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Introduction. It has become fashionable recently to argue that real and complex 
variables should be taught together as a unified curriculum in analysis. Now this is 
hardly a novel idea, as a quick perusal of Whittaker and Watson's Course of Modern 

Analysis or either Littlewood's or Titchmarsh's Theory of Functions (not to mention 
any number of cours d'analyse of the nineteenth or twentieth century) will indicate. 
And, while some persuasive arguments can be advanced in favor of this approach, 
it is by no means obvious that the advantages outweigh the disadvantages or, for 
that matter, that a unified treatment offers any substantial benefit to the student. 
What is obvious is that the two subjects do interact, and interact substantially, 
often in a surprising fashion. These points of tangency present an instructor the 
opportunity to pose (and answer) natural and important questions on basic material 
by applying real analysis to complex function theory, and vice versa. This article is 
devoted to several such applications. 

My own experience in teaching suggests that the subject matter discussed below 
is particularly well-suited for presentation in a year-long first graduate course in 
complex analysis. While most of this material is (perhaps by definition) well known 
to the experts, it is not, unfortunately, a part of the common culture of professional 
mathematicians. In fact, several of the examples arose in response to questions 
from friends and colleagues. The mathematics involved is too pretty to be the private 
preserve of specialists. Publicizing it is the purpose of the present paper. 

1. The Greening of Morera. One of the most useful theorems of basic complex 
analysis is the following result, first noted by Giacinto Morera. 

MORERA'S THEOREM [37]. Let f(z) be a continuous function on the domain D. 
Suppose that 

(1) f(z)dz = 0 

for every rectifiable closed curve y lying in D. Then f is holomorphic in D. 

Morera's Theorem enables one to establish the analyticity of functions in 
situations where resort to the definition and the attendant calculation of difference 
quotients would lead to hopeless complications. Applications of this sort occur, for 
instance, in the proofs of the Schwarz Reflection Principle and other theorems on the 
extension of analytic functions. Nor is its usefulness limited to this circle of ideas; 
the important fact that the uniform limit of analytic functions is again analytic is an 
immediate consequence (observed already by Morera himself, as well as by Osgood 
[39], who had rediscovered Morera's theorem). 
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Perhaps surprisingly, the proofs of Morera's theorem found in complex analysis 
texts all follow a single pattern. The hypothesis on f insures the existence of a 
single-valued primitive F of f, defined by 

rz 
(2) F(z) = f f(C)dC. 

0 

Here zo is some fixed point in D and the integral is taken over any rectifiable curve 
joining zo to z. The function F is easily seen to be holomorphic in D, with F'(z) = f(z); 
since the derivative of a holomorphic function is again holomorphic, we are done. 

Several remarks are in order concerning the proof sketched above. First of all, 
the assumption that (1) holds for all rectifiable closed curves in D is much too strong. 
It is enough, for instance, to assume that (1) holds for all closed curves consisting 
of a finite number of straight line segments parallel to the coordinate axes; the 
integration in (2) is then effected over a (nonclosed) curve composed of such segments, 
and the proof proceeds much as before. Second, since analyticity is a local property, 
condition (1) need hold only for an arbitrary neighborhood of each point of D; 
that is, (1) need hold only for small curves. Finally, the proof requires the fact that 
the derivative of an analytic function is again analytic. While this is a trivial con- 
sequence of the Cauchy integral formula, it can be argued that that is an inappropriate 
tool for the problem at hand; on the other hand, a proof of this fact without complex 
integration is genuinely difficult and was, in fact, only discovered (after many years 
of effort) in 1961 [44], [10], [46]. 

There is an additional defect to the proof, and that is that it does not generalize. 
Thus, it was more than thirty years after Morera discovered his theorem that Torsten 
Carleman realized the result remains valid if (1) is assumed to hold only for all 
(small) circles in D. It is an extremely instructive exercise to try to prove Carleman's 
version of Morera's theorem by mimicking the proof given above. The argument 
fails because it cannot even be started: the very existence of a single-valued primitive 
is in doubt. This leads one to try a different (and more fruitful) approach, which 
avoids the use of primitives altogether. 

Suppose for the moment that f is a smooth function, say continuously dif- 
ferentiable. Fix zo e D and suppose (1) holds for the circle Fr(ZO) of radius r, centered 
at zo. Then, by the complex form of Green's. theorem 

0 f f(z)dz = 2i j j dxdy, 
rr (ZO) ar (ZOof 

where 4(Zo) is the disc bounded by FU(zO) and Of/lz = 2 (3f/Ox + i Of/Dy). 
(There's no cause for panic if the 0/Di operator makes you uneasy or you are not 
familiar with the complex form of Green's theorem; just write f(z) = u(z) + iv(z), 
dz = dx + idy, and apply the usual version of Green's theorem to the real and 
imaginary parts of the integral on the left.) Dividing by an appropriate factor, we 
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have 

7tr2 tJJ (: ) jedxdy = 0; 

i.e., the average of the continuous function Of /0 over the disc AF(zo) equals 0. 
Make r -+ 0 to obtain (Of /O) (z0) = 0. Since this holds at each point zo e D, 

Of /Oz= 0 identically in D. Writing this in real coordinates, we see that ux = vp, 
uY = -vx in D; thus the Cauchy-Riemann equations are satisfied and f is analytic. 

Notice that we did not need to assume that (1) holds for all circles in D or even 
all small circles; to pass to the limit it was enough to have, for each point of D, a 
sequence of circles shrinking to that point. Moreover, since f has been assumed 
to be continuously differentiable, it is sufficient to prove that af/iz vanishes on a 
dense set. Finally, and most important, the fact that our curves were circles was 
not used at all! Squares, rectangles, pentagons, ovals could have been used just 
as well. To conclude that (Of/li)(zo) = 0, all we require is that (1) should hold 
for a sequence of simple closed curves y that accumulate to zo (zo need not even lie 
inside or on the y's) and that the curves involved allow application of Green's 
theorem. It is enough, for instance, to assume that the curves are piecewise con- 
tinuously differentiable. 

To summarize, we have shown that Green's theorem yields in a simple fashion 
a very general and particularly appealing version of Morera's theorem for C' func- 
tions. It may reasonably be asked at this point if the proof of Morera's theorem 
given above can be modified to work for functions which are assumed only to be 
continuous. That is the subject of the next section. 

2. Smoothing. Let +(z) be a real valued function defined on the entire complex 
plane which satisfies 

(a) 0(z) > 09 

(b) ff q(z)dxdy = 1, 
(c) 4 is continuously differentiable, 

(d) 0(z) = 0 for I z I _ 1. 
It is trivial to construct such functions; we can even require / to be infinitely dif- 
ferentiable and to depend only on I z , but these properties will not be required in the 
sequel. Set, for e > 0, 4,(Z) = C-20(z/E). Then, clearly, 4? satisfies (a) through (c) 
above and /E vanishes off j z I < s. The family of functions {4E} forms what is known 
in harmonic analysis as an approximate identity (a smooth approximation to the 
Dirac delta function); workers in the field of partial differential equations, where 
the smoothness properties of the /e are emphasized, are accustomed to call similar 
functions (Friedrichs) mollifiers. 

Suppose now that f is a continuous function on some domain D and set 

(3) fe(Z) = ff f(z - C)08()dXdi C = = + it, 
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where the integral is extended over the whole complex plane. This integral exists 
and defines a continuous function for all points z whose distance from the boundary 
of D is greater than e. Moreover, f,(z) is continuously differentiable for such points. 
Indeed, changing variable in (3), we have 

fX(z) = jf f,(z -)f(C)ddq 

and the x and y derivatives can be brought inside the integral since we have chosen 

0b to be continuously differentiable. Finally, we note that for any compact subset K 
of D, fe(z) converges uniformly to f(z) on K as s -* 0. This expresses the delta- 
function-like behavior of the family { O}. Here is the simple proof. By (b), 

f (z) - f(z) = {f(z) -fe(z -)10,(C)dQdq 

whence by (a) and (b) 

If(Z) -4(z) I Ifif 1(z) -f(z - d 1 (t)dXd 
(4) V? 

? sup If(z)-f(z-O.1 
KlI E 

Since K is compact, f is uniformly continuous on K; so (4) shows that 

sup f(z) - f(z) I ?-0 as - + 0. 
z cK 

The proof of Morera's theorem is now easily completed. Suppose, for instance, 
that f is continuous on D and that there exists a sequence of positive numbers 

r, ? r2 2 r3 > O such that 

(5) f f(w)dw = 0 

for each z E D whenever the circle Frn(Z) = {w: jw - z I = rn} lies in D. Fix a compact 
set K c D and take s < + dist (K,aD). Then for r = r, < 1dist (K,aD) and z E K 
we have 

fArZ(W)dW = f { jJ f(w -)0,(4)ddq dw 
rr(z) r (z) 

JJ H {J f(w - )dw} /(4)dXdq 

if { f.r(z) 

=0. 
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Since f. is continuously differentiable, it is analytic on the interior of K; and since 
f, converges to f uniformly on K, f must be analytic there. Finally, because K is 
arbitrary, f is analytic on all of D. 

Again, there is nothing particularly sacred about circles: if {y,J is a sequence 
of simple closed piecewise continuously differentiable curves which shrink to the 
origin and yT,(z) is the image of yT, under the map w F+ w + z, we may replace (5) by 

(6) f) (w)dw = 0 
,n(z) 

and the rest of the argument remains unchanged. Similarly, it is enough to assume 
that (5) or (6) hold only for a dense set of z E D, since the full condition then follows 
from the continuity of f. 

The result can be extended even further. The requirement that f be continuous 
may be relaxed to the assumption that f is measurable and integrable with respect 
to Lebesgue area measure on compact subsets of D. Of course, the conclusion now 
reads that f agrees almost everywhere with a function analytic on D. For a complete 
treatment, together with an historical discussion, see [62]. The use of smoothing 
operators is a standard tool among workers in partial differential equations and 
approximation theory; for a systematic exposition of its use in this last subject, 
see [52]. 

The success of the smoothing technique in dealing with Morera's theorem 
suggests using it to prove Cauchy's theorem. This is a good idea, but one which, 
unfortunately, simply does not work. Here's the rub. Suppose f(z) is analytic in the 
disc D. We know (by Green's theorem) that STf(z)dz = 0 for every triangle T in 
D if f is continuously differentiable. Of course, in general, f is not known a priori 
to be continuously differentiable; but we may construct f3(z), as in (3), which is. 
However, it is not clear that Jt(z) is holomorphic. The problem is that while f'(z) 
is known to exist for each z e D, and is easily proved to be measurable, it is not 
known to be integrable; we cannot, therefore, differentiate f inside the integral 
sign of (3). (A similar difficulty arises in the proof of Hartogs' theorem: If a function 
of two complex variables g(ZI, Z2) is analytic in each variable separately, then 
it is analytic as a function of the joint variables zI, Z2). The argument does work 
if f' is assumed to be area integrable, but this assumption is (of course) unnecessary, 
and it seems best to base the proof of Cauchy's theorem on Pringsheim's device [45] 
of subdividing triangles. This is the pattern followed in most modern texts. 

3. In circles. All the versions of Morera's theorem discussed up to now have 
depended in an essential fashion on the fact that (1) holds for a certain class of 
contours containing arbitrarily small curves. The obvious question to ask is what 
happens if (1) holds for circles which do not shrink in radius. In this situation, it is 
natural to assume that the function in question is defined on the entire complex 
plane. A satisfying answer is provided by the following result, proved in 1970 [62]. 
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THEOREM. Let f be a continuous function on the complex plane and suppose 
that there exist numbers rl, r2 > 0 such that 

(7) I f(z)dz = 0 

for every circle having radius r1 or r2 (and arbitrary center). Then f is an entire 
function unless r1/r2 is a quotient of zeroes of the Bessel function J1(z). 

The hypothesis on f may be relaxed to the assumption of local integrability, 
and (7) need hold only for 'almost all' circles. The restriction on the pair r1, r2 is, 
however, essential: in case it is not satisfied, f may fail to be holomorphic anywhere. 

The proof is considerably more involved than (and of an altogether different 
character from) the sort of argument we have seen in the preceding sections; 
essential ingredients include the harmonic analysis of an appropriate space of dis- 
tributions and the Delsarte-Schwartz theory of mean-periodic functions. See [62], 
where related results are discussed, for details. One can also show that if f is con- 
tinuous on the plane and (7) holds for every square (of arbitrary center and orienta- 
tion) having side of fixed length, then f is entire. Again, a reference is [62]. Further 
perspectives on results of this sort will be found in [63]. 

4. Reflections on reflection. According to the Schwarz Reflection Principle, iff(z) 
is analytic in A = {z: I z < 1} and continuously extendible to an open arc y of 
F = {z: zI = 1}, and if the values off corresponding to points of y lie on a cir- 
cular, or, more generally, an analytic arc y*, then f may be extended by 'reflection' 
to a function analytic in a domain containing A u y. The usefulness of this technique 
can hardly he overestimated: it provides an essential tool in problems involving the 
extension of conformal mappings and plays a traditional role in the 'slick' proof 
[49, pp. 322-325] of Picard's little theorem. Another application yields what is 
surely the simplest proof that a nonzero function analytic in A cannot vanish iden- 
tically on an arc of F. 

The question thus naturally arises whether an analogous result holds if y* is no 
longer analytic but simply smooth, C' say. A negative answer is immediate. Indeed, 
let F* be an infinitely differentiable, nowhere analytic, simple closed Jordan curve 
and let f map A conformally onto the interior D of F*. The univalent function f, 
extends to a homeomorphism of A u F onto D u F* and induces a one-one corre- 
spondence between the points of F and those of F*. However, f cannot be continued 
analytically across any subarc of F, for then f would establish an analytic corre- 
spondence between a subarc y of F and a subarc y* of F*. Thus y* would be analytic, 
contrary to hypothesis. This example is really quite striking, providing, as it does, 
an example of a (univalent!) function analytic on A and of class C' on A U F which 
cannot be extended analytically across any arc of F. 

What is not generally realized is that the example can be worked backward to 
provide an example of an infinitely differentiable, yet nowhere analytic, Jordan 
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curve. This approach avoids altogether reliance on the plausible (and true) but 
nonobvious facts concerning smoothness and univalence of the boundary function 
which we invoked so shamelessly above. The tools we need are two, the first of 
which is the following simple lemma. 

LEMMA. Let f(z) = z + a2z + a3z3 + ... be analytic in A. Suppose that 
n= 2n I an, < 1. Then f is continuous on A u F and univalent there. 

Proof. Continuity is clear from the absolute convergence of the series. Let 
z, eA UF. Then 

f(z)-f( G) - 1 + 
, a,,(z'1' + zl-'4' + ... + i:1) 

Z - 
it = 2 

Thus 

If(z) ,f(N) 
00 

-Enl n|>O > 
n 2 

so that f is univalent. 
The second ingredient we need is the celebrated Hadamard gap theorem. 

HADAMARD GAP THEOREM. Let f(z) = U=O a znk have A as its disc of con- 
vergence. If nk+link _ qfor some q > 1 and all large k, thenf has F as its natural 
boundary; that is, f cannot be continued analytically across any subarc of F. 

The beautiful proof of this theorem due to L. J. Mordell ([36], cf. [54, p. 223]) 
should be standard fare in graduate courses in complex analysis. 

The construction of the required function is now almost trivial. We choose the 
sequences {ak} and {nk} to satisfy 

(a) ao = no = 1, 
(b) zko1 nkf ak|< 
(c) (ak)I/nk _* 1, 

(d) nk+ l/nk - 2, 
(e) 2:k-Onk|ak j = 0, 1,2, * 

A simple concrete example is provided by the function 

00 

f(z) = z + 2n!. 
n = S 

By the lemma, f establishes a homeomorphism between F and a simple closed Jordan 
curve F*. Since f satisfies the hypothesis of Hadamard's gap theorem, f cannot be 
extended analytically across any arc of F. Hence, F* must be nowhere analytic 
since otherwise the Schwarz principle would apply. Finally, by (e), the series for 
fU) (z) converges absolutely on {z:| z < 1} for each j; thus f is infinitely differen- 
tiable on A U F, so that F* is a C' curve, 
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Interestingly enough, one can trace the basic ideas of this section back to before 
the turn of the century, (see Osgood [38]). In particular, the lemma, which is usually 
attributed to the American topologist J. W. Alexander [67], was known to Fredholm 
as early as 1897 ([38, p. 17]). 

5. Extensions. The reflection principle enables one (in certain circumstances) 
to extend a holomorphic function across an analytic arc to a somewhat larger domain. 
As we have seen, it is in general impossible to relax the condition of analyticity; 
nevertheless, the much weaker hypothesis of rectifiability suffices in case a con- 
tinuous extension analytic in an abutting domain is already known. The precise 
result may be stated (somewhat informally) as follows. 

THEOREM. Let D be a domain and let J be a simple rectifiable Jordan arc 
dividing D into disjoint domains D1 and D2. Suppose fj (j = 1,2) is analytic in 

Dj and continuous on DJ J J and that f =f2 on J. Then the function f obtained 
by setting f(z) =fj(z) for z eD U J is analytic in D. 

The proof is a standard application of Morera's theorem, with due care exercised 
in dealing with the assumption that J is merely rectifiable. 

The precise nature of the hypothesis of rectifiability on J in the above theorem 
is by no means clear, and the proof (which we leave to the reader) does little to 
explicate it. My experience has been that students - especially good ones - gen- 
erally guess that the result remains true if rectifiability is dispensed with. This, 
however, is not the case, as the following example shows. 

Let K be a compact set of positive Lebesgue measure and set 

(8) f(z)= i dq + dX. 

The function f(z) is obviously analytic off K and satisfies f(oo) = 0; moreover 
since lim ,00zf(z) = - fJK dXdq =A 0, f is nonconstant on the unbounded com- 
ponent of K. We claim f is actually continuous on the complex sphere. Indeed, 
formula (8) exhibits f explicitly as the convolution of the locally (area) integrable 
function 1/I with the bounded measurable function of compact support XK(g), the 
characteristic function of K. Such a convolution is well known (and easily proved) 
to be continuous (see, for instance, [5, p. 154]). 

Suppose now that K = J, a simple closed Jordan curve. The existence of such 
curves having positive area was first proved by Osgood [41] in 1902. (This is one of 
the relatively few examples in mathematics that retains its original vigor unimpaired: 
students today - even those who know about Peano curves - are as baffled and 
surprised by this fact as mathematicians were 70 years ago. The construction is not 
too complicated for presentation in class, and the example itself instills a healthy 
respect for the Jordan curve theorem.) One can actually construct J to have the 
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additional property that it has positive area everywhere, that is, if D is an open set 
and D rl J # 0 then D rT J has positive area. The function f defined by (8) with 
J = K is continuous on C = C u {oo and analytic off J; thus, it is analytic in both 
components D1, D2 of ? \J. However, f is not analytic at any point of J. Indeed, 
suppose f analytic at zo e J and let D be a small open disc about zo lying in the 
domain of analyticity of f. Set J1 = D rn J. Then 

f (z) = 
d di + fZdi = g(z) + h(z) 

for z ? J, and g(z) is clearly analytic in D. Thus h(z) must be analytic in D as well. 
But h is obviously analytic-offD and continuous on 'C. Thus, according to the theorem 
of the present section, h is analytic on all of C, hence a constant. But J r) D =J 
has positive area, so that h(z) is nonconstant. We have reached the desired contra- 
diction. 

Thus f cannot be continued analytically across any arc of J. In particular, the 
restrictions f, f2 of f to the components D1, D2 of C\J determine analytic functions 
which are not analytic continuations of one another; indeed, J forms a natural 
boundary for each of these functions. 

Actually, the requirement that J have positive measure was used merely to insure 
the existence of nontrivial functions continuous on C and analytic off J. The same 
result can be obtained (but with more work) if the set in question has positive 
Hausdorff (1 + ?)-measure for some - > 0 [61]. Even this condition is not necessary; 
in fact, Denjoy [11] has constructed an arc which is the graph of a function and 
which has the required property. 

6. Blowing up the boundary. Questions involving length and area arise in con- 
formal mapping as well. A conformal map, being analytic, must map sets of zero 
area to sets of zero area; however, distortion at the boundary is an a priori possibility. 
Writing A u F = {z: z f ? 1} as before, let us assume that the univalent function 
f(z) maps A conformally onto the Jordan region D. According to the Osgood- 
Taylor-Caratheodory theorem, f extends to a homeomorphism of A u F onto 
D u OD. (Proofs of this important result, announced by Osgood [65] and proved 
independently by Osgood and Taylor [66, p. 294], and Caratheodory [6], [7] are 
available in [9, pp. 46-49] and [24, p. 129-134]. The reader will find a comparison 
of the treatments in these references particularly instructive in the matters of style 
of exposition and attention to detail.) In case OD is rectifiable, a theorem of the 
Riesz brothers [47] insures that f and f -' preserve sets of zero length ( = Haus- 
dorff one-dimensional measure). When OD fails to be rectifiable, however, all hell 
breaks loose. In particular, a subset of OD having positive area may correspond to 
a subset of F having zero Lebesgue (linear) measure! For the construction, we need 
an important result from plane topology. 

MOORE-KLINE EMBEDDING THEOREM [351. A necessary and sufficient condition 
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that a compact set K ( C should lie on a simple Jordan arc is that each closed 
connected subset of K should be either a point or a simple Jordan arc with the 
property that K - y does not accumulate at any point of 7, except (perhaps) the 
endpoints. 

Now let K be a Cantor set having positive area; K may be realized, for instance 
as the product of two linear Cantor sets, each of which has positive linear measure. 
Construct countably many disjoint simple Jordan arcs Jn c C \ K such that the 
sequence {Jn} accumulates at each point of K and at no other points of C and with 
the additional property that if zo e C \ (K tu {Jn}) = R and z e K, then any arc 
from zo to z which lies, except for its final endpoint, in R must have infinite length. 
By the Moore-Kline embedding theorem, we may pass a simple closed Jordan 
curve J through K U {JnJ. Let f be a conformal map from A to D, the domain 
bounded by J. Then f extends to a homeomorphism from F to J. Let S = f -'(K). 
That S has zero linear measure follows at once from the following theorem, due to 
Lavrentiev. 

THEOREM. Let f be a conformal homeomorphism of Au Fu onto the Jordan 
domain D UJ. If S c J is not rectifiably accessible from D then f '(S) c F has 
zero measure. 

Proof. Since D is a bounded domain, its area, given by the expression 

f fA f '(z) I2dxdy, is finite. Thus 
2n 1 

f f'(reio) I rdrdO 

2ir 1 1 j2 2r2 1 112 
? (Jj k O rdrdO JJ If'(reE?) r drdO <00. 

It follows that f '(re) I r dr < oo for almost all 0 or, what is the same, 
l(0) = B If '(re0) I dr < oc almost everywhere. But l(0) is the length of the image 
of the radius from 0 to ei? under f. So almost every point of F corresponds to a 
rectifiably accessible point of J, and we are done. 

Actually, much more is true. It follows from a result of Beurling [3] (cf. [9, p. 56]) 
that the set of points on J which are not rectifiably accessible from D must correspond 
to a set of logarithmic capacity 0 on the unit periphery. It would take us too far 
afield to enter into a detailed discussion of the capacity of plane sets here; for our 
purposes it is enough to know that sets of capacity zero are exceedingly small. For 
instance, such a set must have zero Hausdorff s-measure for all s > 0. The first 
person to show that a set of capacity zero on F could correspond under a conformal 
mapping to a set having positive area was Kikuji Matsumoto [33]. He actually 
proved (what is implicit in the above discussion) that for each totally disconnected 
compact subset K of the plane there exists a Jordan domain D with boundary 
J D K such that K corresponds under conformal mapping to a set of capacity zero 



1974] REAL PROOFS OF COMPLEX THEOREMS 125 

on F. The discussion here (in particular, the ingenious proof of the central result) 
is based on an idea of Walter Schneider [51]. 

The compression of the boundary of the unit disc presents greater difficulties. 
Lavrentiev, however, has shown that a set of positive measure on F may be mapped 
onto a set of zero length under a conformal mapping of Jordan domains [30]. 
A more recent construction is due to McMillan and Piranian [32]. 

7. Absolute convergence and uniform convergence. Conformal mapping techniques 
are also useful in constructing examples concerning the convergence of power 
series and Fourier series. Below we offer some simple but instructive examples. 

The first example of a power series which converges uniformly but not absolutely 
on the closed unit disc was given by Fejer [15], cf. [25, vol. 1, p. 122]. The following 
geometric example, due to Gaier [68] and rediscovered by Piranian (see [1, pp. 289, 
314]), is particularly appealing. Let D be the region of figure 1, a triangle from 

FIG. 1 

which wedges have been removed in such a way that the vertex at z = 1 is not 
rectifiably accessible from the interior of D. Since D is a Jordan region, any conformal 
map of A = {z: z < 1} onto D extends to a homeomorphism of the closed regions. 
Suppose that f(z)- 2anz is such a homeomorphism satisfying f(1) = 1. Clearly, 

e1 e~~~1 XO 
f If'(r) dr = | na r"-1 I dr 

(9) 

< j (nlanlrn 1 dr= S na. 
n=1 n=1 

Sinco the length of the image of [0, 1] under f is infinite and is given by the extreme 
left member of (9), the series for f is not absolutely convergent. That the series is 
uniformly convergent on the closed disc follows from a result due to Fejer. 

FEJE'R'S TAUBERIAN THEOREM [16], [55, p. 357]. Let f(z) = EnO a Zn and 
suppose " n |a 2 < o I. If limr,i.f(re0) = f(e'0) exists, then the sum 
Sn=Oa e? exists and is equal to f(e'0). Moreover, if limr+if(re'0) = f(ei?) 
uniformly for 0 ?0 02, then 1=0 a ein? = f(ei?) uniformly for 01 < 0 <02 . 
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This is a typical theorem of Tauberian type, the Tauberian condition being, of 
course, in I anI12 < ?? 

Proof. Set sN(el') = n= O a,ne "0. Then 

N oo 

If(re"0) -sN(e") ? 
_ I I an I(1n-r) + I I a. I rn = SI + S2 

n=1 n=N+1 

Now 1 - rn < n(1 - r) (divide both sides by 1 - r). Thus, 

N N 12 N12 1/2 

SI < (I -r) I n I a?| < (1r) n n I a n2 < KN(1- r), 
n=1 n=1 n=1 

where K = i n Ia 12)1/2. Here we have used the Cauchy-Schwarz inequality 
and the fact that N N(N + 1)/2 < N2. Applying Cauchy-Schwarz to S 
yields 

S2 
n=N+1 n' '\=N+1 n/ it =N+ 1 

n 

n=N+ | | a | n< (z - E n I a a 12) 

- N( - r) n=N+l ?l 

since 

00 00 

L r2n/n ? 1/N E rn = 1/N(1 - r). 
n=N+1 n=O 

Having fixed N, we may, by the intermediate value theorem for continuous functions, 
choose r = rN such that N(1 - rN) = (' =N+I,nIal12)1/2. Clearly, as N- oo, 
rN -+ 1. Thus 

oo 1/2 oo 1/4 

Iff(rNeio) -SN(eio) I ? K(E nIanI 1/2 + (nI+ nlIan12)4 If( N) N( l - 
n=N+l 

] l) 
(=N+1 

n 

and the right hand side tends to 0 as N - oo since Zoo ln, a1 2 < co. Since f(re'0) 

f(ei0), sN(ei0) ~*f(eiO); hence ?=0 anei0 = f(e'i). Finally, all our calculations are 
uniform in 0, so if f(re"0) -+f(ei?) uniformly on some arc, then 'I7% a einl = f(e"0) 

uniformly on that arc. 
To apply Fejer's theorem to the situation at hand, simply note that if f maps 

A conformally onto the Jordan region D then (by the Osgood-Taylor-Caratheodory 
theorem) f extends continuously to A u F so that f(re"0) -*f(e'0) uniformly for 

0 < 0 < 27r. Since 

oo 1 2 i 
n I n I an 12 = j If(re'0) 12 dO r dr = area of D < oo, 

n=T s O 

the Taylor series for f converges uniformly on F. 
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We should observe that it is easy to modify the domain of figure 1 so that its 
boundary becomes analytic at every point except z = 1. The corresponding mapping 
function then extends (by Schwarz reflection) across F\{1} and yields a function 
univalent and analytic on a domain containing (A u F)\{1} whose Taylor series 
converges uniformly but not absolutely on A u F. 

8. Fourier series. One of the loveliest applications of complex analysis to real 
variables occurs in the theory of Fourier series. The result in question is the so- 
called Pal-Bohr theorem, which may be stated as follows. 

PAIL-BOHR THEOREM. Let f(e"0) be a continuous real-valued function on the 
unit circle F. There is a self-homeomorphism 0 of F such that the Fourier series 
of f o X converges uniformly. 

It is well known, of course, that the Fourier series of a continuous function may 
diverge on a dense subset of F [28, p. 58]; this gives the P'al-Bohr theorem added 
poignancy. On the other hand, a deep and famous result of Lennart Carleson [64] 
insures that the Fourier series of a continuous function converges almost every- 
where in the sense of Lebesgue measure. 

The P'al-Bohr theorem has an interesting history. It was first proved by Jules 
Pal in 1914 with the weaker conclusion that uniform convergence could be obtained 
on any proper closed subarc of F, however large. Bohr [4], in 1935, removed 
the restriction in P'al's theorem. Finally, in 1944, Salem [50] introduced a trick which 
yields the full strength of the result very quickly. 

Proof of the Pal-Bohr Thieorem. Regard f as a function on the interval 
[-, t] satisfying the periodicity condition f( - 7) = f (7). We rule out at the 

outset the trivial case in which f is identically constant. By adding, if necessary, 
a continuous periodic function of bounded variation, we may assume that f ( - t) 

= f (i) = f(x) for exactly one point x e ( - it, 7t). (This is Salem's trick; see [50] 
for a complete verification.) Since the Fourier series of a continuous function of 
bounded variation converges uniformly, it is enough to prove the theorem under 
this additional assumption. Let g be a continuous periodic function on [-i, 7] 

which increases on (- , x) and decreases on (x, it). Then the image of [-i, ] 
under the map H(t) = g(t) + if(t) is a simple closed Jordan curve J in the plane. 

Let F(z) 1'.0 ajz' be a Riemann map of A onto the interior of J such that 
F- 1) = H( - i). Then F extends to a homeomorphism of F onto J, and by the 
discussion following the proof of Fejer's theorem, the series F(eiO) = n=O anei0 
converges uniformly on F. The required homeomorphism of [-it, ) is obtained 
by setting 0(t) = H `(F(e"t)). Indeed, this is clearly a homeomorphism, and 

f(O(t)) = f o H `(F(et)) = Im F(e it), which has a uniformly convergent Fourier 
series since F(eit) does. 

Perhaps surprisingly, the argument given above is (essentially) the only known 
proof of this theorem. Whether an analogous result holds for complex-valued 
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functions remains an open question; of course, this is equivalent to the question of 
whether, given two real-valued continuous functions f, g on F, one can find a single 
homeomorphism 4 for which f o 4 and g o 0 both have uniformly convergent 
Fourier series. 

We learned of the P'al-Bohr theorem from the interesting survey article of Goffman 
and Waterman [20], and our treatment parallels the discussion given there. The 
decision to reproduce the proof in some detail was based on our feeling that this 
beautiful result deserves a wider public. 

9. Harmonic conjugates. A somewhat different application of conformal 
mapping to problems involving Fourier series involves the construction of functions 
having certain prescribed bad boundary behavior. Thus, one may ask (and Prof. A. 
Devinatz did) for an explicit example of a function harmonic on A and continuous 
on A u F whose harmonic conjugate is discontinuous but bounded. Although the 
problem has been framed (for simplicity) in terms of harmonic functions, it is 
actually a pure real variable question concerning the lack of smoothness of a certain 
singular integral operator. 

For the solution, consider the simply connected domain D, indicated in Figure 2, 
bounded by an (open) analytic curve J together with its asymptote the segment 

D 

FIG. 2 

{y: - I < y < 1} of the y-axis in the complex plane. Map A conformally onto D 
by the univalent function f (z) = u(z) + iv(z). A standard result in conformal 
mapping [55, p. 353] insures that a single point of F, say 1, corresponds to the 
"bad" part of the boundary and that f establishes a homeomorphism between 
F\{l} and J. By the reflection principle, f actually extends analytically across 
F\{l}. One proves that as z -+ 1, u(z) -*0; and it is now obvious that u is not 
only harmonic on A and harmonically extendible across F\{l} but also con- 
tinuous on A u F. On the other hand, the harmonic function v, which is clearly 
bounded, is not continuous at z = 1. The details of the proof will be easily supplied 
by anyone familiar with Caratheodory's important theory of prime ends [7], [55, 
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pp. 352-355], [9]. An obvious modification yields a bounded continuous function 
whose conjugate is unbounded. 

10. Tauberian theorems. Tauberian theorems, such as Fejer's, have an intrinsic 
interest quite independent of applications. Of these, the most celebrated is certainly 
that due to Littlewood, which states that if limr<i -n??2Oanrn = L exists and 

= 0(1/n), then 1'=an = L. This result resisted considerable efforts at proof 
for several years before it was finally settled by Littlewood [31], whose argument 
required six pages of ingenious and delicate analysis. Much later, Karamata [27] 
introduced a new technique, based on approximation theory, resulting in an en- 
ormous simplification of the proof. Much less well-known is Wielandt's modification 
[59] of Karamata's proof, which yields a simple and transparent proof of the 
theorem in question. Below, we present Wielandt's proof of a strengthened version 
(due to Hardy and Littlewood [22]) of the Littlewood Tauberian theorem. 

THEOREM. Let f(z) = 
' 

nanzn be analytic in I z < 1 and suppose that the an 
are real and that nan ? K for some K > 0. If limr,i f(r) = L exists as r -1-, 
then I'- an = L. 

The advantage of this result over the original Littlewood theorem lies, of course, 
in the fact that the order estimate on the coefficients is replaced by a one-sided 
bound. 

Proof. Trivial normalizations allow us to assume that L = 0, aO = 0, K = 1. 
Consider the family J of real functions ?>(x) on (0, 1) which satisfy 

(a) I 1 anO4(xW) iS convergent for x e (0, 1), 
(b) @D(x) = X?ta q (xn)-?0as x 1-. 

Clearly, if ?>(x) e Y, q$(xk) e J (k = 1, 2, ) and 5 is closed under linear combina- 
tions. Since (by hypothesis) x e 5, each polynomial vanishing at the origin belongs 
to S. The proof depends on a simple lemma concerning the approximation of 
functions. 

LEMMA. Let 0(x) satisfy (a). Suppose that for each E > 0 there exist poly- 
nomials pl(x), p2(X) such that pi(O) = 0, pi(l) = 1 (i = 1,2) and 

P(x) < (X) < p2(X) p2(X) 
- 

p(x) = q(x) > 0, x( - x) 

where f' q(x)dx < e. Then 0(x) satisfies (b) and hence belongs to S. 

Proof of Lemma. Let 4D(x) = Z' I a T(Xn), q(x) = = Obkxk. 

Then 

?D(x) - Y anp1(x ) = I an(?(x) - pP(x)) ? z (p2(x) -pP(x')) 
n= 1 n=1 n=1 n 
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0 10 
- X -(1 - x')x'q(x') < (1 -x) I x'q(x') 

n=l n n=lI 

n n1 
r 

00 
r b(X)Xk +I bk 

-t ( X) I bk E x n(k +1)= I 
( 

+ 
kO = f1 k=0 lx k 0 tl+k 

- f'q(x)dx <e as x1-. 

Here we have used the fact that 1 -Xn < n(l - x) and that (1- xn)/(l - x) -+ n as 
x-> 1. Since p1(x)e , En1a p1(x")0 as x-+ 1 -so that uD(x) < E for x near 1. 
Consideration of p2(x) - (x) shows similarly that D(x) > - e if x is near enougl 
to 1. Thus D(x)-*0 as x-+ 1, so that 04e. 

Continuing with the proof of the theorem, let 

0*(X) {= 2? ? 
1* ) O < x < I 

so that @(x) = I an(xn) = 2. 1 a= N= , a,, = SN, where 

N = [log 2/log-]. 

It suffices to show that +*(x) e ,, for then SN 0 as Nn= oo, whence n an = 0 

as required. Now 0* clearly satisfies (a), so it is enough to show that the conditions 
of the lemma are fulfilled. Since continuous functions are dense in the integrable 
functions, we can find continuous functions g1(x) and g2(x) such that 

40*(x) 
1 

(10) g1(x) < -x(t ) <g2(x) J[92(x) -g 1(x)]dx < e. 

The functions g1 and g2 may then be approximated uniformly by polynomials q1 
and q2 in such a way that (10) still holds with the gi's replaced by the qi's. Putting 

pi(x) = x + x(l - x)qi(x), q(x) = q2(x)- q,(x), we obtain polynomials satisfying 
the hypothesis of the lemma. This completes the proof. 

The subject of Tauberian theorems extends far beyond questions concerning the 
convergence or divergence of a power series on its circle of convergence. One of the 
central results in the harmonic analysis of the real line is Wiener's Tauberian theorem, 
which states that if f e L1(R4) and the Fourier transform of f never vanishes, then 
linear combinations of translates of f are dense in L'(R). The relation between the 
theorems of Wiener and Littlewood is far from obvious, and it has become customary 
to deduce the latter from the former by way of explicating the Tauberian character 
of Wiener's theorem. This deduction is standard and may be found, for instance, 
in [60, pp. 104-106]. The proof involves the function K(x) = e-'exp( - e-x) and 
uses the fact that the gamma function F(z) has no zeroes on the line Re z = 1. 
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Unfortunately, the deduction of Littlewood's theorem from Wiener's is longer and 
significantly more complicated in both conception and detail than Wielandt's proof 
of the (more general!) Hardy-Littlewood theorem: it is a little like proving that the 
medians of a triangle are concurrent by invoking the fact that a nested sequence of 
compact sets has nonvoid intersection. Of course, Wiener's powerful methods 
have applications in many situations where the simple approximation theory argu- 
ment we have given does not apply. 

One such instance concerns the so-called high indices theorem. 

HIGH INDICES THEOREM. Let f(z) = 0X 0 akznk be analytic in i z < 1 and sup- 
pose that nk+ lnk ? q> lfor all k. Iflimrif(r) = L exists, then Sk=oak = L. 

This theorem lies considerably deeper than Littlewood's theorem or its extension 
proved above; it was first proved, by Hardy and Littlewood, in 1925 [23], having 
been conjectured by Littlewood as early as 1910. The novelty of the result lies in the 
fact that the Tauberian condition (the lacunarity of the sequence of coefficients) 
involves no bound on the size of the coefficients. It is most instructive to try to apply 
the ideas used in proving the Tauberian theorems of Fejer and Hardy-Littlewood 
to the high indices theorem: they all fail miserably. In fact, I am aware of no really 
simple proof of this result. A particularly attractive argument, marked by con- 
siderable ingenuity in the use of such tools as the Phragmen-Lindelof principle and 
Blaschke products, has been given by Halatsz [21], following some ideas of the 
German mathematician Dieter Gaier. 

In concluding this section we should like to mention an amusing sidelight. 
Wielandt's proof of the Hardy-Littlewood theorem shares, with Mordell's proof 
of the Hadamard gap theorem, the property of being a gem of complex analysis 
mined by a mathematician whose central interests lay altogether outside analysis. 
The late Professor Mordell was, of course, one of the world's leading number 
theorists; Professor Wielandt is a group theorist of international repute. Is there a 
moral to be drawn here? 

11. Category. The usual theorems on convergence of sequences of analytic 
functions, such as Vitali's convergence theorem [54, p. 168], require the uniform 
boundedness of the sequence in question on compact subsets of the domain. There 
is, however, a sometimes useful result, due to Osgood, which avoids altogether 
hypotheses other than simple pointwise convergence. 

OSGOOD'S THEOREM [40]. Let D be a domain and let {fn} be a sequence of 
functions analytic in D. Suppose fn(z) -+f(z) for each z eD. Then f is analytic 
in an open set D1 c D which is dense in D, and convergence is uniform on compact 
subsets of D1. 

This result has been rediscovered countless times and has on innumerable other 
occasions brought the experts to grief. Indeed, the question as to whether f must 
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be analytic anywhere, appears (happily, with a correct solution) in the problem 
section of a recent symposium [29, p. 543]. The present formulation suggests - cor- 
rectly - the use of the Baire category theorem. 

Proof of Osgood's Theorem. Let Fm = {z: If,(z)I < m n = 1,2,3,}. The 
Fm are clearly relatively closed in D and U Fm = D. By the Baire category theorem, 
some Fm must have interior. For this m, the sequence {f,j is uniformly bounded on 
F? hence by Vitali's theorem converges uniformly on compact subsets of Fo to an 
analytic function. Thus f is analytic on F,. Since the argument can be applied to 
any subdomain R of D - in particular, to an arbitrary disc - it follows that f must 
be analytic on a dense open subset D1 of D. That convergence is uniform on compacta 
contained in D1 is a standard argument, which we suppress. 

A comment is perhaps in order on our use of the Baire category theorem, which 
states that a complete metric space is not the countable union of closed nowhere 
dense sets. Obviously, D is not complete in the Euclidean metric. However, it is 
easy to see that D can be given a new metric which induces the same (Euclidean) 
topology, under which D is complete. Alternatively, one may replace D by a slightly 
smaller compact set K and relativize the argument to K. We should also mention 
that category arguments appear elsewhere in complex analysis as well. A notable 
example is the proof of Hartogs' theorem, mentioned earlier in Section 2. 

A nice complement to Osgood's theorem is provided by an example of a sequence 
of entire functions f,,(z) with the property that 

(0 z$O 
(11) lim f,,(z) = i 

n -oo I z = O. 

There are (at least) two essentially distinct ways of constructing such a sequence. 
One method is to construct an entire function F(z) such that F(O) = 1 and 
F(z) -O 0 as I z | oo on each ray through the origin. Such functions were first ex- 

FIG. 3 
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hibited by Mittag-Leffler; see [34] for a detailed discussion and some surprising 
extensions. The construction of F is, with appropriate hints, a nice and doable 
exercise and occurs as such in Rudin's text [49, pp. 326-327]. Once F has been 
obtained, one observes that the sequence fn(z) F(nz) satisfies (11). 

Alternatively, one can apply Runge's theorem to "notched annuli" to construct 
polynomials satisfying (11). To be explicit, consider the set indicated in figure 3. 
A moment's reflection will reveal that one can choose a sequence Kn of such sets, 
with the property that for each z E C\{0} there exists an integer N such that z E Kn 
for all n > N. (The inner circle contracts, the outer circle expands, and the notch 
gets thinner and rotates, tending toward but never reaching its limiting line.) The 
function 

0? z cKn 
gn(Z) { K 

clearly extends to a function analytic in a neighborhood of the (disconnected) set 

Kn u {0}. Since this set does not separate the plane, g may be approximated uni- 
formly (to within 1/n, say) on Kn u {0} by a polynomial pn. These polynomials 
clearly satisfy (11). 

12. Miscellany. The interactions between real and complex analysis are by no 
means limited to the areas mentioned above. To keep the discussion within manage- 
able limits, we have restricted ourselves to (a subset of) those applications, examples, 
and aspects of the theory that have not found sustained treatment in the "popular" 
literature of texts and survey articles. Subjects which are treated elsewhere at ade- 
quate length but which deserve mention here by virtue of their interdisciplinary 
nature include the following: 

(a) The evaluation of real integrals and sums by residue techniques. This is 
surely one of the most striking applications of complex function theory to real 
analysis. Fortunately, any good text on complex analysis will contain a fairly detailed 
discussion. 

(b) Complex methods in harmonic analysis. This is a substantial area, which 
includes topics as diverse as interpolation theorems (see, for instance, [28, pp. 93-98]) 
and theorems of Paley-Wiener type [43]. Two of the most attractive recent texts in 
harmonic analysis [13], [28] devote whole chapters to this aspect of the theory. 
Further developments are discussed in the survey article of Weiss [57]. 

(c) Functional analysis. Complex variable methods appear here perhaps most 
notably in the construction of functional calculi for operators on Hilbert space or 
Banach space. The applications to commutative Banach algebras are particularly 
substantial; indeed, parts of this last-named subject are virtually coextensive with 
certain aspects of several complex variable theory. For further references, see [17] 
and [58]. In the opposite direction, techniques of functional analysis can be used 
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to establish many results in function theory; this is the programme of [48]. Finally, 
an honest partnership between complex variables and functional analysis occurs in 
the study of certain Banach spaces of analytic functions, especially HP spaces [12], 
[26]. 

(d) Function theoretic methods in differential equations. Complex methods 
occur rather naturally in the study of ordinary differential equations [8]. Their 
appearance in the study of partial differential equations is perhaps more surprising. 
Yet there are substantial applications, and more than one book [2], [19] has been 
devoted to this area. Further applications of function theory to problems in partial 
differential equations will be found in [18]. In a rather different direction, the theory 
of linear partial differential equations with constant coefficients is intimately con- 
nected with the study of certain spaces of entire functions of several complex varia- 
bles; see [14] for an exhaustive treatment. 

13. Monodromy. No excursion onto the bypaths of complex analysis would be 
complete without some mention of the monodromy theorem. 

MONODROMY THEOREM. Let D be a simply connected domain and let f(z) be 
analytic in a neighborhood of zo e D. Then if f(z) can be continued analytically 
from zo along every path lying in D, the continuation gives] rise to a single-valued 
unction analytic on all oJ D. 

A more general version states that analytic continuation along paths is a homo- 
topy invariant; see, for instance, [53]. Like the reflection principle, the monodromy 
theorem is an essential ingredient in the short proof of Picard's little theorem; in its 
extended form, it is the central result in the subject of analytic continuation. Yet 
no theorem of basic complex analysis is more abused or less understood. Indeed, it 
has been misapplied more than once even by mathematicians of the first rank (and 
specialists in complex analysis, at that!). One may speculate that a source of at 
least some of the confusion surrounding this result is the essentially topological, 
rather than function-theoretic, nature of the theorem. 

The sort of error into which one may lapse is best indicated by an explicit example. 
Let D be a simply connected domain and f a function analytic in D which satisfies 
f '(z) 0 0 on D. Suppose R = f(D) is also simply connected. Question: Must f be 
univalent (one-one)? An affirmative answer may be found in [56, p. 243] and in other 
references as well. The argument is as follows. At each point w0 E R one may define 
a local inverse fJt1(w) of f, analytic in a neighborhood of w0. Since R is simply 
connected, the totality of these functions defines a single-valued analytic function 
f -1 on R, which is a global inverse for f. Thus f must be univalent. Note further 
that the simple-connectivity of D is quite extraneous to the demonstration. 

Unfortunately, the argument given above is altogether incorrect, since the 
essential hypothesis of the monodromy theorem, that analytic continuation be 
possible along every path in R, has not been verified. Can the proof be salvaged? 
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The answer is no. In fact, consider the function f(z) = f e2 dC. This f is analytic 
(entire) on the simply connected domain C and f'(z) _ eZ2 is nowhere zero. Clearly, 
f is not univalent. So it suffices to prove that f(C) is simply connected. We claim 
f(C) = C. Indeed, suppose f(z) # w. Since eZ2 is an even function, f(z) is odd, 
so that if f fails to take on the value w it also misses the value - w. If w =A 0, this 
contradicts Picard's (small) theorem. Since f(O) = 0, f takes on every value in the 
complex plane. 

For D = C, any function which satisfies f'(z) 0 0 must be transcendental 
and hence must (by Picard's theorem) take on most values infinitely often. One can, 
however, construct a non-univalent, locally univalent function mapping the disc 
A = {z: I z I < 1} onto itself, which takes on no value more than three times. The 
extremely elegant example given above is due to D. S. Greenstein and appears as a 
solution to MONTHLY Problem 4740. It is an appropriate note on which to end 
this survey. 

Preparation of this paper was supported in part by NSF GP 28970. 
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