resides in a zone that reaches 
somewhat beyond his or her understanding. With the help of a teacher, that individual’s understanding can grow within 
that zone. We interpret Heidi’s understanding to be in the zone of a mathematically correct understanding of the role 
of definitions in mathematics, one that would categorize mathematical definitions as stipulated. In the next section we 
will discuss the role of definitions in mathematics courses as a pedagogical question.

The Role of Definitions in Undergraduate Mathematics Courses
So far we have focused on how students perceive the way mathematical definitions are used in advanced mathematics. 
However, there is also the issue of the role mathematical definitions play in the teaching of mathematics. This is a 
separate issue, and it is possible that in some ways these two roles may conflict. There is mathematics education 
literature that focuses on the role of mathematical definitions in the teaching of mathematics. Some researchers have 
addressed the issue in the context of K–12 students, often in the teaching of geometry (de Villiers, 1998; Mariotti, & 
Fishbein, 1997; Van Dormolen & Zaslavsky, 2003). Others have focused on college classrooms, especially in courses 
populated by prospective teachers (Hershkowitz, Bruckheimer, & Vinner, 1987; Rasmussen, & Zandieh, 2000; Harel 
& Brown, this volume; Zazkis, this volume). One prominent notion in this literature is that students should have 
experiences creating their own definitions. De Villiers (1998) writes about Felix Klein’s notion of the bio-genetic 
principle as a way to employ definitions to enhance students’ understanding of mathematical concepts. In Klein’s view, 
mathematics topics should not be presented to students as completed axiomatic-deductive systems. Rather students 
should retrace (to some extent) the path of the original thinking about, or discovery/invention of the concept. In this 
paper, de Villiers (1998) describes a study that focused on developing students’ abilities to construct formal definitions 
for geometric concepts. This study involved tenth grade students in 19 schools and showed that students who were 
given defining activities in the course of learning geometry had much more success when asked to complete tasks 
involving writing correct, economical definitions of geometric concepts.

Like Klein, Freudenthal (1973) strongly criticized the traditional pedagogical practice of providing for students 
extant definitions of geometric concepts. He believed that since definitions were not preconceived by the students 
themselves, but were the final touch of a mathematical activity, mathematics instructors were denying students the 
chance to participate in the entire activity by merely giving them the final product. In his view students should be 
allowed to participate in the mathematical enterprise from the beginning, including creating definitions.

3  In the authors’ view, this would not include returning to a “formal definitions” approach in the teaching of elementary calculus, but it could include 
discussions and activities focusing on the role of definitions in mathematics. Some of these are described later in this chapter.
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Definition activities in mathematics courses can have several pedagogical objectives, some of which could be

• promoting deeper conceptual understanding of the mathematics involved,
• promoting an understanding of the nature or the characteristics of mathematical definitions, and/or
• promoting an understanding of the role of definitions in mathematics.

Definitions are frequently and most obviously used to promote the first objective, deeper conceptual understanding 
of mathematics. Indeed the traditional method of communicating mathematics between professional mathematicians 
begins with a statement of the pertinent definition or definitions. Activities that involve studying a mathematical 
definition carefully and deciding from a collection of items which are and which are not examples of the defined 
concept are plentiful. Some of the tasks of the interviews for both the algebra study and the analysis study are examples 
of such activities. These activities also indirectly address the role of mathematical definitions. For a related discussion 
on this topic see Wilson (1990).

Activities that address the second objective are common also, although we feel that these alone might also not 
be sufficient for encouraging proper use of definitions in formal mathematics. An activity used by both of the authors 
is to ask students working in groups to define a given concept, for example, prime number. Each group agrees upon 
a definition for prime number and all definitions are then displayed for the whole class to compare and then choose 
the “best” definition. Of course, what it means to be “best” is also discussed. Students often mention criteria from 
Van Dormolen and Zaslavsky (2003) and when necessary we guide the discussion toward considering the entire list. 
We also encourage discussions about the consequences of various conditions included in the definition for prime. 
For instance, do we want 1 to be prime? Further discussion of the second objective and some additional activities for 
undergraduate students can be found in Hershkowitz, Bruckheimer & Vinner (1987); Winicki-Landman, & Leikin 
(2000); and Leikin, & Winicki-Landman (2000). 

It seems that the key issue for many of the students from the analysis and algebra studies, however, was 
understanding that mathematical definitions are stipulated and thus different from everyday definitions. To develop this 
understanding requires treating mathematical definition as a concept in its own right by promoting an understanding of 
the role of definitions in mathematics, our third objective.

In Edwards and Ward (2004), some activities are given that are designed to promote this third pedagogical 
objective in undergraduate mathematics courses. These activities include directly addressing the topic of mathematical 
definitions including discussing the notion of Concept Image/Concept Definition with students, or exploring the 
dictionary definitions of such words as radical, which has both stipulated and extracted definitions. 

Probably most important, however, is providing activities for students that involve them in the process of creating 
their own definitions in authentic ways as practicing mathematicians might do. For instance, how can triangle on the 
sphere or a hyperbolic surface be defined so that the congruence theorems in Euclidean geometry will hold on these 
non-Euclidean surfaces? Or, how can continuous function be defined so that it can only describe a function that can be 
drawn “without lifting one’s pencil”? It seems that authentic experiences in defining might help students understand 
that although they have a certain amount of freedom in the creation of the definitions, the purpose for having a 
definition in the end is that there will be no misunderstanding about the exact nature of the concept being defined. 

It is, however, in activities involving the creation of definitions where we see the potential for conflicting messages 
if the goal of the activity is that students understand a given concept more deeply. It is our view that implementing the 
ideas of Klein and Freudenthal, using definitions to increase students’ understanding of mathematical concepts must 
be done with caution and potentially can be problematic. If students are asked to create definitions in such a way that 
their task is actually one of discovering the “correct” definition for a concept, it may give them the impression that 
definitions can be right or wrong and that they are extracted rather than stipulated. In the analysis study, one student, 
Stephanie, decided that a given definition for infinite decimal was wrong in the case of the decimal .999…. (Edwards, 
1997b). Stephanie’s work with definitions indicated a subconscious belief that one’s concept image should rule in the 
case of a conflict between concept image and concept definition. Some defining activities could inadvertently reinforce 
this notion. 

A central focus in the definition work of Klein and Freudenthal was that students will understand mathematics 
better if they are involved in its development from start to finish. This is indeed an excellent way to learn mathematics 
especially because the student can have a better notion of what mathematics is (cf. Maher & Martino, 1996). Too 
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often, however, defining activities are like games that are won if the student can guess what the teacher is thinking. We 
believe that if students create their own definitions for concepts with existing definitions, they should first be allowed 
to carry the activity through to its logical conclusion, including realizing unintended consequences. Later students can 
compare their definitions to the definitions that were created before them, probably with a much greater understanding 
of the defining process. This is possibly a more difficult and longer process, but it is more authentic. 

Conclusion
In this paper we have outlined a framework that looks at everyday definitions as extracted and mathematical definitions 
as stipulated. We have also discussed the notion of Concept Image/Concept Definition as a way of describing how 
students work with definitions in mathematical tasks and we have described research on students’ understanding of 
the role of definitions in mathematics as well as research on the role of definitions in mathematics education. We 
believe there are still questions regarding the interplay between students’ understanding of the nature and role of 
mathematical definitions and their experiences with definitions while learning mathematics. Research is needed to 
determine appropriate pedagogical approaches that encourage the development of the concept of definition throughout 
a student’s experience in mathematics classes. Further, research is needed to assess the effectiveness of activities 
designed to help students create more robust understandings of the concept of definition. 

Definitions are essential to the mathematical enterprise, thus it seems that focus on the role of definition should be 
central to the education of mathematics majors. However, according to Vinner (1991), 

The role of definition in mathematical thinking is somehow neglected in official contexts…. We are not sure 
whether this is because it is taken for granted or because it is overlooked. It is obligatory to remember that 
there are some contexts in which referring to the formal definition is critical for a correct performance on a 
given task (p. 80).

Although many students will eventually “figure out” how to use formal definitions in a mathematically correct 
way, it seems that it is important not to leave this to chance. This is especially true for students who will become K–12 
mathematics teachers for it is these students who will have the greatest impact on our future students. Our research 
has shown that there exist mathematics majors who have been successful in advanced courses in mathematics, at least 
from the standpoint of the grades they earn, but who really do not understand the role of mathematical definitions in 
a mathematically acceptable way. This concept, like any other mathematical concept, can and should be addressed in 
undergraduate mathematics classrooms.
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Computer-Based Technologies and Plausible Reasoning

Nathalie Sinclair, Simon Fraser University

The purpose of this chapter is to describe how computer-based tools can help students in the doing and learning of 
mathematics, and to provide specific examples that illustrate the way in which well-designed technologies can support 
mathematical discovery and understanding. I begin with an example.

Task.  Take the three vertices of a triangle ABC and reflect them each across the opposite side of the triangle to 
obtain a new “reflex” triangle DEF (convince yourself you always do indeed get a new triangle!). Repeat the process. 
Most people who have seen this problem conjecture that the reflex triangle, after several iterations, converges to 
being equilateral. But I thought it was a perfect problem for The Geometer’s Sketchpad1, which effortlessly allows an 
arbitrary triangle to be iteratively “reflexed” and its measurements to be computed. I dragged vertex A after producing 
DEF and quickly realized that the equilateral conjecture was false, for I could produce a DEF that was a straight line! 
And more: DEF seemed to change in a very chaotic way as I continuously dragged vertex A. When, if ever, would the 
figure become equilateral?  When would it not? How did the “function” behave? 

At this point, I realized that I needed some kind of measure of the degree to which the triangle had become 
equilateral, especially since the reflex triangles were getting increasingly large—exploding off the screen—as the 
iterations increased. After several false starts, I chose to use perimeter squared over area, a measure that achieves a 
minimum for equilateral triangles (as simple algebra will show), and that is simple for Sketchpad to compute, no matter 
how big the reflex triangle gets. By dragging A, I could see the measurements changing, achieving a minimum for 
“nice” initial triangles, but growing wildly for not so “nice” ones. However, it was hard to keep track of the “nice” and 
“not nice” positions of A: I needed an overall picture of the changing measurement. So, I fixed the base of the triangle 
BC, chose another point A in the plane to form the triangle ABC, performed the reflection twice to produce the second 
reflex triangle and then colored the point A according to how close that reflex triangle was to being equilateral (in 
Figure 1, vertex A is blue if the 2nd reflex triangle is close to being equilateral and white if not—since the measure of 
an equilateral triangle is 1, “closeness” here corresponds to the measure being between 1 and 1.5). Using Sketchpad’s 
iteration and parametric coloring facilities, I could effortlessly repeat the procedure for all positions of point A in a 
given region of the plane. What a beautiful, surprising, symmetric picture emerged! And more, the picture provided an 
immediate guide to where I should look for equilaterality-breaking triangles (initial triangles that iterate to triangles 
that are scalene), as well as an immediate confirmation of the chaotic behavior I had intuited by dragging A. Figure 1a 
shows the coloring for the 2nd iteration while Figure 1b shows the 4th iteration; note how each branch in (a) has been 
divided into three parts in (b). The symmetry indicates that only 1/4 of the plane needs to be analyzed, while the blue 
swath above BC indicates that isosceles and near-isosceles triangles behave well, in the sense that they produce reflex 
equilateral triangles. The splitting of the “branches” confirms that minute changes in the position of point A can give 
rise to radically different reflex triangles.   

1 The Geometer’s Sketchpad, similar to Cabri-Géomètre and Cinderella, is a software environment in which geometric constructions (and other 
forms of mathematical illustrations such as diagrams, figures, and graphs) can be manipulated interactively with the computer mouse.
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 (a) A map after 2 iterations (b) A map after 4 iterations
Figure 1. Iterations of the reflex triangle problem.

In addition to offering an attractive mathematical image, I wanted to use this example to illustrate a simple, 
but palpable example in which the computer provided insight and intuition, its computations provided quick and 
reassuring conjecture-testing (and falsifying), and the visual images yielded new insights to verify and provided 
avenues to explore. These characteristics, as well as others, of mathematical inquiry in a computer environment are 
well described by Borwein and Bailey (2004) in their book on experimental mathematics. In the following sections of 
this chapter, I detail the characteristics of mathematical thinking that are supported by computer-based technologies, 
as outlined by Borwein and Bailey, and then provide illustrative examples of student learners (middle school students 
as well as pre-service teachers) as experimental mathematicians. 

An Updated Framework for Mathematical Reasoning
Plausible reasoning in the 21st century, the subtitle of a new book by mathematicians Jonathan Borwein and David 
Bailey (2004), recalls rather brazenly George Pólya’s well-known two-volume book Mathematics and Plausible 
Reasoning. Written in 1954, Pólya’s book continues to be a landmark contribution to mathematics—as well as 
mathematics education—exploring and exemplifying as it does the role that guessing, inductive reasoning, and 
reasoning by analogy play in the most rigorous of deductive disciplines. Borwein and Bailey’s book argues, using 
many examples from contemporary mathematics, that computers offer a whole new form of plausible reasoning, one 
that may very well surpass the depth and power of Pólya’s. In fact, there is a compelling sense in which Borwein 
and Bailey posit the computer as a tool as fundamental to mathematics as the compass and straightedge tools were to 
Euclidean geometry—tools that defined the very nature of the geometry that could (and could not) be done by defining 
the problems and the solutions, and, more importantly, the way that mathematicians could think about problems and 
solutions. This way of viewing the computer has profound implications for mathematics education, especially at the 
undergraduate level, when students—whether they are studying to be mathematicians or teachers—are developing a 
sense of what mathematics ‘really’ is and how mathematics is ‘really’ done. For many students, this is the first time 
they are interacting with mathematicians in a mathematics department. 

Historically, the mathematics community held the view that ‘real mathematicians don’t compute’ (see Borwein & 
Bailey, 2004). Such a feeling has led to, among other things, an absence of computers in most university mathematics 
courses, including those taken by pre-service teachers. If ‘real mathematicians don’t compute’ then perhaps ‘real 
mathematics isn’t done with computers,’ and therefore, good school mathematics should not be done with computers. 
This stance would dismiss the computer as superfluous, optional to mathematics, and to mathematics learning. 

However, things may be changing in the mathematics community. Indeed, part of what Borwein and Bailey do 
in their book is to reveal the many ways in which experimental mathematics has been integral to the development 
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of mathematics for centuries (even before we had digital computers). And if computers really do offer a new form 
of plausible reasoning, then mathematics departments might be able to help students use this new tool fluently and 
productively, whether these students are studying to be teachers or mathematicians. 

New Kinds of Plausible Reasoning
Typically, when writing on technology in mathematics education, researchers focus either on specific content areas 
(such as geometry, calculus, elementary number theory) or on more general pedagogical affordances (such as immediate 
feedback, shift of authority from teacher to student and the development of personal agency). In this chapter, I take a 
more mathematical approach by focusing on the ways in which current computer-based tools support mathematical 
discovery and understanding, proving, and problem solving across content areas. As Borwein and Bailey outline, these 
ways include using the computer 

1. to gain insight and intuition, 
2. to produce graphical displays that can suggest underlying mathematical patterns,
3. to discover new patterns and relationships, 
4. to test and especially falsify conjectures, 
5. to explore a possible result to see if it is worth formal proof, 
6. to suggest approaches for formal proof,
7. to replace lengthy hand derivations with computer-based derivations, and,
8. to confirm analytically-derived results. 
The list is long but—especially for mathematician readers—it is worth considering how each item fits into the 

process of mathematical inquiry and whether explicit non-computer-based mechanisms or tools exist to support it. For 
most mathematicians, each item will surely represent a familiar part of their own teaching practice; however, because 
of the pedagogical focus of this paper, our attention will be on making these items explicitly and productively available 
to students. 

Based on examples from research, I will illustrate how several2 of these forms of plausible reasoning can be 
supported by specific computer technologies and then reflect on the implications for the community of researchers in 
undergraduate mathematics education. Given my own research and involvement in pre-service teacher education, the 
research examples will focus more on content in undergraduate mathematics curricula, as will the specific computer 
technologies described. Despite my use of specific digital technologies in specific settings, by highlighting the forms 
of plausible reasoning supported by these technologies and the characteristics of the technologies that make that 
possible, my specific contexts might well inform contexts I will not include, such as the use of CAS in undergraduate 
calculus courses. 

As Borwein and Bailey point out, many prominent mathematicians throughout history have engaged in 
experimental mathematics, including Carl Friedrich Gauss, Leonhard Euler, Jacques Hadamard, and John Milnor. In 
fact, most mathematicians may ignore the way in which experimental methods—even those without the computer—
contribute to their own processes of mathematical inquiry, even after having glanced at the list above. However, I 
hope that the reflex triangle example given at the beginning of the chapter resonated with the experiences of many 
readers, and drew attention to the ways in which the computer directly supports and amplifies the components of the 
experimental methodology. I use it because it has helped me appreciate the ways in which the different components of 
the experimental methodology act together to fuel inquiry, to support learning and to solve problems. 

2  Based on the non proof-oriented nature of the student examples I will be analysing, I will not discuss the two following characteristics: to 
explore a possible result to see if it is worth formal proof, and to suggest approaches for formal proof. The brief Sketchpad example I related above, 
however, shows interesting connections between these two proof-related characteristics and what Simon (1996) calls “transformational reasoning.” 
Simon defines “transformational reasoning” as “the physical or mental enactment of an operation or set of operations on an object or set of objects 
that allows one to envision the transformations that these objects undergo and the set of results of these operations.” Experimental evidence has 
shown the importance of transformational reasoning in proving (see Arzarello, Micheletti, Olivero, & Robutti, 1998; Boero, Garuti, & Mariotti, 
1996; Simon, 1996; Harel and Sowder, 1998). Simon emphasizes the central role of dynamism in transformational reasoning, and the ability to 
consider dynamic processes, as opposed to static states. The graphical displays I created in Sketchpad certainly led me to establish some results, 
which were compelling enough to pursue more formal proofs. However, by physically manipulating the dynamic processes, I could grasp some of 
their underlying structure —which certainly suggested approaches for a formal proof.
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How Computers Complement Mathematical Reasoning
What is it that makes computers such powerful aids to mathematical thinking and problem-solving? One response that 
quickly comes to mind has to do with its sheer calculating power. However, computers do not only produce numerical 
answers. They transform calculations—converting the digits of π into melodies—as well as represent calculations— 
generate graphs of logarithmic functions. In other words, new technologies can actually do mathematics, not just 
record results. 

Numbers are not the only thing that computers are good at processing. Indeed, only a cursory familiarity with 
fractal geometry is needed to see that computers are good at creating and manipulating visual representations of data. 
There is a story told of the mathematician Claude Chevalley, who, as a true Bourbaki, was extremely opposed to the 
use of images in geometric reasoning. He is said to have been giving a very abstract and algebraic lecture when he got 
stuck. After a moment of pondering, he turned to the blackboard, and, trying to hide what he was doing, drew a little 
diagram, looked at it for a moment, then quickly erased it, and turned back to the audience and proceeded with the 
lecture. It is perhaps an apocryphal story, but it illustrates the necessary role of images and diagrams in mathematical 
reasoning—even for the most devoted anti-imagers. The computer offers those less expert, and less stubborn than 
Chevalley, access to the kinds of images that could only be imagined in the heads of the most gifted mathematicians, 
images that can be colored, moved and otherwise manipulated in all sorts of ways (see, for example, Hadamard, 1945).

Students as Experimental Mathematicians
By definition now, computers are quick, they can handle lots of data at once, and they can easily display this data in 
various graphical formats. In this section, I will illustrate how these three characteristics can support mathematical 
problem solving in a unique way by helping people become aware of patterns and relationships, giving them ways 
to independently test ideas and hypotheses and enabling them to confirm results obtained through non-experimental 
means. I will begin by drawing on research3 conducted with Rina Zazkis and Peter Liljedahl using two internet-
based applets focusing on a wide range of concepts and problems in elementary number theory (Zazkis, Sinclair and 
Liljedahl, 2006; Sinclair, Zazkis and Liljedahl, 2004)—an area of mathematics that is taught from kindergarten to 
undergraduate mathematics, and one that poses well-documented and numerous challenges to learners. 

Each of the two environments I describe here was designed as a visual representation and experimental interface 
to help students learn and understand a wide range of number theory-related ideas. After describing each microworld 
briefly, I highlight a few of the common characteristics that research has shown to be supportive of student learning 
and problem solving. 

Number Worlds
Figure 2 shows a snapshot of the Number Worlds applet4, which allows users to highlight different types of numbers 
(such as even or prime) on a grid of whole numbers. The centre grid contains a two-dimensional array of clickable 
cells. The numbers shown in the cells depend on the ‘world’ that has been chosen. Although the basic objects of 
Number Worlds are the positive integers, or natural numbers forming the Natural World, the user can choose among 
other sets: the Natural	World, Whole	World, Even	World, Odd	World, and Prime	World5. It is also possible to 
change the numbers shown in the cells. The user can increase or decrease the start number by ‘one row,’ that is, by the 
value of the grid width, or simply by one ‘cell.’ 

The appearance of the grid can be affected by changing the value of the Grid width menu. By selecting values 
from one to twelve, the user can change the number of columns displayed, and thus the total number of cells. There 
are always exactly ten rows.

Within each world, the user can highlight certain types of numbers: Squares, Evens, Odds, Primes, Factors, 
and Multiples. Further, the multiples that are chosen can be shifted by an integer in order to create any arithmetic 
sequence. 
3 The research results that will be presented were based on approximately 4-6 hour sessions, including open lab time and guided interviews, with 
90 elementary pre-service teachers.
4 The Number Worlds microworld was written in Java and is available on-line as an applet at www.math.msu.edu/~nathsinc/java/NumberWorlds/
5 This approach was inspired by Brown (1978), who uses similar ways of re-examining ideas in elementary number theory by shifting the focus 
from natural numbers to other domains. 
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Figure 2. The Number Worlds microworld.

The Color Calculator
The Colour Calculator (CC)6 is an internet-based calculator that provides numerical results, but that also offers its 
results in a color-coded table. Each digit of the result corresponds to one of ten distinctly colored swatches in the table. 
The calculator operates at a maximum precision of 100 decimal digits, and thus, it represents each result simultaneously 
by a (long) decimal string and a table, or grid of color swatches. It is possible to change the dimension, or the width, 
of a color table to values between one and thirty. Figure 3 shows the result of typing 1/7 into the calculator with the 
grid width set at ten, thus generating the associated table (which, for the purposes of this chapter, has been converted 
to grayscale). 

Figure 3. The Colour Calculator showing 1/7.

6 Also available on-line; please click the Alive Maths link from www.math.msu.edu/~nathsinc/, then choose your preferred language, and then 
select the second of the two activities.
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Of course, because of the way numbers are displayed in the CC—only the digits after the decimal point are 
represented in the table—the division operation produces the most interesting results, particularly when the rational 
quotient has a repeating pattern. 

Common Features Relevant To Mathematics Learning and Problem Solving
The power of both microworlds, Number worlds and the CC, is rooted in three important features that are not found 
either on the handheld calculator or in paper-and-pencil environments: color, speed, and size. The size feature relates 
to the number of digits that are calculated and displayed (for the CC: 100 instead of the typical handheld calculator’s 
eight; for Number worlds: a very large number of prime numbers can be displayed, as well as any number of multiples). 
With only eight digits, the handheld calculator can barely display the repeating pattern found in a fraction with a 
denominator as little as seven (since its repeating pattern is of length six, the rounded eighth digit can easily obfuscate 
the pattern). In contrast, the CC easily handles much larger units of repeat. This means that repeating decimals repeat 
transparently, and therefore stand in greater contrast to non-repeating decimals. Research with college-level pre-
service teachers showed that the number of digits displayed helps learners create a perception that infinitely repeating 
numbers really do go on and on, and that non-repeating infinite decimals really do not repeat (Sinclair, Zazkis & 
Liljedahl, 2004). Similarly, students working with the Number Worlds applet reported coming to realize that the 
multiples also really do go on and on (one student even stated “I mean in high school they just said, that’s a never-
ending decimal, 1/7 is a never ending decimal. That’s what we were told. Just put three dots beside it and don’t worry 
about it. Well, no more little dots for students of mine, no way”!). 

The speed feature relates to the computer’s ability to calculate and display quickly the factors, multiples, and 
decimal expansions of a fraction; this contrasts with paper-and-pencil environments where, for example, the process 
of conversion from fraction to decimal is frequently long, tedious and error-prone. Speed thus allows learners to see 
a much wider range and greater number of “factor families” or decimal expansions (it makes no distinction between 
‘hard’ fractions like 3/41 and ‘easy’ fractions such as 563/4), and to test conjectures during exploration and problem 
solving more quickly. In fact, the microworlds draw attention away from the procedure of factoring or of converting 
to the properties and relationships that exist between numbers and their factors or between common fractions and their 
decimal representations. This allows learners to work with the results of the factoring or of conversion and to treat 
these results as objects rather than processes. Researchers such as Sfard (1991) have discussed the great difficulty that 
students face in making this transition. However, as Dubinsky and McDonald (2001) show, the computer can help 
learners reify (or encapsulate) processes by providing a means through which actions can be applied to these processes. 
This is exactly what occurs in the research described with the Colour Calculator and Number Worlds; by applying 
actions to processes the students were able to reify mathematical processes and thus work with the more abstract 
concepts in elementary number theory (cf., Sinclair, Zazkis & Liljedalh, 2004; Sinclair, Zazkis & Liljedahl, 2006)  

Finally, the color feature, which is most significant in the CC, is responsible for translating strings of digits into a 
format where patterns are more easily discernible. Since the colors are displayed within a manipulable grid, they can 
be seen all-at-once (compare the tabular representation with the one-dimensional array) and can be flexibly arranged to 
reveal certain patterns. Many of these patterns are recognisable and attractive (stripes, diagonals, and checkerboards) 
and can thus become motivational objects: Can you create a grid of stripes? Can you create an “all-red” fraction? These 
kinds of question are qualitatively different than: Can you find a fraction that has a repeating decimal representation? 
Color is used less extensively in Number Worlds, with different numbers toggling between only two colors. However, 
this seemed enough to draw students’ attention to interesting mathematical patterns. 

I have singled out these three factors in order to draw similarities between the two microworlds presented in this 
chapter, but also to achieve some greater generality beyond these two specific examples. Many of the digital tools used 
by researchers at the Center for Experimental and Constructive Mathematics (see http://www.cecm.sfu.ca/interfaces/), 
for example, have similar features, and, as I will argue in the next section, play a significant role in mathematical 
problem solving for mathematicians and novices alike. 

Research findings with Number Worlds and the Colour Calculator
I now discuss five components of the experimental methodology described by Borwein and Bailey in turn, placing 
special emphasis on those that provide a compelling way to generate understanding and insight; generate and confirm 
or confront conjectures; and make mathematics more tangible, lively and appealing.
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To gain insight and intuition .  Gaining insight and intuition may sound like a mystical process that leads to “aha” 
moments or momentous breakthroughs, but for many students the process may be much more modest, and lead 
to deepened learning rather than problem solving breakthroughs. Insight and intuition often involve qualitative 
understandings that are not well captured by propositional statements or definitions but that inevitably support and 
strengthen them. The first example I discuss will strike many readers as slightly simplistic, but it highlights the forms 
of insight often lacking in students and the ways in which images and large example spaces (see Mason and Watson, 
this volume) can help students define and distinguish mathematical concepts. 

Previous research has shown that students often confuse factors and multiples, both conceptually and linguistically 
(Zazkis, 2000; this volume). They will characterize arithmetic sequences of non-multiples, that is, multiples shifted, 
as being “sporadic” whereas sequences of multiples will be described as “orderly” (Zazkis & Liljedahl, 2002). 
After spending 1–3 hours using Number Worlds, research participants (college level pre-service teachers) in the 
study conducted by Sinclair, Zazkis and Liljedahl (2004) consistently and overwhelmingly described all arithmetic 
sequences (whether of multiples or non-multiples) using adjectives previously reserved for sequences of multiples. 
In fact, the following rich adjectives were used by the participants: “constant,” “equally spaced,” “continuously 
repeating,” “distinctively patterned,” “continuous,” “sequential,” “repeating,” “predictable,” “extending infinitely,” 
“uniform,” “regulated,” “symmetrical,” “systematic” and “orderly.” In contrast, the participants described factors as 
being: “scattered,” “sporadic,” “non-patterned,” “inconsistent,” “not symmetrical,” “random,” “chaotic,” “limited,” 
“discordant,” and “unorganized.” In short, they constructed very distinct visual images of factors and multiples, as 
evidenced in the rich vocabulary of adjectives. 

It could be that by working with multiples and factors at the same time—and having access to visual representations 
of both—the participants were able to see that sequences of multiples are more like arithmetic sequences of non-
multiples, that is, multiples shifted, than they are like factors. In most classroom settings, without such a strongly 
contrasting notion, students might focus more on the differences between sequences of multiples and arithmetic 
sequences of non-multiples than on their similarities. We see here the power of students creating images of mathematical 
concepts, something that requires both the image-making capacities of the computer, and the opportunity to become 
familiar with a wide example space. 

A similar phenomenon occurred with the CC. Whereas many students possess a small and weakly characterized 
example space of fractions (such as 1/2, 1/4, 3/4, 1/3, 2/3 and perhaps other unit fractions with denominators less 
than 10), the research participants who have worked with the CC developed strong images and even personalities 
for a much larger set of fractions. In addition to being able to call upon ‘basic’ fractions such as 1/3, 1/4, 6/10, 2/5, 
the participants knew what fractions having denominators such as 7, 13, 17, or 47 would look like (one participant 
commented that “Well I know, I know I can now say well 7 is actually a routine example with a length of 6”), 
and they could describe some relationships between the denominators and the decimal expansions (particularly for 
prime number denominators and denominators of the form 10n–1). This kind of relational, instead of algorithmic, 
understanding might account for Danielle’s claim “I now have a better understanding of how certain fractions create 
different types of decimals, such as finite or infinitely repeating.” She may not have had a better understanding of 
how to convert fractions to their decimal representations, but she had a larger set of concrete (and colorful) examples 
corresponding to different types of decimal representations. Color seemed to play a role in vivifying the participants’ 
understanding of various properties and relationships. It is difficult to tell whether she could have described 1/3 prior 
to using the CC, but Kimberley now says that a “denominator 3 will always give me a block of mono-colour in my 
mind.” She adds “I’ll forever see fractions and decimals in color.” 

Students’ development of strong personalities for numbers resonates well with Keith Devlin’s (2000) definition of 
a mathematician as someone for whom mathematics is a soap opera:

The characters in the mathematical soap opera are not people but mathematical objects—numbers, geometric 
figures, groups, topological spaces, and so forth. The facts and relationships that are the focus of attention 
are not births and deaths, marriages, love affairs, and business relationships, but mathematical facts and 
relationships about mathematical objects. (p. 262)

 In a similar vein, the calculating wizard Wim Klein remarked “Numbers are friends to me.” Taking 3,844 as an 
example, he said, “For you it’s just a three and an eight and a four and a four. But I say ‘Hi, 62 squared!’”. It seems 
quite plausible that “coloring” numbers is part of developing personalities for them. 
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Many students used Number Worlds to gain insight and intuition in the actual course of problem solving. For 
example, in trying to determine what kind of values produces the image in Figure 4, one participant decided to show 
the prime numbers, not in order to verify his conjecture, but in order to get a sense of what prime numbers look like 
on the grid. He knew that the image did not necessarily start at 1, and was thus aware that Number Worlds might not 
give him the answer. Instead, he knew that he could use the visual patterns displayed by the microworld to gain insight 
and intuition.

To	Produce	Graphical	Displays	That	Suggest	Underlying	Mathematical	Patterns.		The way in which Number 
Worlds displayed multiples provided yet another visual support for students’ learning of multiples: Number Worlds 
emphasizes the space in between subsequent highlighted numbers—and this space is constant for multiples. The 
participants seemed to form an image of multiples as possessing the property of ‘constant spread.’ One of the interview 
questions consisted in asking students to identify four different images, each representing, in order from left to right, 
factors, multiples, primes and squares (see Figure 4). Every interviewed participant immediately recognized the image 
of multiples, with most appealing to the visually discernible spacing between consecutive highlighted cells. 

      
Figure �. Images taken from Number Worlds.

The notion of spread may seem obvious to the mathematically inclined, but Andrew—one of the strongest 
students in the class—commented on how it was the microworld that helped draw his attention to it. “Until you see 
it,” he explained, you don’t know “there’s always going to be the same amount of space” (in Sinclair, Zazkis and 
Liljedahl, 2004). Students also showed strong evidence of an if-and-only-if understanding of the ‘constant spread’ 
idea in several cases. Every interviewed participant was able to deduce that the three other images presented in the 
interview (factors, square numbers, and primes) were not multiples because they did not have the same amount of 
space between highlighted numbers.

The ‘constant spread’ feature of multiples is a visual perception of the property ‘every nth number is a multiple of 
n.’ This property—which is referred to as the ‘every nth’ property—is usually not capitalized upon by students (Zazkis 
& Campbell, 1996; Ferrari, 2002). In fact, an interview question—Is there a multiple of 7 in the 9th row of your 
grid? What about 23rd row? (grid width = 10)—was designed to probe participants’ understanding of this property 
explicitly. Previous research indicates that students would have difficulty solving this question without appealing 
to an algorithm: they would not simply use the ‘every nth’ property of multiples. However, ten out of the fifteen 
participants in this study, using the graphical display, who were asked this question effectively used the ‘constant 
spread’ property of multiples. Based on the participants’ success with this problem, it appears that the visually-based 
‘constant spread’ property of multiples is more effective in problem-solving contexts for students than the equivalent 
‘every nth’ property without visual representation. 

The visual representation of multiples highlights their ‘constant spread’ property, that is, that there is an equal 
number of cells between each pair of subsequent multiples. Student understanding of ‘constant spread’ does not follow 
from an additive understanding of multiples, as prior research shows (Zazkis & Liljedahl, 2002). Perhaps the visual 
representation helps students move from an additive understanding of multiples to one which features the ‘every nth’ 
property. That is precisely what Michelle’s comment suggests: “multiples follow a pattern in that every 3rd number is 
highlighted if we want multiples of 3, it gives us an actual image, not just words to describe it.”

With regard to the visual representation afforded by the CC, Kevin articulated the increase in pattern possibilities 
now available: “patterns can be seen as you move left to right, up and down, and even left and up, or right and down. 
Patterns are more visible and meaningful in this sense than when written down on paper in the standard 0.blah blah 
blah blah blah blah way.” Some participants talked about the way in which the colorful patterns attracted and held 
their attention, in a way that numbers might not. For example, Kyle noted that “without colors to represent numbers, 
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patterns are much more difficult to discern, and can impact highly on an individual’s ability to focus. Similarly, 
Kelly explained “the colors were important in not only clarification purposes, but were also important in keeping me 
attentive.” The color also seems to make patterns more accessible than they are on handheld calculators, as Dianna 
insisted: “Being able to see the numbers represented as color helps the patterns to become more pronounced for me. 
Normally, on the regular calculator, you cannot see that there are sets of repeating numbers—they usually just look 
like a jumble with no rhyme or reason.”

To discover new patterns and relationships .  During their university course, the research participants had been 
exposed to the algorithm for converting decimal numbers into fractions. They had completed an assignment which 
required the use of this algorithm for a range of decimal numbers. Their work with the CC allowed them, in a sense, 
to “re-discover” a new pattern and relationship that led to both using the algorithm more flexibly and to understanding 
why the algorithm works. One task asked the students to investigate the several fractions whose denominators are 
of the form 10n – 1 (such as 9, 99, 999, etc.). The participants were very surprised to find that, for example, 24/99 
yields a repeating decimal with unit of repeat 24 and that 123/999 yields a repeating decimal with unit of repeat 123. 
However, they easily worked through the questions in this task, generalizing the “magic 9’s” pattern and noting some 
“exceptions” such as 24/999. It is when they began encountering these exceptions that they started to connect the 
phenomenon of the magic 9’s to the algorithm learned in class (exemplified below), which, for several groups we 
interacted with, “explained” the phenomenon. 

Let n = 0. 238___Then 1000n = 238. 238___
So 1000n – n = 999n= 238 
And n = 238/999

Though the algorithm always features nines (when the repetition starts immediately after the decimal point; 
see the third and fourth steps above), those nines seem to remain somewhat opaque for students, who focus on the 
algebraic manipulations involved. Many groups of students wrote out the algorithm on a piece of paper, accompanied 
by exclamations such as “Oh! Now I see what’s going on.” Andrew in particular commented on how working with 
the 9’s in the CC made “theories that were out there become related.” In an interview, Blake also commented on the 
relationship between what he learned in class and what he learned while working with the CC: “I think that really like 
using the numbers over 9, that really like related that, because it’s, you never really work backwards with that formula, 
or whatever, but in this case you are forced to go the other way, which really makes it make sense.  You know, it just 
gives you a better understanding of that, that it really works.” 

Perhaps students tend to view the algorithm as a process—or even a trick—that allows them to turn decimal 
numbers into fractions rather than as a general relationship between fractions and repeating decimals. The patterned 
display of the CC helped that relationship become both more apparent and interesting for our participants. It gave the 
participants an invitation to “play,” as Blake described later in an interview: “No, I didn’t know that at all, because, 
well like I, you know, I kind of knew them but I just, I didn’t relate the two, because I hadn’t seen it like that, we didn’t 
play with any numbers like that, so I just didn’t make the connection.” The participants also gained an appreciation of 
how the “magic 9’s” phenomenon yielded a process that allowed them to generate any repeating decimal they wanted, 
thus reversing the direction of the algorithm. 

To	test	and	especially	falsify	conjectures.		Many students used Number Worlds to test and falsify conjectures. For 
example, when asked how to create the pattern shown in Figure 4b, one participant began by reasoning that the values 
of the multiples (= 5) would have to remain the same. She then decided to investigate what the effect of changing the 
value of the shift would be. By observing the effect of several different values she was able to determine empirically, 
and then verify, the solution. 

There were two specific concepts that these experimental approaches enabled the participants to encounter. Prior 
research has discussed a belief found among students that large numbers have more factors than small numbers (Zazkis, 
1999). It was described as belonging to the family of intuitive beliefs “the more of A, the more of B,” discussed in 
detail by Stavy and Tirosh (2000). It appears that experimentation in Number Worlds helped the participants directly 
confront their misleading belief in relation to number of factors. Kelly provides another explanation for the role of the 
experimental aspect of the microworld in helping her understanding of factors: 
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However, the number of factors for each number depends on several aspects. Looking at only a few numbers 
is difficult to show such patterns; therefore, I have learned that it is important to look deeper and find more 
proof to reasoning. By finding similarities between several small numbers with four factors we were able to 
make generalizations about all numbers with four factors.

By experimenting with many different examples, Kelly shows that it is possible to locate patterns which can displace 
intuitively acquired ones such as “more of A, more of B.”

Previous research has also shown that students do not immediately recognise a number represented as a product 
as a composite number (Zazkis & Liljedahl, 2004). In particular, they do not recognise that a product of two prime 
numbers cannot itself be a prime number. During the interviews, participants in this study were asked whether the prime 
numbers were closed under multiplication. Every single participant unequivocally provided the correct answer.

Some students spoke about the importance of experimenting and making predictions, particularly in contrast to 
just being told about a certain property or relationship.  For example, Amber stressed how being able to work with the 
ideas gives her a sense of agency: 

…when you’re actually working with it and it’s not somebody just telling you how it is and you’re actually 
seeing it for yourself, so if you get to try things out and you get to see what your results are and you get to 
make um, make predictions and then see if they’re right or wrong, I think that helps.

For Jake, the ability to not only test theories but also, to test theories quickly was important: “The program 
allowed me to test potential theories as they entered the mind, and quickly enough so that the thought was not lost; 
the program did the time-consuming work.” Jake’s comment captures the way in which the microworld may support 
qualitative reasoning, i.e., by allowing students to test ideas that are not fully formed. Kyle commented on how the 
ease of experimentation helped make concrete his ideas-in-formation: “being able to change variables and viewing the 
outcomes can clarify and solidify ideas which are more often than not just floating around in a person’s head.” Since it 
was easy to perform any operation, Katherine found she was less concerned about making mistakes, and more inclined 
to just try things out:  

…you could just quickly click and say this, and then reset it and try something different if it didn’t work, it 
was pretty quick that way like you could just do it and the picture was there in front of you, right or wrong, 
okay it’s wrong, so let’s just erase it and try something new.

The ease with which participants could experiment with a wide range of numbers may have helped them move 
beyond the kind of pattern spotting that frequently characterizes the approaches of students—where a few small-
number examples are seen as sufficient to determine a rule or pattern. 

To	confirm	analytically-derived	results.		The research participants spent most of their time actually working with the 
microworlds, solving problems designed to take advantage of the microworld’s strengths. This meant that few problems 
required the authentic kind of back and forth, between pencil-and-paper and computer, that most mathematicians 
adopt in their own work. However, a few participants used Number Worlds to check results they had derived non-
empirically. These participants would reason through a problem without using the microworld and then, once they 
had a solution, try it with Number Worlds to verify their solution. Since the students could have just as easily asked 
the interviewers about the correctness of  these solutions, but instead chose to use the computer, suggests that the 
participants had developed a certain reliance on—and perhaps trust in—the visual feedback of Number Worlds. In 
addition to establishing correctness, these participants knew that the visual feedback might also provide additional 
guidance in case their solution was incorrect. 

The aesthetics of experimental mathematics
I offer a comment on another aspect of working with computer-based technologies that Borwein and Bailey mention 
only briefly, that of aesthetics. Most mathematicians have a highly developed aesthetic vocabulary, and frequently 
comment on the beauty and elegance of certain mathematical entities such as theorems, proofs and definitions. And 
although aesthetic judgments are most frequently heard as evaluative judgments of these entities, mathematicians also 
rely on aesthetic feelings to motivate their choice of problem and to guide their problem-solving process (Hadamard, 
1945; Poincaré, 1908/1956; Sinclair, 2004). Aesthetic choices and sensibilities are not just frivolous “extras” for 
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mathematicians; they play a fundamental role in the creation and development of mathematics. However, educators 
have found it difficult to evoke and nurture them in the classroom. 

Papert (1978) was perhaps the first to argue that computers are especially well-suited to developing and using 
students’ aesthetic appreciation, and others have followed suit (see Goldenberg, 1989; Sinclair, 2001). Its visual 
capabilities, which have been exemplified frequently in this paper, along with its expressive capabilities, which 
help students feel that they are producing and not just consuming mathematics, are both seminal components of this 
aesthetic potential. For example, after her use of the CC, one student described fractions with the aesthetic language 
that mathematicians have often used to describe favorite entities and ideas: 

The repeating fractions have a flow that I find comforting. As a child I disliked fractions that did not terminate, 
but now I see them in a light of beauty. I find that the decimals which terminate sad. They are unable to touch 
the fingertips of forever, like the repeating ones can.

Similarly, Mary reflected on the emotional experience she felt working with Number Worlds: 
The repeating, infinite pattern is calming. I can see with my eyes open the pattern on the grid right in front 
of me. They all seem to be linked together, no matter how far away from the next multiple they are, they are 
all connected to each other.
 For some of the research participants, the supposed beauty and elegance of number theory was made manifest in 

the pleasing patterns they could create and manipulate on the grid. More importantly, the general appeal of the patterns 
encouraged most participants to simply ‘play around’ and explore. In fact, the aesthetic dimension of their experiences 
was intimately related to learning and problem-solving, and not just tricks to make mathematics more palatable or “fun.”

The experiences of these research participants resonate with many reports in the literature of the new relationships 
to mathematics that computer-based environments help nurture in students. Often, researchers seem almost apologetic 
in discussing this affective and aesthetic dimension of student learning. However, as almost any autobiography or 
personal commentary will show, such experiences are what keep mathematicians ‘in the game.’ Future research on 
the use of technology in mathematics learning should uncover the ways in which the aesthetic, affective and cognitive 
dimensions of mathematical activity interrelate.

Discussion
Several researchers have argued that the inductive patterning activities found in many reform-based curricula—whether 
computer-based (see Chazan, 1993) or paper-and-pencil based (see Hewitt, 1992)—may hinder the development of 
deductive reasoning. Several of the characteristics of experimental mathematical reasoning tend to be inductive in 
nature, including: ‘to gain insight or intuition,’ ‘to discover new patterns or relationships’ and ‘to produce graphical 
displays that can suggest underlying mathematical patterns.’ While other characteristics such as ‘to test and especially 
falsify conjectures,’ ‘to suggest approaches for formal proof’ and ‘to explore a possible result to see if it is worth 
formal proof’ call upon aspects of mathematical activity that are neither inductive nor deductive. They do, however, 
directly support deductive reasoning in the course of establishing a proof—they highlight aspects of proving that blur 
the long-standing divide between induction and deduction. It may be that the tension teachers and students experience 
between inductive exploration and deductive proof can be allayed by the experimental approach discussed in this 
chapter. By explicitly drawing attention to and supporting the use of the characteristics identified and illustrated above, 
teachers may be able to help students effectively engage in both inductive and deductive forms of reasoning.   
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Elsewhere in this volume, Watson and Mason discuss example generation from the students’ perspective by 
highlighting some of the ways that example generation can be used to increase students’ understanding of mathematics 
and improve their attitudes toward mathematics. This chapter complements this work by describing ways that teachers 
and textbooks might use examples to help undergraduates better understand mathematics. We distinguish between 
using worked examples to solve exercises and problems and using examples to help promote students’ understanding 
of mathematical concepts and proofs. We begin with worked examples provided by the teacher or textbook. We then 
discuss the role of examples in building an understanding of a mathematical concept. Next we discuss how examples 
can be useful in understanding mathematical proofs. In each of these sections, we present specific suggestions that 
teachers might use in their own mathematics classrooms and we cite research studies that motivate and support these 
suggestions.

Worked Examples 
The term “example” has multiple uses in mathematics education (cf., Watson & Mason, 2002). In some contexts, 
the word “example” refers to an illustration of a technique used to complete a certain type of mathematical task. 
For instance, a written solution to the question “Find all local minima and maxima of the function f(x)=x3+ 5x2– 8” 
might be regarded as an example of how to solve minimum/maximum problems in an introductory calculus course. 
This is the way that the word example is often used in undergraduate textbooks, in which individual sections of the 
book frequently introduce a technique and then provide a series of examples in which the technique is applied. In this 
paper, we refer to such examples as “worked examples”. In other cases, the use of the word example is meant as a 
particular instance of a mathematical concept (e.g., 6 is an example of an even number). Consideration of these types 
of examples can be used to improve students’ understanding of a concept. Pedagogical uses of examples of concepts 
will be discussed later in this chapter.

A series of studies by Lithner (2000, 2003, 2004) suggest that undergraduates in procedure-oriented mathematics 
courses like calculus complete homework exercises predominantly by first locating similar worked examples in the 
textbook and then using them as a basis for formulating a solution to the exercise. (Note that this might also be 
the case in proof-oriented courses. Recent studies suggest that some undergraduates in proof-oriented courses may 
construct proofs via the use of worked examples (Fukawa-Connelly, 2005; Weber, 2004, 2005a, 2005b)). In one study, 
Lithner (2003) observed undergraduates completing their homework problems in a calculus course. He found that the 
students in his study almost always used worked examples to complete their homework. This strategy was employed 
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by both weak and strong students, and was used in cases in which the undergraduates had the background knowledge 
to complete the problems without the use of this strategy (Lithner, 2000, 2003). In another study, Lithner (2004) 
analyzed the exercises in calculus textbooks to determine what proportion of exercises could be solved by the use of 
worked examples. He found that, for 90% of the exercises in these textbooks, there was an analogous worked example 
presented earlier in the section. With minor modifications, these worked examples could be transformed into solutions 
to the exercises. In these cases, the undergraduates could solve the problem without reasoning about the concepts in 
the section. Only 10% of the problems could not be solved in this way and required the students to reason about the 
properties of the concepts that they were ostensibly studying. Lithner (2003, 2004) expressed concern about these 
results, fearing that many students are completing their homework in ways that are not conducive to building their 
conceptual understanding or problem-solving strategies.

 In spite of Lithner’s reservations, many cognitive psychologists have stressed the benefits of having students 
use worked examples to solve problems (e.g., Zhu & Simon, 1987; Atkinson, Derry, Rankl, & Worthman, 2000). In 
particular, Atkinson et al. argue that worked examples “provide an expert’s problem-solving model for the learner to 
study and emulate” (p. 181–182). Students who try to solve problems without examples typically develop, practice, 
and reinforce “novice strategies”—that is, strategies for solving problems that both ignore the deep structure of the 
problems being solved and are generally ineffective. In contrast, students who use appropriately chosen worked 
examples as a guide for solving problems are more likely to focus on the deep structure of the problem that they 
are solving and use more sophisticated strategies for solving it (Atkinson et. al., 2000). Tarmizi and Sweller (1988) 
analyzed what types of worked examples are most effective for helping students learn how to solve problems. They 
found that worked examples which reduced students’ cognitive load—that is, solutions that would not require a student 
to expend a great deal of mental effort to understand—proved to be more beneficial to students than more complicated 
worked examples that required greater mental effort to comprehend. For instance, worked examples in geometry 
that relied on a single mode of representation (e.g., only analytical or only diagrammatic) helped students more than 
worked examples that combined two representations (e.g., a solution in which analytic reasoning interacted with a 
diagram), since the latter required students to expend cognitive effort to understand the links between the analytic and 
diagrammatic portions of the solution.

The preceding summaries serve as a basis for two pedagogical suggestions. First, when worked examples are 
presented to students, it is important to include examples that are simple and easy to follow. For instance, when 
presenting a solution to a min/max problem in calculus, it is advisable to have some examples that do not use 
sophisticated algebraic manipulations, the use of trigonometric identities, or other techniques that an undergraduate 
might not easily follow. Such examples will cause students to focus more on the details of the solution, rather than 
its deeper structure. Second, it might be worthwhile to ask students to complete some exercises that cannot be solved 
solely via the consideration of a worked example, but requires the student to think about relevant properties and 
concepts (Lithner, 2003). Such experiences will provide students with the opportunity to develop their understanding 
of the mathematics being studied and mitigate chances that they will develop the unproductive belief that mathematics 
consists of learning a series of procedures.

Using Examples to Build Concept Images
What does it mean to understand a mathematical concept? An undergraduate’s understanding of a mathematical 
concept should include his or her ability to state and reason from the definition of that concept. However, mathematics 
educators argue that one’s understanding of a mathematical concept involves much more than this. Tall and Vinner 
(1981) distinguished between a student’s knowledge of a concept’s definition and that student’s concept image—
i.e., her/his total cognitive structure, including all examples, nonexamples, facts, properties, relationships, diagrams, 
images, and visualizations, associated with that concept. Students’ images of concepts have a significant influence 
on how they reason about a concept. Many students have images of concepts that are at variance with the concept’s 
definition. For instance, Tall and Vinner (1981) found that many students claimed that functions whose graphs have 
cusps are not continuous, even if they could state the definition of continuity. Students with poor images of concepts 
often experience difficulty applying the concept definitions and writing proofs about those concepts (e.g., Moore, 1994; 
Weber & Alcock, 2004; see also Oehrtman, Selden & Selden, and Harel & Brown, this volume). On a more positive 
note, students with rich and accurate concept images are often able to reason productively about these concepts and 
use their intuitive reasoning as a basis for constructing formal proofs (Weber & Alcock, 2004).
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These findings suggest that an important goal of mathematics education is to provide students with the opportunity 
to build strong concept images. In this subsection, we will address the question of how this goal might be achieved. We 
first present the results of two research studies demonstrating that students can build their understanding of a concept 
by considering and generating examples of that concept. We then discuss actions that a teacher might take in his or 
her classroom to lead students to generate or consider a variety of examples and describe research that supports these 
suggestions.

Several studies show that one way that students can develop a strong concept image is by generating examples of 
that concept. Dahlberg and Housman (1997) and Housman and Porter (2003) investigated the strategies undergraduate 
students use to learn a new mathematical concept. In both of these studies, students were given the following formal 
definition:

A function is called fine if it has a root (zero) at each integer.

At first students were given no guidance and were simply asked to come to an understanding of the definition. 
Students used a variety of learning strategies at this point, including generating examples, reformulating the definition 
in their own words, memorizing, and recalling definitions of the base concepts function, root, at each, and integer. 
Students were then asked to carry out a number of tasks that both measured and helped to develop their understanding 
of the new concept: Students were asked to give an example of a fine function, give an example of a function that was 
not fine (a “nonexample”), provide an explanation in the student’s own words and/or pictures of what a fine function 
is, verify whether six functions were or were not fine, and determine whether four conjectures were true or false. In 
Dahlberg and Housman’s study, the students who used example generation (producing one or more examples related 
to the concept) and concept reformulation (expressing the concept using pictures, symbols, or words different from 
the definition) were the ones best able to develop an accurate and useful understanding of the concept. In addition, the 
students who used example generation were the ones who were best able to identify the correctness of conjectures and 
provide explanations. The students who primarily reformulated concepts without generating examples were also able 
to determine whether a given object was an example of the mathematical concept, but these students were more easily 
convinced of the validity of a false conjecture. Although example generation and concept reformulation were the most 
beneficial learning strategies for these students, example usage – the use of researcher-provided examples — was also 
somewhat effective in helping students learn about the concept. In Housman and Porter’s study, students who wrote 
and were convinced by deductive arguments in a separate task-based interview were successful in reformulating 
concepts, using examples, and generating examples when asked to do so or when it was necessary to disprove a 
conjecture.

The results of these two studies suggest that the consideration of examples of concepts can help students understand 
concepts better. In addition, many mathematicians find it useful to consider carefully chosen examples to understand 
concepts and their definitions (e.g., Alcock, 2004). As Paul Halmos remarked, “A good stock of examples, as large as 
possible, is indispensable for a thorough understanding of any concept, and when I want to learn something new, I make 
it my first job to build one.” (Halmos, 1983, p. 63). Unfortunately, the data from these two studies also demonstrate 
that some students do not spontaneously consider examples when presented with a new concept. In the rest of this sub-
section, we consider three ways that teachers might lead students to consider examples: (1) by presenting examples, 
(2) by helping students generate examples, and (3) by asking students to reason about given examples. 

The most straightforward suggestion is for teachers to simply provide examples and counterexamples when they 
introduce a new concept. However, there are two reasons why a teacher should exercise caution in choosing which 
examples to present. First, students tend to overgeneralize, believing that irrelevant properties held by an example of 
a concept are shared by all members of the concept. Second, as Watson and Mason point out in this volume, many 
students will treat counterexamples as isolated cases, anomalies that can be ignored.  A few researchers have suggested 
guidelines for example presentation that can potentially alleviate the negative effects of these student tendencies. We 
will discuss these guidelines below and then illustrate how they can be applied in the case of convergent sequences. 

• First, teachers can present a wide range of examples that do not all share an irrelevant characteristic (Sowder, 
1980). 

• Second, it is often useful to pair an example and a counterexample that differ in only one characteristic, 
allowing students to focus their attention on relevant aspects of the concept (Sowder, 1980). 
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• Third, teachers can not only describe why the examples are, or are not, members of the relevant concept, 
but also describe ways that students can produce similar examples or counterexamples (Peled & Zaslavsky, 
1997). 

• Finally, consistent with Watson and Mason’s chapter in this volume, after presenting one type of example of a 
concept, teachers could then ask students to construct similar examples or even describe how a class of such 
examples could be constructed (see also Watson & Mason, 2002). 

To illustrate these guidelines in a concrete setting, we discuss the concept of convergent sequences. It is natural 
to exemplify this concept with a prototypical convergent sequence, such as (1 ).n  The danger with only introducing 
this one example, or very similar examples such as 2(1 ),n  is that students may focus on features of this sequence that 
do not guarantee convergence. For instance, students may infer that convergent sequences are monotonic, never attain 
their limit, or that each term must be closer to the limit than the last. In fact, an extensive body of research shows that 
many undergraduates hold these beliefs (Cornu, 1991). For this reason, it is better to present students with a range 
of examples, perhaps including an alternating sequence converging to zero (illustrating a non-monotonic convergent 
sequence), a constant sequence (showing that sequences can attain their limits), and non-prototypical convergent 
sequences such as (1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1…). Likewise, students should be asked to consider a wide range of 
counterexamples, including sequences that diverge to infinity and negative infinity, other unbounded sequences, and 
sequences with multiple cluster points. Each of these counterexamples could be compared to a specific convergent 
sequence, similar in most respects, but differing in an important respect that causes one to diverge and the other to 
converge. For instance, comparing the sequences
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can illustrate that sequences defined by subsequences can converge, but only if the two subsequences converge to 
the same number. For examples such as (an ) and (bn), teachers can describe the reasoning they used to produce these 
examples and describe how other examples of that type could be produced. For each presented example, students 
can be asked to generate another sequence or a family of sequences that have the same features as the example under 
consideration. 

Teachers can also have students play a more active role in their mathematical learning by having them generate 
examples of concepts themselves. When discussing convergent sequences, the teacher could ask students to generate a 
particular sequence that is convergent. Responses might include ( )1 n . Some students may not have come up with any 
examples on their own, but after seeing their classmates’ examples, they might contribute to the next task. The teacher 
could then ask students to give an example of a sequence that is peculiar in some way. Responses might include some 
of the previously reported examples together with the reasons why they are peculiar. For instance, the sequence
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is given as two formulae instead of one, and the sequence bn = 0 for all natural numbers n is constant. Asking students 
to give examples of convergent sequences in alternative representations, such as a graph of a convergent sequence or 
expressing a convergent sequence as a recurrence relation, can also be encouraged. Discussion of such examples can 
lead the class towards a general characterization of a convergent sequence (See also Marrongelle & Rasmussen, this 
volume, for a further description of proactive teacher moves). 

Students can also be asked to generate examples in order to explore boundaries and extend the range of possibilities. 
For example, students who are studying convergent sequences could be asked to find, in this order, each of the 
following:

1. a convergent sequence, 
2. a convergent sequence that is not monotonic, 
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3. a convergent sequence that does not get strictly closer to its limit with each term, 
4. a convergent sequence that achieves its limit, and
5. a convergent sequence whose formula, treated as a real-valued function, would not be continuous. 

In doing this task, ask students to make sure that an example given for any one item should not satisfy the next 
item. Thus, the first example would be a sequence that converges, but is monotonic. The second example would be 
a non-monotonic convergent sequence, but one that does become strictly closer to its limit with each term (such as 
( 1)n n- ), and so forth. When each additional constraint narrows the range of possibilities, students are induced to 
think more broadly to successfully complete the exercise.

Alcock (2004) suggests a third way teachers can use examples to enrich students’ concept images. Students can 
be given definitions for a collection of concepts. Then students can be presented with worksheets with a number 
of objects and be asked to determine what properties each object has. To illustrate, after students are introduced to 
sequences, they can be given the definitions for convergent, bounded, and monotonic sequences. They can then be 
given a collection of sequences and asked to determine if the sequences are convergent, bounded, and/or monotonic. 
Conversations between students and between student and teacher can enable students to understand what the definitions 
of each of these concepts are asserting and to build their concept images of the properties. Further, these activities 
can address potential misconceptions that students might have or develop (examining sequences such as ( 1)n n-  
will help students realize that a sequence does not have to be monotonic to converge) and to form mathematical 
conjectures in response to their own questions (e.g., are all convergent sequences bounded? Do all monotonic bounded 
sequences converge?). Such a treatment does not have all the benefits of example generation that Watson and Mason 
discuss in this volume; for instance, the affective benefits of example generation may not be realized here. However, 
Alcock’s suggestion may be more efficient in terms of time, and it does ensure that students will consider the classes 
of examples that teachers believe are important.

Using Examples in the Form of Generic Proofs
There are many purposes of presenting proofs in university classrooms. However, mathematics educators argue that 
two of the most important purposes of proof are convincing—i.e., removing all doubt that a theorem is true—and 
explaining—i.e., providing students with insight as to why a theorem is true (e.g., Hanna, 1990; Hersh, 1993). Hersh 
(1993) argues that the formal proofs that we present to our students often fail to achieve both of these goals. First, 
many students obtain conviction of general assertions not by reading formal proofs, but by checking whether that 
assertion holds in several individual cases.1 Formal proofs seem superfluous to these students—they feel they can find 
out whether an assertion is true or not just by checking a few examples themselves. Further, due both to their weak 
understanding of formal proofs and the highly formal way that proofs are traditionally presented, undergraduates often 
do not find proofs to be explanatory (Hersh, 1993). 

Rowland (2002) suggests an alternative to formal proofs in number theory. When discussing a general theorem 
that applies to a class of objects, choose an arbitrary object from among that class. Demonstrate that the theorem holds 
for that particular object, but make sure that the demonstration relies in no way upon properties of the specific object 
under consideration that are not shared by all objects in the class to which the theorem applies. Mason and Pimm (1984) 
call such a demonstration a generic proof of the theorem. Rowland advocates presenting generic proofs of theorems 
prior to, or in lieu of, formal proofs of theorems. He argues that students gain more conviction and understanding from 
generic proofs than from formal proofs, and students’ comprehension of formal proofs will improve if the presentation 
of a generic proof precedes the presentation of a formal one.

Rowland provides a concrete instance of a generic proof by discussing his treatment of Wilson’s theorem. Wilson’s 
theorem asserts:

(p – 1)!  –1 (mod p) for all primes p.

When teaching students about Wilson’s theorem, Rowland justifies the theorem using the following generic approach. 
He first looks at the statement for the particular prime 19, although 13 and 17 would work equally well. He lists the 
integers between 1 and 18 (inclusively), the reduced set of integers modulo 19. He then draws lines connecting each 

1 In the language of Harel and Sowder (1998), we might say these students hold an empirical proof scheme, but not a deductive proof scheme.
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element in this list to its multiplicative inverse modulo 19, linking 2 with 10, 3 with 13, and so on. Of course, every 
listed element will have an inverse that is another element in the list, with the exception of 1 and 18, which are their 
own inverses. Now 18! can be rewritten by lining up each integer with its multiplicative inverse modulo 19. After 
doing this, Rowland shows how the product 

18
8

1
1 1 18(mod19).

i
i

=

º × ×Õ

There are several aspects of this presentation that made this a good generic proof. The first was Rowland’s 
choice of 19. A prime such as 2, 3, or 5 would not have enough reduced residue classes to see the general structure of 
Rowland’s arguments. A larger prime like 37 would have so many residue classes that the argument would become 
more difficult to follow; the students may lose the structure of the argument in the arduous calculations of finding 
the multiplicative inverse of each integer modulo 37. Further, 19 appeared to be an “arbitrary prime”—i.e., it did not 
have any noticeable distinguishing properties not shared by other primes. Another reason 2 would be a poor prime 
to inspect was because it was the only even prime.2 Second, Rowland did not make use of any special properties of 
the number 19 .The central reasoning in Rowland’s argument was that every element except 1 and 18 (which is –1 
modulo 19) is not its own multiplicative inverse modulo 19. Rowland’s demonstration could easily be used to verify 
Wilson’s theorem for any other prime. Third, all constructive aspects of the proof were identified and verified. For 
instance, the claim that 2 had a multiplicative inverse modulo 19 was not only justified by a theorem. The inverse of 
2 was also explicitly found in the number 10, and the student could verify that 2 and 10 were in fact inverses. Finally, 
the reasoning was presented in such a way that it could easily be abstracted into a more general formal proof. Based 
on questionnaires and interview data from his own classrooms, Rowland reports that students who see this type of 
presentation can describe why this general assertion can be applied to any prime number and gain a strong conviction 
that the theorem holds for all prime numbers. 

Hazzan and Zazkis (2003), following Rowland, describe another way that examples could be used to construct 
proofs. Many proofs have constructive components—they show how certain elements with desired properties can 
be created, but do not explicitly state what these objects are. Hazzan and Zazkis advocate having students perform 
the constructions themselves in particular instances before observing the proof that employs these constructions In 
support of this recommendation, Hazzan and Zazkis argue, “The human mind is not satisfied with the knowledge that 
some objects exist. There is a desire to point out exactly what these objects are. Similarly, unraveling a construction 
process with an example helps us understand exactly how the construction works” (italics are the authors’). 

Consider the proof that there are infinitely many primes. A standard proof of this proposition is given below.

Theorem: There are infinitely many primes.

Proof (by contradiction): Suppose there are not infinitely many primes. Then we can enumerate the primes p1, 
p2,…, pn. Let N = p1 · p2 · … · pn + 1. For all i such that 1 ≤ i ≤ n,  pi divides p1 · p2 · … · pn but does not divide 1, so 
pi does not divide N. Hence, no prime divides N. This contradicts the fact that every integer greater than 1 must be 
divisible by at least one prime. 

This proof has a constructive aspect in that it describes how a number N can be constructed, but does not explicitly 
state what the number N is. The exact value of N, of course, depends on what numbers are elements of the hypothetical 
finite set of primes (Leron, 1985). Students often have trouble following this proof. However, if students were asked 
to construct the N in the proof for particular sets of primes, their understanding might improve. For instance, students 
could verify that:

2 and 3 do not divide N = 2 · 3 + 1,
2, 3, and 5 do not divide N = 2 · 3 · 5 + 1,
2, 3, 5, and 7 do not divide N = 2 · 3 · 5 · 7 + 1, and so on. 

Students might also want to examine N = 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031. Here 30031 is a composite number 
(30031 = 59 · 509). Inspecting this example can make students aware that the product of the first n primes plus 1 does 
not always yield a prime number, only a number whose prime factors are not included in the presumably finite set of 

2  The lack of special properties is easier to see if we move beyond looking at primes. For instance, in a generic proof about the natural numbers, 
one should choose numbers that are neither prime nor perfect squares.
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primes. After exploring these examples, the formal proof that there are infinitely many primes will be more accessible 
to students. They will have a greater appreciation for how the variable N in the proof is being defined and why none 
of the enumerated primes will divide it. 

Hazzan and Zazkis further illustrate how these techniques can be used to enhance students learning of other proofs 
with constructive components. One proof they looked at was a standard proof of the Basis Theorem in linear algebra. 
The Basis Theorem asserts that, in a finite-dimensional space, all bases have the same cardinality. Standard proofs 
of the Basis Theorem often rely on the Replacement Lemma, which asserts: “Let B be a set of linearly independent 
vectors in the spanning space of a set of vectors A. For all subsets 1B BÍ , there exists a subset 1A AÍ , such that |A 1| = 
|B1| and (A – A1)  B1 spans the same space as A.”

The Replacement Lemma is clearly constructive, in the sense that it tells the reader that a subset of a spanning set 
exists, but it does not state what it is or even how it could be found. As a result, many students find proofs of the Basis 
Theorem relying on this lemma to be confusing. Hazzan and Zazkis (2003) designed a series of computer activities to 
help students understand the Replacement Lemma. These activities allowed students to enter a spanning set A and a set 
of linearly independent elements B1 and the computer would then find the elements in the spanning set which could be 
replaced by the subset B1. Students who completed these exercises found the subsequent proof of the Basis Theorem 
to be understandable and meaningful.

Conclusion
In this chapter, we have discussed a number of ways that teachers can use worked examples and employ examples 
to build undergraduates’ understanding of mathematical concepts and proofs. Examples not only illustrate concepts, 
principles, and proofs, they can help students to explore, expand, generalize, refine, and test their understanding. 
Students who are exposed to, work with, and generate their own examples are actively engaged in mathematics and 
learning.
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From Concept Images to Pedagogic Structure for a 

Mathematical Topic

John Mason, Open University

The principal aim of this chapter is to provide a structure for mathematical topics as an aid to ‘psychologizing the 
subject matter’, as Dewey (1933) put it. The secondary aim is to reveal just how complex a matter preparing to teach 
a topic effectively can be, beyond trying to make the definitions and theorems as clear as possible.

The chapter develops the notion of a concept image (Tall & Vinner 1981) into a description of a framework based 
on a threefold structure of the psyche. Two mathematical topics, quotient groups and L’Hôpital’s rule, are used to 
illustrate how the framework can be used as a reminder to direct attention to structurally different aspects of any topic 
when preparing to teach it. The framework can be used both at a more abstract level (for example, treating groups 
or limits as the topic) or at an even more detailed level (for example, quotient groups of cyclic groups or the relation 
between L’Hôpital’s rule and derivatives). When combined with awareness of learners’ mathematical powers and with 
ubiquitous mathematical themes and heuristics, the framework can be used to inform the design of pedagogically 
effective tasks and interactions with learners.

Concepts and Concept Image
Concepts are not isolated entities floating about in our minds but rather familiar ‘lines of thought’ triggered by concept 
labels. For an expert, the mere mention of a technical term in mathematics, such as coset or limit, gives access to a 
variety of associations, techniques, ways of speaking, images, symbols and meaningful contexts which David Tall & 
Shlomo Vinner (1981) summarized as the concept image They had found that even when clear definitions of concepts 
were given, and even where plenty of examples were provided, learners found it difficult to penetrate beneath the 
surface and really get to grips with what particular concepts were about. Thus the label concept image acknowledges 
psychological experience, in contrast to the mathematically formal concept definition: it is the touchstone, the source 
of intuition and meaning associated with the concept, not the formal specification; the richness of connections and 
experience that underlies the honed articulation. 

Tall & Vinner (1981) captured this experience in the term concept image, which refers to the whole mental 
structure of interconnected schema associated with a concept. They define a concept-image as 

… the total cognitive structure that is associated with the concept, which includes all the mental pictures and 
associated properties and processes. It is built up over the years through experiences of all kinds, changing as 
the individual meets new stimuli and matures. (p. 152)

An essential feature of the concept-image is that the various aspects are interconnected. 

Many concepts which we use happily are not formally defined at all, we learn to recognise them by experience 
and usage in appropriate contexts. Later these concepts may be refined in their meaning and interpreted with 
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increasing subtlety with or without the luxury of a precise definition. Usually in this process the concept is 
given a symbol or name which enables it to be communicated and aids in its mental manipulation. But the 
total cognitive structure which colours the meaning of the concept is far greater than the evocation of a single 
symbol. It is more than any mental picture, be it pictorial, symbolic or otherwise. During the mental processes 
of recalling and manipulating a concept, many associated processes are brought into play, consciously and 
unconsciously affecting the meaning and usage. (op. cit. p. 152)

The question remains as to how a teacher might make use of their awareness of their own concept image, in 
planning how to go about teaching that concept to others.

In 1989 a group of us developed a structure or framework to inform and assist teachers in planning how to teach 
a mathematical topic which articulated our own approach. Originally referred to as preparing to teach a topic (Griffin 
& Gates, 1989; see also Mason, 2002) it has proved useful to refer to it more recently as the (pedagogic) structure of 
a topic (Mason & Johnston-Wilder, 2004). As a framework for planning, it can act as a reminder to make sure when 
designing tasks that learners encounter various important aspects and elements of each topic. It also acts as a format 
for accumulating notes and observations so that when a topic is being taught again in the future, the notes provide 
ready access to issues and concerns and so inform the planning.

Origins and Constituents of Topics
Mathematical concepts are constituents of mathematical topics. But topics are not simply collections of concepts, 
‘ideas’, definitions, theorems and proofs. Rather, they are a complex tapestry of interwoven perceptions, thoughts and 
images, connections and links, behavioral practices and habits, applications and excitements. Something becomes a 
topic to be taught when someone recognizes that a class of problems could be solved by using a technique that could 
be taught. But the technique and hence the topic is based on a subtle shift in ways of perceiving, in ways of stressing 
some features and ignoring others. Thus, teaching someone a topic is introducing them to a way of perceiving and 
thinking, as well as ways of acting. This is underlined by the origins of the word theorem in the ancient Greek for 
‘a way of seeing’. When thinking about the pedagogical issues associated with teaching a topic, the ancient notion 
of a three-stranded psyche provides a practical structure for taking into account the five aspects of mathematical 
proficiency (Kilpatrick, Swafford, & Findell, 2001) forming the goals of teaching a topic, and comprising conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition.

Three-Stranded Psyche
Ever since the composing of the Bhagavad Gita and the Upanishads twenty-five hundred years ago, people have found 
it useful to think in terms of the human psyche as made up of an interweaving of intellectual or cognitive functioning, 
emotional or affective functioning, and behavioral or enactive functioning. Modern psychology has absorbed the 
three-strand view, using the terms cognition, affect, and enaction. I find it more helpful to use the terms awareness, 
emotion, and behavior since they relate more closely to everyday usage and experience, and because they reflect 
the insights of ancient psychology more directly. These three interwoven threads can be expanded to inform both 
preparation for teaching a topic and making choices in the moment while interacting with learners. The next three 
subsections elaborate on these three strands in the context of mathematical topics, while developing a metaphor for the 
human psyche that is found in several of the Upanishads: the image of a horse-drawn chariot with driver and owner.

Each of the three strands is associated with a collection of fruitful questions for probing that strand in relation to 
a topic, and these questions are illustrated for the topics of quotient groups and L’Hôpital’s rule.

Awareness  The totality of thoughts, images, ideas, associations, related topics, and concepts that come to mind 
constitute your conscious awareness in the moment. Where these are focused on a concept, they form your concept 
image. As thoughts begin to flow, other awarenesses may also come to mind. These are the awarenesses that are 
dominant for you in association with the term or topic as triggered in that situation. The important pedagogic question 
is which of these you want learners to have come to their minds as a result of their work on the topic. 

For example, you can ask what awarenesses are likely to be activated for learners as a result of working on a 
particular set of textbook exercises, or constructing examples of mathematical objects subject to certain constraints. 
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If for some learners there are aspects of a concept or topic that do not readily come to mind, then those learners may 
be disempowered and prone to error or confusion; perhaps even disheartened and frustrated. Furthermore, some ideas 
that do come to mind are not always appropriate or even correctly formulated, so associated with awarenesses are 
absences (things that learners often forget about), and obstacles (misconceptions and mis-construals that you notice 
learners having to work their way through at various times). Many of these errors are classic in the sense that learners 
seem prone to making them despite pedagogic attempts to circumvent them. Their existence provides evidence that 
learners are active construers, not just passive recipients.

There is more to awareness than simply ‘coming to mind’ since some awarenesses function below the level of 
consciousness. One of the reasons that experts find teaching novices a challenge is that their own fluent proficiency 
suppresses conscious awareness of now-automated thinking. Mathematical concepts are often (Johnson, 1987 and 
Lakoff & Nunez, 2000 might say ‘always’) based on bodily awareness. It is useful to try to re-encounter these for 
yourself so as to construct pertinent and meaningful tasks for learners. 

Each technical definition in mathematics signals a need felt by someone to articulate a way of thinking that 
informs the solution of a problem or class of problems, and that now constitutes the topic. It is worthwhile therefore 
to try to re-enter the shift in thinking indicated by the presence of the term. As Imre Lakatos (1976) suggested, most 
definitions emerge and are modified as a theorem and its proof is refined so that it makes a theorem or collection of 
theorems efficient to state and (relatively) easy to prove. So to appreciate a definition, learners will need to experience 
something of the economy achieved by its formulation. One way for learners to do this is to experience both recognizing 
and constructing for themselves, examples that fit the definition, as well as examples that do not quite fit it. Watson 
& Mason (2005) coined the term example space to refer to the class of examples which come to mind in association 
with a concept or technique. Considering the desirable constituents of a learner’s example space is another way of 
considering the core awarenesses forming some of the goals of instruction.

Experiencing, appreciating, and constructing examples and counter examples contributes to becoming aware of 
what aspects of an example can change while remaining an example. This is what is usually meant by conceptual 
understanding. Ference Marton (Marton & Booth, 1997; Marton & Trigwell, 2000; Marton & Tsui, 2004) refers to this 
as becoming aware of dimensions of variation, and he suggests that this is the essence of learning. Watson & Mason 
(2004, 2005) extended this language slightly to speak of dimensions of possible variation, since at different times one 
person is aware of different ‘dimensions’ that can vary, and very often teacher and learner are not aware of the same 
possibilities. Furthermore, each aspect that can be varied, can be varied in different ways, so it is useful to refer to the 
range of permissible variation of which someone is aware.

For example, learners may associate the term group with symmetries of squares and equilateral triangles but be 
unaware that this applies to a whole gamut of planar objects. They may be aware that planar objects can include regular 
polygons (a dimension of possible variation), but be unaware of irregular polygons (a restricted range of permissible 
change), tessellations, and more abstract settings. They may have some sense of ‘planar objects’, but be unaware that 
there are groups that cannot be displayed as the symmetries of such objects. They may even be aware that painting 
certain features of objects (vertices, edges, etc.) with colors (a dimension of possible variation) reduces the number 
of (color-preserving) symmetries but still produces a group that is a subgroup of the unpainted object. The range of 
permissible change due to coloring may not however be as rich as possible; for example, it may not include using 
multiple colors, and it may not include the fact that every subgroup of a group presented as the symmetries of an object 
can be presented using suitable coloring of that object, and every quotient group as a group of symmetries of color 
classes. By thinking in terms of dimensions of possible variation and associated ranges of permissible change during 
preparation, choices of examples and of how those examples might be presented can be pedagogically informed. 

Useful questions to ask oneself concerning awareness include
(A1) What comes immediately to mind when you hear or read the words …? What images, what connections 

to other parts of mathematics? What particular examples come to mind? What dimensions of possible 
variation (and associated ranges of permissible change) are important in order to appreciate component 
concepts?

(A2) What sorts of obstacles to or absences of awareness, often manifested as errors, confusions or ignorance, 
did you once have yourself, and what sorts have you detected in learners in the past?

Initial responses might include, in relation to quotient groups,
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(A1) Seeing numbers both as actions and as objects on which actions are performed, and more generally, seeing 
elements of groups as actions on objects and as objects themselves; integer number-line with all members 
of each remainder class painted an identifying color; imposing an equivalence relation on actions; link 
to construction of integers from whole numbers and fractions from integers; normal subgroups; kernel 
of homomorphism; three isomorphism theorems; the answer to a calculation is independent of which 
representatives are chosen from the corresponding cosets; Cayley tables and Cayley graphs;

(A2) Learners often struggle with seeing cosets both as subsets and as objects; desire to treat quotient groups as 
if they were fractions. 

Initial responses might include, in relation to L’Hôpital’s rule,
(A1) Finding limits of ratios in which the numerator and denominator tend to 0, or both tend to infinity; derivatives; 

linking limit of sin(x)/x as derivative of sine at x = 0 with evaluating that limit, and seeing L’Hôpital’s rule 
as a generalization. 

(A2) Not checking or arranging that both numerator and denominator have 0 as their limits before trying to use the 
derivatives; not checking for differentiability; not differentiating numerator and denominator separately.

Introduction to the Chariot Metaphor
In describing the structure of the psyche, ancient psychologists found it fruitful to develop the metaphor of the human 
psyche as a chariot drawn by horses, with the driver being under the direction of an owner. Under the direction of will 
(the owner), the driver (awareness) is responsible for maintaining the state of the chariot (the body, behavior), and by 
means of the reins (mental imagery) directing the horses (emotions) that provide the motive energy. 

Probing Deeper: richness of awareness
Although the term cognition is in popular use, it carries with it a sense of a conscious mind and of rational thinking. 
The term awareness also implies consciousness, but I follow Caleb Gattegno (1987) in using the term to encompass 
what the body is aware of even if the mind is not. For example, it is often the case that if you watch how you construct a 
particular example or apply a technique in a particular case, you can discover ways of expressing generality or structure 
because it is revealed through your actions. Absence of awareness can be debilitating, as, when interpreting graphs, 
although experts know how to start from a point on the x axis and label other points such as (x, f(x)), ( f(x),  f(x)), 
( f(x), ( )g f x ), (x, ( )g f x ) and so on, using various functions for f and g, because they have an underlying and 
accessible awareness of how points are coordinated, literally, many learners who have only ever seen graphs as 
completed curves seem unaware of them as sets of coordinated points and are unable to make sense of cobweb 
diagrams

Once a functioning is internalized, such as one-to-one matching or interpretation of graphs as both sets of points 
and curves, very little attention is required in order to make use of it. It is only when something breaks down in 
normally smooth functioning that we become consciously aware again. For example, the association of ‘larger’ with 
‘is a proper subset of’ based on experience with finite sets is challenged when the notion of one-to-one matching is 
used for counting infinite sets. A function that is differentiable at a point and has arbitrarily large slope arbitrarily close 
to that point challenges previous images of and intuition about continuity and differentiability. One of the problems 
faced by an expert called upon to teach something very familiar is the need to re-contact awarenesses that are below 
the surface of consciousness, in order to appreciate what learners face and to construct or choose appropriate tasks to 
bring relevant awarenesses to the attention of learners.

Gattegno (1987) proposed that awareness is both the origin of a discipline and the product of the emergence and 
development of that discipline. Thus when someone becomes aware that they can solve not only a single problem, 
but a class of ‘similar’ problems, that awareness can be formulated, articulated, made precise, and distilled into a 
technique that can be recorded and taught to others. He also spoke of awareness of awareness, a notion developed in 
Mason (1998) to account for the demands placed on an expert who is called upon to teach, and on a teacher called 
upon to teach others to teach.

Awareness includes more than the concept image, for as well as connections and associations it also includes 
salient mathematical themes and heuristics that learners could encounter in the topic being considered, influenced by 
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personal mathematical propensities and dispositions that have emotional connections. Thus within the broad category 
of awareness as an aspect of the psyche, there is the potential for discerning cognitive, behavioral, and emotional 
components. In other words, the structure of a topic being developed here is potentially recursively complex.

It is convenient to include in the awareness strand of the framework the sorts of difficulties and struggles that 
learners have shown evidence of in the past, including classic slips, errors and mis-understandings, some of which may 
constitute what Bachelard (1938) called epistemological obstacles. These are fundamental difficulties experienced at 
the genesis of the topic because of a necessary change in ways of perceiving or thinking. They are usually signaled 
by the use of specially formulated technical terms and symbols. To make progress learners require more than the use 
of words and symbols apparently appropriately; they need to extend and alter their ways of seeing and behaving, and 
hence also their emotional dispositions. Nicolina Malara (2005) has used the term babbling to refer to learners’ early 
attempts to articulate relationships and properties using technical terms, because, like young children learning to 
speak, these articulations are often incoherent at first, as anyone marking homework assignments will recognize.

Awarenesses form the core or the essence of a topic or concept. To learn the topic will mean to alter those 
awarenesses so as to discern details, recognize relationships, and perceive properties that previously went unnoticed 
and to begin to reason on the basis of those properties. 

Probing Deeper: Example Spaces
A significant component of awareness that is of particular importance for teaching is the example spaces that could 
come to learners’ minds. Edwina Michener (1978) introduced a taxonomy of examples associated with different 
mathematical and pedagogic purposes, but her distinctions are sometimes difficult to sustain, so in Watson & Mason 
(2005) we focused on what the learner does with examples and what features actually make an example exemplary. 
An example space includes not only the particular examples that come immediately to mind, but the whole space of 
examples that the person is aware they could generate from those by altering different features. 

Locally, in the moment, example spaces are person and situation dependent; access to an extended space can 
be triggered by associations, much as things in the back of a pantry come to view when the pantry is searched for a 
special ingredient. For example, |x| is traditionally put forward as an example (often even ‘the’ example) of a function 
that is differentiable everywhere except at one point. But many learners, even after apparently mastering the calculus, 
show little sign of being aware that from this one object you can construct infinite classes of similar functions whether 
by varying the point at which the derivative fails to exist, by scaling, or by compounding with other functions, not to 
say piecing together non-linear components, or extending the object to be differentiable everywhere except at a finite 
number of points. Furthermore, learners may meet x|x| as a continuous function through its ‘rule’ displayed as two 
functions glued together (x2 when x ≥ 0; –x2 when x < 0), yet never associate it with |x| and its non-differentiability 
at 0, nor realize that more generally, for each l > 0 there is a whole class of functions f such that whereas x lf(x) is 
continuous but not differentiable at x = 0, x l+1f(x) is differentiable at x = 0. These are further examples of dimensions 
of possible variation and associated ranges of permissible change.

Pedagogically, it is vital to recognize that what learners attend to and what their teachers attend to is not always 
the same. In order to pick up on what learners are thinking and doing, and in order to prepare tasks that will provide 
learners with access to important connections within and beyond a topic, effective teachers find it useful to refresh 
their awareness of their own awarenesses. 

Emotion (Motivation)
Yves Chevallard (1983) introduced the term didactic transposition to describe the way in which the intuitions and 
experiences of an expert are trimmed and edited for teaching purposes, so that what learners encounter is often little 
more than refined formal definitions, proofs of theorems, and examples of applications of techniques. Expert awareness 
is transposed or transformed into training of behavior. The result is that no appeal is made to learner’s emotions, 
learners’ powers are not called upon, and mathematical themes remain implicit. The pleasure and insight achieved by 
the expert in organizing the topic and ‘making sense’ leaks away and is lost to the learner, who experiences merely 
behavior training. 

What for the teacher is a ‘motivating example’ (Michener 1978) may not actually motivate learners for whom 
the problem posed is either of little interest or is not perceived as within their grasp. Nor does it necessarily help 
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either those who like a holistic sense of a larger picture, or those who prefer a serialist bottom up development (“just 
tell us what to do”) (Pask 1976). Where access to the original situation that puzzled someone is missing, learners are 
short-changed and stymied, for this is where much of the motivation lies. In his monumental works, Hans Freudenthal 
(1973, 1978, 1983, 1991) addressed this by stressing the phenomenological basis of mathematics. Mathematics is a 
culturally vital means for making sense of a whole range of phenomena, but to appreciate this, learners need to be 
exposed to and intrigued by puzzling phenomena that can be explained mathematically. Paul Halmos expressed a 
similar sentiment:

Let me emphasize one thing ... the way to begin all teaching is with a question. I try to remember that precept 
every time I begin to teach a course, and I try even to remember it every time I stand up to give a lecture... . 
[Halmos 1994 p85] 

It is useful therefore to try to locate and recreate one or more of the initial problematic situations that spawned the 
topic in question, or else to create some analogous but contemporary version. It is also useful as a teacher to be aware 
of the variety of situations and ways in which the topic arises in other contexts. Some of these may be applications 
outside of mathematics, and some may be within mathematics itself. I believe that this is partly what John Dewey 
(1933) had in mind when he stressed that the role of the teacher is to psychologize the subject matter, that is, to re-
formulate and re-organize the concepts, techniques, and awarenesses so that pertinent experiences come to the surface 
for learners. Boiling down a mathematical exploration through which learners could appreciate a topic, until just the 
techniques remain, distils out some of the behavior required for competence, but at the expense of desire to obtain that 
facility and appreciation of its significance.

The emotional strand includes both the effect on learners’ dispositions towards mathematics in general and the 
topic in particular. It is influenced by the ways of working on mathematics developed in the classroom, and it is 
populated by phenomena (material, imagined or symbolic) that can be used to highlight the concepts and ways of 
thinking that make the topic what it is (Freudenthal, 1991). The important components for motivational purposes are a 
combination of initial surprise, of a sense that although initially mysterious an explanation is ultimately within reach, 
and the use of their own powers rather than having someone else try to do all the work for them. This is where trust is 
vital, for where learners trust a teacher to be able to make topics accessible, they are much more likely to engage than 
where that trust is absent. 

Useful questions to ask in order to direct attention to the emotional strand include
(E1) What questions or problems initially led to this topic? Where is the inherent surprise? What sorts of questions 

do they help resolve?
(E2) In what contexts might the topic, concept or technique turn out to be useful? What is the range of situations 

to which they have been applied?
Responses to these questions in relation to quotient groups might include

(E1) Generalizing the arithmetic of odd and even numbers; connecting clock or modular arithmetic with ordinary 
arithmetic; characterizing homomorphic images of groups; partitioning Cayley tables; …. 

(E2) Study of structure-preserving maps; constructing groups from components; study of symmetries; physics of 
particles; crystallography; solutions to differential equations ….

Responses in relation to L’Hôpital’s rule might include
(E1) How to find limits of ratios in which both the numerator and denominator have 0 (or infinity) as limits. 

Historically, it was probably devised by Johann Bernoulli and included in the textbook that L’Hôpital 
commissioned from him.

(E2) Exercises that practice limits and derivatives; studying ‘flat’ functions such as 
21 xe− .

Notice that there is no attempt here to be definitive and exclusive in the responses. Different people will stress 
different aspects according to their ‘take’ on the topic, and this may vary from situation to situation. Over a period of 
time, and especially in discussion with colleagues, a rich web of responses can accumulate. Regularly updating notes 
structured according to the six aspects highlighted by these three strands makes it much easier to plan a future session 
and to develop and improve your teaching on each occasion, instead of repeating habits that have not proved to be 
maximally effective in the past. 



20.  From Concept Images to Pedagogic Structure for a Mathematical Topic 261

Probing Deeper: relevance and reality
Some people believe strongly that learners are motivated (some would say are only or are best motivated) when the 
topic is seen to be of direct relevance to their own lives (Mellin-Olsen, 1987; Frankenstein, 1989). Jerome Bruner 
(1986) pointed out that this worthy aim often translates in school into trivial 

banalities about the home, then the friendly postman and trashman, then the community, and so on. It is a 
poor way to compete with the child’s own dramas and mysteries. (p. 160–161)

At university, these are usually manifested as patently artificial contexts, or inordinately complex applications 
beyond the reach of learners. Learners’ own powers to imagine and to be intrigued are sometimes bypassed by being 
given apparently ‘real’ contexts in order to situate a previously distilled topic or technique. The infamous word 
problems are a particular case in point. Some people advocate that the contexts and applications must be authentic uses 
of mathematics by people outside of education rather than made-up examples, if learners are to be motivated (Brown 
et al 1989). Still others see ‘realistic mathematics’ as what can become real for learners when they use their powers 
of imagination and when there is an appeal to their natural curiosity (Gravemeijer, 1994). The expression zone of 
proximal relevance is useful to describe the extent to which learners can become interested and intrigued beyond their 
immediate concerns and experience (Watson, 2005; Mason & Johnston-Wilder, 2004). But ‘application’ is not always 
the chief motivational force. Mathematics can provide a refuge from other concerns, and it can also be a thrilling world 
of exploration in which ‘truth’ is validated by logic rather than by reference to experts.

Probing Deeper: harnessing energies 
In addition to perceived relevance of a topic and the class of problems it resolves, motivation is also strongly 
influenced by learners’ overall disposition towards engaging with new ideas and new problems. In their description 
of mathematical proficiency, Kilpatrick et al (2001) mention productive disposition as an under-rated but interwoven 
and vital component. They include under this heading “habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116; see also p. 131–133, and Goldenberg 
1996). Success breeds success by strengthening the disposition to engage with mathematical thinking as a result of 
making mathematical sense of phenomena, and of successful use of their own developing powers of sense-making to 
make sense of mathematical topics. 

The energies that fuel human behavior arise from the emotions, both positive and negative. For example, 
sometimes you feel drawn towards or attracted by some goal, while at other times you feel repelled by an anti-goal 
(Skemp, 1979). Mostly there is tension or conflict between competing goals and anti-goals; for example, you may not 
want to look foolish but you may nevertheless want to ask a question. Disturbance to the status quo is perhaps the most 
common trigger for release of energy, whether experienced as cognitive dissonance (Festinger, 1957) or as surprise 
(Movshovitz-Hadar, 1988) which can be created when expectations of mathematical pattern, form, or structure are 
suddenly disrupted. They can also be created when social patterns are disrupted, such as by sometimes starting with 
the general and then specializing, and sometimes with the particular, and then generalizing.

Setting up possibilities for useful dissonance involves provoking learners to anticipate, even to make explicit 
conjectures, so that they have expectations which can be challenged. To prepare to do this requires teachers to probe 
beneath their own fluent expertise and to re-enter the topic as novices so as to re-experience for themselves the inherent 
surprise that contributed to the emergence of the topic in the first place. Sometimes this can be done by starting from 
first principles yourself; sometimes it can be done by setting yourself a challenge that is analogous in some way to 
what learners will encounter. For example, reviewing the components of a topic for yourself using an unfamiliar 
notation for something that is otherwise very familiar (interchange epsilon and delta; write functions on the right rather 
than on the left of arguments, use right cosets instead of left) can force previously automatic functioning to come to 
the surface more explicitly. Looking for unusual examples and counter examples can refresh your appreciation of the 
difficulties as well as the insights that contribute to the significance of the topic. Dissonance can also be provoked 
through engaging learners in constructing objects that confound their implicit assumptions (Watson & Mason, 2002, 
2005). In the context of school mathematics, Alan Bell and colleagues (Bell & Purdy, 1986; Bell, 1986, 1987, 1993) 
developed what they called diagnostic teaching in which learners were confronted with classic learner errors. Learners 
showed significant gains in performance in both the short and long term as a result.



262 Part 2c. Knowledge, Assumptions, and Problem Solving Behaviors for Teaching

Generating surprise can initiate activity, but sustaining activity requires more. Treating learners as empty vessels 
to be filled, as passive recipients of ‘clearly presented definitions, theorems, proofs and examples,’ does not sustain 
active learners who have not already developed a proactive stance. Motivation, interest and participation are likely to 
wane. When learners appear to ‘want to be told what to do and how to do it,’ it is mainly because their natural powers 
of sense-making have been ignored in the past, and they have been enculturated into a passive and pragmatic stance 
towards mathematics. Where learners are prompted to make use of their own natural powers (examples are given in a 
later section) they experience pleasure and personal growth. They begin to see that not only is understanding possible, 
but desirable and more efficient for passing tests.

Since the three strands of the psyche function at different speeds, it is not always easy to locate what the trigger 
has been (Mandler, 1989): all the person is aware of is the complex state they experience. You can be aware of 
surprise, challenge, and intrigue; you can feel intrigued and energized or you can feel disinterested, daunted, fearful 
and enervated; you can act as if you are in control at least to some extent, responding freshly to challenge, or you can 
behave habitually, reacting automatically without taking control or initiating a response. These different emotions can 
be triggered by the same physiological changes such as increased pulse rate, sweating palms, and adrenalin rushes 
associated with stimulation and arousal.

One effective way to prompt learners to harness their energies in mathematics, is to take every opportunity to get 
them to make significant mathematical choices: 

• choices about how much practice to do in order to automate a technique (“do as many of these as you need to 
in order to tell me how to do questions of this type”);

• choices about which examples to practice on through engaging in an exploration in which the learners are 
specializing for themselves; 

• explicit tasks to construct mathematical objects that meet certain constraints, perhaps illustrating theorems or 
the use of techniques, or serving as counter-examples to conjectures and to modifications of theorems (Watson 
& Mason, 2004, 2005). 

Prompting learners to use their own powers of imagining and expressing, specializing and generalizing, 
conjecturing and convincing, organizing and characterizing, has a strong effect in capturing and maintaining interest 
and involvement because learners get pleasure from using their powers. It may take some work to develop an 
atmosphere in which learners begin to respond, especially if they have previously been habituated into being told what 
to do and given templates for doing it.

More on the Chariot Metaphor
As a strand of the psyche in the image of the chariot, emotion has been likened to the horses, whose energies must be 
harnessed if the chariot is to reach its intended goal. The horses are often referred to as the senses, because it is sense 
impressions that activate the emotional energies available to the psyche. Just as, given a chance, the horses will stray 
into the surrounding fields looking for food, so learner attention will drift if it is not stimulated. In pedagogical terms, 
emotion is the expression of motivation and interest, the source of drive and energy, expressed through dispositions. 
When learners’ attention is caught, when they experience surprise due to conscious and unconscious anticipation, they 
are much more likely to direct their energies to resolving and understanding. Ignoring the emotional strand of a topic 
by assuming that the mathematical beauty will shine through and attract learner attention is rarely effective.

Behavior
Mathematical behavior includes more than the carrying out of techniques (e.g., differentiating and putting to zero as 
part of finding relative extrema of differentiable functions) and algorithms (e.g., finding the GCD of two integers, 
or rewriting a rational polynomial in partial fraction form). It includes the practical use of learners’ natural powers, 
elaborated in a later section, such as to specialize and generalize, and the use of mathematical heuristics such as 
‘working backwards.’ Another important aspect of behavior is language: ways of speaking to oneself as well as to 
others in the mathematical community. 

Becoming familiar with concepts means not only having a sense of what they mean, but actually making use 
of technical terms in order to express and develop your own thinking, both internally and with others. The ways of 
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speaking associated with a topic express relationships and properties and so indicate and support ways of perceiving. 
The way you speak affects the way you think, disposing you to stress some features and consequently to ignore others. 
In preparing to teach a topic it is very useful to review the technical language and to look out for potential conflicts 
between learners’ informal use of similar words in ordinary language and their technical use in mathematics. A good 
case in point arises in group theory where not only is group used differently, but order is used both for ‘the order of 
a subgroup’ and ‘the order of an element,’ and has little to do with ordinals or placing things in order as in ordinary 
language.

Every technique or method involves more than a sequence of actions to be performed. It has ‘inner incantations’ 
or ‘things that you say to yourself’ as you carry out the procedures, and it involves choices as to what to do next, 
which may be situation dependent. The incantations help focus attention and direct activity, alerting the learner to 
choices that need to be made. This inner world is for some people driven by language and for others by kinesthetic 
and imagistic triggers. Thus learning the ‘language’ of a topic is an essential component of the behavior to be enacted. 
For example, a practice developed at Open University mathematics summer schools was to end each morning with 
a session in which a lecturer publicly worked through a few typical questions while trying to expose his or her inner 
incantations and inner thoughts, in order to give learners insight into what lies behind expert behavior. 

Useful questions for directing attention to behavioral aspects of a topic include

(B1) What ways of speaking and hence thinking are important in this topic? Where might learners have 
experienced similar language, notation or other representation, and how does that use correspond or differ 
with its use in this topic?

(B2) What techniques and methods are associated with it and what inner incantations might be helpful?
Responses in relation to quotient groups might include

(B1) The language of ‘equivalence’ and of ‘equivalence classes’; ‘representatives’; ‘quotient group;’ 
‘homomorphic image;’ ’well-defined,’ and so on;

(B2) Writing down Hg and gH in various forms; constructing a homomorphism and checking the kernel; 
conclusions about the orders of groups and their quotients. Typical utterances include “let g be a representative 
of the coset gH”.

Responses in relation to L’Hôpital’s rule might include

(B1) Testing in advance that the limits of both numerator and denominator are 0 or are infinite; calculating the 
derivatives of numerator and denominator; finding the limit of the ratio of the results (which may involve 
using the rule again);

(B2) Limit as x goes to a; calculate the derivatives and then apply the limit; …

Probing Deeper: learning from examples
It is common practice, and has been ever since historical records began, for learners to be given worked-out examples 
and then invited—even urged—to try to do some similar examples (exercises) for themselves. However, where 
learners are able to use the worked examples as templates for substituting other values, it is unclear how much actual 
learning can be expected. Using examples as templates is a form of ‘going with the grain’ (Watson, 2000), that is, 
following surface patterns, much like splitting logs. By itself this may achieve immediate answers, but it only sets 
up possibilities for learning. What matters is what learners actually do with the template. To cut across the grain is to 
expose structure. If they inspect what they have done and link it with the worked example that they followed so as to 
get a sense of a broader general class of similar examples, then they are ‘going across the grain.’ They are recognizing 
structure, extending their potential example space, and enriching their sense of the topic. 

Informal discussions with adult learners of mathematics reveals that when looking back to their school experience 
many had been satisfied to get the answers to assigned homework, while others report having been dissatisfied if they 
were not confident that they could do a similar question in the future. The former ‘pragmatic’ stance may lead to short 
term prowess but endangers long term success. Many learners in university may need to be shown how to ‘go across 
the grain’ to make sense of worked examples and exercises so as not to repeat their ineffective learning strategies from 
the past. 
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An extensive programme of psychological research has been carried out to try to elucidate the factors that make 
worked examples useful for learners (Renkl, 1997, Renkl, et al. 1998, Sweller et al., 1998). It shows that in mathematics 
and science, carefully structured worked examples can definitely assist learners, whereas repetitive exercises may not. 
But what matters most is what learners actually do with the examples they are given. It seems that how well learners 
explain the examples to themselves significantly influences the depth of their learning. Providing worked examples 
with some parts omitted or ‘smudged’, so that learners have to complete missing details, can also be beneficial, 
especially where the smudged parts are associated with making choices as to the next step. 

Probing Deeper: facility & fluency
What is being practiced when learners are set collections of exercises to complete? Are they actually developing 
facility in the use of particular concepts and techniques (that is, are they learning the ins and outs of particular concepts 
and the use of particular techniques)? Are they developing fluency by integrating the use of those concepts into the 
way they function in mathematics so that they no longer need to devote full attention to the details? Are they using 
technical terms to express their thinking? Too often mathematical exercises resemble their physical counterparts: 
repetition, justified by the assumption that practices will be confirmed and habituated.

However, mindless repetition does not always result in proficiency, nor even in recall of having carried out that 
practice: how often do learners deny recall of a topic or technique that the teacher knows they have studied previously 
(Schoenfeld, 1998)? Whereas physical training of behavior puts little or no value on the extent of the repetition, but 
rather values immersion in the repetition, learners usually act as though they think that what matters is getting the 
answers to mathematical exercises. This means that their attention is directed to completion rather than to experiencing 
a process. Instead of reflecting on how they got an answer, on the dimensions of possible variation and associated 
ranges of permissible change in an exercise that together create the question space (Sangwin, 2004, 2004a) from which 
the specific exercise is drawn, learners tend to rush on to the next question. By contrast, when they are asked to “Do as 
many of these exercises as you need to in order to be able to describe in words how to do a question of this type,” and 
“How would you recognize a question of this type?”, learners are prompted towards making sense of the exercises as 
a whole, as a mathematical object, rather than as isolated hurdles (Watson & Mason, 2005).

Gattegno (1987) described what learners need to do as ‘integration through subordination’: in order to integrate 
some behavior into your functioning, you need to subordinate that functioning, to reduce the amount of conscious 
attention required to carry it out. Therefore learners’ attention needs to be directed not towards but away from the 
technique to be practiced. This is an ancient insight, illustrated in various Eastern martial arts. It follows that an effective 
way to ‘practice’ skills and techniques is to engage learners in a task in which they find themselves constructing their 
own examples on which to use the technique because their attention is directed towards some other more general goal, 
namely locating, checking and justifying some general conjecture. For example, in relation to cosets, the following 
exploration calls upon a variety of heuristics and powers:

If G is a finite group and A and B are two subsets, denote by AB the set of all products ab within G where a is 
in A and b is in B. Characterize those subsets of the power set of G that form a group under this operation.

In constructing examples for themselves in order to see what is going on, learners not only rehearse the use of 
cosets, but do it because they want to know the answers for a greater reason than just finding cosets. Similarly, the 
following task calls upon learners to construct functions and to use L’Hopital’s rule for their own purposes, not simply 
to complete a set of exercises.

Construct pairs of functions for which the calculation of the limit of their ratio as x approaches 0 requires the 
use of L’Hôpital’s rule t times, for t = 1, 2, 3, .…

In both cases, learners find themselves practicing, but on examples of their own construction, perhaps under the 
guidance of a lecturer. The motivation level is higher and at the same time attention is constantly being drawn towards 
the bigger picture and away from carrying out technique.

More on the Chariot Metaphor 
In the image of the chariot, the chariot itself is usually taken to represent the body, which must be looked after 
and maintained. Since behavior is manifested through the body, the chariot can be associated metaphorically with 
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behavior. Maintaining the chariot can be associated with making use of behavior patterns, that is, refreshing the use 
of old techniques in new contexts. Integration through subordination achieves habits, but habits need to be challenged 
every so often to make sure that they are maximally efficient. This applies both to learners and to teachers!

The Pedagogic Structure of A Topic
The preceding descriptions can now be summarized in a single framework or pedagogic structure for a mathematical 
topic in terms of three interwoven strands as shown in Figure 1.

Language
& Prior Skills

Contexts

Imagery, Sense of Connections,
Example spaces

Techniques & Incantations

Root Problems

Absences, Confusions,
Obstacles

Awareness

Emotion

Behavior

Figure 1. Structure of a Topic framework.

The horizontal strand encompasses emotional components, based around the motivational effects of problematicity, 
surprise-disturbance and challenge: what was originally problematic or what can be made problematic for learners. It 
encompasses the virtue of surprising students, whether by challenging a preconception or indicating an unexpected 
result, and of providing examples of contexts in which the ideas of the topic have proved fruitful that are relevant to 
learners’ current or potential concerns.

The diagonal strand from top left to bottom right represents behavioral components which include terms that 
students may already know or use in a less formal manner, and language that would offer evidence of competence and 
understanding. It includes also specific manipulative techniques and any ‘inner incantations’ that a relative expert may 
use when carrying out those techniques. 

The diagonal strand from top right to bottom left represents awareness components including mental images, 
associations and connections that the teacher would like the students to develop, and transitions from process to object 
that are entailed by or employed in the topic or idea, as well as standard absences, confusions that students are likely 
to display and obstacles they are likely to encounter.

The image of the interweaving threads is intended to emphasize the importance of mutual interaction and support 
among all three aspects. The framework can be summarized mentally by the expressions ‘harnessing emotion,’ 
‘training behavior,’ and ‘educating awareness,’ drawing on the central image of a chariot as a metaphor for the three-
fold structure of the psyche.

The Three Only’s
Gattegno (1987) coined the somewhat startling slogan that

Only awareness is educable.
He did this in order to stress his observation that learning consists of altering what one is aware of; that is, one’s 
sensitivity to notice and discern, a conclusion also reached by Marton and colleagues (Marton op cit.). The Upanishadic 
image of the chariot then suggested to me two further expressions

Only behavior is trainable, and Only emotion is harnessable,
in order not only to set up contrast with the role of awareness, but to emphasize the need to engage all three aspects 
of the psyche so that productive and effective learning is likely to take place. Training behavior is effective for 
establishing and enculturating habits, but trained behavior tends to be inflexible. To be used effectively in novel 
situations, it needs to be informed by and called upon by awareness as insight, intuition, and sensitivity to notice 
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connections. Development of behavior and of awareness comes about through harnessing the energies released by 
emotions.

Gattegno enjoyed using challenging assertions that act as protases, that is, as the initial statement in a syllogism 
(Mason, 1998a). When juxtaposed with particular examples from your own experience (the second term of the 
syllogism) a syllogistic action is set up, and it is through working away at challenging the protasis, accumulating 
examples, and exploring consequences of the syllogisms that brings about insight, and which, in turn, informs future 
behavior. Thus the force of the word only needs to be juxtaposed with examples that come to mind, whether as 
illustrations or as potential counterexamples. What you conclude is then due to an action taking place inside you, to 
your own thinking, not someone else’s.

Even when there appears to be considerable agreement amongst colleagues as to the basic components of a topic, 
beneath the surface there is often considerable variation, as evidenced by the many different textbooks produced, 
each of which display considerable variety in how topics are presented. The structure being proposed here provides a 
framework with which to analyze differences in approaches, to locate aspects which are under or over stressed. The 
framework does not produce a teaching sequence, but it does collect together and highlight in a coherent manner the 
various components that might be used in any particular approach. In my experience, the teaching sequence itself is 
best left to the individual teacher who has detailed knowledge of the learners, of the instructional goals, and of course 
of preferred ways of working with learners on mathematics..

Powers, Themes & Heuristics
Mastering a collection of techniques in a few topics for an examination cannot be the principal aim of learning 
mathematics, even for students who only need a few mathematical tools for use in their own discipline. While some 
topics are necessary precursors for further topics (clearly addition and multiplication of integers must precede quotient 
groups, and differentiation must precede L’Hôpital’s rule), mathematical topics are not quite as well ordered as might 
appear. For example, Denvir & Brown (1986a, 1986b) used mathematical relatedness to construct a partial order for 
the topics in a high-school mathematics curriculum offered to low attainers. To their surprise, they found that as well as 
improving in the topic being taught, learners often developed facility in other topics sometimes only distantly related. 
In other words, learners may be attending to different aspects than the teacher, and some improvement may come 
about as a result of having attention diverted away from the actual carrying out of techniques, as suggested earlier 
concerning the use of exercises.

A more holistic view of mathematics education sees topics largely as vehicles for developing learners’ natural 
powers to make sense of phenomena mathematically, and for encountering pervasive themes that provide the warp for 
a richly interconnected fabric known as mathematics. Beyond the specific and powerful techniques for solving a class 
of problems, most topics in mathematics, as in any subject, are a matter of choice, certainly in relation to the depth 
and complexity to which they are pursued with particular learners. In this section it is suggested that individual topics 
can play an important role in alerting learners to the fact that they already possess natural powers for making sense of 
mathematics and for mathematical sense making. 

Powers
Learners arrive in class having already demonstrated that they have made extensive use of the sorts of powers necessary 
in order to develop mathematical thinking. Such ideas are not new. For example, John Calkin (1910) summed up an 
attitude from a Canadian perspective that pervaded European and North American education at the turn of the previous 
century, echoed by thinkers such as John Dewey (1933 p. 225–6), and before him Herbert Spencer (1878) but that 
seems recently to have been allowed to slip into the shadows of socio-culturalism: “That the mind is a power to be 
developed rather than a receptacle to be filled is a sound maxim in education” (Spencer, 1878, p. 18).

Learners have certainly already demonstrated the power to discern detail and to distinguish features, as well 
as to meld or gaze so as to blur boundaries. They can stress, and thereby they can ignore, as Caleb Gattegno (1987) 
pointed out. They can detect invariance in the midst of change and they can recognize relationships between and 
amongst features that have been discerned, including refined versions of similarity and difference. They can formulate 
properties possessed by an object and abstract this to recognize other objects with the same properties. They can also 
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reason on the basis of properties. One of the principal challenges in teaching mathematics is to stimulate learners to 
reason solely on the basis of announced and articulated properties, rather than on the basis of intuitions and accumulated 
information.

In addition, and more evidently mathematically, learners have already shown that they can, in the words of 
George Pólya (1945, 1962), specialize and generalize, or more fully, see the general through the particular and the 
particular in the general. This echoes Alfred Whitehead who suggested, “To see what is general in what is particular 
and what is permanent in what is transitory is the aim of scientific thought” (Whitehead, 1911, p. 4). As Paul Halmos 
(1980) put it: 

An intrinsic aspect of [teaching] at all levels, elementary or advanced, is to concentrate attention on the 
definite, the concrete, the specific. … We all have an innate ability to generalize; the teacher’s function is to 
call attention to a concrete special case that hides (and, we hope, ultimately reveals) the germ of conceptual 
difficulty. (p. 852)

The issue is whether learners are offered tasks that call upon those powers, or whether, from a mistaken desire for 
efficiency or concern that learners should ‘know what they are expected to do’, those powers are bypassed by teacher 
and author who provide particular examples and articulated generalizations without directing learner attention to 
make effective use of them. As a learner once said to me “I see now that my job is to generalize when you give me a 
particular and to particularize when you give me a generality.”

Learners can also imagine and anticipate what is not present, and they need to do this in order to specialize and 
to generalize. They can also express what they imagine in various media including words, diagrams and symbols. 
However, how often are they invited to imagine something, to articulate what they are imagining, to locate and 
express relationships and to articulate these as general properties, instead of having the author or teacher try do it all 
for them? Learners can conjecture and convince (themselves, a friend, a skeptic1: see Mason et al, 1982). Finally, they 
can classify and characterize objects by the properties they perceive. All of these are vital for doing mathematics; all 
need developing and refining if mathematics is to be learned effectively. Indeed, honing these powers equips learners 
to deal flexibly and effectively with new topics or new problematic situations. When their attention is directed to the 
ways that their powers are developing, they are learning how to learn.

Using their own powers in a supportive atmosphere not only makes significant learning possible, but also reveals 
to the individual the fact of their powers, something learners may not even be aware of. Gattegno echoed the same 
theme:

What is it, then, that will allow us to teach mathematics to anyone with a functioning mind and an inclination 
to learn? Simply, finding a way to make the learner aware of the powers of his mind–the powers he uses 
every day, those which allowed him to learn his native language and to use imagery and symbolism. This 
means that the job of teaching is one of bringing about self-awareness in learners through whatever means are 
available in the environment: words, actions, perceptions of transformations, one’s fingers, one’s language, 
one’s memory, one’s games, one’s symbolisms, one’s inner and outer wealth of perceived relationships, and 
so on. (Gattegno, 1974, p. 111 postscript)

There is nothing so strongly motivating as realizing you can do something that is valued and valuable. The 
exercise of your own powers, independently, is a major source of pleasure for human beings, whereas dependency on 
others breeds discontent. Learners can become frustrated when the teacher or text usurps their role by doing things 
for them: roles they are on the edge of assuming or actions they are already able to do for themselves. All too often 
learners decide that their powers are not wanted in the mathematics classroom, and so they stop using them even where 
there is an opportunity. It is highly de-motivating and disempowering to find that your own powers are not called upon, 
not encouraged, not used; it is a source of pleasure and empowerment to find that you can use your own powers to 
make sense of phenomena, situations and ideas. Furthermore, the more you are called upon to use your powers, the 
more developed and sophisticated they are likely to become; the less they are called upon, the more likely they are to 
atrophy, or at least to be parked at the classroom door.

1  David Tall (personal communication) replaces the original ‘enemy’ with ‘sceptic,’ drawing attention to the pedagogic observation that an im-
portant contribution to learning to convince others is learning to be skeptical yourself. 
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It is not sufficient simply to tell learners about their powers: they have to experience their productive use, because 
it is only through continued use that these powers will develop. As Whitehead put it:

the apprehension of general ideas, intellectual habits of mind, and pleasurable interest in mental achievement 
can be evoked by no form of words, however accurately adjusted. … There is no royal road to learning 
through an airy path of brilliant generalizations. (Whitehead, 1932, p. 9–10)

It all comes down to choices of tasks and choices about ways of working with learners on mathematics, rather than 
simply getting them to work their way through sets of repetitive exercises.

Themes & heuristics
Mathematical topics are held together not only by the use and development of learners’ powers but by the presence 
of mathematical themes and the use of common heuristics in making sense of problematic situations. In this section I 
mention some of these themes in order to round out the use of the structure of a topic framework. 

Invariance in the Midst of Change
One of the pervasive themes in mathematics is the notion of invariance in the midst of change. Many if not most 
mathematical theorems can usefully be thought of as articulating what it is that can change while some relationship 
remains invariant. For example, the fundamental theorem of algebra states that no matter what polynomial of degree d 
with integer coefficients you construct (what can change) the number of complex roots is d (invariance); the intermediate 
value theorem states that no matter what continuous function you choose on whatever closed interval [a, b] you like 
and no matter what values v such that v lies between f(a) and f(b) (what can change), there is a value c with a < c < b 
such that f(c) = v. Although this seems pretty obvious, it is often the case that learners are unaware of the full scope 
of the permissible change. This observation led Mason & Watson (see chapter in this book) to develop and exploit the 
notion of dimensions of possible variation (discerning what can vary) and associated ranges of permissible change (in 
what way they can vary).

Similarly, to appreciate a concept is to be aware of what aspects of an example of that concept are necessary to 
make it an example, and what features can change. If learners are unaware of what makes an example exemplary, that 
is, of what can change but allow it to remain an example, then the example fails to be exemplary for them. The result 
is that learners either ignore or memorize the example, leaving it unconnected with their concept image.

Doing & Undoing
Another theme that pervades pure mathematics is the notion of inverse, or of doing & undoing (and its more sophisticated 
version, conjugation: see Melzack, 1983 and www.inverse-problems.com). It is often very fruitful mathematically to 
take a technique that yields an answer, and to ask yourself what other input data would give the same answer, and then 
to try to characterize all the possible answers. In other words, interchanging input and output opens up mathematical 
exploration, leading to characterizing and to experiencing mathematical creativity. This idea applies to mathematical 
operations and also to ordinary exercises. For example: what numbers can arise as one more than the product of four 
consecutive integers? what linear functions integrated over the interval [0, 1] (or more generally [a, b]) have an answer 
of zero?

Note the strong connection with invariance in the midst of change: changing a ‘doing’ into an ‘undoing’ 
is effectively asking what can be changed about the input while leaving the output invariant. Furthermore, this 
perspective corresponds closely to the use of people’s natural power and desire to characterize and classify: solving an 
‘undoing’ problem is tantamount to characterizing the class of inputs that yield a given output. Seeing the technique as 
a function, all you are doing is asking for the inverse image of an element in the codomain of the function. A related 
characterization problem is to characterize the range of the technique: what sorts of objects can arise as the result of 
using the technique?

Extending and Restricting Meaning
One of the powerful features of mathematics is the multiplicity of interrelated meanings of objects. For example, 
an expression such as 2x + 3 can be seen as a rule for performing a calculation, as the answer to performing that 
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calculation on an as-yet-unknown value, as the answer in general to such a calculation, and as an expression of 
generality. Similarly, 2/3 can mean an operator, the result of applying that operator to 1, a fraction, a division to be 
performed, the answer to that division, the value of a ratio, a position on a number line, and the value of all fractions 
equivalent to itself. In school, learners encounter the word number used to mean whole number, then integer, then 
fraction, then decimal (real), and perhaps even complex number. They also meet essential ambiguities such as that 
of –3 (is it 0 – 3 or is it the number –3, and how are these related?). In moving from school to university, learners 
encounter trigonometric functions as ratios, circular functions, solutions to differential equations, power series, and 
perhaps as solutions to integral equations, as well as the building blocks for Fourier series. 

The meaning of mathematical terms is extended metaphorically with rarely any comment or mention. These 
extensions of meaning are often reduced to behaviors to be picked up by learners, without harnessing their emotions 
through the use of their own powers. Furthermore, sometimes it is necessary to restrict meaning, such as when 
discussing continuity of a function on a restricted domain, or when attention is directed towards a particular subset 
of a familiar set (e.g., the numbers with remainder 1 on dividing by 3 when discussing the significance of the unique 
factorization theorem for integers). Extending and restricting meaning pervade the way mathematics develops, and 
provides some of the power of mathematical notation. However, unthinking and implicit extension of meaning can act 
as an obstacle for learners who are not expecting to have to modify what they thought they already knew.

Freedom and Constraint
One further theme of considerable importance in mathematics is freedom and constraint. In order to appreciate a concept 
it is necessary to be aware of what features of an object can be varied freely, and which features are constrained in some 
way. Most mathematical problems can usefully be thought of in terms of starting with an object with considerable 
freedom, and then imposing a collection of constraints. Mathematics can then be seen as a constructive activity, trying 
to find out what freedom remains for construction when a collection of constraints are imposed. Looking at topics 
through this lens presents mathematics as support for constructing objects that meet constraints, rather than as a 
collection of tools for producing answers on tests.

Making Pedagogical Choices
Teaching involves making choices, both in planning, and in the moment by moment conduct of sessions. Because 
everyone depends on habits and routines, on patterns of behavior and on preferred ways of working, these choices 
depend on choices made in the past. In order to respond freshly every so often rather than always reacting habitually, 
in order to be present to learners so that they are in the presence of mathematical thinking rather than simply acting 
as dictator to clerks recording what is displayed in front of them, it is necessary to be making fresh choices in the 
moment. This requires being aware of the structure of your own attention. The main thrust of the Structure of a Topic 
Framework is to provide an informative focus for attention when preparing to teach a topic.

Having clarified the structure of a topic, it becomes much easier to consider the pedagogic choices available. 
Only when you are clear about the awarenesses that you want learners to develop does it make sense to consider what 
phenomena to expose them to. Only then does it make sense to consider whether such phenomena will serve those 
particular learners most effectively as initiating phenomena to raise questions (perhaps informed by your sense of the 
source questions for the topic), as ongoing phenomena by means of which to encounter and experience details of the 
topic, or as summarizing phenomena by means of which to review and reflect upon the topic as a whole and appreciate 
some of the contexts in which it has proved useful. 

Only by considering what powers, themes and heuristics are likely to be stimulated, and which ones could usefully 
be employed, can sets of exercises be analyzed and either modified or constructed so as to prompt effective learning. 
By choosing to prompt learners to make mathematically significant choices, you can help them harness their emotions 
to take initiative and be mathematically proactive. By provoking learners to construct mathematical objects, you can 
stimulate them to enrich their example spaces, educate their awareness, and train their behavior.

Only when you are clear about the sorts of ‘absences’ and confusions that learners sometimes develop and the 
struggles they sometimes experience, are you in an informed position to modify or augment any textbook you are 
using in order to get learners to confront possible errors directly, or to try to avoid learners having similar struggles. 
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Specific mathematical objects can be chosen to serve as examples by highlighting salient dimensions of possible 
variation and drawing attention to ranges of permissible change. Particular worked examples can be chosen with the 
same view in mind. 

Only when you have an enlivened sense of the topic yourself are you in a position to provide what Jerome Bruner 
(1986) called consciousness for two, that is, to be able to attend to prompting learners to make use of their own powers 
in order to make sense of the topic, rather than trying to do all the work for them by dotting every i and crossing every 
t. If the textbook and lecturer do all the specializing and generalizing, the conjecturing and convincing, the imagining 
and expressing, the organizing and characterizing, then learners are placed in a passive role, at best accepting what 
they are told and shown. Pedagogically effective teaching provokes learners to take an active and assertive stance, 
using and developing their own powers. 

For example, in carrying out a ‘worked example’, only if you are aware of the general as you make use of the 
particular, only if you are aware of the connections which enrich your appreciation of what you are doing, only if you 
are aware of the example space(s) which this particular case exemplifies, only if you have access to how this particular 
relates to the problems which spawned the topic and the contexts in which the topic can be applied, and only if you 
are aware of how it is you know what to do next in carrying out the technique, are you in a position to direct learner 
attention fruitfully. Without these, your learners are left immersed in trying to make sense of your overt behavior.

Kilpatrick, Swafford, & Findell (2001) proposed a useful five-fold structure for mathematical proficiency, 
comprising conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and productive 
disposition which provides a structure for the goals of teaching a topic. The Structure of a Topic framework informs 
choices which pursue these goals. 

Underpinning the interwoven strands of the psyche that provide structure for each mathematical topic is the 
endemic question of whether, through engaging in the tasks provided, learners actually encounter and make sense of 
the important ideas. By being aware of what awarenesses learners already have and through contemplating how these 
might be brought to the surface, recognized, and articulated in words and symbols, teachers can hope to construct 
pedagogically effective tasks. But behind the doing of tasks lies the pervasive and endemic question of what learners 
are attending to. If the teacher is attending to relationships amongst details or features while learners are trying to 
discern the details that the teacher is referring to, if the teacher is presenting properties while learners are still trying 
to recognize relationships, and if the teacher is reasoning on the basis of defining properties alone while learners are 
still trying to perceive properties as general properties of a class of objects and not simply of particular objects being 
presented, then miscommunication is all too likely. Learners are likely to get the feeling of being lost, of being left 
behind. 

It makes sense, when preparing to teach a topic, to make notes of awarenesses, behaviors (language and techniques) 
and problematic sources, contexts of use, and embedded surprises, so as to make preparation easier in the future. By 
noting down unusual things that learners say and do, you can build up a rich repository of details of a topic that would 
be difficult to reconstruct from memory every year when needed. The notes then provide a quick reminder so that you 
can re-enter two worlds: the world of the learner and the world of the sensitized teacher.

Summary
The aim of this chapter has been to offer a rich and informative structure for preparing to teach any mathematical 
topic, while at the same time revealing that there is more to preparing to teach a topic than organizing the definitions, 
theorems, proofs and examples so as to be maximally clear. It is possible to enrich learners’ experience by taking into 
account the structure of the psyche, and to accustom learners to take responsibility for their own learning.

Claims made in the chapter include the following:
• training behavior without educating awareness is no more useful than educating awareness without training 

behavior: neither alone constitutes learning, so concentrating on just one strand of the three strand view can 
cripple learning;

• effective teaching prompts learners to harness their emotional energy in order both to train their own behavior 
and to educate their own awareness by making use of and developing their natural sense-making powers, and 
calling upon pervasive mathematical themes and heuristics;
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• in preparing to teach a mathematical topic it can be pedagogically helpful to use the three-strands (awareness, 
behavior and emotion) as a reminder of key aspects of the topic;

• a useful way to learn from and build upon experience in order to improve one’s teaching is to review and 
update notes structured along the lines of the three strands.

Trying to train other people’s behavior, to educate their awareness, or to motivate them, without their consent 
and involvement is, at best, unfruitful, if not ultimately impossible. Teaching cannot force, necessitate or guarantee 
learning, but teaching can make learning more likely and more effective if it makes use of learners’ powers and 
dispositions, and exposes them to significant and fruitful ways of thinking and perceiving. 

What the Structure of a Topic framework offers is not a formal mechanism or checklist like a packing list to be used 
before going on a journey. Rather it offers a background structure to remind you to ask yourself certain pedagogically 
important questions. Since it was first introduced in 1989, it has been found to be sufficiently informative to continue 
to be used by teachers and teacher educators. When it informs how you think, then its details only need to come to 
mind when you find yourself running out of ideas or becoming stale. Then it can serve as a reminder to ask questions. 
It provides a structure to fall back on when preparing to teach a topic, and a basis for learning from experience through 
collecting notes under the various headings that comprise it. 

Recursive Complexity
It was mentioned briefly that each of awareness, behavior and emotion, considered as strands of the psyche, can be 
thought of as having an internal structure also comprised of awareness, behavior and emotion. Thus awareness in the 
full sense in which Gattegno used it has a conscious or ‘awareness’ component in what comes to mind, but it also 
includes emotional dispositions that are triggered, and automated behaviors that are accessed at the same time along 
with the concept image. For example, the mere mention of L’Hôpital can trigger someone into a state of alert sensitivity 
to finding limits of certain kinds of ratios and some degree of pleasure or foreboding depending on past success. So 
too, emotions harnessed through appreciation of root problems from which a topic originated, and uses to which the 
topic can be put, can be thought of as having a similar three-strand structure. There are the conscious awarenesses 
(cognition) of specific problems associated with the topic, there are emotion-driven habitual behaviors associated with 
eagerness or reluctance to engage with the topic, and the emotions themselves generate further emotions associated 
with awareness and behavior. For example, Triandis (1971) and Ajzen (1988) both refer to cognitive, affective, and 
conative aspects of attitudes. These consist of 

expressions of beliefs about an attitude object (cognitive aspect of emotion)
expression of feelings towards an attitude object (affective aspect of emotion)
expressions of behavioral intention (conative or enactive aspect of emotion).
Attribution theory (Heider, 1958; Weiner, 1986) also suggests that reinforcing learners’ attribution of qualities 

to themselves (affective aspect of emotion) can be much more effective in building their self-image than trying to 
persuade through argument (cognitive) or even role-modeling behavior (Miller et al, 1975).

Finally, behavior too can be thought of as three-stranded. For example, there is conscious awareness of specific 
behavior such as techniques, while they are being carried out, however subordinated and automated the performance. 
There are dispositions and attitudes which are triggered by patterns of behavior and which influence behavioral choices 
as they are made. There are behaviors that come to the surface triggered through resonance with consciously enacted 
behaviors, and these may not always be positive and beneficial.
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 Promoting Effective Mathematical Practices in Students: 

Insights from Problem Solving Research

Marilyn Carlson, Irene Bloom, Peggy Glick
Arizona State University

Mathematicians and mathematics educators have been curious about the processes and attributes of problem solving 
for over 50 years. As mathematics teachers at any level of education, we want to know what teaching practices 
we can employ to help our students develop effective problem solving abilities. This curiosity has led to numerous 
investigations of the attributes and processes of problem solving. In this chapter, we describe insights from a study 
we conducted of the mathematical practices of 12 research mathematicians. We believe these insights are useful 
to teachers striving to promote mathematical practices in students at all levels—from first-grade mathematics to 
beginning algebra, calculus, and abstract algebra. 

Our chapter begins by inviting you to work a problem that our research study posed to 12 mathematicians and 
to reflect, as they did, on your own problem solving behavior as you attempt to solve this problem. In inviting you 
to work this problem, our intent is to raise your awareness of the processes, emotions, knowledge, heuristics, and 
reasoning patterns that you use when working a novel problem. Our research suggests that by reflecting on our own 
mathematical practices, instructors can become more attentive to the development of problem solving attributes in 
students (Bloom, 2004). 

This exercise should make the remaining sections of our chapter more meaningful. In particular, it is our hope 
that our description of the Multidimensional Problem Solving Framework is more accessible. After describing how 
one of our subjects attempted the same problem, our chapter provides an overview of the research literature on 
problem solving in mathematics. We then describe our own study in more detail and conclude with suggestions for 
developing students’ problem solving practices. We believe that this chapter illustrates the importance of exploring the 
mathematical practices and behaviors that lead to mathematical proficiency. We also believe that the chapter explicates 
a way of thinking about problem solving that posits a reflexive relationship between the development of students’ 
content knowledge and their mathematical practices.

 Reflect on Your Attempt to Solve a Novel Problem 
We invite you now to work the “Paper-Folding Problem” (Figure 1), provided it is a novel problem for you. This is one 
of several problems we gave the mathematicians in our study (Carlson and Bloom, 2003). If you already know how to 
work this problem, select another one that you expect will require multiple attempts and some persistence for you to 
complete. As you attempt the problem, observe and take notes on what you are thinking and feeling. What knowledge 
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and techniques do you access? What is the basis for the decisions you make as you attempt a solution? What emotional 
responses do you have when you first confront the problem, and how does your emotional state change as you move 
toward a solution? Can you describe the reasoning patterns that emerge as you work? 

When you have finished recording your observations, read our description of the approach taken by Paul, one of 
our subject mathematicians, and compare your experience to his.

A square piece of paper ABCD is white on the front side and black on the back side and has 
an area of 3 square inches. Corner A is folded over to point A which lies on the diagonal AC 
such that the total visible area is ½ white and ½ black. How far is A from the fold line?

Figure 1. The Paper-Folding Problem

Consider how Paul Solved the Paper-Folding Problem
Paul, an active research mathematician, was one of 12 mathematicians whose problem solving behavior we investigated 
in the 1998–2004 research study that we describe in detail later in this paper. 

In the observation of Paul, one interviewer observed and questioned him while he attempted four novel problems 
in his university office. The session was audio taped. When the researcher presented Paul with the paper-folding 
problem, he initially read the text without comment, while repeatedly clicking his pen. He then lifted his head and 
gazed out the window with his eyes fixed ahead and his face expressionless. After about three minutes of silence, he 
redirected his eyes toward the interviewer. Grinning slightly, he said, “The distance of Afrom the fold line is 1.” 

When prompted to verbalize his thinking, Paul explained, “I quickly deduced that 
after unfolding the paper, the new fold line would divide the paper into three equal areas. 
Thus, each of the pieces has an area of 1.” When asked to provide more detail, he said, 
“Transitivity.” The interviewer waited for an explanation.  Paul continued, “…let the 
three areas be x, y and z; then since x = y, and y = z, then x = z, and since the total area is 
3, each area would be 1.” When asked to explain how he determined the value of 1 for 
the distance of A from the fold line, he responded that he had used his knowledge of the 
relationships among the sides of a 45-45-90 degree triangle to arrive at the answer. 

This prompting provided some insights into the reasoning patterns that Paul employed 
to arrive at the answer; however, it does not explain how Paul was able to quickly observe 
that all three areas were equal; nor does it explain why Paul was so efficient in computing the exact value of the 
distance of A from the fold line. What sequence of mental actions led Paul to his simple and elegant solution? Were 
all of his initial ideas fruitful, or did he reject some on the way toward a correct response? Why did Paul click his pen 
repeatedly when reading the problem? Was it a nervous habit, an expression of frustration, or something else? Why 
did Paul grin when he looked up to tell the interviewer his answer? Was this grin an expression of pride, delight in the 
elegance of his solution, or enjoyment of the simple pleasure of solving it? 

We cannot say exactly what Paul was thinking, nor can we see exactly how he arrived so efficiently at a 
correct answer. However, through formal investigations of Paul and other mathematicians as they engage in solving 
mathematical problems, we have gained many insights into the thinking, actions, and behaviors that these accomplished 
problem solvers typically display.

Overview of the Research Literature on Problem Solving
A brief overview of research into problem solving reveals many insights about problem solving behaviors and 
attributes. While early work in problem solving focused on describing the problem solving process (Pólya, 1957), 
more recent investigations (including our own) have identified specific abilities of the problem solver that seem to 
contribute to problem solving success. Reviewing the problem solving literature from 1970 to 1994, Lester (1994) 
noted that problem solving performance appears to be a function of interdependent factors such as knowledge, control, 
beliefs, and sociocultural contexts. These factors overlap and interact in various ways. More recent studies point to 
planning and monitoring as key discriminators in problem solving success (Carlson, 1999a; DeFranco, 1996; Geiger 
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Figure 2. Paul’s Sketch
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& Galbraith, 1998; Schoenfeld, 1992) and to the influence of such affects as beliefs, attitudes, and emotions (DeBellis 
& Goldin, 1997). 

Phases of Problem Solving
Investigations of problem solving suggest that the solver moves through distinct phases as he completes a novel 
mathematics task. Pólya’s early work (1957) stated that the solver must i) understand the problem; ii) develop a plan; 
iii) carry out the plan; and iv) look back. Pólya described the problem solving process as a linear progression from one 
phase to the next and advocated that when solving a problem, 

[First,] we have to see clearly what is required. Second, we have to see how the various items are connected, 
how the unknown is linked to the data, in order to obtain the idea of the solution, to make a plan. Third, we 
carry out our plan. Fourth, we look back at the completed solution, we review it and discuss it.   (Polya, 1957, 
pp. 5–6) 

Twenty-five years later, Garofalo and Lester (1985) again described problem solving behavior as consisting of 
four phases of distinctly different metacognitive activities: orientation, organization, execution, and verification.

The Influence of Affect on the Problem Solving Process
Affective variables such as beliefs, attitudes, and emotions have also been observed to have a powerful influence on the 
behavior of the problem solver (DeBellis & Goldin, 1997; Lester, Garofalo, & Kroll, 1989; McLeod, 1992; Schoenfeld, 
1989). Although emotions are more evident than beliefs during problem solving, beliefs (deep-seated convictions such 
as “learning mathematics is mostly memorization”) also play an important role (Carlson, 1999a, 1999b; Schoenfeld, 
1989, 1992). Belief systems help to explain why solvers persist in mathematics course taking (Carlson, 1999a) and 
succeed or fail in their attempts to solve mathematics problems (Schoenfeld, 1992). An individual’s beliefs determine 
the perspective with which she approaches mathematics and mathematical tasks, and therefore contribute to her success 
and failure in solving problems. Effective problem solvers consistently express beliefs that: the solution process may 
require many incorrect attempts; problems that involve mathematical reasoning are enjoyable; mathematical ideas 
should be understood instead of just memorized; learning mathematics requires sorting out information on one’s own; 
and verification is a natural part of the problem solving process (Carlson, 1999).

Emotions play an important role as well. Positive feelings such as satisfaction and pride and negative ones such as 
anxiety and frustration appear throughout the problem solving process. Cycles of struggle, success, and elation spark 
new motivation, while cycles of struggle, frustration, and failure create anxiety. The failure/anxiety cycle has been 
shown to result in students’ choosing to abandon a solution attempt (DeBellis & Goldin, 1997; 1999; Hannula, 1999). 
Intimate mathematical experiences have been characterized as a bonding between the individual and his mathematics 
(DeBellis & Goldin, 1997). When problem solvers feel this strong bonding, they often devote large amounts of time to 
thinking about a problem and trying to solve it. We (Carlson & Bloom, 2003) have observed instances when a solver’s 
intimacy with a problem led to him thinking about it incessantly, to the point of obsession. We have also observed that 
mathematicians are very honest about their understanding of a situation or problem; they do not offer up solutions that 
do not have a logical foundation. We have labeled these traits as mathematical integrity; expert problem solvers are 
honest about their understandings and possess standards for their reasoning. 

The Importance of Decision Making and Monitoring During Problem Solving
In the context of problem solving, global decisions include actions such as selecting a particular approach or choosing 
to abandon another. Such decisions have a profound influence on a problem solver’s efficiency and effectiveness. 
Local decisions, such as selecting particular resources and strategies, also influence problem solving effectiveness. 
How well the solver monitors his thinking and products during the solution attempt is also significant, because a 
solver’s skill in monitoring determines the efficiency with which facts, techniques, and strategies are exploited. In fact, 
a poorly managed solution path frequently results in poor decisions and a failed solution attempt (Schoenfeld, 1992).

Not surprisingly, more effective problem solvers make wiser decisions during the problem solving process (De 
Franco, 1996). In a study involving professional mathematicians, De Franco also found that mathematicians who 
enjoyed more professional success and recognition exhibited more effective monitoring than their peers. In contrast, 
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Goos, Galbraith, and Renshaw (2000) found that inexperienced students fail to act on “red flags” such as lack of 
progress, error detection, and anomalous results. Despite these findings, prior research has not fully characterized 
the nature of the reasoning patterns, regulatory behaviors, knowledge, and decision-making that contributes most to 
problem solving success.

Describing Our Study
We were interested in knowing why some individuals emerge as highly effective problem solvers, while others do not. 
We chose to work with professional mathematicians because we hypothesized that observing individuals with a broad, 
deep knowledge base and extensive problem solving experience would reveal unique insights into the problem solving 
process, the interactions of various problem solving attributes (e.g., thought processes, monitoring and reflecting 
behaviors, emotional responses), and the reasoning patterns and attributes that contribute to success. We further 
believed that this knowledge could yield valuable practical information for informing course design, curriculum 
development, and classroom instruction. 

In our study we observed 12 mathematicians as they completed four different problems. The subjects verbalized 
their thought processes to the interviewer as they worked. The problems required only knowledge of concepts that are 
initially taught at the secondary level (e.g., Pythagorean theorem, rate of change), although they were complex enough 
to elicit multiple solution paths and strong affective responses, even from mathematicians. For more details about the 
methods for collecting and analyzing our data refer to sections 4.1 and 4.2 of Carlson and Bloom’s 2003 article. 

Gerald Solves the Paper-Folding Problem
To begin the description of our study, we invite you to look in on one more mathematician as he solves the paper-fold-
ing problem. As you read the transcript and analysis of Gerald’s verbalizations in Table II, see if you can follow his 
solution path and identify specific reasoning patterns and attributes that he employed. How does his solution compare 
to your own? How does it compare to Paul’s approach? In particular, we suggest that you attend to Gerald’s sense-
making, monitoring behaviors, reasoning patterns, use of heuristics and conceptual knowledge, procedural fluency, 
and expressions of emotion. In the table, the first column contains the words and gestures Gerald used as he worked 
the problem. The second column represents our characterization of Gerald’s behaviors (e.g., sense making, accessing a 
heuristic, monitoring) as manifested in his language, constructions and gestures. The third column indicates his transi-
tion from one type of general cognitive activity or behavior to another (e.g., orienting, planning, executing, checking). 

Table 1 illustrates the close analysis we performed on the interview transcripts of our 12 mathematicians. Using 
agreed-upon definitions and terms, we carefully identified and labeled the statements, actions, and behaviors recorded 
in the transcripts. Analysis of Gerald’s approach revealed that he engaged in behaviors of sense making and organizing 
as he constructed both a mental image and physical sketch of the situation. Gerald initially conjectured that the black 
and the white areas were each equal to 3/2 in2. He continued by drawing on heuristics and specific knowledge of the 
relationships in a 45-45-90 degree triangle and realized that this knowledge was in conflict with his initial conjecture. 
This led him to review the problem statement, after which he quickly verified his new conjecture that each of the three 
equal pieces of his sketch has an area of 1 in2. Throughout his solution attempt he appeared to monitor his thinking and 
approach, while also accessing a large reservoir of conceptual and procedural knowledge that provided a reliable basis 
for his decisions and actions. We also observed that as negative emotions emerged (frustration and impatience, Line 
23), he did not allow these to shake his confidence. Rather, his pride and ego appeared to motivate him to reengage 
with the problem. 

Analysis of the collection of interviews from this problem solving study (Carlson & Bloom, 2003) revealed that 
these mathematicians were able to overcome what appeared to be strong emotional responses. Even as their emotions 
intensified, the subjects kept their focus and employed various coping mechanisms to continue working toward a 
solution to the problem. This response has not been commonly observed in students. 

Our analysis also revealed that the subjects engaged in cyclic reasoning patterns that were highly effective in 
helping them to determine a solution approach. Our observations have shown that the phases of orienting, planning, 
executing, and checking are linked in a cycle, a cycle our subjects executed repeatedly until they arrived at a solution 
or abandoned the problem (Figure 3). While these phases are similar to those first observed by Pólya, we did not begin 
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Table 1. Coded Transcript

Excerpt Behavior Phase

(1) Okay, a square piece of paper is white on the front side and 
black on the back side has an area of 3 square inches [He 
continues to read the problem very slowly]

• Initial Engagement
• Sense Making

Orienting

(2) Corner A is folded…so the total visible area is half white and 
half black. [He sketches the square and labels the corners A B 
C D. Then he sketches in the fold and labels the corner A.]. 
How far is A from the fold line? He then constructs the line 
that represents the distance he wants to find.]

• Heuristics—makes a sketch

(3) Long pause
(4) Okay, so each side is square root 3. [He labels the two sides of 

the square as 3 .]

• Sense Making—organizing 
information

• Mathematical Knowledge —side 
of a square given the area

(5) And then fold it over, so that each of these guys are the same 
[He shades in the triangle that represents the folded region.]

• Heuristic—makes a sketch

(6) So the total area here is 3/2 [He incorrectly labels the two 
visible areas as 3/2, ignoring the area of the back side of the 
triangle.]

• Conjecture

Planning

(7) So, this is x and this is x, 
then this is x squared over 
2. [He labels the sides of 
his shaded triangle as x.] 

• Imagine/Verify
• Strategy—find area of shaded 

region
• Mathematical Knowledge—area 

of a triangle

(8) What’s that supposed to mean? • Monitoring—does this make 
sense?

(9) Total area is 3. I fold it over so this is half. And so…the whole 
square is 3.

• Sense Making

(10) I fold it in, so that is 3/2. • Conjecture

(11) I don’t ….oh….[He then retraces the fold on the paper and 
labels the sides of the smaller square x and labels the point A’ 
on the diagonal.]

• Testing Conjecture
• Self Monitoring—quality of 

thinking

(12) I’m sorry, that’s not correct.  It’s not 3/2. • Rejecting Conjecture

(13) This area is a, this area is a, and that area out there is supposed 
to be a [Gestures towards figures on his diagram.]

• Re-engagement
• New Conjecture

(14) So, we’re supposed to have half white and half black. • Sense Making
• Conjecture/Imagine/Verify

(15) So, this area x squared is 2a. [Pointing to sketch]
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(16) 2a plus a is 3a. So, a is going to be 1. So, x squared is 1/2… • Executing Strategy

Executing

(17) How far is A′ from the fold line, so I want from A to the fold 
line. • Monitoring Progress

(18) So, x is 1 over the square root of 2. And then, that is that divided 
by that, so you have…..1 over the square root of 2 divided by 
the square root of 2 is 1/2…

• Executing Strategy
• Mathematical Knowledge—side 

of a square given the area
• Mathematical knowledge—

altitude of an isosceles right 
triangle

(19) Let me check this and make sure…so if x is 1 over the square 
root of 2, this area is 1/4. [Pointing to the area of the triangle 
formed from folding corner A over to A] 

• Verifying Work
• Mathematical Knowledge—area 

of triangle Checking
Cycles back

(20) No, • Rejecting Solution
• Mathematical Knowledge

(21) that is, is 1/2…[pointing to sketch again]…. • New Conjecture

Planning

(22) 1/2… That’s 1/2, that’s 1/2, that’s 1/2, so that’s 1/2 so this area 
would be 1/2. 

• Conjecture 
• Tests Conjecture

(23) No! • Rejects Conjecture
• Affect—frustration, impatience

(24) What am I doing wrong? • Reflects on Thinking
• Affect—pride, ego, frustration

(25) Okay, a square piece of paper is white on the front side and 
black on the back side has an area of 3 square inches. Corner A 
is folded…so the total visible area is half white and half black. 
How far is A from the fold line?

• Re-engages with problem text

(26) What am I, • Conjectures

(27) You can’t… • Tests Conjecture Executing

(28) [Pushes paper aside] • Rejects Conjecture
• Affect–frustration
• Affect— intimacy

Checking
Cycles back

(29) There’s nothing wrong with my brain, it’s my calculations. • Affect—aha!

Planning

(30) The total area is 3. That’s the total...Yes. •  Sense Making

(31) Now I fold it [makes a folding movement with his hand] and 
then this area, which is black, is the same as this area. So, this 
is some area A.

• Heuristic—modeling the 
problem

(32) And that’s A. That area is the same as this area. This is the lost 
area. • Sense Making

(33) So, 3a equals 3. The area is 1. • Conjecture

(34) So, I want the area of this animal here to be 1 • New Strategy

(35)  So, if that’s x and that’s x, the area of the whole square is 2…x 
is the square root…

• Executing Strategy
• Mathematical Knowledge 

—diagonal of a square

Executing
(36) That makes much more sense… • Self Monitoring

(37) So this one I can do in my head… • Affect—ego/pride

(38) ….let’s see …if that’s 1 and that’s 1, that’s 1/2, that’s 1/2 and 
that’s 1 that’s 1 that’s 1.

• Executing
• Mathematical Knowledge 

—relationships in a square
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(39) So, it’s, and the answer was how far is A from the fold line, so 
I take it by that you mean this line and that distance is 1. • Verifying Solution Checking

Completion
(40) Sloppy calculations… • Affect—embarrassment

our analysis with a priori categories; rather, they emerged from coding and analyzing the data. Moreover, we 
also found another distinct cycle embedded in the planning phase of the larger cycle. We have labeled this the 
conjecture—imagine—evaluate subcycle. This subcycle usually was signified subtly; the mathematicians might pause 
and contemplate briefly, for example, before actively pursuing a solution approach. Other mental actions may well 
occur during these cyclical phases, but we believe that the labels we have chosen characterize well the primary and 
most general form of cognitive activity that our subjects exhibited as they cycled through these phases enroute to a 
solution. 
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Figure 3. The Cycles of Problem Solving

Having identified and labeled the cyclical phases of our subjects’ problem solving process, we next attempted 
to identify when and how these problem solvers called on and applied their mathematical knowledge, heuristics, and 
monitoring, as well as how they managed their emotional responses. We reanalyzed the data (Table 1) in search of 
answers to these questions and revisited the audio recordings to characterize expressions of anger, anxiety, frustration, 
pleasure, and other emotions that surfaced during their problem solving attempts. 

The subjects’ consistent reflections on and regulation of their thought processes and products were particularly 
striking. The effectiveness of their monitoring was highly dependent upon their fluency in accessing both conceptual 
and procedural knowledge. Strong emotional responses (both positive and negative) emerged. Even their small 
successes were followed by exhibitions of joy or pride, while exhibitions of frustration were followed by coping 
mechanisms that included their diverting attention from the problem. They sometimes interjected idle chat such as 
talking about the view out the window or their favorite sport. What emerged from our analysis was a more structured, 
coherent, and descriptive characterization of the interplay between the problem solving phases and various problem 
solving attributes (resources, heuristics, affect, and monitoring). We illustrate this characterization in the form of a 
multidimensional problem solving framework (Table 2).
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Table 2. A Multidimensional Problem Solving Framework

Phase
(Behavior) Resources Heuristics Affect Monitoring

Orienting

• Sense making
• Organizing
• Constructing

Mathematical concepts, 
facts and algorithms 
are accessed when 
attempting to make 
sense of the problem. 
The solver also scans 
her knowledge base to 
categorize the problem. 

The solver often 
draws pictures, 
labels unknowns and 
classifies the problem. 
(Solvers were 
sometimes observed 
saying, “This is an X 
kind of problem.”) 

The curiosity and 
interest level of the 
solver affects the 
solver’s motivation 
to make sense of the 
problem. If the solver is 
not interested, he may 
lack motivation and 
stall before starting.

Self-talk and reflective 
behaviors serve to keep 
the mind engaged. The 
solvers were observed 
asking: “What does this 
mean?”; “How should I 
represent this?”; “What 
does that look like?”

Planning

• Conjecturing
• Testing
• Strategizing

Conceptual knowledge 
and facts are needed to 
construct conjectures 
and make informed 
decisions about 
strategies. 

Specific heuristics 
were accessed and 
considered while 
evaluating and 
choosing a solution
approach.

Beliefs about the 
methods of mathematics 
and one’s own abilities 
influence conjectures 
and decisions. Signs 
of intimacy, anxiety, 
and frustration are also 
displayed. 

Solvers monitor their 
strategies and plans. 
They ask themselves:  
“Will this take me where 
I want to go?”; “How 
efficient will approach 
x be?”

Executing

• Computing
• Constructing

Conceptual knowledge, 
facts, and algorithms are 
essential for executing, 
computing, and
constructing. Without 
conceptual knowledge, 
monitoring of 
constructions is 
misguided.

Fluency with a 
wide repertoire of 
heuristics, algorithms, 
and computational 
approaches are 
needed for the 
efficient execution 
of a solution. 

Intimacy with the 
problem, integrity 
in constructions, 
frustration, joy, defense 
mechanisms, and 
concern for aesthetic 
solutions emerge in the 
context of constructing 
and computing. 

Conceptual 
understandings and 
numerical intuitions are 
employed to monitor 
both the solution progress 
and products while 
constructing statements.

Checking

• Verifying

Resources, including 
well-connected 
conceptual knowledge, 
informs the solver as 
to the reasonableness 
or correctness of the 
solution attained.

Computational and 
algorithmic shortcuts 
are used to verify the 
correctness of answers 
and to ascertain the 
reasonableness of 
computations. 

As with the other 
phases, there were a 
number of affective 
behaviors displayed. 
It is often at this 
phase that frustration 
overwhelmed the 
solver, causing him to 
abandon the task.

Reflections on the 
efficiency, correctness, 
and aesthetic quality 
of the solution provide 
useful feedback to the 
solver. 

Primary Findings from Our Study
Each problem solving phase and the predominant behaviors exhibited during that phase are listed in the cells on the far 
left column of Table 2. For example, in the orienting phase, the subjects predominantly engaged in behaviors of sense 
making, organizing, and constructing. The primary role of each problem solving attribute (e.g., resources, heuristics) 
during that phase is illustrated in the cells to the right. For example, when orienting themselves to the problem, the 
experts typically exhibited behaviors of sense making, organizing, and constructing, while accessing resources that 
included concepts, facts, and procedures. During this phase, the mathematicians in our study also applied a variety of 
heuristics such as drawing pictures, labeling unknowns, and classifying the problem in a specific category of problems. 
The primary affective behaviors demonstrated in this phase were curiosity and interest—the intensity of the subjects’ 
efforts to make sense of the problem was typically influenced by their interest in the problem type and curiosity about 
its solution. Various monitoring behaviors such as self-talk and reflections about the productiveness of their orientation 
behaviors were also observed to be influential in keeping their thinking moving in productive directions. Reviewing 
the decomposition of the collection of behaviors revealed a diverse classification of behaviors during each phase of 
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the problem solving process. 
In addition to their global decisions about their solution approach—deciding to cycle forward or cycle back, 

or to act on a conjectured approach—the mathematicians were making decisions about their moment-to-moment 
constructions and actions. They were continually asking themselves: Is this approach getting me anywhere? What 
does this tell me? Does that calculation make sense? The effectiveness of this monitoring, like their sense making, was 
highly dependent on their knowledge base, including their ability to recognize what facts, algorithms, and concepts 
would be useful for moving their thinking and solutions in productive directions. Effective monitoring played a 
powerful role in the efficiency and effectiveness of their solution attempts. 

We found that these attributes of problem solving (e.g., resources, heuristics, affect, and monitoring) were evident 
during each problem solving phase. Consistent with the findings of DeBellis (1998) and Hannula (1999), we observed 
that local affective pathways play a powerful role in the problem solving process. We found that frustration occurred 
frequently during the solution attempts of these mathematicians; however, unlike what has been reported when 
observing students, these mathematicians effectively employed a variety of coping mechanisms to manage frustration 
and anxiety and to persist in pursuing a solution. Our experts were also observed displaying joy and satisfaction 
when they were successful. Other common expressions of affect included mathematical integrity and intimacy. When 
we reviewed the interviews, it became apparent that all the mathematicians in our study based their decisions on a 
logical foundation; they also did not pretend to know something when they didn’t. We refer to these behaviors as 
mathematical integrity. During the interviews the mathematicians also frequently reported becoming so obsessed 
with a problem that it occupied much of their waking hours. Others told of being unable to “let go” of a problem for 
years, even though rationally they had concluded that the problem was beyond their abilities. These behaviors were 
characterized as exhibitions of mathematical intimacy. 

Reflections on the Complexities of Acquiring Expert Mathematical Practices
Our investigations have persuaded us that practicing mathematicians rely on what appear to be acquired dispositions 
and reasoning patterns when solving difficult problems. In turn, this leads us to suggest that all of us who teach 
mathematics at any K–20 level need to make more explicit efforts to support the development of students’ problem 
solving abilities. We must also consider that school mathematics as it is now taught may have a negative effect on 
young students’ ability to solve problems. For example, in a 1984 study that followed children from their entry into 
first grade through their exit in third grade, Carpenter and Moser (1984) found that children were better problem 
solvers on the first day of first grade than they were on the last day of third grade. This is not to say that they solved 
more sophisticated problems as first graders. Rather, it says that they exhibited greater creativity, persistence, and 
flexibility as first graders than they did as third graders. By third grade, the children had learned that one mustn’t think 
when facing a math problem. The approach they had learned was to try to remember the steps that the teacher had 
demonstrated. Of course, if their memory failed, their solution did not advance. This pattern of attacking problems 
by trying to recall and apply a rote algorithm has also been observed in undergraduate students. In other studies (e.g., 
Carlson, 1998; Schoenfeld, 1989), undergraduate students in mathematics have been observed memorizing content 
without really understanding what it means. When confronting a problem they do not already know how to solve, 
they often act in ways that reveal low confidence, limited persistence, and little evidence of sense making. Rather than 
utilizing the imagine-conjecture-verify cycle described in the MPS framework, they tended to fall back on memorized 
facts and algorithms. Such studies call attention to what appears to be an alarming lack of focus on the development 
of expert mathematical practices at the classroom level. It is possible, we think, to do better. By promoting in students 
the practices we and other researchers have observed in expert problem solvers, mathematics instructors would likely 
contribute to more students continuing their study of mathematics. To illustrate what this promotion looks like in 
practice, we conclude this chapter with two brief scenarios drawn from one of the authors’ undergraduate classrooms. 
As you read the scenarios, observe how the instructor attempts to encourage students to use the practices we observed 
in our 12 mathematicians and described in our MPS framework. [For a detailed description of an entire course aimed 
at promoting effective problem solving behaviors in undergraduate students, see the sequence of articles that describe 
Schoenfeld’s problem solving course for undergraduates (Arcavi, Kessel, Meira & Smith,1998; Santos-Trigo, 1998; 
Schoenfeld, 1998).]
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How Do Undergraduates Compare to the Experts?
Researcher Bloom set out to design and implement instructional strategies that would foster effective behaviors in 
undergraduate students. As a first step, she used the MSP framework to characterize the problem solving behaviors of 
undergraduate students (Bloom, 2002; 2004). That investigation revealed a sharp contrast between undergraduate and 
expert behaviors. When initially confronting a problem, students often appeared to be attempting to orient themselves. 
However, a closer examination of their thinking revealed that they were actually scanning the problem statement for 
key words that might provide hints for a solution approach. They rarely engaged in sense making; nor did they attempt 
to access their conceptual knowledge and other mathematical resources they possessed. The undergraduates in this 
investigation also lacked the vocabulary and logical fluency in communication that was observed in mathematicians. 
It was also observed that students rarely took time to contemplate their solution approach. Their planning frequently 
involved random employment of different heuristics (e.g., plugging in numbers, writing down a formula) with little 
thought given to what approach might be more effective or efficient. 

Consistent with findings of Schoenfeld (1989), Bloom (2002) reported that undergraduate students are easily 
frustrated and quick to stop trying when encountering a dead end. They rarely engage in on-line monitoring, resulting 
in their making computational and reasoning errors that go unnoticed. They also exhibit low confidence in their 
abilities, as revealed in their regularly looking to an external source, such as the interviewer, teacher, or answer key for 
verification of their thinking or answer. 

As a next step, Bloom designed instructional strategies to support undergraduates in acquiring the practices of 
expert problem solvers (such as accessing appropriate concepts and mathematical resources at the right moment when 
solving a problem). Following are two scenarios from her classrooms that illustrate the strategies she developed and 
continues to refine.

Incorporating Knowledge of the Problem Solving Process into Classroom Instruction: Scenario 1
On the first day of a College Algebra class the instructor directed her students to attempt a problem that required access 
and use of fundamental concepts from their past courses in algebra. 

The Rhombus Problem

In rhombus EFGH the coordinates of E and G are (–6,–3) and (2, 5) respectively. 
Find the perimeter of the rhombus if the slope of segment EH is 2.

Since this problem was used to begin the first day of class for the semester, the instructor posed questions that she 
believed would prompt her students to enact effective problem solving behaviors. Her promotion of orienting behaviors 
included her asking them to read the problem and make sense of the situation. When some appeared stumped she 
suggested that they create a drawing of the situation. The ensuing discussions led to their generating a list of relevant 
mathematics concepts, facts, and algorithms, including the definition and properties of a rhombus (for example, that 
sides are equal length, opposite sides are equal, and diagonals are perpendicular and bisect each other). She also 
prompted them to articulate the definition of slope, distance formula, midpoint formula, equation for determining a 
line, and methods for finding the point where two lines intersect. From this list, the class was encouraged to select 
the definitions and formulas they believed may apply. Continuing the orienting phase, the instructor encouraged the 
students to employ the heuristic of labeling their sketch. As they moved to the planning phase, she prompted them 
to devise a strategy for determining the coordinates of F and H. As she visited each group, she prompted them to 
monitor the effectiveness of their solution plans by asking, “Why will that help?” or “What will you do with that?” 
When a group encountered a dead end, she suggested that they return to their original set of useful concepts and 
recycle through the conjecture-imagine-evaluate cycle again. Their work continued—as the instructor roamed from 
group to group she reminded them to prepare a logical description of their solution, and the reasoning that led up to 
their solution, so they could present it to the rest of the class. After several groups had completed their solutions, she 
asked for a volunteer to explain each group’s solution approach. As the student presented their group’s solution and 
thinking, the instructor prompted the student to articulate her reasoning and the rationale for her approach. After all 
groups had shared their solutions, the instructor asked the students to reflect on the efficiency and aesthetic quality of 
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their solutions—she also prompted them to consider if it was necessary to find H and F, as well as the length of all four 
sides. After several minutes of discussion, she asked if they were pleased with their final solution. 

In this scenario the instructor acted in ways to convey that she values reasoning and sense-making and that she 
is committed to helping them develop effective problem solving abilities. She also made explicit efforts to assure 
that her students eventually succeeded in their attempts to solve a novel problem. It was helpful that the problem was 
aligned with their current ability level. She also gave encouragement and careful thought to scaffolding her classroom 
instruction so that her students were expected to access familiar mathematics concepts, procedures, and facts when 
attempting a problem that initially appeared too difficult for them to solve. When the students displayed negative 
emotions, she intervened as needed to promote their use of various coping mechanisms that were so effectively 
displayed by mathematicians. 

Below, we offer one more scenario from Bloom’s classroom that demonstrates the pedagogical approach our 
research supports. 

Scenario 2
To launch a class of preservice mathematics teachers into a geometric construction problem (Figure 4), the instructor 
reviewed some fundamentals of geometric construction by prompting them to respond to questions, such as “how do 
you bisect an angle?” and “what constructions are needed to copy an angle?” 

The Triangle Problem
You are given a fixed triangle T with base B as on the right. Show that it 
is possible to construct, with a straightedge and compass, a straight line 
that is parallel to B and that divides T into two parts of equal area. 
(From Schoenfeld, 1985, p. 16)

 Figure �. The Geometric Construction Problem

She then instructed them to work in groups of three. Initially, they were asked to complete a simple construction; 
this was followed by progressively more complex tasks. As she observed negative emotions surface, she acknowledged 
the progression in difficulty and encouraged them to stick with it. She was observed saying, “It requires a proof,” she 
says, “Proof is iffy, but we are math geeks. We can handle it.” The students began to sort out and record what they knew 
as they engaged in acts of sense making. The instructor roamed from group to group. One group conjectured that they 
needed to find the centroid, and she encouraged monitoring by asking, “How will that help?” She continued to watch 
and listen as the groups worked. Another student asked how the areas of similar triangles are related. She suggested 
that he, “Calculate a couple and see.” As another student offered an alternative conjecture she asked, “How could you 
test your conjecture?” More time passed and the noise and frustration levels rose. The instructor acknowledged the 
emotion and asked, “Are you ready for a hint? She paused and when no one responded she said, “Look for similar 
triangles. Will this help you?” Those moving in that direction appeared to be encouraged, and others moved back to 
the planning phase. One group was observed measuring an angle. She urged these students to monitor their reasoning. 
“What are you going to use the measure for?” she asked, and “What have you found out and how could you verify 
it?” She then suggested another technique: “Could you try it out on a simpler triangle, like a right triangle?” As the 
frustration level increased the instructor related anecdotes of students in another class who spent four weeks on this 
problem. She also recounted her own frustration with a problem that nearly ended her mathematics career. “I want 
you to really take ownership of it,” she said. She also encouraged them to become intimate with the problem so they 
could think about it while running or driving. Only by working through the struggle, she told them, will you gain the 
ability, confidence, and persistence to continue getting better at solving challenging problems. As she continued to 
roam the classroom one group asked if they could verbalize their thinking to her. One member of the group indicated 
that he didn’t agree with the solution that was presented. Others in the group began questioning him and challenged 
his thinking, while one member elected to take another tack at explaining the logic behind the solution. When the 
last hold-out was persuaded of the logic of the group’s solution, the instructor pointed out to the group what had 
happened: “He got it. Did you see the light go on?” The students in this group smiled and appeared to become more 

Triangle T

Base B



2�6 Part 2c. Knowledge, Assumptions, and Problem Solving Behaviors for Teaching

relaxed as they pushed their chairs back from the table. They also appeared to be experiencing satisfaction from having 
persisted in arriving at a logical and correct solution. The instructor encouraged the students to experience the pride 
and satisfaction from their work to complete a difficult problem—she told them to try to feel this as intensely as they 
felt the frustration that was part of their journey in arriving at a correct solution.

Discussion
The body of research on problem solving suggests that effective problem solving ability does not spontaneously emerge 
in most students just by taking courses in mathematics (e.g., Carlson, 1998; 1999a; Schoenfeld, 1989; 1992). Rather, 
we believe that it requires instruction that is designed to promote the reasoning patterns and attributes described in 
the multidimensional problem solving framework. Regardless of the course you are teaching, we recommend that you 
integrate challenging problems that are appropriately linked to the content focus of your course. We also recommend 
that you initiate class discussions of appropriate problem solving strategies and that you regularly model practices 
such as the imagine-conjecture-verify reasoning cycle. It is also helpful to prompt students to consider the viability 
of an approach before moving forward with their computations. Encourage use of heuristics (drop an altitude, solve a 
simpler problem) as appropriate. We also recommend that you assist students in learning to manage the emotions that 
emerge during problem solving—students should adopt the belief that frustration, disappointment, and elation are all 
natural responses to the problem solving process. We also share the techniques we have observed mathematicians use 
to manage frustration and continue persisting in a solution approach. We draw on our knowledge of how powerful 
the struggle-success-elation cycle is for students, and we make explicit efforts to stretch their thinking, while also 
engineering success after periods of struggle and frustration. 

Finally, we advocate that both instructors and curriculum developers reflect explicitly on the nature of the 
knowledge and reasoning abilities that they want their students to learn. According to Thompson (1985) anything we 
might call knowledge is a structure of thinking, and this structure is a structure of processes. Acquisition of knowledge 
that is meaningful requires that students engage in processes that build structured understanding. If one takes this 
perspective in teaching content, then, the ideas of calculus, for example, would best be learned by engaging in carefully 
scaffolded problem solving activities that draw from literature on cognitive aspects of learning concepts of calculus, 
and that engage students in using and acquiring mathematical practices described in the MPS framework. This is what 
we mean when we say earlier in this paper that there is a reflexive relationship between developing students’ content 
knowledge and developing their mathematical practices. This volume contains several chapters that provide insights 
into the cognitive processes that promote both coherent understandings (e.g., Oehrtman, Carlson, and Thompson; 
Thompson and Silverman, this volume) and mathematical practices. We believe it is the responsibility of curriculum 
developers and instructors to gain knowledge of what coherent and meaningful understandings look like—ones that 
provide a solid foundation for building future mathematical knowledge and ones that translate to students’ ability to 
access these ideas when solving problems. This should result in movement away from instructional practices that have 
a primary focus on imparting knowledge to students, and movement toward instruction and curriculum that attend to 
the mathematical practices that students acquire en route to building coherent understandings of central ideas. “The 
task of the curriculum developer is to select problematic situations that provide occasions for students to think in ways 
that have generative power in regard to the objectives of the lesson” (Thompson, 1985). 
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When Students Don’t Apply the Knowledge You Think They 

Have, Rethink Your Assumptions about Transfer

Joanne Lobato, San Diego State University

Teaching so that knowledge generalizes beyond initial learning experiences is a central goal of education. Yet teachers 
frequently bemoan the inability of students to use their mathematical knowledge to solve real world applications or to 
successfully tackle novel extension problems. Furthermore, researchers have been more successful in showing how 
people fail to transfer learning (i.e., apply knowledge learned in one setting to a new situation) than they have been in 
producing it (McKeough, Lupart, & Marini, 1995). Because we are most frequently prompted to reflect upon transfer 
when it doesn’t occur, this chapter begins with an undergraduate teaching vignette in which the students did not appear 
to apply the knowledge that the teacher thought they had developed. 

If we presented a vignette of mathematics instruction dominated by the presentation of decontextualized formulas, 
it would come as little surprise if students struggled to solve real world applications. Instead, the vignette is drawn from a 
specially designed two-semester course in calculus for biology majors, with several features considered to promote the 
transfer of learning. First, major concepts were developed using biological contexts, followed by homework problems 
and on-line worked examples drawn from multiple contexts. Second, explicit connections were drawn between real 
world situations and abstract representations such as formulas and graphs. Finally, the course materials emphasized 
conceptual development, not just procedural competency. Specifically, many applets were created to help students 
develop underlying concepts and to explore dynamic mathematical models. The teacher reported that the students had 
become accustomed to working on application problems and often performed quite well. However, he also reported 
a number of surprising incidents in which he expected students to be able to transfer their understanding to a given 
homework problem, yet they appeared unable to do so. One such instance from the section on linear regression is 
presented below. 

Teaching Vignette from a Calculus Class for Biology Majors
To introduce the need for regression, students explored the notion of a line of best fit for a set of biological data 
(involving the C period for E. coli bacterium) by manipulating the slope and y-intercept values of an equation in an 
interactive Java applet. The concept of absolute error was developed visually by relating points in the scatter plot to 
the line of best fit. The idea was then introduced that the line of best fit can be found by finding the minimum value of 
the sum of the squares of the errors function 2 2 2 2

1 2 3( , ) .nJ a b e e e e= + + + +  Using scatter plot data of the average height 
of a child depending on age, students explored the relationship between changes in a and b in y = ax + b and J(a,b) 
via a Java applet. Finally, the simpler case of y = ax was investigated in greater depth in order to better demonstrate 
its relationship to the quadratic function J(a), the sum of the squares of the errors. Data showing the rate of mRNA 
synthesis/cell (denoted rm) were utilized (see Figure 1), where the rate rm depends upon the length of time it takes for 
a cell to double (the doublings/hr are denoted by m). 
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m 0.6 1.0 1.5 2.0 2.5
rm 4.3 9.1 13 19 23

Figure 1. The rate of mRNA synthesis/cell (rm) related to the number of cell doublings/hr (m).

The graphed data suggest a linear mathematical model of the form rm = am. To determine the value of a, the sum 
of the squares of the errors was computed using the formula presented previously. Specifically, the error terms were 
calculated [ 2

1e  = (4.3 – 0.6a)2, 2
2e  = (9.1 – a)2, 2

3e  = (13 – 1.5a)2, 2
4e  = (19 – 2a)2, and 2

5e  = (23 – 2.5a)2], expanded, and 
summed, resulting in the function J(a) = 13.86a2 – 253.36a + 1160.3. Students explored an applet in which the slope, 
a, of the line could be manipulated while observing what happens to the value of the quadratic function J(a). Figure 
2 shows one of the screens that the students could see in their exploration with the applet. By manipulating the value 
of a, students could observe that the line of best fit is determined by finding the minimum value of J(a). Several 
additional examples from other contexts were worked in class in order to help students focus on the similar structure 
across examples. 

Figure 2. Java applet showing how a in rm = am is related to J(a), the function determined by the sum of the squares of the errors.

The application problem shown in Figure 3 was then assigned as homework. The teacher thought it would be 
straightforward. After all, students were likely to have experience with scaling in secondary school, and this was 
basically a scaling situation with some error in the measurements. He thought students could solve the problem 
easily by making a table of data as they had seen in previous examples (e.g., Figure 1), finding the error values
[ 2

1e  = (20 – 3.3p)2; 2
2e  = (2 – 0.5p)2; 2

3e  = (12 – 2p)2], expanding and summing the terms to generate the function J(k) = 
15.14k2 – 182k + 548, and then using algebra techniques to determine the vertex, slope, and least sum of square error 
values (–b/2a, J(–b/2a) = (6.01, 1.03). 

Much to the teacher’s surprise, the students did not know where to begin. It appeared that the students had not 
transferred what they had learned from the lessons on linear regression.

Because this episode did not occur in the context of a research study, I was unable to interview the students or 
investigate their work on a range of tasks. While I do not know why these students found the photography problem so 
difficult, I have some conjectures based on a relevant high school study and on a reconceived view of transfer. 

Related Research Results from a High School Study
In this study, five classes of high school Algebra I students participated in a 6-week replacement unit on slope and 
linear functions. The curricular materials were developed as part of the activities of a research group which was 
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investigating the connections fundamental for students to understand the domain of linear functions (see for example, 
Schoenfeld, Arcavi, & Smith, 1996). 

Several features of the curricular approach are similar to those of the biology calculus materials. First, the 
mathematical topic (slope) was explored in multiple contexts (e.g., real staircases, piles of beans, and velocity) in 
order to help students see past superficial differences and extract a common mathematical structure. This practice is 
supported by current research in mainstream cognitive science (see for example, Fuchs et al, 2003). Second, explicit 
connections were drawn between explorations of realistic contexts and abstract representations. Specifically, students’ 
informal knowledge of real stairs was linked to a more abstract representation of stairs using dynamic computer 
staircases and was later connected to conventional symbol systems including graphical displays of lines, the slope 
formula, and linear equations. This is consistent with a large body of literature indicating that overly contextualized 
knowledge can reduce transfer and abstract representations can help promote transfer (National Research Council, 
2000). Third, conceptual understanding was emphasized along with procedural competency, in part because of the 
notion that students will transfer that which they deeply understand (Schroeder & Lester, 1989). 

Results from paper-and-pencil exams given to the entire population of 139 students indicated that the students 
were able to find the slope of objects encountered in the experimental curriculum, such as staircases (87% correct) and 
lines (80% correct). However, transfer was poor — 40% to a playground slide task and 33% to a roof task (Lobato, 
1996). In the slide task, a drawing of a playground slide was presented and students were asked to describe how they 
would determine the slope of the slide and what measurements they would take. In the roof task, a diagram of a house 
was presented in which various measurements were labeled, (e.g., the height of the house, the height of the roof, the 
length of the roof top, and so on). Students were asked to calculate the slope of the roof and to circle the measurements 
that they used to determine the slope. 

Interviews were also conducted, using fifteen students selected from across the five classes. Two typical responses 
to the slide task are shown in Figure 4. Both students correctly recalled the slope formula as “rise divided by run” 
and treated the slope formula as relevant in the novel slide situation. However, the students made incorrect rise and 
run choices. Jarek’s response is particularly striking because the rise and run seem disconnected from the part of the 
apparatus that is steep. 

run

rise

run

rise

Jarek’s Response Kim’s Response

Jarek and Kim: You divide the rise by the run to find the slope.

Figure �. Responses by two students to a transfer task.

In looking through some old photos, a woman finds a picture of her great-grandfather standing near the family home, 
where she now lives. In the photograph, she measures the height of the roofline, which she knows to be 20 ft, as 3.3 
cm. The 2 ft wide window measures 0.5 cm on the photo, and the distance from the front door to the oak tree at the 
driveway is 12 feet, which is 2 cm in the photograph. 

a. The conversion of the measurements in the photo p to measurements in actual distance d is given by the 
formula d = kp.  Write a formula for the quadratic function J(k) that measures the sum of squares error of the 
line fitting the measurements in the photo. Find the vertex of this quadratic function. This gives the value of 
the best slope k, while the J(k) value of the vertex gives the least sum of squares error. 

b. In the photograph, her great-grandfather is 1 cm tall. Her mother remembers her great-grandfather as a tall 
man of about 6 ft, whereas her father thinks he was shorter, about 5.5 ft. Use the model (with the best value of 
k) to predict the height of the great-grandfather and determine whether the mother or father better remembers 
the height of her great-grandfather. 

Figure 3.  Application problem from a homework assignment.
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The disappointing results from both the high school slope study and the opening calculus vignette invoke a 
desire to respond and fix the problem. In the case of the slope study, we could attribute the disappointing results to 
poor prerequisite understanding or a lack of student motivation. Yet these are unsatisfactory explanations because 
the students’ scores on the initial learning tasks were high. The researchers and teachers could respond by revising 
the instructional conditions the next year in order to promote better performance on transfer tasks. However, on what 
principles would these changes be based, without further understanding of the apparent lack of transfer? For example, 
the curriculum designers could include the slide and roof situations in the next revision of the curriculum, but then 
would better performance simply be a result of “teaching to the test”? More real world situations could be included in 
the revised curriculum, but on what basis would these examples be chosen? 

An alternative response—one that is explored in this chapter—is to rethink one’s assumptions about transfer. I 
present an alternative approach to transfer called the actor-oriented transfer perspective and then use this perspective 
to reanalyze the slide data. Because the actor-oriented transfer approach emerged in response to critiques of the 
classical approach to transfer, a brief history of the transfer of learning in educational research is presented first. 

Brief History of the Transfer of Learning
The classical transfer approach refers to the family of common elements theories that have dominated the 20th century, 
starting with Thorndike’s (1906) theory of identical elements. According to Thorndike, transfer occurs to the extent 
to which original learning and transfer situations share identical elements — typically interpreted as shared features 
of physical environments. In the cognitive approaches to transfer of the latter quarter of the 20th century, the notion 
of identical elements was reformulated as mental representations. That is, people construct symbolic representations 
of initial learning and transfer situations. Transfer occurs if these two representations are identical, if they overlap, 
or if a mapping can be constructed which relates features of the two representations (Anderson, Corbett, Koedinger, 
& Pelletier, 1995). As summarized in a report by the National Research Council (2000), “Transfer between tasks 
is related to the degree to which they share common elements, although the concept of elements must be defined 
cognitively” (p. 78). 

In a typical study of transfer, researchers generate transfer tasks that share some structural features with the initial 
learning tasks (e.g., a common solution approach) but have different surface forms (e.g., different word problem 
contexts). When performance improves between the learning and transfer tasks, researchers infer that students have 
applied knowledge that they gained during the learning experience to the transfer tasks. 

During much of the 20th century, there were only a few isolated intellectual challenges to the mainstream common 
elements approach to transfer. However, dissatisfaction gained momentum in the 1980s and 1990s, when researchers 
began questioning the dominant conceptualization of transfer by bringing to bear the assumptions about knowing and 
learning from the theoretical perspective of situated cognition. Three critiques of transfer are summarized here (for 
more details, see Lobato, 2006). 

First, transfer experiments rely on models of expert performance, often becoming an “unnatural, laboratory game 
in which the task becomes to get the subject to match the experimenter’s expectations,” rather than an investigation 
of the “processes employed as people naturally bring their knowledge to bear on novel problems” (Lave, 1988, p. 
20). Second, transfer researchers often treat context as the task presented to learners and analyze the structure of 
tasks independently of the learners’ purposes and construction of meaning in these situations (Cobb & Bowers, 1999; 
Greeno, 1997). Finally, the classical transfer perspective does not adequately account for the contribution of the 
environment, artifacts, and other people to the generalization of learning (Beach, 1999). The numerous critiques of 
transfer have contributed to a growing acknowledgment that, “…there is little agreement in the scholarly community 
about the nature of transfer, the extent to which it occurs, and the nature of its underlying mechanisms” (Barnett & 
Ceci, 2002, p. 612). 

Rethinking Assumptions of Transfer
The Actor-Oriented Transfer Perspective
The actor-oriented transfer perspective emerged in response to the critiques presented above (Lobato, 2003). From 
this perspective, the conceptualization of transfer shifts from what MacKay (1969) calls an observer’s (expert’s) 
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viewpoint to an actor’s (learner’s) viewpoint. By adopting an actor’s perspective, we seek to understand the ways in 
which people generalize their learning experiences rather than predetermining what counts as transfer using models of 
expert performance. That is, psychological similarity—how a new situation is connected with a person’s experience 
of a previous situation—rather than similar elements of task features—serves as the basis of transfer. From the actor-
oriented perspective, transfer is defined as the generalization of learning. In what follows I will not use the term 
“generalization” as it is often used in mathematics to refer to the development of a rule or relationship that holds for all 
n within a specified range of n values. Instead, when I speak of actor-oriented transfer as generalization, I am referring 
more broadly to any influence of prior experiences on learners’ activity in novel situations. For example, I make a case 
in the next section of this chapter that the students from the high school study were in fact generalizing their learning 
experiences when they were working on the playground slide task. I will present evidence that particular features of 
the curricular unit influenced the ways in which the students perceived the slide situation. 

The actor-oriented transfer perspective differs from the classical transfer perspective in many ways. The actor-
oriented perspective examines the generalization of learning, even if that learning results in incorrect or non-standard 
performance. In contrast, the classical transfer perspective, because of the particular methods employed and the 
reliance on expert models, emphasizes the formation of particular, highly-valued generalizations (Lobato, in press). 
The actor-oriented perspective seeks to understand the processes by which people connect learning experiences with 
new situations. This connection-making between situations most predominately involves the process of similarity-
making, but it can also involve the processes of discerning differences and modifying situations (Lobato, Clarke, & 
Ellis, 2005; Lobato & Siebert, 2002; Marton & Tsui, 2003). 

Table 1 summarizes the differences between classical and actor-oriented transfer perspectives. The assumptions 
that have bearing on the argument presented in this chapter are briefly described below; see Lobato (2003) for a more 
detailed description of an earlier version of this table. 

Table 1. Theoretical assumptions of actor-oriented transfer compared to the classical approach.

Dimension Classical transfer approach Actor-oriented transfer 

1. Definition The application of knowledge learned in 
one situation to a new situation

Generalization of learning; “similarity-making” is a primary 
process but generalizing can also involve constructing 
differences and modifying situations

2. Perspective Observer’s (expert’s) Actor’s (learner’s) 

3. Research  
method

Experimental methods to identify 
improved performance between learning 
and transfer tasks

Ethnographic methods to look for the influence of prior 
activity on current activity and how learners see situations as 
similar

4. Research  
questions

Was transfer obtained? What conditions 
facilitate transfer? 

What relations of similarity are created? How are they 
supported by the environment? 

5. Surface v.  
structure

Paired learning and transfer tasks share 
structural features but differ by surface 
features

Researchers examine learners’ construal of “transfer” 
settings, acknowledging that a surface feature for an expert 
may be structurally substantive for a learner

6. Location of  
transfer

Transfer measures a psychological 
phenomenon

Transfer is distributed across mental, physical, social, and 
cultural planes

7. Transfer  
processes

Overlapping symbolic abstract mental 
representations (schemes)

Multiple processes including “focusing phenomena”

8. Metaphor Static application of knowledge Dynamic production of relations of similarity

9. Content  
domain 

Mathematics is often treated as a set 
of procedures, and transfer is as a 
decontextualized ability

The conceptual sense that people make of mathematics is 
central to the nature of transfer

10. Abstraction Inductive and individualistic—a common 
property is extracted

Constructive and involves social and individual processes
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Shifting perspectives from the classical to the actor-oriented approach has methodological implications. The 
quantitative experimental methods for measuring transfer utilized in the classical approach tend to underestimate what 
counts as transfer from an actor-oriented perspective. If transfer is taken as the generalization of learning experiences, 
then qualitative methods are needed to scrutinize a given activity for any indication of influence from previous 
activities and to examine the particular ways in which people construe situations as similar. Furthermore, researchers 
operating from the classical approach typically predetermine “what” will transfer rather than making the “what” an 
object of investigation. Even when researchers do identify the particular knowledge that is transferred, they typically 
rely on models of expert performance (see for example, Gentner, 1989). In contrast, researchers from an actor-oriented 
perspective of transfer endorse knowing as fundamentally interpretative in nature, and as a result, accept students’ 
idiosyncratic and even mathematically incorrect ways of connecting situations as evidence of transfer. 

From the actor-oriented perspective, transfer is a distributed phenomenon. The generalization of learning involves 
individuals who create personal connections across activities, material resources that enable certain connections while 
constraining others, people who are oriented toward helping individuals see particular similarities, and the practices 
in which activities take place. For example, Lobato, Ellis, and Muñoz (2003) have advanced the notion of focusing 
phenomena to demonstrate a link between the ways in which features of instructional environments focus students’ 
attention on particular mathematical properties and the ways in which individuals generalize their learning experiences 
(more details will be provided later in this chapter). 

Finally, the metaphor for transfer in the classical approach is that of application or transportation. Knowledge is 
acquired in one setting and transported to another situation where it is applied. This suggests that the knowledge being 
applied remains unchanged, as do the tasks across which transfer occurs. However, the static nature of the application 
metaphor does not account for the ways in which people change transfer situations until they become similar to 
something they know or how people reconstruct their understanding of initial learning situations in order to make 
connections to the transfer situation ((Bransford & Schwartz, 1999; Carraher & Schliemann, 2002). From an actor-
oriented perspective the metaphor of production replaces that of application, suggesting a more dynamic process of 
connecting situations in which relationships are produced or constructed. Indeed, transfer situations can be dynamic 
sites for invention and reorganization (Lobato & Siebert, 2002). 

Reanalysis of the Data from an Actor-Oriented Perspective
According to classical measures of transfer, the students in the high school study showed little evidence of transfer. 
However, all of the interview participants correctly recalled the slope formula. Their rise and run choices, although 
often incorrect, did not appear to be random (e.g., no one designated a primarily horizontal quantity as the rise). This 
suggested that the students may have generalized their experiences from the instructional unit in ways that were not 
captured by the transfer measures. Therefore, we began to look carefully at the students’ experiences in the curricular 
unit. The instructional activities related to slope had been dominated by staircases. Students measured the “treads” and 
“risers” of real staircases, explored dynamic staircases on the computer, and used mathematical “stairs” to determine 
the slope of a line and other objects. With this in mind, the data were re-analyzed from an actor-oriented perspective 
by looking for ways in which these experiences with staircases may have influenced the students’ comprehension of 
the transfer situations.

The re-analysis revealed significant evidence of the generalization of learning experiences for each interview 
participant (Lobato, 1996). The two most prevalent ways in which students connected initial learning and transfer 
situations were through what we called the “stair step” and the “height/width” connections. For example, Jarek’s 
choices for rise and run suggest that he was looking for a stair step in the slide setting (i.e., something with visually-
connected “up” and “over” components that suggests climbing in an imagined state of affairs). He appeared to find a 
stair step on the right side of the slide apparatus (see Figure 5). The platform may have held particular appeal as the 
run, because it is the only tread-like feature in the diagram. A correct run, on the other hand, needs to be constructed 
with the use of an auxiliary line. Kim’s work suggests that she related the activities in the instructional unit with the 
transfer situation through a “height/width” connection (see Figure 5). The rise and run can be conceived as either the 
height and width of the entire staircase or the height and width of a single step. Thus, slope may be correctly conceived 
as height divided by width in the staircase situation but generalized to the slide situation as the height and width of 
the entire apparatus.
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Figure 5. Actor-oriented transfer inferred from the work of two students.

In sum, use of the classical transfer approach in the high school study resulted in a concealment of the ways in 
which students generalized their learning experiences. While only 40% transfer was observed using classical transfer 
measures, each of the 15 interview participants demonstrated evidence of the generalization of their learning experiences 
from an actor-oriented transfer perspective. The analysis illuminated how the new situation might be connected with 
the thinkers’ conceptions of previous situations even though the particular connections were unexpected and non-
standard.

Significance of the Actor-Oriented Perspective 
A critical reader may be concerned that the actor-oriented perspective seems to validate incorrect mathematical ideas 
that students generate. While mathematical correctness should not be ignored or de-emphasized, there are three 
reasons why examining transfer from an actor-oriented perspective is important even when it illuminates incorrect 
performance.

First, the actor-oriented transfer perspective helps guard against false conclusions regarding the degree to which 
humans generalize. Classical transfer studies often fail to demonstrate transfer in the laboratory (Kirshner & Whitson, 
1997). This has led some to conclude that transfer is rare (Detterman, 1993). Others have interpreted the poor transfer 
results as evidence that reasoning is hopelessly context-bound, or “that our cognitive apparatus simply does not incline 
very much to transfer” (Perkins & Salomon, 1989, p. 22). However, the classical transfer approach underestimates 
the generalization of learning by accepting as evidence of transfer only specific correspondences defined a priori as 
the “right” mappings. It is not surprising then that we find overwhelming evidence for the lack of transfer from the 
classical perspective, since we know that novices do not make the same set of connections as experts (see National 
Research Council, 2000, for a summary of expert-novice studies).

Second, information gained through an actor-oriented transfer investigation can usefully inform revisions of 
curriculum materials and pedagogical approaches. We use the notion of focusing phenomena to demonstrate how 
seemingly random generalizations (such as those shown in Figure 5) are supported by features of instruction 
(Lobato & Ellis, 2002; Lobato, Ellis, & Muñoz, 2003). Specifically, focusing phenomena are aspects of instructional 
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environments that regularly direct students’ attention toward certain mathematical properties when a variety of 
information competes for students’ attention. Focusing phenomena emerge not only through the instructor’s actions 
but also through mathematical language, features of the curriculum, and the use of physical materials such as graphing 
calculators. By understanding and altering the nature of the focusing phenomena, we have been able to positively 
affect the nature of students’ generalizations (Ellis & Lobato, 2004; Lobato, 2005). Consequently, we can profit from 
an investigation even when students produce mathematically incorrect generalizations.

Third, the actor-oriented transfer perspective provides a way to examine how novices generalize their learning 
experiences. According to Bransford and Schwarz (1999): 

Prevailing theories and methods of measuring transfer work well for studying full-blown expertise, but they 
represent too blunt an instrument for studying the smaller changes in learning that lead to the development of 
expertise. New theories and measures of transfer are required. (p. 24) 

By better understanding how novices generalize their learning experiences, we may be able to identify increasing 
levels of sophistication in generalizing activity and consequently support students’ development of expertise. 

An important aspect of understanding how novices generalize their learning experiences is being aware of how 
novices make sense of typical transfer situations. For example, it is important to understand what made the playground 
slide situation so difficult for the students in the high school study. When I created the slide task, I had assumed that 
it differed from the situations explored in class (such as staircases, lines, and piles of beans) by only a surface feature 
(namely the playground slide setting). In the next section, I report the results of a series of studies in which we set 
aside our expert assumptions regarding surface and structural features and made students’ comprehension of transfer 
situations the object of inspection. The results indicate that what is typically considered to be a surface feature can, 
in fact, represent structural complexities for novices. I also outline how we used the knowledge gained from these 
investigations to inform a conceptual analysis of the mathematical ideas involved in more sophisticated ways of 
generalizing. This, in turn, informed the revision of the slope curriculum. The findings are also relevant to the calculus 
vignette. 

Relevant Findings from Research

Students’ Comprehension of Transfer Situations 
In two follow-up studies to the high school study, we investigated students’ comprehension of typical transfer 
situations for slope such as wheelchair ramps, speed, dripping water rates, and the protein concentration in nutrition 
bars. The results indicate that making meaning of these contexts involves the following elements of substantive 
mathematical reasoning: (a) isolating measurable attributes, (b) determining the effect of changing various quantities, 
and (c) constructing two quantities as independent and of equal status. Each component will be described briefly and 
illustrated for the ramp situation (for details, see Lobato, Clarke, & Ellis, 2005; Lobato & Siebert, 2002; Lobato & 
Thanheiser, 1999, 2002). 

In the first follow-up study, we interviewed 17 high school students enrolled in a traditional introductory algebra 
course. Students were asked how they would create a way to measure the steepness of a wheelchair ramp (see Figure 
6). Although we designed the task to investigate slope as a measure of the steepness of a ramp, we recognize that it can 
be solved by using the angle of inclination or by creating other ratios such as that of the slant height to the length of 
the base. Consequently, we also probed students’ reactions to measures created by hypothetical students, such as the 
height divided by the length of the base. These follow-up questions helped us explore students’ association of slope 
with the measure of steepness.

Over half of the students struggled to isolate the attribute of steepness from other attributes, such as “work required 
to climb the ramp” or “materials needed to construct a ramp” (Lobato & Thanheiser, 1999; 2002). For example, many 
students talked about the importance of including the distance of the slanted part of the ramp in their measure because 
a longer ramp is more difficult to climb (i.e., a person is slowed down as he or she moves up the ramp). This makes 
sense if one considers that steepness is only one attribute involved in the ramp situation and may not be the most 
salient characteristic for students who have had everyday experiences with skateboards and hills. A student may not 
see a wheelchair ramp as having the same steepness throughout if that student is focused on the attribute of work. 
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Indeed as one climbs a ramp, more work is required as one proceeds. Furthermore, students may conflate work and 
steepness, thus concluding that the steepness is not constant throughout the ramp and that the attributes affecting work 
should also be included in a measure of steepness. [For a paper that conveys the intellectual struggle of students who 
eventually sorted out these attributes in a teaching experiment, see Lobato, Clarke & Ellis, 2005.]

Suppose you work for a company that builds wheelchair ramps. You want to measure the steepness of each ramp 
model that your company builds. You feel this information is important so that people will know how difficult it 
is to climb each ramp in a wheelchair. How would you determine the steepness of each ramp shown below?

Figure 6. Wheelchair ramp task.

Additionally, a majority of the interview participants had difficulty determining the effect of changing various 
quantities (such as the length of the base) on the steepness of the ramp. Students were able to reason correctly that 
increasing the height increased the steepness and similarly, that decreasing the height made the ramp less steep. 
Surprisingly, over half of the students were unable to correctly determine the effect of increasing or decreasing the 
length of the base or the platform. For example, one student argued that if you make the base shorter, then the ramp 
will become less steep, and if you make the base longer than the ramp will become steeper (Lobato & Thanheiser, 
1999; 2002).

Finally, in a second follow-up study, we designed an instructional environment to help students develop the types 
of reasoning that we thought would support successful performance in situations such as the wheelchair ramp (Lobato 
& Siebert, 2002). By examining a case study of a student who changed the way he comprehended the wheelchair ramp 
situation, we gained additional insight into the conceptual complexity of the aspects of transfer situations that are 
often considered surface features by researchers. Specifically, this study highlighted the difficulty of conceiving of the 
height and length of the wheelchair ramp as independent, equally important quantities. This conception is important 
because it appears to be prerequisite to forming a ratio between the height and the length. 

Prior to instruction, Terry (an 8th grader who had earned a B in his Algebra I class) appeared to view height as 
more important than length and length as dependent upon height. When asked about the effect of lengthening the 
base on the steepness of a wheelchair ramp, Terry explained that “it [referring to the steepness of the ramp] basically 
matters on the height.” When asked how decreasing the length of the base would affect the steepness, Terry moved 
the rightmost part of the ramp to the left (see Figure 7). Then he used his understanding of the effect of changing the 
height to reason that he had made the ramp taller and steeper. Because the length of the base of the new ramp was 
shorter than the base of the original ramp, decreasing the length of the base had resulted in a steeper ramp. Rather than 
reasoning directly with the length, Terry reasoned about the effect of height changes on steepness and treated length 
as dependent upon changes in height. 

After instruction Terry appeared to have constructed length and height as independent quantities of equal status. 
Terry was asked to solve a proportion problem that had eluded him prior to instruction, namely to create a new ramp 
with a height of 3 ft so that the ramp has the same steepness as an original ramp with a height of 2 ft and base length of
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Figure �. Author’s representation of Terry’s method for indirectly reasoning about the effect of decreasing the 
length of the base by first increasing the height.

15 ft. First, he drew the incline and the base of the original ramp (see steps 1 and 2 in Figure 8). Then Terry extended 
the incline (see step 3 in Figure 8), explaining that the height would get bigger until it eventually got up to 3 feet. 
He then drew the base and height of the new ramp (steps 4 and 5 in Figure 8). In contrast to his pre-instructional 
approach, Terry attended to the “same steepness” constraint prior to attempting to change the height. Furthermore, he 
acknowledged length as one of the important quantities involved in changing the ramp, and he generated the length 
of the new ramp prior to creating the height. As a result, Terry was able to reason proportionally to achieve a correct 
answer to the ramp problem. Terry was also able to successfully solve a harder problem, namely to determine the 
height of a ramp with the same steepness as the original ramp when the length of the original ramp is extended from 
15 ft to 16 ft. 

1

2

3

4

5

Figure �. Author’s reconstruction of Terry’s effort to increase the height 
and length of a ramp yet retain the same steepness. Steps 1 and 2: Terry 
draws the slant height and length, respectively. Step 3: Terry extends the 
slant height to make the ramp taller without changing the steepness. Steps 
4 and 5: Terry extends the length and draws in the height, respectively.

These results demonstrate how surface features for experts may in fact involve structural complexities for students. 
Furthermore, the investigation of the students’ comprehension of transfer situations can help researchers make explicit 
the mathematical ideas that are often implicit in their own expertise but are critical for the design of effective learning 
experiences for students. 

Using the Results to Inform a Conceptual Analysis 
We used the knowledge gained from the investigations presented in the previous section to generate a conceptual 
analysis of the mathematical ideas involved in forming more sophisticated connections between learning and transfer 
situations than those formed by the students in the high school study. Specifically, we argued that productively 
generalizing experiences with the slope formula to situations like that of the wheelchair ramp involves the following: 
(a) isolating steepness from other attributes; (b) understanding how increasing and decreasing various quantities in 
the situation affect the steepness of the ramp; (c) conceiving of length and height as independent quantities of equal 
status; (d) constructing a multiplicative relationship between height and length; (e) understanding that if a ramp has a 
given height relative to a given length, then any segment of the height requires a proportional segment of the length 
in order to maintain the same steepness; (f) connecting the arithmetic operation of division to the partitioning of the 
“height-length” unit; (g) conceiving of slope as an appropriate measure of the steepness of a ramp; (h) understanding 
that corresponding changes in height and length correspond to “rise” and “run” in the slope formula; and (i) connecting 
the operation of division in the slope formula to the identification of a ramp with a height of 1/L • H and a length of 
1 unit, while understanding that the smaller ramp has the same steepness as the larger one (Lobato & Siebert, 2002). 
This understanding of the mathematical content differs significantly from the conceptualization of the content that 
grounded the development of the curricular materials for the initial high school study. 
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Implications 
Revisions to the Slope Curriculum 
We utilized the conceptual analysis presented above, along with the results of the studies we conducted from an 
actor-oriented transfer perspective, to make substantial revisions to the original slope curriculum. We have used the 
revised materials in two teaching experiments with better results. In several papers, we report the ability of students to 
generalize their learning experiences in more productive ways than those reported in the original study (Lobato, 2005; 
Lobato, Clarke, & Ellis, 2005; Lobato & Siebert, 2002). These papers indicate that the revised curricular materials 
tend to focus attention on the coordination of co-varying quantities rather than on the location of something vertical 
and something horizontal in each new problem. We briefly sketch three features of the revised curriculum. This is 
not intended to be an exhaustive list but rather to serve as a useful comparison with the features of the original slope 
curriculum. 

First, in the original slope curriculum (and in the biology calculus materials), each new concept was exemplified 
using multiple contexts. By engaging with multiple contexts, it was thought that learners would extract a common 
structure by deleting superficial details across examples. In the revised slope curriculum, we made a radical departure 
with this approach and explored a single contextual setting (namely speed). We no longer conceive of the process as 
“extracting a structure” but rather as constructing a ratio as the measure of a given attribute (what Simon and Blume, 
1994, call a “ratio-as-measure”), which involves building a complex set of related understandings. We believe this can 
be accomplished by in-depth exploration in a limited number of contextual settings. 

Second, the original slope curriculum (and apparently the biology calculus materials) assumed that transfer is 
most likely when students experience particular mathematical notions in a range of real world settings, while at 
the same time learning to connect features of the contexts to abstract representations such as formulas and graphs. 
Consequently the conventional representations of equations and graphs were presented early and attention to them was 
interspersed with connections to realistic situations. However, in the high school study, it became apparent that many 
students conceived of a linear graph as a physical object (e.g., thinking of a line on a graph as a piece of wire) rather 
than as a mathematical object. In our revised approach, we postpone the introduction of graphical representations until 
students have formed an understanding of a rate (such as speed) as an equivalence class of ratios. Once rate has been 
formed mentally, then the graph of y = mx can be understood as a representation of the equivalence class of ratios. 

Finally, the revised slope curriculum is organized by a different conceptualization of the mathematical ideas. The 
new unit begins by showing students a character walking across a computer screen (using a modified version of the 
Mathworlds software developed for the SimCalc Project, Roschelle & Kaput, 1996). Students are asked to determine 
a way to measure how fast the character is walking. The activity and subsequent discussion allows students to isolate 
the attribute of how fast the character moves through space (speed) from other attributes such as how fast the character 
moves his feet (leg locomotion). This is important because each attribute is measured by a different ratio (e.g., distance 
over time versus number of steps taken over time). Once students isolate the attribute of motion through space, they 
explore how changing time and distance affect speed by entering distance and time values for various characters in 
the simulation software. 

Once students understand the effect of increasing and decreasing distance and then time, they are in a position to 
construct speed as a ratio of distance to time. We conceive of the mental construction of ratio either as the formation of 
a multiplicative comparison or as the formation of a composed unit (Olive & Lobato, in press). In the new curriculum, 
ratio construction occurs in response to a discussion of “same attribute” tasks. Specifically, students use the speed 
simulation software to generate a family of distance and time pairs that make characters walk the same speed. We 
document how the development of speed as a ratio is surprisingly challenging, even for beginning high school students 
(Lobato & Siebert, 2002; Lobato & Thanheiser, 2002). The use of the “same attribute” task represents a major shift 
from the original slope curriculum. In the original curriculum, we focused on vertical and horizontal components 
on a graph without adequately linking them to what was being measured. For example, Jarek’s work indicates a 
disconnection of the “run” from the part of the ramp that is steep. In contrast, the “same attribute” task focuses 
attention on the attribute that is measured by slope. An equivalence class of ratios is then constructed, typically by 
iterating and partitioning ratios. At this point students are better prepared to make sense of a line as the expression of 
the equivalence class of ratios and to link the equation y = mx to its meaning in speed situations. Once the y = mx case 
has been explored, situations represented by y = mx + b are considered.
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Revisiting the Calculus Vignette
There are three major implications of the research on actor-oriented transfer for the calculus vignette. The first 
implication involves the assumptions made regarding surface and structural features of transfer tasks. The teacher 
assumed that the classroom tasks and the photography task shared the same structure. All were situations in which 
nearly linear data were produced. The teacher apparently conceived of the photography situation as representing a 
surface feature, given that students likely had experiences with scaling in secondary school and given that photography 
is a part of everyday experience for most students. However, it is very likely that the photography situation presented 
structural complexities for students just as the wheelchair ramp and playground slide situations presented substantive 
mathematical challenges for the students in the high school studies. For example, the line of best fit directs students to 
a two-dimensional plane, but there is a three-dimensionality lurking in the perspective of the photograph with which 
students may be struggling. Students have likely had many everyday experiences with photographs like that shown in 
Figure 9, in which the photographic measurement of the flowers exceeds that of the mountains. Thus, depending upon 
the situation, a photo may not be approximately linear in terms of the relationship between d and p. In other words, 
the photo obscures the projective geometry operative in the problem. Not much information was given in the word 
problem that addressed the relative placement of the objects in the photograph or that addressed other, presumably, 
“surface” features. 

Figure 9. Photograph illustrating the lack of proportionality between photographic and actual measurements of objects. 

A second implication from the actor-oriented perspective is that one should not take poor performance on transfer 
tasks as an indication of the failure of students to generalize their learning experiences. Indeed transfer is in the eye 
of the beholder. When we adopt a classical transfer perspective, we are unlikely to find overwhelming evidence 
for transfer, since we already know that novices do not make the same set of connections as experts. However, if 
transfer is examined from an actor-oriented perspective, then results will likely demonstrate conceptually substantive 
ways in which students make sense of new experiences in terms of past experiences. Rather than assuming that the 
calculus students weren’t generalizing, a teacher could ask the following questions to explore the nature of students’ 
generalizations: 

1) What conditions would need to be met in order for you to use the least squares approach and the line of best 
fit? 

2) Could the question in the photograph situation be modified in order for you to think that the technique we 
learned today would be useful? 

3) What’s different about the photography situation than the situations you saw in class? 

In fact, the teacher reported that he gained some important information about students’ generalizations when he 
began to present the solution to the photography problem. As he graphed the data points (shown in Figure 1), many 
students appeared to know how to make use of the least squares method. In other words, the students’ generalizing 
activity appeared to be modulated by the appearance of an approximately linear scatter plot of data. Learning about 



22.  When Students Don’t Apply the Knowledge You Think They Have, Rethink Your Assumptions about Transfer 301

this generalization is important and suggests some revisions that can be made to the instructional approach, as I will 
articulate below. 

The third implication is that instructional environments can unwittingly focus students’ attention on features 
that lead to undesirable generalizations. In the high school study, the instruction appeared to unintentionally direct 
students’ attention toward the vertical and horizontal components of stair steps without paying adequate attention to 
the relationship between steepness and the corresponding changes in vertical and horizontal components of the given 
object (slide, roof, ramp, etc). In the calculus example, it appears that the instruction drew attention toward the concept 
of linearity as the existence of a straight line on a graph, which is a limited notion of linearity. For example, the worked 
classroom example with the doublings (see Figures 1 and 2) enabled students to decide that the relationship was linear 
by determining that a line approximately covered the data without considering whether it makes sense to form a 
multiplicative (as opposed to an additive) comparison between the two quantities in the situation. 

The research studies of students’ comprehension of typical transfer situations for slope indicated that meaning-
making in these situations involves reasoning with measurable attributes (e.g., sorting out the relationships between a 
large number of quantities in the wheelchair ramp situation such as the length of the platform, the height of the ramp, 
work required to climb, the height of the ramp, steepness, and so on). Similarly there are important relationships among 
measurable attributes in the photography situation that need to be addressed. We want students to consider whether 
it makes sense in the context of photography to form a multiplicative comparison between p and d. In fact, this only 
makes sense if the objects are flat or nearly flat. Students need to discuss the notion of visual perspective and sources 
of error. Students would also benefit from a discussion of linearity as the formation of a multiplicative relationship 
between two quantities (in the y = mx case) and as a multiplicative relationship between the corresponding changes 
between two quantities (in the y = mx + b case). Decisions of the appropriateness of the formation of multiplicative 
relationships need to be made without necessarily relying on the visual appearance of graphs. 

Concluding Remarks
Very often the educational research considered to be most practical is that which demonstrates how well a 
particular curriculum, tool, or teaching method works. Indeed, “what works” research can be valuable in terms of 
informing decisions such as whether to adopt particular curricula, technology, or pedagogical methods. This chapter 
demonstrated how research that prompts a rethinking of one’s (often implicit) assumptions about transfer can also 
lead to improvements in teaching and learning. Specifically, this chapter illustrated how adopting the actor-oriented 
transfer perspective can affect teaching practices by suggesting alternative ways for teachers to interpret students’ 
work, conceive of the mathematical content differently, and create new instructional activities. 

The actor-oriented transfer perspective is useful at any level and for any mathematical topic. This point was made, 
in part, by including a range of topics and instructional levels in this chapter—from slope at the secondary school 
level to linear regression at the undergraduate level. Additionally, my colleagues and I are finding the actor-oriented 
transfer perspective useful as we move from an investigation of linear functions to quadratic functions at the high 
school level. For example, Ellis & Grinstead (2007) found that two-thirds of the students they interviewed from a 
high-school intermediate algebra class identified the parameter a in y = ax2 + bx + c as the “slope” of a parabola in 
a series of novel “transfer” tasks. By analyzing the classroom data from an actor-oriented transfer perspective, they 
identified three focusing phenomena in the classroom environment that inadvertently supported a focus on “slope-
like” properties of quadratic functions: a) the use of linear analogies, b) repeated use of the rise over run method, and 
c) viewing a as dynamic rather than static. Their results transcended a previously reported tendency of students to 
inappropriately draw on their linear-function understanding to try to solve tasks for nonlinear functions (Hershkowitz 
& Schwarz, 1997; Zaslavsky, 1997), by demonstrating particular ways in which students, textbook materials, and 
teacher actions interacted to create inappropriate connections between the meaning of a and the notion of slope for 
linear functions. As was the case in our earlier work with linear functions, their examination of transfer from an actor-
oriented perspective informs the interpretation of students’ work, a different conceptualization of the mathematical 
content, and new instructional activities for subsequent teaching experiments. 
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How do Mathematicians Learn to Teach?

Implications from Research on Teachers and Teaching for 
Graduate Student Professional Development

Natasha Speer, Michigan State University
Ole Hald, University of California at Berkeley

Scenario 11 At a pre-semester orientation session for mathematics graduate students, the following question and 
student work were presented:

If 2 3(3 ) ,y x= -  what is dy
dx

? 

Student work: 2 23(3 ) ( 2 ) ( 2).dy x x
dx

= - × - × -

The graduate students were asked to describe what a student might have been thinking when producing such an answer. 
After a few moments, the question was repeated, but none of the graduate students offered a potential explanation. 
Then, a professor who was sitting in the room said, “Well, it’s not a bad answer.” He then explained how the student’s 
answer showed a pretty solid understanding of the chain rule, but that the student had applied the rule repeatedly 
instead of just the one time required. 

Why could the professor explain what the student had done but the graduate students were unable to do so? 
Does the professor know more about the chain rule than the graduate students? Will the graduate students know more 
about the chain rule when they finish their degrees and then be able to make sense of students’ answers in the way the 
professor was able to? Or does the professor know other things from years of experience?

Scenario 2 A graduate student was grading calculus exams. In order to calculate the area between two curves, one 
problem required that students solve 3 4 6 8y x+ = - for y. Once the equation was transformed into y as a function of 
x, the problem could be solved by taking the appropriate difference and computing the integral. The graduate student 
showed the course professor one student’s work:

6 123 4 6 8 4 6 12 2 4
3

xy x x x-
+ = - - = - = = -

The graduate student asked how many points to deduct since the student, “had not taken the time to write out each 
step on a separate line and the resulting solution was sloppy.” 

The professor examined the work and said, “The student wasn’t sloppy, she’s just confused about the equals sign. 
She probably learned one thing in elementary school and didn’t notice that things changed when she got to algebra.”

1 These scenarios are taken from the experiences of the first author.
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Is the professor’s ability to make sense of the student’s work a function of the amount of mathematics known? Is 
there a course that the graduate student could take that would teach the things about the equals sign that the professor 
knows? 

The goal of this chapter is to present findings from research on teachers and teacher professional development 
to help people think about how to prepare graduate students to teach. In particular, we examine the role that teachers’ 
knowledge plays in shaping instructional practices and student outcomes. The claim that “what students learn is a 
function of what their teachers know” turns out to be difficult to establish empirically. From research that has been 
accumulated in this area, it appears that a subset of “knowledge” has more explanatory power. We review findings 
from research on teachers’ knowledge as well as from successful teacher professional development programs and we 
discuss potential implications of these findings for professional development of mathematics graduate students. 

As the other chapters of this volume demonstrate, there is a substantial body of literature about student learning 
of college mathematics. Less research exists on the teaching of college mathematics. In the history of educational 
research, studies of teachers and teaching have typically lagged behind in number compared with those of student 
learning. Research at the K–12 levels has a long history and has resulted in significant findings about teachers and 
teaching. At this stage of development in research on undergraduate mathematics teaching (where research is relatively 
scarce), it may be productive to look to areas of K–12 research on teaching to inform peoples’ thinking about how best 
to assist graduate students as they learn to teach. 

There is another reason why research on K–12 teachers and teaching is relevant at the undergraduate level: a 
significant part of the mathematics taught in colleges (e.g., college algebra, pre-calculus, calculus) is also taught in 
high school. While there are certainly factors unique to teaching this content at the college level, it is reasonable to 
assume that research on teaching this content has relevance to undergraduate teaching. We seek to draw from research 
at K–12 levels to inform work at the undergraduate level—both in terms of practices (preparation for future faculty) 
and directions for future research. Of course, for graduate students to benefit from what is known about factors 
that shape teachers’ practices (and their students’ learning) there need to be opportunities for them to participate in 
professional development programs and activities. The hope is that the remainder of this chapter provides both an 
argument for the importance of graduate student professional development as well as suggestions for those who have 
the responsibility for providing that professional development. 

What Makes Someone A “Good” Teacher?
For a long time, educational researchers have asked, “What makes someone a good teacher?” While much is known 
about what teachers do and why, connecting teachers’ traits to students’ learning is a complex task and no simple answers 
have emerged (Darling-Hammond, 1999; Mewborn, 2003). Traits examined in the history of educational research 
include teachers’ general academic ability, subject matter knowledge, and teaching skills. Research on professors and 
graduate students is sparse in comparison, but similar issues are starting to be examined (Speer, Gutmann, & Murphy, 
2005). 

In this chapter, we chose to focus on knowledge for three reasons. First, it seems obvious that what teachers know 
should determine, at least in part, what their students learn. Second, teachers’ knowledge has been the subject of much 
investigation and there have recently been significant findings in this area. Lastly, some of the findings from K–12 
professional development programs that focus on aspects of knowledge seem especially well-suited to adaptation for 
the professional development of mathematics graduate students. 

Does What You Know Determine What Your Students Learn?
While it is natural to assume that what students learn is influenced by what their mathematics teachers know, finding 
empirical support for this claim has been extremely difficult (Ball, Lubienski, & Mewborn, 2001). Such research has 
examined the amount of mathematics that teachers know (as measured by number of courses taken, number of credits 
earned, etc.) as a measure of teachers’ mathematical knowledge. If mathematical knowledge is measured in these 
ways, there is no definitive relationship between teachers’ knowledge and their students’ learning of mathematics. 

One of the most-cited studies in this area is from Begle (1979). He reported findings from a meta-analysis of 
studies conducted from 1960 through the mid-1970s that examined effects of teacher traits on student performance. 
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His meta-analysis found no significant positive relationship between schoolteachers’ highest academic degree, post-
bachelor’s course credits, or majoring in mathematics, and student achievement. If only courses beyond calculus are 
considered, only 10% of the time did teachers’ taking such courses produce greater student performance. Even more 
stunning was his finding that about 8% of the time, having more courses post-calculus led to lower levels of student 
achievement. 

More recently, however, Monk (1994) found “positive relationships between the number of undergraduate 
mathematics courses in a teacher’s background and improvement in students’ performance in mathematics” (p. 130). 
The courses under consideration in this study were those at the sophomore and junior levels. This encouraging picture 
is tempered a bit by specifics of the findings: taking an additional mathematics course translates into, at most, a 1.2% 
increase in student performance (0.2% for sophomores). It is also important to note that increases of this size are only 
apparent for the first five undergraduate mathematics courses teachers take—taking additional courses beyond five is 
associated only with a 0.2% gain in student performance. 

These counter-intuitive findings prompted the educational research community to seek other measures of teacher 
knowledge that correlate with student learning. After all, finding such correlations could inform the design of teacher 
preparation and professional development programs with some confidence that such programs would increase student 
achievement. This has resulted in two lines of research, both of which are refinements to more traditional definitions 
of mathematics content knowledge. One line of research expanded the scope of what is taken as knowledge, while 
the other proposes a particular kind of content knowledge that is closely connected to teaching. Both of these areas of 
research are discussed below. 

Different kinds of knowledge
Several alternative ways of characterizing knowledge appear to explain more about student learning opportunities 
than the measures used in the research summarized in the previous section. Two of these refinements to examinations 
of knowledge are: pedagogical content knowledge (PCK) and mathematical knowledge tied specifically to teaching. 
For more extensive reviews of research on teachers’ knowledge see, (Ball, Lubienski, & Mewborn, 2001; Calderhead, 
1996; Mewborn, 2003). In this section, these two kinds of knowledge are described and research about the roles of this 
knowledge in teaching and student learning are discussed.

Pedagogical content knowledge overview
For much of the history of mathematics education research, two areas of knowledge were examined: knowledge 
of subject matter and knowledge of pedagogy. As noted above, however, standard measures of knowledge do not 
have much predictive power for how effective teachers will be. Neither do the myriad measures of teachers’ general 
pedagogical knowledge and skills (classroom management, organization, etc.).

In the mid-1980s, researchers identified another kind of knowledge possessed by teachers. This includes much of 
what teachers draw on while teaching, planning for teaching, and making sense of student thinking. In particular, it 
includes information about typical student difficulties, typical ways in which students approach particular tasks (both 
unsuccessfully and successfully), examples that are especially illuminating of the ideas, etc. 

This kind of knowledge is referred to as pedagogical content knowledge (Grossman, Wilson, & Shulman, 1989; 
Shulman, 1986) and combines subject-matter knowledge and knowledge about teaching that subject matter. In 
mathematics, for example, there are things that teachers know that are specific to particular topics (e.g., typical errors 
students make when they first learn the quotient rule in calculus; common misunderstandings of the definition of limit) 
that are not part of what they were taught in mathematics courses. Pedagogical content knowledge is in large part what 
enables teachers to understand why what students write (or say) makes sense to them, even if it is not correct. 

Pedagogical content knowledge in undergraduate teaching and learning
In the first vignette of this chapter, the professor was able to make sense of the student’s work on the derivative problem 
because he knew that students sometimes “over generalize” and carry out the chain rule process on expressions more 
times than is appropriate. To the student, applying the chain rule in this repeated fashion may make sense—it may 
just be that the student has not yet developed the ability to distinguish between situations where it applies and where 
it does not. In such situations, students are making an effort to apply what they know and the work they produce 
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provides clues to what they do (and do not) understand. You will not find this “over generalizing” difficulty described 
in any calculus textbook. Knowing this about student thinking is not knowledge of the chain rule (although having 
knowledge of the chain rule may play a role in how the professor responds to the student’s error). 

In the second vignette we saw a graduate student and a professor confronting a student’s algebraic reasoning while 
solving part of a calculus problem. The student produced the following string of computations: 

6 123 4 6 8 4 6 12 2 4
3

xy x x x-
+ = - - = - = = -

when the task required solving for y in 3 4 6 8y x+ = - . Instead of beginning with the original equation and writing 
the result of the transformation of each line separately (thereby maintaining the equality), the student had created a 
trace of only the transformations of the right-hand side of the equation. This gives the correct expression for y in the 
final term, but creates a string of expressions that are not equal to one another.

Why do students produce work like this? Are they just failing to be careful and systematic with their work? Do 
such errors arise just because students are trying to take a short cut by not writing down each step? This kind of error is 
actually fairly common and the result of how students interpret the use of the equals sign from their study of arithmetic 
and/or their weak understanding of how the equals sign is used in algebra. For most of their elementary schooling, 
students encountered problems such as 5 7 __+ = . In this example, and most others involving basic arithmetic, 
students are asked to perform a calculation and put the answer to the right of the equals sign. Repeated exposure to 
these kinds of tasks instills in students the belief that the equals sign is a “do something” operator (Behr, Erlwanger, 
& Nichols, 1980; Kieran, 1981; Saenz-Ludlow & Walgamuth, 1998). 

When students encounter expressions such as 3 x+  in algebra they often have difficulty leaving them as is and 
feel compelled to “do something,” resulting in expressions such as 3 3x x+ = . If students do not develop a different 
view of the equal sign, when they are faced with solving equations for a particular variable, they may manipulate 
expressions in ways that violate the equality. In the example from the vignette, the student understands the processes 
for solving the equation for y, but is carrying out those processes only on the right-hand side of the equation. At each 
step, the student is “doing something” to the expression, without regard to how what they are doing alters the equality 
of the expressions. 

Knowing that the equals sign is treated in a particular way in elementary arithmetic and that some students 
carry that understanding into their study of algebra and beyond is an example of pedagogical content knowledge. 
This is knowledge that is both about mathematics (in this case, about equality and algebraic transformations) and 
about student understanding of that mathematics (including errors that are symptoms of students’ under-developed 
knowledge of the equals sign). 

There are other examples of pedagogical content knowledge (PCK) possessed by professors. Similar to the chain 
rule example, “over generalizations” happen when students apply L’Hopital’s Rule multiple times as they evaluate 
limit problems. Although the rule states that it is only applicable in situations that meet certain criteria (e.g., the 
expression being evaluated must be a quotient of some indeterminant form), students sometimes keep applying the 
rule even after the expression they have obtained is no longer an indeterminant form. This kind of thinking results in 
chains of expressions such as:

0 0 0 03 2
(1 cos ) sin cos sinlim lim lim lim 0

6 63x x x x
x x x x

xx x   
- -

= = = = . 

The source of these kinds of errors is different than the source of other errors (e.g., “simplifying” ∞
∞  and getting 1, 

evaluating 0
0  as 0, etc.) and being able to distinguish among these types of errors draws on a professor’s pedagogical 

content knowledge. 
Other examples of pedagogical content knowledge include: knowing that when students are first learning to 

construct delta-epsilon proofs for limits, they are likely to have difficulty understanding and producing expressions 
that involve absolute values (e.g., 3x ε- < ); knowing that students will have difficulty understanding the relationship 
between a function being continuous and being differentiable (mixing up “continuous functions are differentiable” 
with “differentiable functions are continuous”); knowing that errors that students make when using partial fractions to 
evaluate integrals may come more from their skills with fractions than from their understanding of integration; etc. 
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Research on pedagogical content knowledge
In the time since the specialized knowledge described above was named “pedagogical content knowledge,” researchers 
have sought to document the extent to which teachers possess such knowledge and how that knowledge relates to 
their teaching practices and their students’ learning. A particular generative line of investigations has come from 
researchers associated with a project called “Cognitively Guided Instruction.” Research has included investigations 
of elementary school teachers’ knowledge of how students think about particular content and examinations of the role 
such knowledge plays in teachers’ instructional practices (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, 
Fennema, Peterson, Chiang, & Loef, 1989). Researchers have developed instruments to evaluate the extent of teachers’ 
knowledge of student difficulties and student strategies. It has also been possible to assess the extent to which teachers 
use their knowledge of student thinking as they teach. 

In conjunction with such work, professional development that focuses on developing teachers’ knowledge of 
student thinking (described in more detail in a later section) appears to be a promising approach to improving teaching 
(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema et al., 1996; Fennema & Scott Nelson, 1997). In short, 
research findings demonstrate that it is possible to help teachers increase the depth and breadth of their knowledge of 
student thinking and that such changes in knowledge can be linked to positive changes in teaching practices. These 
changes create more opportunities for students to think about and understand mathematical ideas.

Researchers have also taken this line of work one step farther and examined the consequences of such changes 
in teachers’ practice on student achievement. It appears that the more use that teachers make of their knowledge of 
student thinking while teaching, the more mathematics their students will learn (Fennema et al., 1996).

Similar lines of work are just beginning to appear at the college level. While this research is relatively sparse, 
researchers have begun to examine mathematics graduate students’ knowledge of student thinking for some key 
concepts from calculus (e.g., limit, derivative). Findings indicate that graduate students do not necessarily have 
extensive knowledge of student strategies and difficulties for these topics (Speer, Strickland, & Johnson, 2005) but that 
it is possible for graduate students to develop rich and detailed understanding of student thinking (Kung, in press).

In the next section, a second kind of knowledge is described and research is discussed that examines this kind of 
knowledge in teachers and its role in students’ learning.

Mathematical knowledge for teaching overview
In addition to pedagogical content knowledge, researchers have proposed other refinements to the basic categorizations 
of knowledge. In particular, researchers have found evidence that there are certain kinds of knowledge of mathematics 
that play important roles in how teachers teach.

This type of knowledge is distinct from pedagogical content knowledge discussed above: it includes knowledge 
of mathematics content and is not inherently related to student learning or understanding. This knowledge may come, 
in part, from the special kind of mathematical work that teachers engage in—a kind of work in which those who use 
mathematics outside of teaching are unlikely to engage. This kind of knowledge, as well as how knowledge is used in 
teaching, has received considerable attention in both the K–12 and undergraduate mathematics education community 
in recent years (Ball & Bass, 2000; Ferrini-Mundy, Burrill, Floden, & Sandow, 2003; Hill, Rowan, & Ball, 2004, 2005; 
Hill, Schilling, & Ball, 2004; Ma, 1999).

Ma (1999) provided a window into the rich and connected knowledge of mathematics possessed by some school 
teachers by investigating the extent to which teachers had knowledge of the complex relationships among mathematical 
ideas that arise in elementary mathematics teaching. By comparing how Chinese and U.S. teachers responded to 
mathematics tasks and teaching-related questions associated with those tasks, she highlighted the depth and breadth of 
mathematical knowledge that teachers can bring to their work. 

Ma investigated teachers’ knowledge of mathematics in certain domains (subtraction, multiplication, fractions, 
area and perimeter) and teachers’ knowledge that is linked to the teaching of topics in those domains. For example, 
teachers in her research completed division of fractions tasks and then constructed word problem examples to reflect 
particular division of fractions computations. While most teachers were able to carry out the computations accurately, 
some struggled to generate a word problem that correctly represented the division of fractions process. Teachers who 
were successful in creating a word problem that modeled the mathematics displayed a type of knowledge of fractions 
and division that is distinct from what is typically gained through regular schooling (at least in the U.S.). Such teachers 
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also knew alternative strategies for solving division of fractions tasks that could be used to explain the ideas to students 
and could be used as a basis for the design of word problems. 

These findings demonstrate that computational fluency is not necessarily an indicator of deep understanding of 
mathematical processes. While this finding is not unique, what Ma’s research also showed was that teachers make use 
of a particular kind of knowledge of mathematics when they engage in the work of teaching. Moreover, this kind of 
knowledge for teaching is not necessarily a natural and automatic by-product of knowledge of mathematical content. 
Ma concludes that having such knowledge enables teachers to make sense of student thinking and contributes to the 
learning opportunities that teachers can create for their students.

Mathematical knowledge for teaching in undergraduate teaching and learning
To date, analogous studies have not been conducted with people who teach undergraduate mathematics. It remains to 
be seen what kinds of specialized knowledge of mathematics graduate students and professors develop as a result of 
interpreting students’ ideas and engaging in other teaching-related mathematical activities. The next section describes 
research on these issues for K–12 teachers. 

Research on mathematical knowledge for teaching
Complementary to the line of work (described above) that identified particular examples of knowledge connected 
to teaching, others have extended this research by identifying other examples of knowledge for teaching, creating 
assessments of that knowledge, and examining connections between having such knowledge and student achievement 
(Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004). It appears that it is possible to create assessment items that 
tap into knowledge that is particular to teaching—knowledge that people with extensive non-teaching backgrounds in 
mathematics are unlikely to possess. In this work, a distinction is made between content knowledge and knowledge 
particular to teaching. This distinction has been described by Hill, Schilling, & Ball (2004) as follows:

One way to illustrate this distinction is by theorizing about how someone who has not taught children but who 
is otherwise knowledgeable in mathematics might interpret and respond to these items. This test population 
would not find the items which tap ordinary subject matter knowledge difficult. By contrast, however, these 
mathematics experts might be surprised, slowed, or even halted by the mathematics-as-used-in-teaching-
items; they would not have had access to or experience with opportunities to see, learn about, unpack and 
understand mathematics as it is used at the elementary level. (p. 16)

The following sample (from Hill, Rowan, & Ball, 2005) illustrates the kind of assessment item generated in this 
research program: 

Imagine that you are working with your class on multiplying large numbers. Among your students’ papers, you notice 
that some have displayed their work in the following ways:

 Student A Student B Student C
 35 35 35
  25  25  25
 125 175  25
 + 750      + 700 150
 875 875 100
   +600
   875

Which of these students would you judge to be using a method that could be used to multiply any two whole 
numbers?

 Method would Method would I’m not sure
 work for all NOT work for all
 whole numbers whole numbers

a) Method A _____ _____ _____
b) Method B _____ _____ _____
c) Method C _____ _____ _____
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The researchers contend that, “To respond in such situations, teachers must draw on mathematical knowledge: 
inspecting the steps shown in each example to determine what was done, then gauging whether or not this constitutes 
“a method,” and, if so, determining whether it makes sense and whether it works in general” (p. 388). They go on to 
say that doing so is not common work for adults who do not teach, however, this work “is entirely mathematical, not 
pedagogical; to make sound pedagogical decisions teachers must be able to size up and evaluate the mathematics of 
these alternatives” (p. 388). 

Similar work is also being conducted specifically in the domain of algebra. Researchers are developing assessment 
items and frameworks for analyzing the nature of the knowledge that is utilized in the teaching of algebra (Ferrini-
Mundy, Burrill, Floden, & Sandow, 2003).

In conjunction with some of the projects described above, researchers have looked for connections between 
teachers possessing such knowledge and the learning of their students. Findings from this work indicate that, “teachers’ 
content knowledge in mathematics, as measured by items designed to be close to the content and its uses that teachers 
deploy, is positively related to student achievement” (Hill, Rowan, & Ball, 2004, p. 35). Findings from the same study 
also, “offer evidence that such effects are due to more than general intelligence, or mere course-taking” (p. 35). 

How do Teachers Acquire Knowledge for Teaching?
The research programs involving experienced K–12 teachers are just beginning. Among the long-term goals are: figuring 
out how teachers develop this kind of knowledge, and figuring out how to best support teachers in the acquisition of 
this knowledge. Very little is known about precisely how this knowledge is acquired, but we can speculate about what 
is not the source: formal course work in mathematics. This type of content is not part of the curriculum and so it is 
likely that it is acquired through on-the-job learning. 

This section contains descriptions of research on professional development for teachers and explores the question 
of how teachers develop knowledge for teaching. With that as background, the remainder of the chapter includes a 
discussion of the issue of what these research findings might mean for the professional development of people who 
teach college-level mathematics.

For elementary and high school teachers, preparation for teaching consists of a mixture of mathematics content 
courses, teaching methods courses, and supervised experiences teaching. Each of these elements of teacher preparation 
contributes to the learning opportunities that teachers are able to create for their students. Content knowledge is obtained 
from mathematics courses, teaching methods courses expose teachers to some pedagogical content knowledge, and 
additional knowledge develops during experiences teachers have in conjunction with their preparation programs. 
When teachers emerge from preparation programs, however, there is still a great deal to be learned. 

Much of that learning occurs as teachers plan and carry out lessons, interact with students, and examine students’ 
homework and exams. Teachers develop extensive mental catalogs of the difficulties that students have, of errors that 
occur during particular chapters, and of examples that are especially illuminating for certain topics. This learning in 
the context of teaching is a major way in which teachers develop pedagogical content knowledge and mathematical 
knowledge for teaching.

For mathematics professors, the process of becoming a teacher is different. Professors do not participate 
in preparation programs and do not typically take courses in education as part of their graduate schooling. Some 
professors, however, have supervised teaching experiences while in graduate school, often as a teaching assistant. It 
is during these experiences (teaching discussion sections, possibly teaching full courses, talking with students during 
office hours, grading exams, etc.) that graduate students begin to develop the pedagogical content knowledge and 
pedagogically useful mathematical knowledge we saw in the examples above.

Some people have written about the preparation of university faculty to teach, but reports of research in this area 
are scarce. In most articles or volumes about teaching and learning at the university level, there is much information 
about how particular kinds of teaching take place and what the outcomes are for teachers and students (e.g., Holton, 
2001, “The Teaching and Learning of Mathematics at University Level: An ICMI Study.”) Such pieces about teaching, 
however, speak mostly about what teachers do or might do and how these practices relate to particular learning 
goals for students. Implicit in such work is the assertion that professors need to acquire the abilities and knowledge 
to carry out the particular kind of instruction described in the reports. It is possible to read articles and chapters 
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about university teaching with an eye toward the kind of knowledge that might underlie the teaching practices being 
described or proposed, but such information is not typically an explicit part of such reports. For a particular interesting 
venue in which to attempt this exercise of inferring the knowledge needed to teach, see Mason (2001). In this chapter 
(“Mathematical teaching practices at tertiary level: Working group report,”) working group members describe 
approaches to teaching that they value. Nearly all place particular emphasis on anticipating and finding out what 
students already know about a topic and organizing class activities in ways that provide students opportunities to learn 
mathematics and also provide the professor with a window into how students are thinking about the mathematical 
ideas in question. 

Given the substantial demands on teachers’ knowledge that teaching well entails, many programs exist that 
provide K–12 teachers with opportunities to acquire more knowledge after they begin their teaching careers. Similar 
opportunities for mathematics professors are scarce (NSF, 1992). In the next section, a particularly effective form of 
professional development for elementary schoolteachers is described and in a later section, we discuss how elements 
of this program might be incorporated into graduate student professional development. 

Providing teachers with opportunities to develop knowledge
If factors other than traditional content knowledge and basic pedagogical skills influence what students learn, what 
kinds of efforts have been made to provide teachers with opportunities to learn these things? Educational research on 
pedagogical content knowledge has a longer history than analogous work on mathematical knowledge for teaching. 
As a result, programs for teachers and associated research are more extensively developed for pedagogical content 
knowledge. Among various aspects of PCK, knowledge of student understanding (including knowledge of how 
students typically understand particular concepts, how ideas from prior courses interact with their learning of new 
content, typical student strategies for solving problems, and common student difficulties/errors) has been the focus of 
some programs with effective results. 

One of the best-documented and most extensively researched programs is Cognitively Guided Instruction 
(CGI). Teachers participating in this program acquire knowledge about student thinking and learning of particular 
mathematics topics. Teachers participate in workshops where mathematics educators present research on how students 
think about specific topics (e.g., addition, subtraction, etc.). Teachers also read reports of research about student 
strategies and common difficulties for particular kinds of problems. During the workshop, teachers also watch videos 
of students working on problems and being interviewed about how they are thinking about the problems. In addition, 
teachers investigate how students think about particular topics by conducting interviews and investigate how findings 
from educational research relate to what students did and said during the interviews. These activities give teachers 
opportunities to see and understand the (sometimes surprising) variety of ideas that students have about particular 
problems.

Researchers who study participants in these workshops have found that teachers develop richer knowledge of 
student thinking and they also change their teaching practices to include more requests for students to explain or 
justify their answers (Carpenter, Fennema, & Franke, 1996; Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, 
Fennema, Peterson, Chiang, & Loef, 1989). In addition, research on CGI has documented significant gains in student 
achievement as a result of this kind of professional development (Carpenter, Fennema, & Franke, 1996; Carpenter, 
Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Fennema et al., 1996). 
Student problem solving and concept knowledge increased, and in many cases, overall student achievement improved 
by as much as one standard deviation. Unlike the research on teachers’ content knowledge, these findings indicate a 
strong relationship between teachers’ pedagogical content knowledge (in this case, knowledge of student thinking and 
learning) and their students’ learning. 

Themes in Research and Implications for Graduate Student Professional Development
In this section we discuss three themes evident in the research reviewed earlier in this chapter and describe how 
professional development for graduate students might be designed in light of these themes. We describe each theme, 
discuss what makes the theme suited to implementation with mathematics graduate students, and provide some specific 
suggestions for implementing professional development consistent with the theme.
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This section is inherently speculative — research into the professional development of mathematics graduate 
students is scarce (Speer, Gutmann, & Murphy, 2005). What we do know, however, is that most graduate students 
receive preparation for their first job as a teacher. This may take the form of university-wide orientation sessions 
for graduate students or it may be a program designed specifically for mathematics. While these programs help 
graduate students adapt to their new role as a teacher, the emphasis is typically on administrative responsibilities and 
mechanical aspects of teaching (clear writing on the board, collecting homework efficiently, etc.). While these are 
certainly important aspects of learning to teach, there is a lot for graduate students to learn about how students think 
about mathematical ideas and most of that kind of learning happens once they set foot in the classroom and begin 
interacting with students and with the mathematics that their students produce. The suggested activities described 
below are modeled after elements of the professional development programs connected with the research on teachers’ 
knowledge that was summarized earlier in this chapter. Using activities designed for K–12 teachers, however, is not 
always appropriate or feasible in the undergraduate teaching context. The suggestions below come from modifying 
such activities in ways to make them well-suited for graduate students and to take advantage of the rich learning 
environment that graduate students are in as they teach. 

Focusing on students’ thinking improves teachers’ teaching practices
The first theme in the research discussed in this chapter is that knowing mathematics is a necessary but not sufficient 
condition for teachers to create good learning opportunities for their students. Findings indicate that students learn 
more when teachers have extensive knowledge of student strategies, student difficulties, and the mathematics tied to 
the teaching of particular ideas. Teachers develop this knowledge in various ways, but doing so requires focusing on 
issues of student thinking (in addition to other aspects of teaching).

As noted above, most pre-semester programs for mathematics graduate students do not focus on issues of student 
learning. This is, in some ways, very natural—graduate students are there to learn to teach and so time is spent discussing 
issues of teaching. This approach, however, may not help graduate students recognize the role that knowledge of 
student thinking plays in teaching and may not give them opportunities to begin to develop that knowledge. 

Reasons	why	this	is	well-suited	to	the	undergraduate	mathematics	context.		There are several reasons why focusing 
on issues of student thinking might be a productive approach to professional development for graduate students. When 
designing professional development for K–12 teachers, one has to take into consideration the depth and breadth of the 
teachers’ mathematical knowledge. Some K–12 teachers do not have as strong and deep knowledge of mathematical 
content as we might wish. As a result, preparation and professional development programs for K–12 teachers are often 
designed to address issues of mathematical content in addition to other issues (knowledge of student thinking, etc.). 
Professional development for graduate students, on the other hand, can take advantage of their extensive background 
and interests in mathematics. For example, some knowledge of student thinking can come from “unpacking” the 
mathematics contained in problems or topics. This unpacking involves thinking about all of the mathematical ideas 
that are connected to the particular problem. Then, one can envision a variety of ways someone might approach the 
problem if for some reason they chose to pursue a solution path that was not identical to the one first thought of by 
the graduate student. 

Ways	 this	 can	 be	 accomplished.	 	There are several ways that issues of student thinking could be added to or 
emphasized in professional development for graduate students. 

• Talk about examples of student work. As part of graduate student instructor meetings, the professor who 
supervises those graduate students could orchestrate a discussion of examples of student work. These examples 
could relate to topics that everyone is going to be teaching soon. The professor (or experienced graduate 
students) could bring samples of work students produced when answering test or quiz problems on the topic. 
The discussion could be focused on trying to figure out why what the student did made sense to him or her and 
what the student might have been thinking as they worked on the problem. Faculty and experienced graduate 
students are apt to be able to provide quite a bit of insight into students’ thinking. In addition to sharing their 
knowledge with less experienced graduate students, such discussions also may help new graduate students 
appreciate the role that knowledge of student thinking plays in teaching well. Professors and graduate students 
could build up libraries of these examples of student work for each course that could then be used in the future 
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for discussions with new graduate students. Some examples can be found in the Boston College Case Studies 
materials (S. Friedberg et al., 2001a; S. Friedberg et al., 2001b). 

• Use resources such as this volume. Graduate students and professors could read the chapter relevant to topics 
that are coming up in a course. Above, the suggestion was made that graduate students could examine examples 
of student work before teaching the related topics—in addition, graduate students can collect and examine 
student work from their students, read a summary of related research, and use the ideas from the research to 
analyze what their students did. As is done in the Cognitively Guided Instruction model, graduate students 
could also be given the task of interviewing a couple of students about how they solved a particular problem 
from class or a test. If there are several graduate students teaching the same course, each could select a different 
kind of problem and then report back to the group about what they learned about the students’ difficulties and 
strategies. While this activity might be most meaningful if it used problems from the courses the graduate 
students are teaching, research articles on student thinking could also be used as a source for problems. In 
addition to this volume, the Research in Collegiate Mathematics Education (RCME) series provides collections 
of articles (Dubinsky, Schoenfeld, & Kaput, 1994; Dubinsky, Schoenfeld, & Kaput, 2000; Kaput, Schoenfeld, 
& Dubinsky, 1996; Schoenfeld, Kaput, & Dubinsky, 1998; Selden, Dubinsky, Harel, & Hitt, 2003).

Experienced Teachers Have Rich Knowledge of Student Thinking
Among the best resources for learning about student thinking are professors and advanced graduate students who 
have already acquired some of this knowledge. Providing TAs with access to the authentic practices of professors 
can give less experienced graduate student instructors ideas about what professors do when planning for teaching and 
examining student work.

Reasons	why	this	is	well-suited	to	the	undergraduate	mathematics	context.		For many graduate students, their 
teaching experiences include times when they are responsible for one section of a course or a recitation section 
associated with a lecture of a course. In many of these cases, there is a professor who supervises the graduate students 
who are all teaching some part of the same course. These professors have the responsibility for ensuring that various 
aspects of the course are coordinated among the graduate students (topics for the coming week, giving quizzes, 
grading exams, handling homework, etc.). To accomplish these things, often professors hold periodic meetings with 
the graduate students who are instructors for a course. 

This kind of joint planning time is typically not found in K–12 teaching contexts, but having such time to discuss 
students and their thinking is often considered key to helping teachers improve their practice. In such meetings among 
graduate students and a professor, the focus is often on what is coming up next in the course—but such discussions 
could be focused on student thinking in addition to mechanics/administrative issues. Specific suggestions for how time 
during these meetings might be used are given below. 

Ways	this	can	be	accomplished
• Have graduate students and professors discuss the examples that are used in particular sections of the textbook 

and what it is about those examples that makes them well-suited as an illustration of the particular ideas in the 
chapter.

• In staff meetings for large courses, have professors talk about planning for a particular lecture and how 
examples were selected. Discuss what specific ideas the examples are illustrating and/or how certain “classic” 
examples illustrate difficult ideas in particularly useful ways. 

• Have graduate students write quizzes or problems and predict what students are likely to do with the problems 
and what difficulties they will have. Then talk with an experienced professor or more advanced graduate 
student to get feedback about other strategies or difficulties students might have to ensure that the problems 
are actually going to assess understanding of the ideas that the graduate student has in mind.

Some Teaching Practices Create Many Opportunities to Acquire Knowledge of Student Thinking
While graduate students and other teachers gain knowledge about student understanding in many ways, one of the 
most productive is from interactions with students when they are explaining their thinking. These interactions might 
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take place in office hours, during a class discussion, or on paper when a question asks students to explain their 
reasoning. These practices are useful for student learning and they provide graduate students with authentic access to 
student thinking and learning. 

Ways	this	can	be	accomplished.		Particular approaches or models of instruction focus extensively on having students 
explain and justify their reasoning. At the undergraduate level, one of the most successful has been the Emerging 
Scholars Program (known by other names at some institutions). The Emerging Scholars Program (ESP) was designed 
based on research conducted on how successful students learn calculus (Fullilove & Treisman, 1990; Treisman, 1985). 
In ESP classes, students work in collaborative groups on challenging problems and the graduate student instructor 
assists students and moves from group to group asking them to describe how they arrived at their answers. This 
provides graduate students with especially extensive and rich access to student thinking. There is some evidence that 
such teaching experiences enable people to acquire considerable knowledge of student thinking in the course of their 
graduate school teaching careers (Kung, in press). For more information about ESP classes and their influence on 
students’ learning of mathematics, see (Hsu, Murphy, & Treisman, this volume). 

There are also small changes one can make to one’s teaching to get more information about student thinking. The 
simplest is to ask questions that require students to provide an explanation for their answers. After a student responds 
to a question, if a teacher asks, “How did you get that answer?” not only will other students have access to the thinking 
behind an answer, but there is the possibility that the teacher will learn something new about how students think about 
the ideas or about the kinds of difficulties they have when solving such problems. 

Concluding Thoughts
Given the relatively rapid increase in research on undergraduate mathematics education over the past few decades, it 
is likely that the future will generate a rich research base about how graduate students and professors learn to teach as 
well as insights into how best to support the development of their teaching practices. Currently most research activity 
is focused on students and how they think about and learn mathematics. The undergraduate mathematics education 
research community, however, is in the fortunate position of having the option to utilize research on student thinking 
in the professional development of teachers. Researchers of K–12 mathematics education have also amassed a base of 
research on student thinking and more recently have discovered ways to use that base of research in improving teaching 
practices. As described above, researchers have shown that knowing how students are apt to approach particular 
problems, what their difficulties are likely to be, and why specific ways of thinking make sense to students, are the 
types of knowledge that are likely to influence how students learn mathematics. Professional development programs 
that create opportunities for teachers’ to enrich and expand their knowledge of student thinking have been successful 
in inducing changes in teaching practices that lead to increases in student learning. 

As the other chapters in this volume demonstrate, much is known about how students think about and learn 
mathematics at the undergraduate level. Since this body of research exists (and is expanding), the undergraduate 
mathematics education community may very well already possess an important key to improving undergraduate 
education. The findings from K–12 research on teachers can play important roles in creating effective professional 
development for graduate students and professors. Questions of how best to adapt aspects of K–12 professional 
development for the undergraduate setting are among the issues to consider as more and more researchers take on the 
challenge of understanding how best to help people learn to be effective teachers of undergraduate mathematics. 
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