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The study of how N celestial bodies move under gravitational forces is an old
one. If one is willing to acknowledge the work of the ancient astrologers and
shepherds—two groups that carefully plotted the positions of the stars and planets
—then this subject area traces its origins to the earliest reaches of mankind. Indeed,
had the title not been already preempted, one might suggest that the study of the
N-body problem is “the world’s oldest profession.” If it isn’t the oldest, then, most
surely, it is “the second oldest.”

How do the heavenly bodies move? With the help of elementary complex
variables, certain selective orbits will be described where, as it turns out, even
“simple” motion can be surprisingly complicated. Also, some of the history of the
Newtonian N-body problem will be related with an emphasis on the myth that only
the two body problem has been solved. For practical purposes this assertion is
correct, but at the turn of the century the Finnish mathematician K. Sundman
“solved” the three body problem in an accepted sense of that time. While explaining
why Sundman’s result isn’t widely known, it will be indicated how collisions, both
the real type where two or more particles hit each other and the complex type where
imaginary collisions occur at complex values of time, affect the behavior of the
system.

To start, consider the question that, at some time, probably bothered many of us.
Namely, why did the early astronomers have so much trouble predicting the motion
of the planets? Armed with a 20th-century education, we know that a reasonable
approximation for the motion of a planet is uniform circular motion about the Sun.
What is so difficult about describing motion as predictable as this? This question is
closely related to the fable where Galileo silently disavowed his forced recanting of
a Sun-centered solar system. Probably generations of irreverent school children
silently wondered, “Who cares? What difference does it make if the Sun or if the
Earth is the center?” It does matter. This simple change of variables introduces a
significantly different perspective of the solar system, it explains the difficulties
faced by the astronomers of antiquity, and it underscores the critical importance of
the Copernican revolution.

To understand why an Earth-centered prejudice creates problems, consider a
simplified version of the Sun-Earth-Mars system. Mars is approximately 3 /2 times
as far from the Sun as the Earth (1.524 times) and it takes approximately 2 years
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(687 Earth days) to complete one revolution of the Sun. To eliminate fractions,
replace the traditional astronomical unit with half-astronomical units so that, in the
new system, the Earth is distance 2 from the Sun. In this simplified model, the
Earth’s position is z(¢) = 22" where ¢ is measured in “Earth years,” while that
of Mars is z,,(t) = 3e™". The position of Mars as observed from Earth is
2(t) = 23, (t) — z(2) = 3e™ — 22", (1.1)
A convenient way to describe this orbit is with the translation
z(t) — 2 =3e™ — 2¢2" — 2 = ¢™!(3 — 2™ — 2e ") = (3 — 4coswt)e™

The graph of this equation—the polar coordinate representation of a limagon with
a loop—depicts the orbit of Mars relative to Earth.! (See FIGURE 1.)

FiG. 1.

It is clear from FIGURE 1 why the pre-Copernican, Earth-centered prejudice
made it so difficult to predict the motion of the planets and to develop a
“Newtonian Theory.” While the orbit from a to b to ¢ is not overly complex, it
becomes quite complicated once Mars passes through point ¢. Mars continues in a
counterclockwise direction until point d where it appears to stop and then change
to a clockwise motion until point f. At f, Mars again reverses direction to return to
a counterclockwise motion. Imagine what complications this motion presented to
astronomers trying to predict positions. Next, imagine a theorist trying to determine
the governing laws of motion. While Mars goes from a to b to ¢ to d, a theorist
might persuasively argue for a law of attraction. But, how does one explain the orbit
from e to f to a? How does one justify the sudden law of repulsion? What is there
about the Earth that drives Mars away?

Actually, the motion of Mars in FIGURE 1 is simpler than that of the other
planets. Similar elementary complex variable arguments prove that the orbits of
Saturn, of Jupiter, and of the other planets that take much longer to circle the Sun,
admit several loops similar to the one in FIGURE 2. This can be proved as above, but

! The trigonometric version of this argument involves nothing more difficult than the double angle
formulas, so it can be used to motivate several topics in calculus and precalculus classes. For instance, I
find that this description of the orbit of Mars serves as a more persuasive illustration of the relevance of
limagons and cardioids than many of the standard examples used in calculus.
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now the limagon is relative to a rotating circle. (Instead of finding the orbit relative
to a fixed translation, find it relative to a rotating one chosen so that the
exponential terms collapse to a cosine term.) As an alternative way to demonstrate
this, express the relative orbit, z(z) = ae®™* — 2¢?™" a > 2, in the standard com-
plex form of z(t) = r(t)e®®. The direction of the motion, whether it is clockwise
or counterclockwise, is determined by the sign of ’. This is the imaginary part of
(Inz(t)y =z'/z=r'/r+i0". But z'/z = mi(aa — 4@~ 07") /(a — 2eC~97") 50
after an elementary computation, it follows that the sign of 6’ changes if aa < 4.
This inequality holds because Kepler’s third law asserts that a’a? = k where k is a
constant; thus aa = (k/a)'/? is a decreasing function of a.

Pictures of these looping orbits depicting the motion of the distant planets
relative to the earth can be found in several books on the history of astronomy.
Even more impressive are the photos of the planets taken over a several year period
that are superimposed on one plate. When one compares this kind of dynamical
behavior with the uniform motion obtained through a Sun centered system, it
becomes clear why the Copernican change of variables has had such a profound,
simplifying impact on science and astronomy.

The Copernican representation significantly simplifies the description of the
motion of the planets, but is it a correct theory? This is the essence of Cardinal
Barberini’s query when he contested Galileo (at least in Brecht’s play Life of
Galileo), “Are you sure ... you astronomers aren’t just trying to make astronomy a
little easier for yourselves? ... You like to think in circles or ellipses and in uniform
velocities, in simple motions commensurate with your minds. But what if God had been
pleased to make His stars move like this?”’ where Barberini moves his finger through
the air in a complicated course that presumably resembles FIGURE 2. Responding
with his version of Occam’s razor, Galileo argued for Copernicus’s theory by
asserting, “if God had created the world like this [He retraces Barberini’s course.] He
would have constructed our minds like this too [He repeats the same course.] to enable
them to recognize these courses as the simplest. I believe in reason.”

Elementary complex variables disclose these somewhat surprising, relative orbits
for the outer planets by capturing the effects of the rotating coordinate system
defined by the motion of the Earth. There are other natural rotating systems in
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astronomy, so one might correctly suspect that a related approach would exhibit
other surprising astronomical behavior. To demonstrate this, consider the planet
Mercury. It takes Mercury about 90 Earth days (87.967) to circle the Sun. Based on
observations, it was believed until the 1960s that Mercury took about the same
length of time to rotate on its axis. If this were true, then, as asserted in most of the
older texts on astronomy, the same face of Mercury always would face the Sun—a
solar day (or solar night) on Mercury would last forever. However, with radar
observations, we now know that Mercury takes about 60 Earth days to rotate on its
axis; this shortens a Mercury solar day to about 176 Earth days, or two Mercury
years. Moreover, as shown next, when a more accurate representation for the orbit
of Mercury is used, an observer on Mercury would find the apparent orbit of the
Sun to be quite peculiar.

To obtain a sharper approximation for the orbit of Mercury, or any other planet
about the Sun, treat the orbit as an ellipse with eccentricity ¢; e.g., for the Earth,
¢ = 0.0167, while for Mercury, ¢ = 0.2056. The position of the planet on the ellipse
is given by

r(8) =a/(1 —ecos(8)) = a(1 + ecos(8)), (1.2)

where a is a positive constant and 6(¢) is the angle of the planet determined
by a reference line. Equation 1.2 has the complex representation z(6) =
a(l + ecos(8))e’® = a(l + (¢/2)e” + (e/2)e " ?)e, or

2(0) = ag/2 + ae® + (ae/2)e®. (1.3)

The rotation of Mercury is given by e'?7i, It follows that the apparent position of
the Sun on Mercury is

Z(1) = —z(0(1)) e~ 127, (1.4)
Arg(Z(t)) = Arg(z(0(2)) — 127t + 7 =0(¢t) — 127 + 7. (1.5)

The apparent motion of the Sun changes directions whenever Arg(Z(¢))’ changes
sign. This happens, and the reason is based on Kepler’s second law, which asserts
that r26’ is constant valued. Thus, if ¢ is sufficiently large, as it is for Mercury, 6(¢)
cannot be represented by uniform motion. In particular, when r is at perihelion (i.e.,
r(t) = |z(¢)| is at a minimum), #’ is at its maximum value. Indeed, using Kepler’s
second law and eq. 1.2, we have that 8’ = n/(1 — ecos(#))? where n is the mean
motion; e.g., for Mercury, n = 87. Consequently, at perihelion, 8’ = 87 /(0.7944)?
> 12#. This same argument shows that Arg(Z(¢)) > 0 if |0] < 26.8°; otherwise it
is negative. From this, a schematic representation of the apparent motion of the
Sun, given in FIGURE 3, is easy to determine. Each of the two loops corresponds to
Mercury’s “yearly” passage through perihelion. (A similar argument shows that the
apparent motion of the Sun would have no reversal of direction had the orbit of
Mercury been circular enough so that ¢ < 0.1835.)

The change in the sign of Arg(Z(#)) creates an interesting phenomenon. There
are locations on Mercury where after the Sun rises in the east on a Mercury
morning, it reaches only a certain point in the sky before it stops to retrace its
motion and to set in the east. Then, the Sun rises a second time this “morning,” but
this time it progresses normally throughout the long day. That’s not all; after it sets
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in the west, this changeable Sun reverses behavior once more to rise again in the
west for a brief time before it finally sets for the long Mercury night.

2. Epicycles. An important planetary theory was developed by Ptolemy. One can
appreciate the genius of Ptolemy by examining the orbits depicted in FIGUREs 1 and
2. Recall the problem facing him: a scientific theory of planetary motion needed to
satisfy the governing prejudices of the time. For Ptolemy, this meant a theory
needed to accommodate the Earth as the center of the solar system, and we’ve just
seen the complexities associated with this assumption. The next obstacle, left over
from Aristotle, was that the circle is the most perfect figure in geometry. Obviously,
heavenly bodies are “incorruptible,” so their motions should be described by
uniform circular motion. But how does one build a predictive, planetary theory
incorporating these assumptions?

In his Almagest, written around A.D. 130, Ptolemy invented the ingenious
approach of epicycles. This is where the position of the particles satisfies Aristotle’s
constraint of uniform circular motion. The clever idea is that the point indicated by
the motion of the first circle, the deferent, does not represent the location of the
planet. It locates the center of a second circle spinning with uniform motion. The
location of the planet is given by the moving point on the second circle—the
epicycle. (See FIGURE 4.) Today this approach may seem to be hopelessly naive, but
remember that variations of this theory dominated astronomy for more than a
millennium—an incredibly long time for any scientific theory. Even Newton’s

FI1G. 4.
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equations didn’t enjoy such a long reign before being challenged by Einstein’s
relativity.

The long success of Ptolemy’s approach can be understood by using complex
variables. Let a; be the radius of the jth circle where the period of the uniform
motion is 1/2b(j), j = 1,2. This means that the motion of a planet, as described
through epicycles, is given by

z(t) = a,e®Omt + g,ebit, (21)

From this equation, the source of the success of the epicycles becomes obvious.
Namely, with the appropriate choices of a; and b(j), j = 1,2, eq. 2.1 is the same as
eq. 1.1. In other words, the epicycle approach can be viewed as recapturing the
change of variables used to convert the Sun centered motion of a planet to an Earth
centered one. With the appropriate choice of constants, this epicycle expression is
the correct one for any planet.

As time marched on, the accuracy of Ptolemy’s theory didn’t always satisfy the
increasing demands of astrology and astronomy. In part, this is because the actual
orbits are on perturbed ellipses rather than on circles about the Sun. (Some of
Ptolemy’s orbits already incorporated elliptic behavior.) To achieve more accurate
results, modifications of the same idea could be used. The approach is simple:
instead of treating the location of the moving point on the second circle as the
location of the planet, treat it as the center of a third (or fourth, or fifth, or ...)
circle moving in uniform circular motion. The complex variable representation of
these approximations is

z(1) = Yt (2.2)
J
where j = 1,..., k, and k is the number of circles being used. As already illustrated
by eq. 1.3, such an approach can achieve a higher degree of accuracy. Also, imagine
how this never ending problem of determining the next values of a, and b(k) could
serve as the source of an infinite number of Ph.D. dissertations.

Epicycles were abandoned long ago. We now know, after extensive development
of sophisticated mathematical theories applied to Newton’s equations, that there are
situations where the orbits of planets are either quasi-periodic or almost periodic.
What is quasi-periodic motion? It is motion represented by eq. 2.2, the epicycles,
while almost periodic motion is the limit of this summation as k — oo.

3. Collisions and spinors. Today, Newton’s equations are used to study the
N-body problem. One approach to solving these equations might be to find the
series solution. As we know from complex variables, the radius of convergence for
this series is determined by the distance to the nearest singularity. Such a singularity
appears to be a collision. (For N > 4, the situation is more complicated; see [13].)
Thus, as a first step toward finding series solutions of Newton’s equations, we need
to understand the properties of collisions. For instance, one might ask whether it is
possible to mathematically continue a solution through a collision? If so, this could
extend the radius of convergence of a series.

To develop the behavior of collisions, start with the one body, or central force
problem. If r(z) represents the vector position of the particle, then, with the
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appropriate units of mass, time, and distance, the equations of motion are

H()" = —x/r%, (3.1)
where r = |r|. The solutions, given by eq. 1.2, are ellipses, parabolas, or hyperbolas.
But, what happens near or at a collision? Can we define the motion through r = 0?
This question was posed and answered by Sundman [16] in 1913. An improved,
simplified theory was developed by the Italian geometer Levi-Civita [4] in 1920.

To see the ideas, start with a family of orbits that have a collision in the limit, i.e.,
a family represented by eq. 1.2 where & tends to unity. Such a family is depicted in
FIGURE 5. The key point is that when a particle has a “close approach,” it rapidly
spins around the central body. Therefore, if the dynamics can be mathematically
extended beyond a collision, the colliding particle must make a 27 angular change
—we should expect the particle to hit and then rebound from the central force. To
remove this collision singularity from the equations of motion, this abrupt change
needs to be removed by straightening out the orbit.

=

F1G. 5.

One way to see how to do this is to restrict the motion to the plane. Reexpress
the position vector r = (x, y) as a complex variable z = x + iy, so the equations of
motion are z” = —z/r® where r = |z|. The collision occurs at r = 0, so this is
where a change of variables is needed to convert the abrupt, 27 polar angle change
into a form where the motion is on a straight line. To do this, the change of
dependent variables must take half of the angular change at this point. With the
complex variable representation of the coordinates, the appropriate change of
variables is obvious; use the square root. The coordinate change is w = u; + iu, =
212 or

w? =1z (32)

The equations of motion for w, when accompanied with the change of indepen-
dent variables ds = dt/r(t) introduced by Sundman, not only are well defined at
w = 0, a collision, but they assume the particularly simple form

u' +au=0 (3.3)

where a is some positive constant and u = (u;, u,) is the vector representation for
w. In other words, this transformation converts the nonlinear Newtonian equations into
the linear equations for a harmonic oscillator.

To see how eq. 3.3 arises, note that the change of the independent variable
defines the operator d?/dt* = [rd?/ds* — r'd/ds]/r? where () is differentiation
with respect to s. An important contribution to the derivation of eq. 3.3 is the r*
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term in the denominator of the operator; it cancels the > term in the Newtonian
force. Thus, the equations of motion and the energy integral (v2 = 2(r~1 + h)) are,
respectively,

rz’ —r'z’ +z=0, |Z>=2(r+ hr?) (3.4)

where 4 is the constant of energy. When the new dependent variable is included, a
cancellation of terms occurs if r, r’ are replaced with their representation in terms
of w and its conjugate. The new equations of motion and energy integral are
w

2w’ — 7(2|w’|2 -1)=0, 2w =1+ hr. (3.5)
Making the obvious substitution with the energy integral, the equations of motion
become w” — (h/2)w = 0. Thus, both this substitution and the coefficient a =
—h/2 in eq. 3.3 reflect the fact that the transformed equations are on a fixed energy
surface. Because the change of the dependent variables is not 1-1, two u values
correspond to a single r value. The exception is u = 0 which corresponds to r = 0.

In addition to being able to analyze the behavior of orbits near a binary collision,
another advantage of eq. 3.3 is that they are linear equations with purely complex
eigenvalues. From this it follows that all solutions are stable; a small perturbation
has only a small effect on the solution. As such, numerical solutions of these
equations retain the properties of the actual solution. This isn’t true for eq. 3.1.
Here, a small numerical error can force the numerical solution onto a different
energy surface, which, in turn, alters the frequency of the motion. Then, as is true
for two pendulums with close, but different frequencies, the true and the computed
solutions eventually will be at opposite ends of the orbits.

Several important dynamical systems, such as the Earth satellite problem, are
perturbed forms of eq. 3.1. (The perturbations for the equations of the Earth
satellite problem reflect the Earth’s “middle age bulge” around the equator.) Many
of these systems cannot be solved analytically; instead they are numerically inte-
grated. Consequently, it is natural to question whether perturbed forms of eq. 3.1
also can be converted into a form that inherits some of the stability properties of the
harmonic oscillator. However, “real” problems, such as the Earth satellite problem,
are in a three-dimensional space; they can’t be restricted to the “Flatland” setting of
a fixed two-dimensional plane. Therefore, to carry out the program of converting
the satellite problem into a perturbed form of the three-dimensional harmonic
oscillator, one first must be able to convert the three-dimensional eq. 3.1 into a
three-dimensional harmonic oscillator. It appears from comments in the literature
(e.g., see [15, p. 23]) that Levi-Civita unsuccessfully tried to find such a three-dimen-
sional extension of his two-dimensional solution.

As the world moved into the Space Age, this issue of finding a harmon-
ic oscillator form for the three-dimensional, two-body problem added practical
importance to its theoretical interest. This question was raised by E. Stiefel at
the 1964 Oberwolfach conference he organized. Attending this conference was
P. Kustaanheimo, a Finnish astronomer, who had been using spinors to analyze
properties of his theory of relativity and other problems from physics. Spinors are a
natural generalization of complex variables, and, sure enough, by mimicking Levi-
Civita’s approach with spinors, Kustaanheimo solved the problem during this
conference. More specifically, let w = u; + iu, + jus + kuy, z = x; + ix, + jx; +
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kx,, and u = (u;, u,, us, uy). With the change of dependent variables, w? = z,
along with Sundman’s change of the independent variable, Kustaanheimo [2]
converted the system into the equations

u”’ + qu=0. (3.6)

Of course, the true problem is in R not in R*. Fortunately, as indicated later,
this change of variables maps each solution of eq. 3.6 to a fixed plane x, = ¢. Thus,
x, is a dummy variable that can be set equal to zero, and solutions of eq. 3.6 are
mapped to solutions of eq. 3.1 in the plane x, = 0. Moreover, because a point z in
the plane x, = 0 determines the magnitude of the corresponding wu, it follows from
the dimensional difference that each point in the plane x, = 0 corresponds to a
circle in the u variables rather than the two points in the Levi-Civita transformation.
The only exception is when r = u = 0, where this circle degenerates into a point.

Now that the spinor transformation solved this decades old problem, Kustaan-
heimo and Steifel [3] joined forces to use this approach to analyze perturbed
problems of equation 3.1. Among other conclusions, they showed that this transfor-
mation does provide numerical advantage. (Extensions are in [15].) This transforma-
tion, which is quite widely used today (more so in Europe than in the U.S.), is
known as the KS transformation.

What was the source of the difficulties in extending Levi-Civita’s approach? Why
can’t we find a similar relation for R3? One way to see this is to express
Levi-Civita’s change of dependent variables, x = u — u3, y = 2uju, in the differ-

ential form
dx) _ ,(m  —uy\[dy
()= ) 6

The first column in this orthogonal matrix can be viewed as locating a point in
space, say, on the unit circle u? + u3 =1, while the second column defines a
tangent vector. Thus, the Levi-Civita transformation can be identified with a vector
field of unit length on S*—the unit circle in R Presumably, the appropriate R>
change of dependent variables leading to the harmonic oscillator would be given by
a 3 X 3 orthogonal matrix where the first column locates a point on S2, the unit
ball in R3, while the remaining two columns correspond to tangent vectors to the
sphere. But the existence of any such matrix is frustrated by the “hairy billiard ball”
effect—one can’t comb a hairy billiard ball without getting a “cowlick” where at
least one hair stands upright. In other terms, as we know from Poincaré and
Brouwer, there doesn’t exist a smooth, nonzero, tangent vector field on S2. In our
setting, this means there doesn’t exist a 3 X 3 orthogonal matrix of the appropriate
form, or, in turn, these topological reasons proscribe the existence of the desired
change of variables.

On the other hand, going back to his Ph.D. dissertation and his earlier work in
algebraic topology, E. Stiefel [15, see Chp 11] was aware of the fact that while it is
impossible to comb a hairy S2, one can comb a hairy S3, the unit ball in R*, in
several ways. This unit ball admits a smooth frame where if (u,, u,, u;, u,) deter-
mines a point on S3 then the remaining three mutually orthogonal, unit tangent
vectors are (—u,, Uy, Uy, — Us), (—Us, — Uy, Uy, Uy), and (uy, — us, u,, — ;). Once
these four vectors are expressed as columns of a 4 X 4 matrix, much as in eq. 3.7,
this defines the KS transformation of the dependent variables. Note that the last
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row of this matrix is orthogonal to u; this ensures that x, = 0. Indeed, the resulting
mapping is one of the Hopf maps from S* to S2.

Subsequent to the KS transformation, other representations of the two-body
motion have been found to eliminate the difficulties of collisions. A geometric
approach is given by J. Moser [7], where he showed that two-body motion in a
d-dimensional physical space can be related to geodesic flow on S% Thus in the
specific case d = 3, the problem in R? is related, in a different manner, to motion
on S3. In Moser’s representation, the positions on the sphere correspond to the
velocity of the particle through stereographic projections. Hence, the north pole of
S represents the collision where the velocity becomes infinite. J. Milnor [6] has a
nice exposition of this and related ideas. A second important development is due to
R. McGehee [8]. Remember, Sundman and Levi-Civita found transformed equa-
tions that included the point r = 0 as a regular point. These approaches don’t
extend for triple collisions. However, McGehee found a way to “paste on” the
behavior of orbits at triple collisions when r = 0. He did this by expressing the
equations of motion in a spherical coordinate framework, and by introducing
an appropriate change of independent variable. The next step was to exploit
the singularity in spherical coordinates that occurs when the radius is zero but all of
the angles are admitted. In his representation, the “angles” correspond to the
configurations formed by the particles while the radius of the sphere measured the
distance between colliding particles. In this manner, the motion in the collinear
three-body problem can be extended to a “collision manifold” corresponding to
fictitious motion where the radius of the system is zero; i.e., this is the limiting
motion when the distances between the particles approaches zero. R. Devaney [1]
has a nice exposition of these ideas.

4. Sundman theory. At the beginning of this century, K. Sundman made several
important contributions to our understanding of the N-body problem—contribu-
tions that have stood the test of time. Ironically, one of his major conclusions killed
interest in a line of inquiry, so this particular result is not very well known. It should
be; it is where Sundman “solved” the three-body problem according to accepted
standards of the late 1800s and early 1900s. Indeed, in the late 1800s the King of
Sweden and Norway established a prize for anyone who could find the solution of
the N-body problem. The prize was awarded to Poincaré in 1889 even though he
hadn’t solved the original problem. (On the other hand, Poincaré’s prizewinning
paper contains a wealth of ideas that remain influential.) The originally stated
problem finally was solved in 1913 by Sundman [16] when he found a converging
series solution for the three-body problem. Unfortunately, his series converges so
slowly that, essentially, it is useless for any practical purpose. Consequently, this
nice result is not as well known as it should be. Still, Sundman’s work remains a
beautiful and important combination of several deep ideas that have a continuing
influence on celestial mechanics. Sundman’s results can be described via complex
variables, so these variables will be used to outline what Sundman did and why his
series converges so slowly. Part of this description of Sundman’s contributions is
based on Cauchy’s theorem showing that the radius of convergence of a power series
is determined by the location of the nearest singularity.

A serious complication hindering achievement of a convergent power series
solution for the three-body problem are the singularities caused by binary collisions.
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We now know that collisions of any kind are improbable [11]. But collisions exist,
and when they do, they restrict the accompanying radius of convergence for any
power series solution. One way to avoid these complications might be to restrict
attention to those conditions with collision-free orbits. The fault with such an
approach is that we don’t know how to characterize these conditions; in general, we
don’t know whether an initial condition will, or will not lead to a collision-free
trajectory.

As already indicated, Sundman cleverly avoided the problem of binary collisions
by converting the equations to a new system where a binary collision is not a
singularity—it becomes a regular point. Because of the central role played by this
result, another complex variable argument will be outlined to suggest why we should
expect this conclusion and why Sundman’s change of independent variable is a
“natural” one.

To start, consider colliding particles in the collinear, central force problem. The
motion is on the positive half of the x-axis so the defining equations of motion are
x" = —x~2. Because the right-hand side of this equation always is negative, the
solution, x(t), is concave down. This forces the system to have a collision either
forwards or backwards in time, and if x'(¢) < 0, then x’ remains negative in the
future. To determine how the collision occurs, multiply both sides of the equations
of motion by x’ and integrate to obtain the energy integral

(x)* =2x"' + 2h, (4.1)

where 4 is a constant of integration.

If there is a collision at time ¢,, then x — 0 as ¢ — t,. This changes the energy
integral to x(x’)? = 2 + 2hx ~ 2. In turn, this means that x'/2x’ ~ —2'/2, or that
x¥%(t) ~ A(t, — t). Consequently,

x(t) ~A(ty— 1) ast -1, (4.2)

where A is some positive constant.

It turns out [10, 12] for the general N-body problem that if there is a collision of
any kind at ¢ = ¢, then the colliding particles must approach each other like
(to — )¥?; i.e., the rate of approach for collinear collisions extends to all possible
kinds of collisions. This is important information about collisions, but it doesn’t
explain the complex nature of this singularity. Is it an algebraic branch point? Is it a
logarithmic singularity? As indicated next, binary collisions always correspond to
algebraic branch points. This is true even if several different binary collisions occur
at the same time [12].

One way to show this for the collinear problem is to “blow-up” the singularity by
defining X(t) as X(t) (¢, — t)¥* = x(¢). To simplify the equations, assume that the
time of collision is at ¢, = O (this just defines the origin on the time axis) and that
we approach the collision through positive values. (The system is time reversible; the
equations of motion are invariant with respect to the change of independent
variable —t.) By substituting [¢2/2X(#)]” into the defining equations of motion, the
equations for X(¢) become

22X + (4/3)1X - (2/9)X = — X% (4.3)
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To convert this Euler differential equation into a form that admits analytic
solutions, use the change of the independent variable s = /3 to obtain

s2X" + 25X’ — 2X = —9X 2, (4.4)

where the primes now denote differentiation with respect to s. By using series
methods from elementary ordinary differential equations and a standard majoriant
argument to justify convergence, it follows that this system has an analytic solution
in s. Moreover, in a neighborhood about the time of collision the solution is

x(t) = Ya, 1%, (4.5)
k

It follows from eq. 4.5 that a binary collision for the system is an algebraic branch
point where s = t'/? serves as a local uniformizing variable. As ¢ passes through
zero, the solution runs through the sheets of the Reimann surface to emerge as
though the collision corresponds to an exact rebound or a perfectly elastic collision.
Consequently, we should expect that this collision singularity can be removed, and
that it doesn’t constitute a serious obstacle to the analysis of the system. (The same
assertion does not hold for triple or more complicated collisions. Here, some of the
exponents in the expansion from eq. 4.3 or 4.4 depend continuously on the value of
the masses of the colliding particles. Thus, logarithmic singularities result. See [14]
for triple collisions and [12] for a general discussion.)

Incidentally, eq. 4.5 provides the basis for an “intuitive” argument to explain
why Sundman’s change of independent variable, ds = dt/r(t), works. As in our
derivation of eq. 4.5, if we know that the time of the collision is #,, then we could
substitute s = (¢ — #,)'/3, or ds = dt/3(¢ — t;)*>, to obtain an analytic solution.
But, we don’t know, a priori, when or even whether a collision will occur. However,
perhaps one way to avoid this complication about when a collision occurs is to base
the time change on the appropriate power of r(t). After all, a collision occurs if and
only if r approaches zero, so the growth properties of r determine when a collision
happens. If such an approach is to be successful, then the growth properties of r
need to be further exploited by using the appropriate choice of a so that r*
effectively replaces the (¢ — #,)?/? term in the change of the independent variable.
The asymptotic expression given in eq. 4.2 shows that a = 1, so a natural choice for
the change of variables is ds = dt/r(¢). This is the Sundman change of the
independent variable.

After Sundman eliminated binary collisions from the equations of motion, the
only remaining, real singularity for the transformed three-body problem is a triple
collision. Triple collisions can be avoided by appealing to a result proved by
Sundman, and already known to Weierstrass (see [9, p. 66]). This result uses the
integral of angular momentum X ,m;rxv, = c¢ where ¢ is a vector constant of
integration and where m,, r;, and v, are, respectively, the mass, the position vector,
and the velocity vector of the ith particle. The Weierstrass-Sundman theorem
asserts that if ¢ # 0, then the system cannot have a complete collapse. (For an
elegant proof, see [9, p. 66].) Namely, if N = 3, then triple collisions cannot occur
off of the algebraic variety ¢ = 0.

By restricting attention to ¢ # 0, we’ve removed all real singularities from the
transformed equations for the three-body problem. One last constraint on the radius
of convergence of a series solution is the possibility of complex-valued singularities;
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are there imaginary collisions of the particles at imaginary values of time? There are.
To show this and to develop some insight about how they are related to real
behavior, consider elliptical solutions of the central force problem eq. 3.1. The
solution r(¢) = (r(¢),r(¢))'/? does not have a closed form representation. Instead, it
is defined implicitly through the Kepler equations

r(u) =a(l —ecosu) t=u— esinu, (4.6)

where ¢ is the eccentricity of the ellipse, a is the length of the semimajor axis, and u
is a variable.

Elliptical solutions are well behaved without any possibility of a collision, so one
might guess that the power series converges for all values of time. It doesn’t; this is
because there are complex singularities. By letting u = u; + iu, and t = ¢, + it,, a
computation that just involves the expansion of sine and cosine for complex values
proves that there is an “imaginary collision” where r = 0 at

u, =2km +icosh™'(1/e), k=1,2,..., t,=u, —esinu,. (4.7)

Thus, not only do complex singularities occur, but Re(z,) is determined precisely
where, on the real axis, r(¢) assumes its minimum value. Moreover, the smaller the
value of this minimum (i.e., the larger the value of ¢), the closer this complex
singularity is to the real axis. This suggests that, if in some manner, the three-body
system can be forced to be “bounded” away from a triple collision, then perhaps
the complex singularities are bounded away from the real axis.

This is what Sundman proved. His first step, which is a significant improvement
over the Weierstrass-Sundman Theorem, was to show that if ¢ # 0, then for each
value of ¢, max{|r,(¢) — ()]} > D(c) > 0. In other words, if ¢ # 0, then not only
can there be no triple collision, but the system is strictly bounded away from a triple
collision. (Subsequently, Sundman’s result has been extended to the N-body prob-
lem for all values of N. See [5].) Using this fact along with the Cauchy existence
theorem for differential equations, Sundman proved that the system has no complex
singularities in a strip (depending on the value of ¢) in the complex plane centered
around the real axis. With this, the remainder of his proof is immediate. All one
needs to do is to conformally map this strip to the unit disk. For instance, if the
strip is [Im s| < B, then the change of independent variables is o = (e™/?f — 1)/
(e™/?# + 1). In this new system, the equations of motion have no singularities in
the unit disk, so the resulting power series converges. Along the real axis in the unit
disk, o corresponds, in a 1-1 fashion, to all real values of time. Thus, in this way,
Sundman proved the existence of power series solutions for the three-body problem
that converges for all real values of time.

Sundman solved the three-body problem but, unfortunately, the series solution is
of little practical value because it converges too slowly and it requires too many
terms to achieve any interesting degree of accuracy. It is fairly easy to see why this is
so. Remember, Sundman used two changes of the independent variable. The first
was to eliminate the singularities due to binary collisions. As we see from eq. 4.2,
this involves a change that has the form s = (¢, — #)!/? near a binary collision. This
change of variables “slows down” the dynamics with the accompanying effect that a
numerical value of s tends to be larger than the corresponding numerical value of ¢.
(This is similar to the situation in numerical integration where smaller step sizes are
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used to achieve accuracy with rapid changes in the dynamics. Accompanying the
smaller steps is an increase in the number of steps; this number of steps corresponds
to the value of s.) Next, this larger value of s is exponentially mapped to the unit
disk in the complex o-plane. Thus, it follows that fairly small values of ¢ can be
identified with values of o near the boundary of the unit disk. When this happens,
we should expect the convergence to be slow. This occurs. In other words, while
Sundman successfully solved the three-body problem, the theoretical properties of
his analysis demonstrate that, in general, an universal power series solution of the
three-body problem is impractical. His success in solving an age-old problem killed
interest in this line of inquiry. Nevertheless, many of Sundman’s results used to
achieve his series solution continue to play a significant role in the development of
celestial mechanics.

5. A footnote. The emphasis in this brief description of aspects of the Newtonian
N-body problem has been on the role played by complex variables. It is appropriate
to end with a historical aside about how certain problems from celestial mechanics
played a role in the development of some of the classical results in complex
variables.

As mentioned in Section 3, the solution for the simple, central force problem,
r(t), given by eq. 4.6 for the elliptic case, does not have a closed form representa-
tion. This solution is only defined implicitly through Kepler’s equations. Conse-
quently, several mathematicians sought to find a useful direct expression, even a
power series solution, for r. A. Wintner [17], in his book Analytical Foundations of
Celestial Mechanics, notes in a footnote on page 217, “The direct proof of [this aspect
of Kepler’s equation] played an important historical role in the theory of analytic
functions .. .[A] principal impetus for Cauchy’s discoveries in complex function theory
was his desire to find a satisfactory treatment for Lagrange’s series | for Kepler’s
equation]. Cauchy was led to his fundamental theorem connecting the radius of
convergence with the location of the nearest singularity, as well as to his maximum
principle, precisely in his papers dealing [with this problem). Also the facts usually
referred to as the argument principle and Rouche’s theorem were first observed in
connection with this problem concerning Kepler’s equation.”
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