


























2. Construct a conic %, having focus at the origin, that passes through the tip
of r, with tangent parallel to v, and curvature «,.

3. On the conic &, put a motion r = r(¢) about the focus that leaves the tip of
r, with velocity v,. (Newton never mentions this step, which involves making
sure the position vector sweeps out area at a uniform rate, but it’s a simple
matter, and one that he probably took for granted.)

4. From Propositions XI-XIII (the Acceleration Theorem), infer that r = r(z),
a conic motion about the focus, must have an inverse-square acceleration.

5. Thus both r and F have inverse-square accelerations, but even better, the
matching of position, velocity, and curvature is steps (2) and (3) forces r and
I to share the same proportionality constant.

6. Finally, noting that r and T now both solve the same initial-value problem,
invoke a uniqueness principle to conclude that r = F, proving that our given
inverse-square motion F must be a conic motion about the focus as desired.

As we begin to check whether this six-step strategy unfolds further into a
convincing proof, we can see already that step (2) will block us, unless we know a
little about the curvature of conics. For a motion r = r(¢), the curvature « is |T|/v
and the radius of curvature p is 1/«, where T is the unit tangent v/v. From the
velocity and the acceleration, we can easily find the curvature from a well-known
formula:

1)3

T laxv]

4

To calculate the radius of curvature for a conic, we start with any motion
r = r(¢) satisfying the vector conic equation (2),

r-(e+U) =1

p

differentiate twice to get

hXr
a-(e+U)+v- P =0,

and insert our formula (3) for the eccentricity vector e to see that

1 hXxr
Fa—(vxh) +v- 3 =0
Sliding the entries in the scalar triple products gives back
1(hY?
laXVF=—(—),
I\r

which leads to
03

rUS
= =l— ,
P~ laxvl (h)

or, rephrasing, to the

CONIC CURVATURE LEMMA. For any conic motion with semi-latus rectum I,
1

p_WXTP

)

Newton cast this lemma more elegantly [12, III p. 159]: If the line perpendicular
to the conic at P meets the focal axis at N, then p varies as PN>. (The equivalence to

10 NEWTON AND THE BIRTH OF CELESTIAL MECHANICS [January



our lemma follows from a geometric fact about conics: the projection of PN onto
SP is the semi-latus rectum.) This lovely property is just one of several striking
results on curvature obtained by Newton in his 1671 tract on series and fluxions.
“The problem [of curvature],” he wrote in this tract, “has the mark of exceptional
elegance and of being pre-eminently useful in the science of curves.”[12, III p. 151]
From an insight in his Waste Book made around December of 1664 (over twenty
years before the Principia), we have evidence that Newton also recognized the
fundamental place of curvature in the study of orbital motions: “If the body b
moved in an Ellipsis, then its force in each point (if its motion in that point bee
given) may be found by a tangent circle of equall crookedness [read curvature] with
that point of the Ellipsis.” [22, p. 14] It is perhaps surprising then that curvature
plays no role in the 1687 Principia. However, in the 1690s Newton made radical
plans for revising the first edition, plans that would have made curvature the
centerpiece of his celestial mechanics. Sadly, this radical revision never made it
into print, and in the end Newton contented himself with relatively minor changes,
squeezing some curvature methods into the second (1713) and third (1726) editions
as tacked on corollaries. For more on the role of curvature in Newton’s celestial
mechanics, see [3, 4, 10, and 17].

Now that we know something about the curvature of conics, we can begin to
connect all the dots in a proof of the Shape Theorem inspired by Newton’s
two-sentence argument in the Principia. We follow the six-step strategy above, for
it seems to be the only plausible interpretation of what Newton had in mind.

Step 1: We give ourselves any motion F = i(¢) with an inverse-square acceleration:
for some nonzero A, suppose T solves the initial-value problem

Ho) = S0, £(6) =0, H(t0) = v

on the open interval J. If r; X v, = 0, then the motion lies on a fixed ray through
the origin, but apart from this special case, we need to prove that  is a conic
motion about the focus. Since T is an orbital motion, the orbit lies in a fixed plane
and the angular momentum remains fixed at h, = ry X v,,.

Step 2: In this fixed plane, we now construct a conic that “fits” the orbit of ¥. Let
po be the radius of curvature of r at ¥(¢,) = r,. Put

I = polUp X Tyl
l
e = ZEVO X ho - UO
0
where Uy = ry/ry, Ty = vo/0y, and hy = ry X v,. (As r, and v, are not parallel,
h, # 0 and e is well-defined.) The vector-conic equation (2)
r-(e+U) =1/
now defines a particular conic . One easily checks that @ has a focus at the

origin, and that & passes through the tip of r; with its tangent parallel to v, and
its radius of curvature equal to p,,.

Step 3: At this point, we would like to apply Newton’s Acceleration Theorem to our

constructed conic, but the Acceleration Theorem applies only to conic motions,
indeed only to conic motions about the focus, not to mere conic loci. Therefore, on
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the conic locus & we now place a motion about the focus. (To put it differently, we
must parameterize the conic locus & in a way that keeps the acceleration vector
pointed at the focus.) By the Area Theorem, to make a motion about the focus, we
need only make a motion whose position vector from the focus sweeps out area at
a constant rate, and intuitively we can do this by arranging for the area swept out
to be our parameter. More precisely: Using arc-length measured from the tip of r,
let r; = r,(s) be the unit-speed motion on % having initial velocity T,. The real
function

s 1
a(s) =t, + jo h—0|r1(s) X F,(s)| ds

is smooth and strictly increasing. (Note that &, = Ir, X vyl # 0 and [r,(s) X £ (s)|
# 0 for all s, because tangents to % never pass through the focus.) Take the
(smooth) inverse a~! = a~'(¢), and use it to define a motion r = 1(¢) on & by

r(1) = rifa”'(1)].

This constructed conic motion r is also a motion about the focus S, for it has
constant angular momentum h, = r, X v,. Moreover, r(t,) = r, and i¢,) = v,.

We haven’t done anything here, by the way, that Newton couldn’t do. You can
find him geometrically constructing motions about the focus, on given conic loci, in
the Principia, Book I, Section VI [11, p. 109-116]). Such constructions are even
implicit in Newton’s proof of the Area Theorem in Propositions I and II, at the
very beginning of the Principia. In his two-sentence argument for the Shape
Theorem, Newton fails to mention the problem of putting an orbital motion on his
constructed conic, but at the Principia’s level of rigor, this is a trivial omission.
Refer to [15 and 16] for some discussion of this point.

Step 4: We apply the Acceleration Theorem (Propositions XI-XIII, Section III,
Book I) to r = r(¢), our newly minted conic motion about the focus, and conclude
that r has an inverse-square acceleration: for some nonzero wu,

.. I
(1) = ;EU(t)
for all ¢.

Step 5: To prove that u = A, we return to the curvature matching we did in Step 2.
By design, both our constructed motion r and our given motion r share the same
radius of curvature at the tip of r,, namely p,. For the conic motion r, by (4),

U v kg
a, Yo _2U0 X v [-LlUO X TO|
To
Similarly, for the given motion r,
2
LM
O AU X T,

It follows that u = A.

Step 6: We now have mwo solutions, the constructed conic motion r and the given
inverse-square motion T, to the initial-value problem

Ho) = S0, 1) = r0, H(t0) =
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on the interval J. By standard uniqueness theorems (equivalent to Propositions
XLI and XLII, Section VIII, Book I, Principia) for differential equations, we
conclude that r = F on J, and it follows that our given inverse-square motion must
be a conic motion about the focus, as expected.

This completes a “Newtonian” proof of the Shape Theorem—that every motion
having an inverse-square acceleration is a conic motion about the focus—a proof
springing from Newton’s two-sentence argument in the Principia. Is this proof the
contemporary version of what Newton had in mind? Probably, but the sheer
brevity of his sketch leaves room for other views. On this issue, read [15, 16, 20,
and 23].

Of course, our “completed” Newtonian demonstration is really anything but
complete, since in step four, to ensure that our constructed conic motion had an
inverse-square acceleration, we called on the unproved reversal of the Shape
Theorem:

NEWTON’S ACCELERATION THEOREM. Every conic motion about the focus has
an inverse-square acceleration.

We now intend to study the original argument for the Acceleration Theorem and
then contrast the original with what we might do today, but as we return with this
intention to the Principia (and specifically to Propositions XI, XII, and XIII in
Book I), we must first page back to Proposition VI in order to understand how
Newton measures orbital acceleration.

4. In May of 1686, just one month after the Principia was presented to the Royal
Society, Halley sent news to Newton of the plans for printing and publication, but
his cheerful letter ended with a sour lemon [21, p. 446]: “There is one thing more I
ought to informe you of,” he wrote,

that M" Hook has some pretensions upon the invention of y® rule of the
decrease of Gravity, being reciprocally as the squares of the distances from
the Center. He sais you had the notion from him... how much of this is so,
you know best, as likewise what you have to do in this matter, only M" Hook
seems to expect you should make some mention of him, in the preface... .

“Now is not this very fine?” sneered back Newton [21, p. 448],

Mathematicians that find out, settle & do all the business must content
themselves with being nothing but dry calculators & drudges & another that
does nothing but pretend & grasp at all things must carry away all the
invention . . . And why should I record a man for an Invention who founds his
claim upon an error therein & on that score gives me trouble? He imagines
he obliged me by telling me his Theory, but I thought myself disobliged by
being upon his own mistake corrected magisterially & taught a Theory weh
every body knew & I had a truer notion of then himself.

In his fury at Hooke’s pretensions, Newton struck back with his pen, literally
striking out almost every reference to Hooke in the entire Principia.

Even so, Hooke did in fact make one significant contribution to the Principia,
for he was the first to see orbital motions as the geometric signature of a central
attraction that pulls the orbiting body away from its linear inertial path. In
November of 1679, as the new Secretary of the Royal Society, Hooke had asked
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Newton to [22, p. 22] “please ... continue your former favors to the Society by
communicating what shall occur to you that is Philosophicall,” and he added,

for my own part I shall take it as a great favor. .. if you will let me know your
thoughts of [my hypothesis] of compounding the celestiall motions of the
planets of a direct [straight] motion by the tangent & an attractive motion
towards the centrall body.

Hooke had this hypothesis as early as 1670, a time when Newton’s eyes were still
clouded by thoughts of “outward endeavor” and “Cartesian vortices.” Still, Hooke’s
physical insight could take him only so far. In his hands, the hypothesis remained
just that: a guess, a guess rooted in physical intuition and mechanical experiment,
yet still a guess. But in Newton’s hands, the hands of a soaring mathematical
imagination, Hooke’s hypothesis rose to an aerie of definitions, lemmas, and
propositions. Look, for example, at the figure Newton draws to illustrate his proof
of Propositions I and II (Section II, Book I), where we see, for the very first time,

the mathematical equivalence of central attraction and the area law, and you
behold, in its central attraction and deviations from the tangent, the risen form of
Hooke’s hypothesis.

Later, in Proposition VI, Newton fashions from Hooke’s inward deviation a
formula for measuring the acceleration of an orbital motion. (In the Principia,
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accelerations for general motions are never even defined.) If a particle in orbital
motion falls freely toward the acceleration center S, Newton may have reasoned
that the particle could be thought of as instantaneously in free fall from the
tangent down to its position on the orbit. In a given time ¢, suppose a particle
moves along its orbit from P to Q. If there had been no acceleration during this
time interval, the particle would have proceeded instead along the tangent at
constant speed v to a location L. The deviation QL, nearly parallel to SP, would be
like the “distance fallen toward S,” which we would expect to be approximately
sat?, where a gives the acceleration at P. This suggests

QL 1
-_ > —a

t? 2

as ¢t — 0. Sanding top and bottom, Newton could now have shaped the measure
QL/¢? to fit squarely into his geometric approach. First nudge L just a bit along
the tangent to the position R, making the deviation QR exactly parallel to SP.

Because time varies as the area in orbital motions, replace ¢ by the area of the
“sector” PSQ, and the sector in turn by the approximating triangle PSQ, in the
process turning ¢ into the product SP - QT—no need to keep tabs on constant
factors, such as the missing 1/2 here, for Newton works with proportions, not
equations—and the measure QL/¢? into QR /(SP - QT)2. The limit of this ratio,
as Q — P, gauges the acceleration at P. In the Principia, this measure of accelera-
tion appears as Corollary I to Proposition VI (Section II, Book D) [11, p. 48]. With
this-corollary, Newton later derives acceleration laws from orbit shapes.

Cor 1. If a body P revolving about the center S describes a curved line APQ,
which a right line ZPR touches in any point P; and from any other point Q of
the curve, QR is drawn parallel to the distance SP, meeting the tangent in R; and
QT is drawn perpendicular to the distance SP; the centripetal force will be
inversely as the solid SP? - QT?/QR, if the solid be taken of that magnitude
which it ultimately acquires when the points P and Q coincide.
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Before we leave the topic of acceleration, we should take a moment to discuss
the role of force and mass in the early sections of the Principia. The word ‘force’
appears, as it does above in Corollary I, in many of the definitions, axioms,
corollaries, and propositions of the Principia, but in the first ten sections, where
Newton attends to the one-body problem, force, and mass as well, exist literally in
name only, playing no part in the mathematics. He may talk of ‘force,” but Newton
calculates accelerations. The Cartesians, Huygens and Leibniz among them,
claimed that Newton, by introducing gravity, and therefore action at a distance,
brought Aristotelian ‘occult qualities’ back into physics. But he should plead
innocent to this charge. In the Principia’s work on orbital motions, ‘force’ and
‘gravity’ become merely convenient words, as Newton stresses the relations and
laws, with no comment on causes. The cause of gravity comes up only in a General
Scholium on the final pages of the Principia (11, p. 547]: “But hitherto I have not
been able to discover the cause of those properties of gravity from phenomena,”
wrote Newton,

and I frame no hypotheses; for whatever is not deduced is to be called an
hypothesis; and hypotheses, whether metaphysical or physical, whether of
occult qualities or mechanical, have no place in experimental philosophy.
...And to us it is enough that gravity does really exist, and act according to
the laws which we have explained, and abundantly serves to account for all
the motions of the celestial bodies, and of our sea.

Wouldn’t Newton, that lover of geometry and curvature, have been delighted with
Einstein’s view that geometry, indeed the curvature of spacetime, is the very cause
of gravity?

After this interlude on Newton’s measure of acceleration, we remain in the past,
looking for the original proof of the Acceleration Theorem in the Principia.

5. Wasting no time after Corollary I to Proposition VI, Newton attacks a series of
problems with his new measure of acceleration. In Propositions VII through XIII,
he calculates the acceleration law for circular motions about any given point,
semicircular motions about a point infinitely remote, spiral motions about the pole,
elliptical motions about the center, and then, in a stately section all their own,
elliptical, hyperbolic, and parabolic motions about the focus. Taken together, this
final triumphant trio of propositions (XI, XII, and XIII) establishes the Accelera-
tion Theorem: Every conic motion about the focus has an inverse-square acceleration.

Newton could have proved the Acceleration Theorem in a single proposition
covering general conic motions, but “. .. because of the dignity of the Problem...,”
he writes, “I shall confirm the...cases by particular demonstrations.” [11, p. 57]
These “particular demonstrations” naturally offer the same argument with minor
variafions, so we may safely choose one of the propositions to represent all three.
Turn then to the most celebrated page of the Principia and to Newton’s analysis for
Proposition XI:

PROPOSITION XI PROBLEM VI

If a body revolves in an ellipse; it is required to find the law of the centripetal force
tending to the focus of the ellipse.
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In the ellipse, Newton draws conjugate diameters DK and PG, with DK parallel
to the tangent RPZ. (The midpoints of parallel chords in an ellipse lie on a line,
called a diameter of the ellipse, and the parallel chords are then called the
ordinates of the diameter. Two diameters with the property that each bisects every
chord parallel to the other are said to be conjugate diameters.) From Q he drops
three lines: QR parallel to the focal radius SP, QT perpendicular to SP, and Qx
completing the parallelogram QxPR. He then extends Qx until it meets PG at v
and draws PF perpendicular to DK.

Newton’s analysis requires the services of three lemmas, one of his own and two
well known to Apollonius of Perga. (For the two Apollonian lemmas, see [1, I p. 15
and VII p. 31] or [18, p. 151 and p. 169].)

NEWTON’S LEMMA. PE = AC

LEMMA 1. All parallelograms circumscribed about any conjugate diameters of an
ellipse have equal area.

LEMMA 2. In an ellipse, the squares of the ordinates of any conjugate diameter are
proportional to the rectangles under the segments which they make on the diameter.

As we have seen in the previous section, Newton measures the acceleration of
an orbital motion by computing the limit of the ratio

QR
(SP- QT)
as Q — P. To infer an inverse-square acceleration for this case of elliptical motion
about the focus, he must therefore prove that QR /QT? has a limit independent of

P. In fact, as we now show, Newton’s argument reveals that QT?/QR tends to the
latus rectum of the ellipse.
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Because QR is Px and (by Newton’s Lemma) PE is AC, the similarity of the
triangles PxV and PEC implies
Pv-AC
- PC
On the other hand, Newton’s Lemma (again) and the similarity of the triangles
QxT and PEF give

T Qx-PF Qx-BC
~ AC  CD

where the second equality follows from Lemma 1, which assures us that PF - CD =
BC- AC. We infer

QT? Qx*-BC? PC 1 L Qx*-PC
QR  CD*> Pu-AC 2 Pu-CD?’
where we have replaced 2BC?/AC by L. (Following Apollonius, Newton calls

2BC?/AC the latus rectum.) If now Q — P, this last expression has the same limit
as

1 vG

27pC’
for Qu/Qx tends to one and Lemma 2 implies
Qv? CD*
Pv-vG  PC*’
But vG — 2PC, so that 11.(vG /PC), and thus also QT?/QR, must tend to L. This
completes Newton’s analysis for Proposition XI: Every elliptical motion about the
focus has an inverse-square acceleration.

6. We have been “going under with the swirls and coming out with the eddies,
following along the way the water goes,” but now just one quick swirl remains: to
return from the Principia to the present, from Newton’s original work on the
Acceleration Theorem to the delightful contrast of a contemporary argument.

Any conic motion r = r(¢) about the focus must satisfy the vector-conic equa-
tion (2),

r-(e+U) =1,

for some positive constant / and constant vector e. Since r is an orbital motion,
h = r X v is a constant vector. Since r is a conic motion,

[
L=FVXh—U

is a second constant vector (equal to the eccentricity vector e by (3)). Differentiat-
ing L yields

l hXr
0= Fa X h — P
and taking lengths we uncover an inverse-square acceleration,
h? 1
a = 7 R

proving again

NEWTON’S ACCELERATION THEOREM. Every conic motion about the focus has
an inverse-square acceleration.

18 NEWTON AND THE BIRTH OF CELESTIAL MECHANICS [January



ACKNOWLEDGMENTS. I am indebted to J. Bruce Brackenridge, David Cook, Nathaniel Grossman,
Michael Nauenberg, Alan Parks, D. T. Whiteside, Curtis Wilson, and the referees for thoughtful
comments—historical, mathematical, and stylistic. In most cases, I took their advice, and where I did
not, I probably should have.

REFERENCES

1. Apollonius of Perga, Treatise on Conic Sections, Volumes I-VII, Cambridge University Press,
Cambridge, 1896.

2. J. L. Axtell, Locke, Newton, and the Two Cultures, John Locke: Problems and Perspectives,
Cambridge University Press, Cambridge, 1969, 165-182.

3. J. B. Brackenridge, Newton’s Unpublished Dynamical Principles: A Study in Simplicity, Annals of
Science 47 (1990), 3-31.

4. J. B. Brackenridge, The Critical Role of Curvature in Newton’s Developing Dynamics, The
Investigation of Difficult Things: Essays on Newton and the History of the Exact Sciences, edited by
P. M. Harman and A. E. Shapiro, Cambridge University Press, Cambridge, 1992, 231-260.

5. J. B. Brackenridge, The Key to Newton’s Dynamics: The Kepler Problem and the Principia, University
of California Press, Berkeley, 1995.

6. S. Chandrasekhar, Newton'’s Principia for the Common Reader, Oxford University Press, New York,
1995.

7. G. E. Christianson, In the Presence of the Creator: Isaac Newton and His Times, The Free Press,
New York, 1984.

8. L. B. Cohen, Introduction to Newton’s ‘Principia,” Harvard University Press, Cambridge, 1971.

9. N. Grossman, The Sheer Joy of Celestial Mechanics, Birkhauser, New York, 1995.

10. M. Nauenberg, Newton’s Early Computational Method for Dynamics, Archive for History of Exact
Sciences 46 (1994), 221-252.

11. I Newton, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the
World, original translation by A. Motte in 1729, revised by F. Cajori, University of California Press,
Berkeley, 1946.

12. L. Newton, The Mathematical Papers of Isaac Newton, Volumes I-VIII, edited by D. T. Whiteside,
Cambridge University Press, Cambridge, 1967-1981.

13. I Newton, The Correspondence of Isaac Newton, edited by A. R. Hall and L. Tilling, Cambridge
University Press, Cambridge, 1975.

14. 1. Newton, The Preliminary Manuscripts for Isaac Newton’s 1687 Principia 1684-1685, introduction
by D. T. Whiteside, Cambridge University Press, Cambridge, 1989.

15. B. Pourciau, On Newton’s Proof That Inverse-Square Orbits Must be Conics, Annals of Science 48
(1991), 159-172.

16. B. Pourciau, Newton’s Solution of the One-Body Problem, Archive for History of Exact Sciences 44
(1992), 125-146.

17. B. Pourciau, Radical Principia, Archive for History of Exact Sciences 44 (1992), 331-363.

18. G. Salmon, A Treatise on Conic Sections, Chelsea Publishing Company, New York, 1954.

19. Chuang Tzu, Chuang Tzu: Basic Writtings, translated by Burton Watson, Columbia University
Press, New York, 1964,

20. R. Weinstock, Isaac Newton: Credit Where Credit Won’t Do, College Mathematics Journal 25
(1994), 179-193.

21. R. Westfall, Never at Rest: A Biography of Isaac Newton, Cambridge University Press, Cambridge,
1980.

22. D. T. Whiteside, The Prehistory of the Principia From 1664 to 1686, Notes and Records of the
Royal Society of London 45 (1991), 11-61.

23. C. Wilson, Newton’s Orbit Problem: A Historian’s Response, College Mathematics Journal 25

(1994), 193-201.

Bruce Pourciau

Department of Mathematics
Lawrence University

Appleton, Wisconsin 54912
Bruce.H.Pourciau@Lawrence.edu

1997] NEWTON AND THE BIRTH OF CELESTIAL MECHANICS 19





