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known for some time. The sequence in question (to be described shortly) is touchy:
it stays constant for a while, then increases by 1, then stays constant for a while, etc.
It is, so to speak, just barely unimodal.

What she did was first to invent a partially ordered set in which the members of
the given sequence count the numbers of inhabitants in the layers, and then to
invent a maximal symmetric chain decomposition of that partially ordered set. The
reader who tries both of our suggested exercises above will appreciate that that was
no mean feat.

Specifically, she proved that the polynomial in ¢ (‘Gaussian polynomial’)

(1 — go*8)(1 = g=*5-1) -+ (1 = g**Y)
(1-¢")A1~-¢"")---(1-9q)

is unimodal, i.e., its coefficient sequence is unimodal.

For example, G(2,2) =1 + q + 2¢* + ¢° + g%, is clearly unimodal.

The best way to learn a topic is by teaching it. Similarly the best way to
understand a new proof is by writing an expository paper about it. That was the
original motivation of this paper. Once written, I thought it would be nice if
the readers of the Monthly had the opportunity to savor the elegant proof. All the
central ideas and constructions are O’Hara’s, but I have made a few improvements
and shortcuts that I believe will make the argument clearer. I would like to thank
Kathy O’Hara for stimulating conversations and correspondence.

The unimodality of the Gaussian polynomials had previously received several
‘fancy’ proofs, the first one by Sylvester [15]. The most elementary proof before
O’Hara’s was that of Proctor [10] who used only linear algebra. The reader is urged
to look up Proctor’s beautiful paper [10] for the history and the significance of the
problem. I should also mention White’s [17] elegant proof that uses Polya theory.

The coefficients of the Gaussian polynomials G (b, a) have well known combina-
torial interpretations, and the polynomials themselves have a number of interesting
properties. What follows is a list of some of these. The reader who has not
encountered these before could do no better than to consult Pdlya, Szego [9], and
follow the beautiful exercises 60.1 to 60.11 of Chapter 1, and their solutions, after
which the properties listed below will all have been proved.

G(b,a) = 3)

(a) The coefficient of ¢* in G(b, a), let us call it ¢,(b, a), is the number of
‘zigzag walks’ in the plane (i.e., each step increases either x or y by one unit),
from (0, 0) to (b, a), such that the area under the walk (i.e., between the path,
the x-axis, and the line x = a) is exactly k.

(b) c(b, a) is the number of ‘p-vectors’ in the set

Udb,a) = {(p1, P2y s Pa):0<p <py< --- <p,<b,py+ - +p, =k}
4)

(¢) G(b, a) is a polynomial in ¢ of degree ab, whose coefficients are symmetric
about the middle, i.e., ¢, = ¢ ,_,.

In order to prove that G(b, a) is unimodal it will be enough to show that
U (b, a)| < |Up1(b, a)|] for 0 <k <ab/2. A direct combinatorial proof will
consist of exhibiting an explicit injection of U, (b, a) to U, (b, a) for those
values of k.
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2. Posets. We will need some standard definitions and elementary results from
the theory of partially ordered sets ( posets). All that we will need will be presented
here, but the reader who wishes to know more is referred to chapter 2 of Stanton
and White’s excellent text [14], and to Greene and Kleitman’s survey [4].

A poset (P, <) is a set P together with a partial order. We say that a < b if
a<b and a # b, and that b covers a if a < b and there is no ¢ such that
a<c<b. If b covers a we will write a = b. A poset is ranked if each element
a € P has been assigned a positive integer, rank(a), such that ¢ — b implies that
rank(b) = rank(a) + 1. The set L, = {a € P: rank(a) = i} is called the set of rank
i or the ith level set.

A good way to visualize a poset P is in terms of its Hasse diagram. The vertices
of the Hasse diagram are the elements of P and its edges are the covering relations
of P. The Hasse diagram of a poset uniquely determines that poset, by transitivity
of the order relation. Figs. 2(a) and 2(b) show examples of Hasse diagrams of a
ranked and an unranked poset respectively.

(a) a ranked poset (b) an unranked poset

Fi1G. 2

A finite ranked poset is rank unimodal if the numbers w; = |L,| are unimodal. P
is rank symmetric if there is an integer m such that w, = 0 for i > m and w, = w,,_;
for all i. We will call that integer m the rank of P.

A maximal symmetric chain in a rank symmetric poset is a sequence of elements
of P, a, > a, -+ — a, in which rank(a;) + rank(a,) = rank(P). A maximal
symmetric chain decomposition (SCD) of a rank symmetric poset P is a covering of
P by pairwise disjoint maximal symmetric chains.

If a poset has an SCD then it is obviously rank unimodal, and so here is the
strategy of the proof.

Strategy. Define the poset U(b, a) as follows. Its elements are the p-vectors in
the set

U(s, a)d=ekaJUk(b, a)

={(py--»P):0<p < -+ <p,<b}.

The partial order relation is simply that p’ < p” means that the sum of the entries
of p’is less than the sum of the entries of p”’. We wish to construct an SCD for this
poset.

To do this we will need the following three simple facts.
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Fact 1. If P is a rank-symmetric poset of rank m and if P is the same poset but
with the rank defined by

rank(p) = rank(p) + a,

for some integer a, then P is a rank-symmetric poset of rank m + 2a.
Indeed, w, = w,,;, and w;, = w,,_, imply that w,,, = w,,_, ..
We say that P is the shift of P by a.

Fact 2. Let P and Q be ranked posets and let #: P — Q be a rank preserving,
order preserving bijection from P to Q. If P has an SCD then so does Q: its chains
are the images, under «, of the chains of the SCD of P.

If P and Q are posets, then their Cartesian product (P X Q, <) is the poset
whose elements are those of the set P X Q, and in which the order relation is
defined by (p,q) < (p’,q") iff p <p’ and ¢ < ¢q’. If P and Q are ranked, then
P X Q can be ranked by defining rank( p, g) = rank( p) + rank(q).

Fact 3. ([3]) If P and Q are rank-symmetric ranked posets, of ranks m, m’
respectively, and if P and Q have SCD’s, then P X Q also has an SCD, and
it can be constructed quite explicitly from the two given SCD’s. Furthermore,
rank(P X Q) = rank(P) + rank(Q).

The best way to think about the proof of Fact 3 is first to picture the cartesian
product of two chains C and D in réctangular form

(P @1) (P2a‘11) )
(P15 42) (P> q2) - (P> q2)
(r4) (Pna) o (pa).

The chains in the SCD of P X Q that are contributed by just this one chain C from
the SCD of P and the one chain D from the SCD of Q are the ones that are
obtained by successively ‘peeling off’ the chain that is obtained by going from left
to right along the top row and continuing all the way down the rightmost column, as
shown in Fig. 3.

3. The art of constructing symmetric chain decompositions. How does one go
about constructing SCD’s for a family of posets such as U(b, a)? One possibility
might have been to express U(b, a) as the cartesian product of smaller U(?’, a’).
For example, for the Boolean lattice B”, we have B” = {0,1} X B""!, and by
applying Fact 3 recursively we obtain an SCD for B" ([3]). This does not seem
possible for U(b, a).

O’Hara’s ingenuity consisted in dividing and conquering: she found a refinement
of U(b, a), a certain doubly indexed family of subposets, U(b, a; m, d), that
appeared to be also rank unimodal, rank symmetric, and of the same rank, ab, as
U(b, a). She then discovered a structure theorem for these smaller subposets, that
expressed each of them in terms of the operations ‘union’ and ‘Cartesian product’
of posets U(d’, a’; m’, d’) for a’ < a.

It was therefore possible to use the three Facts in order recursively to construct
an SCD for each of these U(b, a; m, d) in terms of those of smaller a. The base
cases a= —1, a=0 and a =1 being trivial, this showed that each of the
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Decomposition of a product of two chains into chains.

Fi1G. 3

U(b, a; m, d) had an SCD, and by taking the union over all m and d, one had an
SCD for U(b, a) itself. We will now present the details.

4. O’Hara’s construction. Recall that

Ulb,a)={p=(p,--»p,);0<p, < --- <p,<b}.

Let us make ‘the convention henceforth that p, =0 for i <0 and p,= b for
i > a. For each p-vector in U(b, a) we define its spread and its degree, as follows.
First,

spread(p) = max{p, — p,_,:2<i<a+1}.
Next we define M( p) to be the set of indices on which the spread is attained,
M(p)={2<i<a+1:p,—p,_,=spread(p)}.

Partition M(p) into UD,, where the D; are maximal intervals (of consecutive
integers), and define the degree of p by

deg(p) = ?{&’lzi—lj

For example, for a =13, =10 and p = (1,2,2,3,4,5,6,6,6,7,8,8,10), we
find that spread(p) =2, M(p) = {2,5,6,7,11,13,14}, D, = {2}, D, = {5,6,7},
D, = {11}, D, = {13,14}, and deg(p) = 5.

Next we define the following subposets:

U(b,a;m,d) = {pe U(b,a): spread(p) = m and deg(p) = d },
and
U(b,a;m) = {p € U(b, a): spread(p) < m}.

We make the reasonable convention that U(b,0) contains a single p-vector,
namely the empty vector. If a is negative then U(b, a) = &. Further, we make the
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convention that a Cartesian product @ X P, of the empty set with a poset P, is
isomorphic to P, and its elements will be denoted by (—, p).
Everything would follow from

THE O’HARA STRUCTURE THEOREM. Let a, b, m,d be positive integers. The
mapping
0:U(b—md,a—2d;m—1) X U(ma + 2m — 2b,d) - U(b,a; m,d),

to be defined below, is an order preserving bijection such that for every q &
Ub—-md,a—2d,m—1) and r € Ulma + 2m — 2b, d), we have

rank(o(q,r)) = rank(q, r) + 2bd — md(d + 1). (5)

Before we go ahead and define o, let us show that indeed ‘everything’ would
follow from the theorem.

We prove, by induction on a =1,2,..., the following proposition: ‘For all
b, m,d, the poset U(b, a; m, d) has an SCD and has rank ba.” The base case a = 1
being trivial to verify, let a > 1 be fixed, and let us assume the truth of the
proposition for all 1 < a’ < a.

We claim first that for every p € U(b, a) we have deg(p) <|(a + 1)/2|. In-
deed, for every S C {2,..., a + 1}, if we write S = U D,, where the D, are intervals,
it is easy to check, by induction on a, that

(D1 +1)/2] < [(a+1)/2],

which proves the claim.

Now, if U(b, a; m,d) # @ we must have d < |(a + 1)/2|, and since a > 1, we
have d < a. Since U(ma + 2m — 2b,d) is a union of certain U(ma + 2m —
2b, d; m’, d’), each of which, inductively, has rank (ma + 2m — 2b)d and we know
how to construct an SCD for it, it follows that U(ma + 2m — 2b, d) has rank
(ma + 2m — 2b)d and we know how to construct an SCD for it. Likewise,
U(b — md, a — 2d; m — 1) has rank (b — md)(a — 2d) and we know how to
construct an SCD for it.

Hence, by Fact 3 we can construct an SCD for the product U(b — md,
a—2d;m— 1) X U(ma + 2m2b, d), and its rank is (b — md )(a — 2d) + (ma +
2m — 2b)d. The O’Hara Structure Theorem tells us that U(b, a; m, d) is the image
of that product poset under an order preserving bijection, which is actually rank
preserving if U(ma + 2m — 2b, d) is shifted by 2bd — md(d + 1). By Fact 2 we
know how to construct an SCD for U(b, a; m, d), and by Fact 3 its rank is
(b — md)a — 2d) + (ma + 2m — 2b)d + 2(2bd — md(d + 1)) = ab.

In order to prove the structure theorem we have to
(i) define the mapping o
(ii) define its alleged inverse 7
(iii) prove that o is well defined
(iv) prove that « is well defined
(v) prove that the composition 7o is the identity
(vi) prove that o7 is the identity
(vii) prove that (5) is true
(viii) prove that o is order preserving.
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In order to make this exposition entirely self-contained, we have included
complete proofs of these eight propositions in the Appendix. The proof of the
unimodality of the Gaussian coefficients is now finished.

5. Discussion. The partial ordering that we put on the set of p-vectors was the
right one to get this proof done, but another partial ordering on the same set of
objects has been known for some time, and it is even less well understood. In the set
U(b, a) of all p-vectors of < a components each of which is < b, a natural order
to consider is the one in which p < ¢ means that Vi: p; < ¢, Under this order
U(b,a) is called Young’s lattice. More generally, given a partition A, the Young
lattice Y, is defined to be the set of all p-vectors such that p < A with the same
definition of < and rank as before. The U(b, a) are the special cases in which
A = b? (b repeated a times). U(b, a) is rank unimodal; but what about Y, for
general A? Of course Y, is no longer rank-symmetric, but it appears to be
rank-unimodal for small A. For example, in Y;,, the numbers of elements of each
rank are 1,1,2, 1.

It was conjectured for some time that the Y,, while not rank-symmetric, are
nevertheless rank unimodal. It came as a great surprise when Dennis Stanton [13],
assisted by a computer, found a counterexample: for A = (4,4, 8, 8), Y, is not rank
unimodal. Furthermore Stanton did something that no computer can do by itself:
he found infinite families of counterexamples, the simplest one being (4,4, 2k,2k),
for k > 4.

A poset that possesses an SCD automatically enjoys the ‘Sperner property,’
which is to say that its largest possible independent set is obtained by taking the
largest level set.

Even the existence of an SCD for U(b, a), with Young’s lattice order, is still an
open problem. However to deduce the Sperner property, as well as rank unimodal-
ity, you don’t quite need a symmeiric chain decomposition. It is enough to have a
maximal chain decomposition all of whose chains pass through the largest level set.
Stanley [12], using the ‘hard Lefschetz theorem’ from algebraic geometry, proved
the existence of such a chain decomposition for the poset U(b, a) as well as for
some other posets, among them the poset M(n) of all partitions of integers into
distinct parts < n, with the same rank and order relation as for U(b, a).

Stanley’s proofs for U(b, a) and M(n) were subsequently simplified by Proctor
[10]. Incidentally, the fact that M(n) has the Sperner property, that Stanley
discovered almost as an afterthought, trying to apply the ‘hard Lefschetz’ hammer
to as many nails as possible, turned out to be equivalent to a longstanding
conjecture of Erdés and Moser. Stanley found out about it quite by accident, from
Larry Harper, during a phone call whose original purpose was to discuss a house
sublet during a Sabbatical leave! See Proctor [10] for more about this story.

However, both Stanley’s proof and Proctor’s simplifications were nonconstructive
existence proofs. It is still an open problem to find an explicit construction of an
SCD for U(b, a) (or even that of a nonsymmetric decomposition as above). To date
such a construction is known only when a or b are either 3 or 4 (see Lindstrom [6],
West [16], Riess [10]).

I am sure that O’Hara’s breakthrough will lead to further work in this area. It
would be very nice to find another decomposition of U(b, a) in which the analogue
of ¢ would be also order preserving in the Young’s lattice order. It would also be



598 D. ZEILBERGER [August-September

interesting to find an O’Hara-style constructive proof of Stanley’s result that the
posets M(n) are rank unimodal. This fact is equivalent to the unimodality of the
polynomial (1 + £)(1 + ¢2)--- (1 + t™).

More generally, Almkvist [1] conjectured that the polynomials

are unimodal when r is even and #» > 1 and when r is odd and » > 11. He
developed an interesting analytical method that is capable, at least in principle, of
proving this conjecture for every specific r. Assisted by computer, he proved his
conjecture for 3 < r < 20 and r = 100, 101. The conjecture is still open for general
r. It is equivalent to the rank unimodality of the poset of partitions in which each
part can appear at most r — 1 times, and whose parts are all < n. An O’Hara-style
proof would be particularly gratifying because it would demonstrate that purely
bijective methods are capable not only of duplicating results that have been found
by other branches of mathematics, but of proving new ones.

Appendix. The fine print (proofs of (i)—(viii)). It is easiest to start with the
definition of . So we will perform the eight tasks in the following order: (i), (i),

@iv), (iil), (v), (vi), (vil), (viii).
(ii) Definition of .

U(b,a;m,d) » U(b—md,a—2d;m—1) X U(ma + 2m — 2b,d)

Let p=(py,--., P,) € Ub, a; m,d). We will define #(p) = (q(p), r(p)) =
(q,r). Let t + 1 =max M(p) =max{2 <i<a+1; p,— p,_,=m}, and define
a new p-vector p’ = (p!,..., p._,) by putting p/ =p, if 1 <i<t—2and p; =
Di+o — m else. We will show that p’ € U(b — m, a — 2; m,d — 1) when d > 1 and
p € Ub—mya—2;m—1)when d=1.

Define q(p) = p/, if d =1, and, recursively, q(p) = g(p’), if d > 1. Also, let
r'= @ if d =1, and, recursively, r’ = r(p’) if d > 1 (we will show that r’ has
d — 1 nonvanishing components). Finally, put , = p, + p,,; + m(a — t — 1) — 2b,
and r,=r/_, for2 <i<d.

() Definition of o. U(b — md, a — 2d; m — 1) X U(ma + 2m — 2b, d) —
U(b, a; m, d)

Let g € U(b — md,a — 2d; m — 1) and r € U(ma + 2m — 2b, d); we will de-
fine a(q, r) = p, say.

Let r’ be the p-vector with d — 1 components obtained from r by deleting the
first component. Obviously ' € U(ma + 2m — 2b,d — 1). Next let p’ =g if
d=1, and p’ =0(q,r’) if d>1 (we will show that p’ has a — 2 nonvanishing
entries).

We will now define a certain integer ¢, 1 < ¢ < a. If r, = 0, let ¢t = a. Else, let ¢
be the unique integer that satisfies

pl+p—m<r—m(a+2)+2b<p/ ,+p ,—m(t—1). (Al)
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We define p = o(q, r) by

(pis 1<i<t-1
pi={n—-pl,—m(a—t+2)+2b, i=
Dl_,+ m, t+1<i<a.

(iv) 7 is well defined.

p’ is a genuine p-vector since p/_; =p,., —m=p,_ = p,_, = p/_,. Here we
have used the fact that 1 + 1 € M(p), and thus p,,; — m = p,_;. Now it is readily
seen that M(p") = M(p)\ {t + 1} if t &€ M(p), and M(p") = M(p)\ {¢t,t + 1}
if t € M(p). In either case, deg(p’) = deg(p) — 1 and spread(p’) = m, if d > 1,
while spread(p) <mif d = 1.

Hence p € Ub—m,a—2;m,d—1) if d>1 and p’' € l7(b—m,a—2;
m-—1)if d=1.1f d=1, clearly g € U(b — md, a — 2d; m — 1), and if d > 1,
then inductively, ¢ belongs to U(b —m —m(d —1),a -2 —-2(d—-1);m—1) =
Ub —md,a—2d;m—1). Let t' +1=max M(p’). Of course, ¢’ <t —2. It
remains to show that r is a genuine p-vector in U(m(a + 2) — 2b, d).

By the inductive hypothesis r’ belongs to U(m(a — 2 + 2) — 2(b — m),d — 1)
= U(m(a + 2) — 2b,d — 1), and so to show that r is a bona fide element of
U(m(a + 2) — 2b, d) we will have to show that when d > 1 we have 0 < r, <r,,
ie, 0 <r <rf,ie., that

03p,+p,+1+m(a—t+1)~2b5p,’,+p,’,+1

(A2)
+m((a—2)—t' +1) —2(b—m),
and when d = 1 we have to show that r, < m(a + 2) — 2b, i.e,
0<p +p,,+m(a—t+1)—2b<m(a+?2)—2b.
If we make the convention that ' = —1 when d = 1, then both of the above are

included if we prove (A2) for alld > 1. Now the left side of (A2) is equivalent to
(b—m)+b—p —p. <m(a—t), while the right side of (A2) is equivalent to
Py + Pis1 — Pl — Plo1 < m(t — ). Both of these follow from the proposition be-
low: the first by taking 4 = a, B = ¢, and noting that p,,, =b and p, < b — m;
the second by taking 4 = ¢, B = t’, and noting that since ¢’ <t — 2, we have

pl=pyand pioy =Py
PROPOSITION. Let A > B. Thenp, + py,1 — Pg — Pp+1 < m(A — B).
Proof of proposition. If A — B is even then

Pat Pasr— P~ Pper =[P4 — Psl + [ Pys1 — Ppi1)
= [(PA —Paa) t o +(PB+2_PB)]

+[(pas1—Par) + - +(Ppys — Ppr1)
<m(A—-B)/2+m(A - B)/2=m(4~ B).
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Similarly, if 4 — B is odd,
Pat Pas1— Py~ Ppe1=[Pa = Ppr] + [Pas1 — Psl
= [(pa—Pa2) + - +(Pses— Ppi1)]

+[(pas1 = Pac1) + - +(Ppia2— Ps)]
<m(A-B-1)/2+m(A+1-B)/2=m(4 - B).

(i) o is well defined.

Let g€ Ub—md,a—2d; m—1) and r € U(m(a + 2) — 2b,d). We will

prove that p = o(q, r) is a p-vector in U(b, a; m, d).
_Since r’ € Um(a +2)—2b,d—1)=U(ma—2b—m),d—1) and g€
Ub—-md,a—-2d;m—-1)=U((b—m)—m@d-1),(a=2)—2d—-1);m—
1), it follows by the induction hypothesis, for d > 1, that p’ € U(b — m, a —
2;m,d—1).If d =1, then of course p’ € U(b —m,a —2; m — 1).

Now we claim that p. ;+p,—ma<r,—m(a+2)+2b<p. |+ps—
m(1 — 1), which, since p’, =p;=0 and p,_, =p.,=b— m, is equivalent to
2b —m(a+2)<r—m(a+2)+2b<0. That is equivalent to 0 <r, <
m(a + 2) — 2b, which is obvious.

Now it is easy to see that the closed (discrete) interval [2b — m(a + 2),0] can be
partitioned as follows into a union of a single point and half open intervals:

[2b — m(a+2),0] = {2b — m(a+2)}
=1
u U (pt/—l +p/ —mt, pt,—2 +ptl—1 _m(t - 1)]
t=a

Hence the ¢ that was defined in the definition of ¢ was in fact well defined.

We must also show that p, > p,_; and p,,, = p,, both of which follow easily
from (Al). Furthermore, p,=p., ,+m<b—-—m+ m=>, so p € U(b, a). Also
t+1€e M(p).

Now since r;, — m(a + 2) + 2b < r, — m(a — 2 + 2) + 2(b — m), the ‘previous
t, let us call it ¢, that was obtained in the previous step out of r,, satisfies
t'!<t—2(@Gf d=1 then t'= —1). Thus M(p) = M(p") VU {t + 1} or M(p) =
M(pHhu{t,t +1} (if d=1, M(p') = @). If d> 1, then deg(p) = deg(p’) +1
=d—-14+1=4d. Of course, spread(p) =m, and if d=1, deg(p) =1, since
M( p) consists of either {¢} or {¢, ¢ + 1}, so in either case p € U(b, a; m, d).

(vi) mo is the identity.

Let p = o(q, r). We have to show that #(p) = (¢, r). We have just seen that
M( p) is obtained from M( p’) by adjoining either ¢ alone, or else both ¢ and ¢ + 1.
In either case 1 + 1 = max M( p), so the ‘¢ obtained in doing 7( p) is the same as
‘the ¢ obtained in doing o(g, r).” By the inductive hypothesis, if p’ = o(qg, r’) then
7(p’) = (g, r’). Finally, ‘the r; obtained from doing #( p)’ is

P+ P +m(a—t+1)—2b
=r—p_,—-m(a—t+2)+2b+p, +m+m(a—1t+1)—2b
=r,

as it should.
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(v) o7 is the identity.

Let (g, r) = 7(p). We have to show that o(q, r) = p.

We have p, + p,,y =r —m(a—1t+1)+ 2b.But p,,; =p,_; + msince t + 1
€ M(p). So p=r,—m(a—t+2)+2b—p,_ ;. Now ¢t may or may not be in
M(p), thus p, — p,_, < m, which yields the right side of (A2), and ¢ + 2 & M( p),
SO p,, — p, < m, which yields the left side of (A2). Thus the ¢ obtained in doing
o(7(p)) is the same as ‘the ¢ obtained in doing =( p).” The rest follows from the
inductive hypothesis.

(vii) Proof that rank o(q, r) = rank(q, r) + 2bd — md — md>.
We have

rank o(q, r)

rank(p) =p, + -+ +p,

=p{+ - +p/ +(rn—p/_,—m(a—1t+2)+2b)
+(pytm)+ o +(pi_,+m)

rank(p’) + r, + 2(b — m).

First, if d =1 then p’ = ¢ and r = r, so rank 6(qg, r) = rank(q) + rank(r) +
2(b — m), which was to be shown in this case. Next, if d > 1, the inductive
hypothesis gives

rank o(q, r) = ranko(q, r’) + r, + 2(b — m)

rank(q) + rank(r’) + 2(b — m)(d — 1)
-m(d—1)d+r, +2(b—m)

rank(q) + rank(r) + 2bd — md(d + 1)
= rank(q, r) + 2bd — md(d + 1).

(viii) o is order preserving.
This is immediate from part (vii) since the order on U(b, a) is the trivial one in
which p < ¢ iff rank( p) < rank(q).
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LETTERS TO THE EDITOR
Editor:

While I agree with Joseph Fulda (Material implication revisited, this MONTHLY,
March, 1989, 247-250) that there is no need to revise the truth table for the
conditional connective of propositional logic in order to explain most uses of the
words “if” and “then,” or “implies,” I would like to suggest an alternate explana-
tion for the widespread confusion on this point. Many sentences containing the
words “if” and “then” should properly be interpreted as containing not only a
conditional, but also an unstated universal quantifier. The belief that the truth table
for the conditional cannot be used to explain the meaning of such sentences is, I
believe, a result of failing to recognize the presence of this quantifier, and does not
indicate any defect in the truth table for the conditional. If the truth table for the
conditional is properly combined with the meaning of the quantifier, the resulting
interpretation of the sentence is in complete agreement with intuition.

For example, we all know that for sequences of real numbers, monotone and
bounded implies convergent, although neither monotone nor bounded alone is
sufficient to imply convergent. But according to the conditional truth table, the
statements (M A B) - C and (M — C) V (B — C) are equivalent. (If you don’t
believe it, make the truth tables!) Does this mean that the conditional cannot be
used to interpret the word “implies” in this case? The problem is not with the
conditional, but with a missing quantifier. When we say, “Monotone and bounded
implies convergent,” what we really mean is, “For all sequences s, if s is monotone
and bounded then s is convergent.” Inserting the missing quantifiers, we find that
we should have been comparing the statements Vs[(M(s) A B(s)) — C(s)] and
Vs(M(s) = C(s)) V Vs(B(s) = C(s)). These are not equivalent; in fact, interpret-
ing “M,” “B,” and “C” as meaning “monotone,” “bounded,” and “convergent,”
respectively, on the universe of sequences of real numbers gives a counterexample to
the equivalence. I do not see how one can explain the trouble in this example, as
Fulda suggests, by claiming that there is a confusion between “if” and “iff.” One
need not think that all convergent sequences are monotone and bounded to be
puzzled by this example.

Even some nonmathematical “paradoxes” involving the conditional can be
explained as missing quantifiers. For example, consider the sentence, “If the sun is
shining then it must be between 2:00 and 3:00 pM.” The conditional truth table





