INEQUALITIES FOR THE DERIVATIVES OF POLYNOMIALS
R. P. BOAS, JR., Northwestern University

Some years after the chemist Mendeleev invented the periodic table of the
elements he made a study of the specific gravity of a solution as a function of
the percentage of the dissolved substance [16]. This function is of some practical
importance: for example, it is used in testing beer and wine for alcoholic content,
and in testing the cooling system of an automobile for concentration of anti-
freeze; but present-day physical chemists do not seem to find it as interesting
as Mendeleev did. Nevertheless, Mendeleev's study led to mathematical prob-
lems of great interest, some of which are still inspiring research today.
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An example of the kind of curve that Mendeleev obtained is shown in Figure
1 (alcohol in water, percentage by weight). He noticed that the curves could
be closely approximated by successions of quadratic arcs, and he wanted to
know whether the corners where the arcs joined were really there, or just caused
by errors of measurement. In mathematical terms, this amounts to consid-
ering a quadratic polynomial P(x)=px2+gx-+7 on an interval [a, b], with
max P(x) —min P(x) =L, and asking how large P’(x) can be on [a, b]. For, if
the slope of one arc exceeds the largest possible slope for an adjacent arc, it
follows that these arcs must come from different quadratic functions. We can
reduce the problem to a simpler one by changing the horizontal scale and shifting
the coordinate axes until the interval [a, b] becomes [—1, 1], and then changing
the vertical scale and shifting the axes until we have [P (x)I =1. Our question
then becomes, if P(x) is a quadratic function and | P(x)| <1 on [—1, 1], how
large can IP' (x)| be on [—1, 1]? The answer that Mendeleev found is that
IP’ (x)‘ =<4; and this is the most that can be said, since when P(x) =1—2x2 we
have |P (x)l =1 and IP’ (+ 1)| =4. By using this result, Mendeleev convinced
himself that the corners in his curves were genuine; and he was presumably
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right, since his measurements were quite accurate (they agree with modern
tables to three or more significant figures).

One can readily imagine that a chemist who discovers such a pretty math-
ematical result would tell a mathematician about it; and in fact Mendeleev
told it to A. A. Markov, who naturally investigated the corresponding problem
for polynomials of degree # [13]. In particular, he proved what has come to be
known as Markov’s Theorem:

If P(x) is a real polynomial of degree n, and lP(x)I <1 on [—1, 1] then
|P’ (x)] <n? on [—1, 1], with equality attainable only at +1 and only when
P(x) =+ To(x), where T,(x) (the so-called Chebyshev polynomial) is cos n cos™x
(which actually is a polynomial, since cos nf is a polynomial in cos 09).

Clearly we can also assert that if ]P(x)l <Lon [—1,1] then lP’(x)| =< Ln2
Having now found an upper bound for ]P’ (x)l , it would be natural to go on and
ask for an upper bound for | P®(x)| (where # <#). Iterating Markov’s theorem
yields IP“" (x)[ <n%*L if |P(x)| < L. However, this inequality is not sharp; the
best possible inequality was found by Markov’s brother, V. A. Markov, who
proved that [ P®(x) | =T7,®(1) when [ P(x) [ =1;here T,isagain the Chebyshev
polynomial. Explicitly,

n¥*(n? — 1) (n? — 2% - - - (n? — (k — 1)?)
1-3-5 -+ 2k — 1) ‘

l p(k)(x)l <

Later on we shall give a fairly simple proof of the inequality for P’(x), but the
inequality for P® (x) is considerably harder, except for k=n (see, for example,
[6], [21]; for £=#, Lemma 6, below).

The next similar question about polynomials was not asked for about 20
years, when S. Bernstein wanted, for applications in the theory of approxima-
tion of functions by polynomials, the analogue of Markov's theorem for the unit
disk in the complex plane instead of for the interval [—1, 1]. He asked, if P(z)
is a polynomial of degree # and | P(z)| =1 for |z| <1, how large can |P'(z)l be
for |z| =1? The answer is that |P’ (2)| =, with equality attained for P(z) =2".
Bernstein's problem can be stated in a different way which suggests many inter-
esting generalizations and has a number of applications. Since a polynomial P(z)
is an analytic function, it attains its maximum absolute value for |z| <1 on the
circumference | 2| =1; so does its derivative. Hence if we want max|P’(z)| for
[z[ =1giventhat IP (2) ] <1for [z| =<1, it is enough to consider only values of z
with |z| =1, that is, 3=¢%* with 0<60 <2x. Now P(e?) can be written as a linear
combination of sines and cosines,

S() = > (ax cos k8 + by sin k);
k=0

such an expression is called a trigonometric sum of degree # (or a trigonometric
polynomial). Hence Bernstein’s theorem can be restated as follows:

If S() is a trigonometric sum of degree n (possibly with complex coefficients)
and | S@)| £1, then IS’ (0)] <n, with equality attained when S(0) =sin n(0—0).
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As Bernstein observed, if P(x) is our original polynomial on (—1, 1), P(cos 6)
is a trigonometric sum of degree #, and so | P’(cos 6)sin 0| <u by Bernstein’s
theorem, which is to say that |P’(x)| <n(1—x2)~Y2 for |x| =1. This gives an
estimate for | P’(x)| that is much better than Markov’s when # is not near +1,
but it does not yield Markov’s theorem directly since it tells us nothing about
| P’(x)| when « is near + 1. It is rather remarkable that Markov's theorem can
nevertheless be deduced from Bernstein’s theorem.

There are many proofs of Bernstein’s and Markov’s theorems. Those given
here are interesting because they demand very little machinery, and illustrate
how unexpected results can sometimes be obtained from very simple considera-
tions. We begin by stating some almost obvious results as lemmas.

LemMMA 1. The polynomial T,(x) takes the values +1 and —1 a total of n+1
times in the interval [—1, 1], with alternating signs.

In fact, T, (x) = +1 whenever # cos~lx=Fkmr, 0Zk=Zn.

LeEMMA 2. If two polynomials of degree at most n have the same values at n+1
points, they are the same polynomaial.

LevMA 3. If two trigonometric sums of degree n have the same values at 2n-2
points in 0 =0 <27 (counting both ends), they are the same.

This follows from Lemma 2. A trigonometric sum S(6) of degree # can be
written

n 2n
Z cre = g—ind Z Cone®™,
k=—n k=0

i.e., as e~ times a polynomial of degree 2z in e¢®, and accordingly has (if not
identically 0) at most 2z+1 zeros in [0, 2] (allowing for the fact that a zero
at 0 is repeated at 27).

LemMA 4. Suppose that ¢ and f are real-valued continuous functions on —1
=x =1, that ¢ takes the values +1 at k41 points x; with alternating signs, and that
| f(x,-)l <1 for all the points x;. Then there are k points where f(x) =¢(x).

In geometrical terms, if the graph of ¢ has & arcs connecting the line y=1
with y= —1, and the graph of f is between these lines at the points where the
graph of ¢ meets them, the graphs of f and ¢ have & intersections. Indeed, if (for
example) ¢(x;) = —1 and ¢(x;41) = +1, we have ¢(x) —f(x) negative at x; and
positive at x;.1, and so zero somewhere in between.

LeEMMA 5. Under the hypotheses of Lemma 4, if the graph of f crosses the graph
of ¢ from below to above on an arc that rises from —1 to +1, then the graphs of f and
¢ cross at at least k+2 points.

The situation is illustrated in Figure 2. Let the arc specified in the lemma
connect (¢, —1) with (b, 1), b>a, and let the crossing occur at x =c¢. Since the
graph of f is above that of ¢ at x=a, below it somewhere between x =a and
x=c, above it between ¢ and b, and below it again at x =0, there are at least 3
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crossings on this arc, and 2 —1 on the remaining arcs of the graph of ¢, so k-2
in all.

We begin by using Lemma 5 to prove Bernstein’s theorem (for a similar
proof, cf. [11]). We begin with a real trigonometric sum (i.e., one with real
coefficients); the extension to sums with complex coefficients depends on a trick,
which we give at the end of the proof .

We are, then, given a real trigonometric sum S(8) with IS (0)| =1; we shall
suppose that S’/ (f) ># for some 6y, and obtain a contradiction. Since we can, if
necessary, replace S(@) by AS(#) with A slightly less than 1, and still have
AS’ (@) >n, we may assume [S(O) | <1. Take the graph of sin #6 and slide it
horizontally until one of its arcs with positive slope meets the graph of S(0) at
0o. At this point S(f) has a larger slope than the shifted sine curve (whose slope
is at most #). By Lemma 5, the shifted sine curve and the graph of S(f) meet at
2n-+2 points between 0 and 27; by Lemma 3, S(f) is itself a shifted sine curve,
a contradiction since | S(0)| <1.

Now we consider trigonometric sums with complex coefficients. It is easy to
show that for each 6, there is a trigonometric sum Sy(8) of degree # for which
|So(0)| =1and I Sq (0)[ has the largest possible value—this depends on the fact
that .S(6) has only a finite number of coefficients, whose possible values are in a
bounded set since [ S (0)| =1; we then appeal to the principle that a real-valued
continuous function (namely [ NG | ) defined over a compact set (the (2z41)-
dimensional set of possible coefficients) attains its maximum. Since S(6—¥6,) is a
trigonometric sum if S(9) is, there is no loss of generality in assuming that {00 =0.
Take, then, an So(f) such that |So’ (0)[ is as large as possible; we have to show
that ]So’ (O)I =u. We can choose a real X such that e*SJ (0) >0; having done
this, consider the real trigonometric sum Re(e*S,(f)), whose absolute value does
not exceed 1. Its derivative has absolute value not exceeding #, by what we
already know; in particular, this is true at § =0, so that 0 <e™S{ (0) =#. Hence
lSo' (0)| =mn, as asserted.



1969] INEQUALITIES FOR THE DERIVATIVES OF POLYNOMIALS 169

Observe that although Markov’s theorem cannot be iterated, as we saw,
Bernstein’s theorem can; in other words, |S” (0)] =<n?, and so on for higher
derivatives. The bounds so obtained are best possible, as is shown by S(f)
=sin #nf.

We now turn to the proof of Markov’s theorem. It is conceivable that it
could be proved directly that lP’ (x)l attains its maximum at x= +1. If we
could do this, Markov’s theorem would follow at once from Bernstein’s, since
P(cos 0) is a trigonometric sum S(f) and we have

|S”(0)| = | P""(cos ) sin? 6 — P'(cos 6) cos 8| =< n?;

putting §=0 and 6=, we would obtain | P'(£1)| <n2.

Unfortunately we do not yet know that |P’ (x)l attains its maximum at +1.
However, since P(cos#) is a trigonometric sum, we do have | P’ (x) | =n(1—x?)"12,
and if lxl =< cos(3mw/n) this gives us

| P'(x)| = n{l — cos?(3nx/n)} =112 = n csc(im/n) < n?

because |sin 78| <#|sin 0| for all real § (here 0 =37 /n). Note that if | P(x)| <1
for —1=x =1 we have strict inequality here. Thus Markov’s theorem is estab-
lished except for cos(3w/n) <x <1 (and the symmetric interval).

To handle the excluded intervals we need another auxiliary result, which is
of independent interest.

LEMMA 6 (Chebyshev’s theorem). Let P(x) be a real polynomial of degree n,
such that |P(x)| <1 on [—1, 1]; then the leading coefficient of P(x) has absolute
value at most 27~ (which is the leading coefficient of T,(x) =cos n cos™x).

Suppose, in fact, that P(x) has a leading coefficient larger than 27—1; this is
still true for AP(x) with some A<1, so that we may assume |P (x)| <1 on
[—1, 1]. The polynomial T,(x) takes the values +1 with alternating signs at
n-+1 points, so Lemma 4 applies with ¢ =T, f=P: we have P(x) =T.(x) at »
distinct values of x on [—1, 1]. In addition P(1) <T,(1) =1 but P(x) > T,(x)
for large positive x, since P(x) has a larger leading coefficient than T, (x). Hence
there is an (z+1)th point where P(x)=T,.(x); consequently P(x)=T,(x), a
contradiction. (For another elementary proof, see [19].)

We have actually proved a stronger result: we only need to assume | P(x) l <1
at the points where | T,(x)| =1, and we can add to the conclusion the statement
that | P(x)| = | Tu(x)| for |x| >1.

We now return to the problem of establishing Markov’s theorem tor cos(3m/#)
<x<1. We shall actually prove somewhat more, namely that |P' (x)[ <T. (x)
for x>cos(3w/n) (including x>1). Suppose, in fact, that P’(xo) > T (xo) for
some xo>cos(3m/n); we seek to obtain a contradiction. As before, we may as-
sume that | P(x)| <1 for |x| <1. We may also suppose #>1, since the theorem
is trivial when #=1. There are # —1 arcs of the graph of T',(x), each connecting
y=—1 with y =1, to the left of the point cos(3m/%), and x, is on the nth one or
on its continuation to x> 1. The graph of P(x) crosses each of the n—1 arcs, so
that P(x) =T.(x) at (at least) n—1 points to the left of cos(3w/#), and there-
fore P’ (x) =T, (x) at n—2 points to the left of cos(37/#n). We have already seen
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that lP’(cos(%ﬂ-/n))l < T/ (cos(3m/n)); we have assumed P’(xo) > T (x0); and
finally, by Lemma 6, we have P’(x) <T”(x) for very large x. Therefore P/ =T,
at (at least) two points to the right of cos(3w/#), making # points in all. But
P’'—T, is of degree n—1 at most, and so vanishes identically. Hence P and T,
differ at most by a constant, which must be zero since they coincide at n—1
points. Since | P(x)| <1, we have a contradiction. (Cf. [12].)

When x>1, we get, in particular, | P/ (x)| <n2(x+ (x2—1)Y2)"-1, which was
known to Mendeleev when #=2.

Markov's and Bernstein’s theorems have been generalized in a great variety
of ways. Unfortunately, most of the generalizations cannot be proved by the
elementary methods we have just used, so we shall only be able to state some
typical results without proof. Each of the three theorems (Markov’s, Bern-
stein’s, and Chebyshev’s) is a special case of a general problem: we have a class
of functions (polynomials of degree at most #, or trigonometric sums of degree
at most #) each of absolute value not exceeding 1, and to each function we at-
tach a number (the maximum of the derivative in the Bernstein and Markov
cases, the leading coefficient in Chebyshev's case); in technical language, we
have a functional defined over our class of functions. We then want to maximize
the functional over the given class. -

Recall that Bernstein's theorem, when applied to polynomials P of absolute
value at most 1 on [—1, 1], gave the result that |P(x)] =n(1—x?)~Y2, We can
put this in our current framework by picking a value of x and taking our func-
tional to be | P’(x)|. In other words, we ask, how large can | P’(x)| be, for a
given x, when | P(x)| <1on [—1, 1]? Call this maximum M,(x). Then Markov’s
theorem says that M, (x) =#n?for —1=x =1, and Bernstein’s theorem says that
Mu(x) =n(1—x2)~Y2 for —1<x<1. The problem of finding M,(x) exactly was
attacked by Markov himself, and solved explicitly for =2 and »=3. Since it
is easy to see that M,(—x)= M.(x), it is enough to find M,(x) for x=0. Al-
though we already know that M,(1)=T, (1), it is clear that M,(x) cannot
always be | T, (x)| , since T/ (x) is sometimes zero; we know, however, from our
proof of Markov’s theorem that M,(x) =T} (x) for x>cos(3w/n), and in par-
ticular for x>1. Markov found that M,(x) =1V (x) =4x for (1/2) <x<1, but
My(x)=1/(1—x) for 0=x<(1/2). It follows that Bernstein’s estimate for M(x)
is exact for just one x in [0, 1], namely x=2-Y2 (see Figure 3). The function
M4(x) is much more complicated (see the appendix to this paper, and Figure 4).
Calculation of M, (x) for larger values of # had to wait until quite recently, when,
as a culmination of some 30 years of work, E. V. Voronovskaja [25] produced a
technique that not only lets one calculate M, (x) for any » (graphs for » =4 and
5 are given in [26] and [25]), but makes it possible to solve many other prob-
lems. For example, Gusev [8] finds the function corresponding to M,(x) for the
functional P®(x) (1<k<m). If P(x) is a polynomial with real coefficients and
| P (x){ <1on [—1, 1] then Voronovskaja and Zinger determined max|Re P (3)]
and max|Im P(z)| for a given complex z [27], and Zinger [28], [29], determined
the corresponding maxima for the derivatives of P.

The maximizing functions for a given functional are usually not Chebyshev
polynomials; and when they are not, elementary methods do not usually work.
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In fact, every polynomial is the maximizing polynomial for some functional
[25], [18].

The situation for functionals over trigonometric sums is similar.

However, merely considering different functionals does not exhaust the
possibilities of generalization. In the first place one can try to maximize a func-
tional under some side-condition, for example that all the functions taken into
consideration vanish at a given point. The simplest such problem is perhaps
Schur’s problem of maximizing P,(x) (for a given x) when P, is a polynomial
of degree # such that an(x)] <1 on [—1, 1] and P,(0)=0. This is again an
elementary problem, and the answer is that lP,.(x){ = | sin m sin‘lxl for
Ix] <sin im/m, where m =n or n—1 according as # is odd or even; otherwise no
more than IP,,(x)[ <1 can be asserted. Hyltén-Cavallius [10] solved the more
general problem when the value of P,(z) is assigned for an arbitrary (real or
complex) 2,. The presence of side-conditions does not complicate the problems
appreciably, but neither does it simplify them.

In the Markov theorems we found a bound for a functional given max] P(x) I
on [—- 1, 1]; in Bernstein’s theorem, the maximum was taken over the unit disk.
We can ask the same questions given a bound for [ P,(2) | on any specified subset
of the plane, or for } S,.(G)l on a subset of a period (or indeed on a subset of the

plane). (Cf. [3].)
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An essential difference, which is reflected in a difference in method, arises
if one restricts the class of functions in a different way. For example, consider
polynomials of degree # all of whose roots are real and outside [—1, 1]; then
if |P(x)| <1on [—1, 1] it follows that |P' (x)| <%en (and the constant is best
possible) [7].

There are also many new problems when the polynomials or trigonometric
sums are restricted to be nonnegative. For example, if S,(0) = D *_ _, cxe®™ is a
trigonometric sum of degree # then ! ck| = %ma.xl S, (0)| for k> in (the inequality
with 1 instead of % is trivial); many similar but more complicated inequalities
are known. A related condition to impose on a trigonometric polynomial is that
it is a partial sum of the Fourier series of a nonnegative function (this does not
force it to be nonnegative itself). For example, if the function is even as well as
nonnegative, we have |ci|2<3(1+cx), an inequality that seems to have been
discovered by crystallographers before it was noticed by mathematicians
(cf. [9]).

On the other hand, one can also generalize the problem by enlarging the class
of functions under consideration. In general, the maximum of a given functional
over a larger class of functions can of course be expected to be larger than over
the smaller class. In some cases, however, it turns out to be the same. A trigono-
metric sum »_r__, czei** is a special case of a finite Fourier-Stieltjes transform
J*.etda(t); another special case is an integral of the form [,e*‘g(¢)dt. This
occurs in communication theory under the name of a band-limited signal (see,
e.g., [17]), and it also occurs in the theory of optical instruments, antennas, and
other kinds of electromagnetic apparatus [4]. It turns out that Bernstein’s
theorem on trigonometric sums extends to functions of this form (and even to a
larger class of functions) without change (but naturally with a quite different
proof), and has physical significance. There are also inequalities for nonnegative
finite Fourier transforms corresponding to those for nonnegative trigonometric
sums.

Still another possibility is to recognize that max| Sa(0)], for example, is just
the norm usually used for the space of continuous functions, of which the
trigonometric sums form a subset. They are also a subset of the space of func-
tions of integrable pth power, in which the norm is

{[ 10 P

The exact analogue of Bernstein’s theorem (due to Zygmund) holds here ([30],
vol. 2, p. 11; see also [23]):

{f -1 5@ [%} ey {f _ | S.(0) |Pd0} R

Bernstein's theorem is the limiting case p— .

Again, one can extend all the problems we have considered by asking for
generalizations to higher dimensions. Here the difficulty is often not so much
that of proving the theorems as of discovering what would be interesting to
prove. The most interesting results are those that do not have an analogue in

v

1;
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one dimension. One illustration is as follows. A polynomial P(z) in the complex
variable z=x-14y can be written as R(x, v)+2S(x, ), where R(x, v) is a har-
monic polynomial (i.e., a polynomial solution of Laplace’s equation). Since

dP dR aS dR i OR

P@)=——=——tim=—t— —,
ar ar ar or r o0

the real and imaginary parts of P’ are the (polar) components of the vector
grad R. Bernstein’s theorem says that if |P(z)| <1 for |z| £1 then |P’(3)]
=|grad R| =#. Szegs (cf. [22], [24]) proved more: if we assume only that
| R| <1 then |grad R| <#; interpreting this in rectangular coordinates, we have

OR\? AR \?
() + () =
ox dy

It would be interesting to have an elementary proof of this along the preceding
lines. Szeg6 extended the theorem to three dimensions, where the bound for
grad P is more complicated; in more than three dimensions the problem seems
to be unsolved.

So much has been written on Bernstein's and Markov's theorems and their
generalizations that it is hardly possible to give a complete bibliography. The
following list of references includes, besides items specifically cited, a number
of books and papers that contain additional results or interesting methods of
proof.

Appendix

Here is the explicit form of Markov’s function M;(x) for 0=x <1; its graph
is sketched in Figure 4.
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