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These notes are intended for participants of the MAA Shortcourse on Ma-
troid Theory January 2011 in New Orleans. Therefore our intention is not to
give an introduction into the theory of oriented matroids from scratch (as in
[9]), but to recapture how they arise from matroids. Therefore, we assume basic
knowledge of matroid theory.

For a gentle introduction into the theory of oriented matroids we recom-
mend [1], the standard reference is [2].

1 Directed Planar Graphs and their Duals

1.1 Introduction

A graph G = (V,E), where V is a finite set (of vertices) and E ⊆
�V
2

�
∪ V is a

finite set of edges (one- or two-element subsets of the vertices), may be considered
as a symmetric, binary relation. If we drop the symmetry requirement we arrive
at digraphs.

So, the difference between graphs and digraphs is that the arcs have an
orientation from one end vertex to the other. The purpose of this section is to
give an idea how we can save at least some of the orientation information to
matroids, where we do no longer have vertices.

A main concern should be that the orientation is somewhat compatible with
duality. Thus maybe we should start with a planar graph and its dual.

1.2 An example

Consider the following orientation of the dodekahedron (see Figure 1). How to
choose the direction for the dual arcs? Here we have chosen the orientation such
that the dual arc has the right-of-way, i.e. the primal arc points from the left to
the right.

Figure 3 illustrates that directed circuits give rise to directed cuts and vice
versa.

It seems that the orientation of the graph can be encoded as partitions of
the circuits and partitions of the cuts into forward and backward arcs. If we
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Figure 1: An orientation of the dodekahedron

Figure 2: The oriented dual of the orientation of the dodekahedron

consider the intersection between an oriented circuit and an oriented cut in
Figure 4 we observe that the patterns {++,−−} occur the same time as the
patterns {+−,−+}.

This is not a property of planar graphs but is easily seen to hold for arbitrary
directed graphs (see Figure 5).

2 Minty’s Orientability – Regular Matroids

Let M be a matroid on a finite set E, let C denote its set of circuits and D

denote its set of cocircuits. Then in [6] George J. Minty called M orientable
if there is an (ordered) partition of all circuits C ∈ C into (C+, C−) and of all
cocircuits D ∈ D into (D+, D−) such that

∀C ∈ C ∀D ∈ D : |C+
∩D+

|+ |C−
∩D−

| = |C+
∩D−

|+ |C−
∩D+

|. (1)
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Figure 3: Duality of directed circuits and directed cuts

We call a pair of vectors satisfying (1) orthogonal. Note that the order of the
partition does not really matter for (1) to hold. We will frequently denote an
ordered partition �C = (C+, C−) of a set C by its signed characteristic function:

χ�C(e) =






1 if e ∈ C+

−1 if e ∈ C−

0 otherwise.

We will also write just + and − instead of 1 and −1 when considering the
signed characteristic function.

Example 1. a). If M is the polygon matroid or circuit matroid of a graph
G = (V,E) then choosing some orientation of the edges we find partitions
of the circuits and cocircuits which show that M is orientable.

b). The bond matroid of a graph is orientable, since orientability is invariant
under duality.
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Figure 4: Intersection of an oriented cut and an oriented circuit
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Figure 5: Intersection of an oriented cut and an oriented circuit

c). Consider the matroid R10 defined over GF (2) by the matrix





1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 0 0 1 1




.

The circuits are the non-zero vectors of minimal support in the kernel and
the cocircuits the non-zero vectors of minimal support in the row space.
Matrix A depicts a partition of a spanning set of the cocircuit space. We
get a partition of the circuits by considering the signs of the vectors in
the kernel. Matrix A∗ is a representation of the dual. The rows indicate
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partitions of some of the circuits of R10.

A =





1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1





A∗ =





1 −1 0 0 −1 1 0 0 0 0
−1 1 −1 0 0 0 1 0 0 0
0 −1 1 −1 0 0 0 1 0 0
0 0 −1 1 −1 0 0 0 1 0

−1 0 0 −1 1 0 0 0 0 1




.

For example, the first two rows of A∗, (1,−1, 0, 0,−1, 1, 0, 0, 0, 0) and
(−1, 1,−1, 0, 0, 0, 1, 0, 0, 0), are circuits and in the kernel of A and the first
two rows of A, (1, 0, 0, 0, 0,−1, 1, 0, 0, 1) and (0, 1, 0, 0, 0, 1,−1, 1, 0, 0), are
cocircuits and in the kernel of A∗.

d). Let M = U4
2 denote the four point line. Then all 3 element subsets are

circuits as well as cocircuits. Thus M is not orientable in Minty’s sense.

Exercise 1. F7 is not orientable in Minty’s sense.

The matroids orientable in the sense of Minty form a particularly nice class
of matroids which is called the class of regular matroids.

Theorem 1 ([11, 6]). The following statements are pairwise equivalent:

a). M is orientable in Minty’s sense.

b). M is representable over any field.

c). M is representable over GF (2) and also representable over some field of
characteristic different from 2.

d). M is representable over the reals by a totally unimodular matrix A (all
square submatrices have determinant 0, 1 or −1.)

e). M has no minor isomorphic to U4
2 , F7 and F ∗

7 .

We call x, y ∈ Rn compatible if ∀i = 1, . . . , n : xiyi ≥ 0. If x, y are compat-
ible, then a vector z = x + y is the conformal sum of x and y. If L ⊆ Rn is a
vector space we call an x ∈ L\{0} elementary, if L does not contain a non-zero
vector whose support is a proper subset of the support of x.

Theorem 2. If A denotes a {0, 1,−1} matrix representing a regular (oriented)
matroid M over the reals, then

a). the elementary vectors of ker(A) are scalar multiples of characteristic vec-
tors of signed circuits of M .
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b). the elementary vectors of im(A�) are scalar multiples of characteristic
vectors of signed cocircuits of M .

c). any integer vector x ∈ ker(A) is the conformal sum of characteristic vec-
tors of signed circuits.

Proof. a). Let x be elementary and xi �= 0. We may assume wlog. that i = 1
and xi = 1. Then x is a solution of the system Ax = 0 and x1 = 1.
Now the claim follows from Cramer’s rule and the fact that A is totally
unimodular.

b). follows using duality

c). We proceed by induction over the support of x. If x is elementary, the
claim follows from part a). Otherwise, we have the characteristic vector y
of a signed circuit the support of which is strictly contained in the support
of x. If y is compatible with x, let α = min{|xi| | yi �= 0}. Then by
applying the inductive hypothesis to x−αy the claim follows. Otherwise,
let α = min{|xi| | xiyi < 0}. Then z = x+αy is compatible with x and of
smaller support. By induction we find an elementary vector ỹ compatible
with z and hence also with x and the claim follows as in the first case.

We end this section with a famous result of Paul Seymour, which states that
regular matroid are not much more than graphic and cographic matroids, i.e.
polygon and bond matroids.

+

=2

=3

Figure 6: 2-sum and 3-sum

Theorem 3 ([10]). Every regular matroid can be iteratively constructed using
direct sums, 2-sums and 3-sums, starting with graphic matroids, cographic ma-
troids and R10.
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3 Oriented Matroids and some of their Crypto-

morphisms

We have learned that an oriented matroid in Minty’s sense arises from the kernel
and the row space im(A�) of a totally unimodular matrix A, where the circuits
can be derived from the elementary vectors of the kernel of A and the cocircuits
from the row space of A. Note, that ker(A) and im(A�) are orthocomplementary
vector spaces. The four point line is not orientable in the sense of Minty, but
there seems to be an easy way to fix this.

Example 2. The following matrix A represents the four point line over the
reals:

A =

�
1 0 1 1
0 1 1 2

�
.

If we consider only the signs of elementary vectors in the kernel of this matrix
we get (+,+,−, 0), (+,+, 0,−), (+, 0,−,+), (0,+,+,−) and their negatives. In
the row space we find (0,+,+,+), (+, 0,+,+), (−,+, 0,+), (+,−,+, 0) and their
negatives.

We observe that, if the support of a circuit and a cocircuit is nonempty,
then we must have at least one coordinate where the signs coincide as well
as a coordinate where they differ. This holds, doing such a construction, for
arbitrary real matrices A. A vector x in its kernel and a vector y in the row
space are orthogonal, hence x�y = 0 and the non-zero terms in the sum of the
scalar product must not have all the same sign.

Definition 1. Let M be a matroid on a finite set E, let C denote its set of
circuits and D denote its set of cocircuits. We call M orientable if there is
an (ordered) partition of all circuits C ∈ C into (C+, C−) and of all cocircuits
D ∈ D into (D+, D−) such that ∀C ∈ C ∀D ∈ D :

(C+
∩D+) ∪ (C−

∩D−) �= ∅ ⇐⇒ (C+
∩D−) ∪ (C−

∩D+) �= ∅. (2)

Again, the order of the partition does not really matter.

Proposition 1. All matroids representable over the reals are orientable.

Proof. Let A denote a representation matrix. Then ker(A) = im(A�)⊥.

Exercise 2. F7 is not orientable.

Many of the cryptomorphic axiom systems for matroids have oriented coun-
terparts. In the following we will present some of these pairs. Let E be a finite
set. By 2E we denote the set of all subsets of E.
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3.1 Circuits

We start recalling the circuit axioms of matroid theory.

Theorem 4. A family C ⊆ 2E is the set of circuits of a matroid if and only if

C1: ∅ �∈ C.

C2: C1, C2 ∈ C and C1 ⊆ C2 ⇒ C1 = C2.

C3: C1 �= C2 ∈ C and e ∈ C1 ∩ C2 ⇒ ∃C3 ∈ C : C3 ⊆ (C1 ∪ C2) \ {e}.

For the oriented counterpart, which is easy to visualize using directed graphs,
we need some more notation. A signed subset C of E is a subset of E together
with an ordered partition C = (C+, C−), we denote the underlying set by C.
The set of all signed subsets of E is denoted by 2±E and −C = (C−, C+). The
separator sep(C1, C2) of two signed subsets of E is defined as

sep(C1, C2) = (C+
1 ∩ C−

2 ) ∪ (C−
1 ∩ C+

2 ).

Theorem 5. A family C ⊆ 2±E is the set of signed circuits of an oriented
matroid if and only if

C1: ∅ �∈ C; C ∈ C ⇒ −C ∈ C.

C2: C1, C2 ∈ C and C1 ⊆ C2 ⇒ C1 ∈ {±C2}.

C3: C1 �= ±C2 ∈ C and e ∈ sep(C1, C2) ⇒ ∃C3 ∈ C : C+
3 ⊆ (C+

1 ∪ C+
2 ) \ {e}

and C−
3 ⊆ (C−

1 ∪ C−
2 ) \ {e}.

Example 3. a). All oriented matroids in the sense of Minty are orientable.

b). Let S ⊆ Rn be a finite set of points. Consider the matroid defined by affine
dependency, if i.e. s1, . . . , sn are dependent if there exist λ1, . . . ,λn ∈ R,
not all equal to zero, such that

�n
i=1 λisi = 0 and

�n
i=1 λi = 0. If C ⊆ S is

a minimally dependent set, then there is a unique partition C = (C+, C−)
defined by the signs of the coefficients, called the Radon partition of the
points (see Figure 7 and Exercise 3). It is the unique partition of a minimal
affinely independent set such that the intersection of the convex hull of
both classes is non-empty. This is easily seen to fulfill the circuit axioms
of oriented matroid theory.

Figure 7: The Radon partitions of two point sets in the plane
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c). Let �H1, . . . , �Hn ⊆ Rn denote a finite set of oriented hyperplanes, i.e.
codimension 1 subspaces Hi of Rn together with a choice of a positive
halfspace, namely one of the two components of Rn \ Hi. Assume that�n

i=1 Hi = {0}. We may consider the oriented hyperplanes as linear forms
(up to positive scaling) in the dual space. Each one-dimensional subspace
of this hyperplane arrangement, defined by a (minimal) set D ⊆ {1, . . . , n}
such that dim(

�n
i �∈D Hi) = 1 gives rise to two rays. On the other hand,

{i | i �∈ D} is a hyperplane of the matroid defined in the dual space. Hence
D is a cocircuit and each of two rays defines a partition of D depending
whether it intersects the positive or the negative halfspace of Hi for i ∈ D.
If we intersect this arrangement with an affine hyperplane not containing
zero we get a picture like in Figure 8. The shaded triangle is on the positive
side of all hyperplanes and we have indicated the cocircuits V = (++ 0 +
−0) = ({1, 2, 4}, {5}) and W = (0 + +0 + +) = ({2, 3, 5, 6}, ∅). Clearly,
these cocircuits satisfy the circuit axioms of oriented matroid theory.

W

V

1

2

3

4 5 6

Figure 8: An affine hyperplane arrangement

Exercise 3. If C ⊆ S is a minimally affinely dependent set, then there is a
unique partition C = (C+, C−) defined by the signs of the coefficients, called
the Radon partition such that the intersection of the convex hulls of C+ and
C− is non-empty.

3.2 Bases

For our purposes we prefer the basis axioms of matroid theory in its symmetric
form (with double swaps):

Theorem 6. Let B ⊂ 2E. Then B is the collection of bases of a matroid if and
only if

B1: B �= ∅

B2: ∀B1, B2 ∈ B∀e ∈ B1 \B2 ∃f ∈ B2 \B1 :

B1 − e+ f ∈ B and B2 + e− f ∈ B.
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In Euclidean geometry one usually considers oriented bases according to the
sign of their determinant. From a matroid theory point of view the only thing
that matters is whether the determinant is zero or not. Hence, using the fact
that a d element subset B ⊂ (Rn)d is a basis iff det(B) �= 0, and if we denote
the set of all d-element subsets of E by

�E
d

�
, we may rephrase Theorem 6 as

Theorem 7. Let χ :
�E
d

�
→ {0, 1} be a map that is not identically zero. Then

χ is the determinant function of a matroid of rank d if and only if ∀B1, B2 ∈�E
d

�
with χ(B1)χ(B2) = 1 and ∀e ∈ B1

∃f ∈ B2 : χ(B1 − e+ f)χ(B2 + e− f) = 1.

The determinant function of an oriented matroid should be an alternating
map to {0, 1,−1}, and we should consider ordered bases. In order to derive an
oriented version of Theorem 7 we consider the Grassmann-Plücker identity:

Theorem 8. Let a1, . . . , an, b1, . . . , bn ∈ Rn, where b1, . . . , bn are a basis of Rn.
Define Bi = (b1, . . . , bi−1, a1, bi+1, . . . , bn) ∈ Rn×n and Ai = (bi, a2, . . . , an).
Then

|A| · |B| =
n�

i=1

|Ai| · |B
i
|. (3)

Proof. By Cramer’s rule a1 =
�n

i=1
|Bi|
|B| bi and hence

|A| · |B| =

�����

n�

i=1

|Bi|

|B|
bi, a2, . . . , an

����� · |B|

=
n�

i=1

|Bi
| |bi, a2, . . . , an| =

n�

i=1

|Ai| · |B
i
|.

This pattern generalizes to arbitrary oriented matroids. If χ(B1)χ(B2) �= 0
some product arising from the double swaps has to have the same sign.

Theorem 9. Let χ : Ed → {0, 1,−1} be a map that is not identically zero.
Then χ is the determinant function of an oriented matroid of rank d if and only
if

B1: χ is alternating, i.e. for every permutation σ

χ(x1, . . . , xd) = sign(σ)χ(xσ(1), . . . , xσ(d)).

B2: ∀B1 = (x1, . . . , xd), B2 = (y1, . . . , yd) ∈ Ed with χ(B1)χ(B2) �= 0
∃i ∈ {1, . . . , d}

χ(B1)χ(B2) = χ(yi, x2, x3, . . . , xd)χ(y1, . . . , yi−1, x1, yi+1, . . . , yd).
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Figure 9: The configuration from Example 2

The determinant function of an oriented matroid is unique up to the sign,
i.e. χ and −χ encode the same oriented matroid.

Example 4. Recall Example 2 see Figure 9. We choose the two disjoint bases

B1 =

�
1 0
0 1

�
and B2 =

�
1 1
1 2

�
. Then det(B1) = det(B2) = 1. Let

e =
�1
0

�
and compute the possible double swaps:

����
1 0
1 1

���� ·
����
1 1
0 2

���� = 2

����
1 0
2 1

���� ·
����
1 1
1 0

���� = −1.

The Grassman-Plücker identity is 1 = 2 − 1. We can also interpret the
Grassmann-Plücker identity as orthogonality relation for circuits and cocircuits.
The signs of the circuits in our example can be read of as follows. The point in
the middle of three points has a different sign than the other two. The cocircuits
are the complements of hyperplanes (i.e. the points), and the sign is positive if
the vector points towards the point, negative otherwise.

One of the two signed circuits formed by

�
1 1 1
0 1 2

�
has the sign pattern

(−, 0,+,−). It follows from Cramer’s rule and Laplacian expansion that we
may interpret this as
�
(−1)1 sign

�����
1 1
1 2

����

�
, 0, (−1)2 sign

�����
1 1
0 2

����

�
, (−1)3 sign

�����
1 1
0 1

����

��
.

On the other hand we have the signed cocircuit (+, 0,+,+) which we compute
as

�
sign

�����
1 0
0 1

����

�
, sign

�����
0 0
1 1

����

�
, sign

�����
1 0
1 1

����

�
, sign

�����
1 0
2 1

����

��
.

Using the alternating sign of the determinant the orthogonality of this pair
of circuit and cocircuit yields the Grassmann-Plücker identity. This generalizes
to oriented matroids, since we can compute the signed circuits and cocircuits
from the determinant function as follows:

Theorem 10. Let χ be a determinant function of an oriented matroid of rank d,
C ∈ C and D ∈ D. Let C ⊆ {x1, . . . , xd+1} and r({x1, . . . , xd+1}) = d where
r denotes the rank function of the underlying matroid and let y1, . . . , yd−1 be a
basis of the hyperplane E \D. Then

a).

Ce =

�
�(−1)iχ(x1, . . . , xi−1, xi+1, . . . , xd+1} if e = xi

0 otherwise,
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where � is either 1 or −1.

b). De = �χ(e, y1, . . . , yd−1), where � is either 1 or −1.

3.3 Closure

The closure operator for oriented matroids is not that common. In order to
define it, we will even have to change our notation slightly. Before doing so, we
recall the closure operator of a matroid.

Theorem 11. A function cl : 2E → 2E is the closure operator of a matroid if
and only if

CL1: ∀X ∈ 2E : X ⊆ cl(X)

CL2: X ⊆ Y ⇒ cl(X) ⊆ cl(Y )

CL3: ∀X ∈ 2E : cl(cl(X)) = cl(X)

CL4: y ∈ cl(X ∪ x) \ cl(X) ⇒ x ∈ cl(X ∪ y).

Furthermore,

Proposition 2. cl(X) = X ∪ {e ∈ E | ∃C ∈ C : e ∈ C ⊆ (X ∪ e)},

i.e. the closure adds to X all elements which close a circuit with elements
from X. For oriented matroids we need an oriented version of that fact. For
that purpose we assume now that we have two copies of each element, a positive
and a negative one. We will denote our groundset by ±E. Our signed sets C
are now subsets of 2±E with the property that C ∩ −C = ∅.

The convex closure then is defined as

cl(X) = X ∪ {σe ∈ ±E | ∃C ∈ C : −σe ∈ C ⊆ (X ∪ −σe)},

where σ ∈ {+,−}.

Theorem 12 ([4]). A function cl : 2±E → 2±E is the convex closure operator
of an oriented matroid if and only if

CL1: cl(∅) = ∅.

CL2: A ⊆ cl(A) = cl(cl(A)).

CL3: A ⊆ B ⇒ cl(A) ⊆ cl(B).

CL4: cl(−A) = − cl(A).

CL5: σe ∈ cl(A ∪ −σe) ⇒ σe ∈ cl(A).

CL6: σe ∈ cl(A ∪ −τf) and σe �∈ cl(A) ⇒ τf ∈ cl(A \ τf ∪ −σe).

Here σ, τ ∈ {+,−}.

The last axiom is depicted in Figure 10. The hull operator used there is the
conic hull which is more appropriate here. We used the term convex closure
only for historic reasons.
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Figure 10: Axiom CL6

3.4 Open Sets and Covectors

The most frequently used axioms for oriented matroids are the covector axioms.
Their matroid theoretic counterpart is less known. We call a set O ⊆ E open, if
its complement is closed, i.e. if cl(E \O) = E \O. One may also consider open
sets as unions of cocircuits. Then

Theorem 13. A family O ∈ 2E is the family of open sets of a matroid if and
only if

O1: ∅ ∈ O.

O2: ∀O1, O2 ∈ O : O1 ∪O2 ∈ O.

O3: ∀O1, O2 ∈ O ∀x ∈ O1 ∩O2 ∃O3 ∈ O :

(O1 ∪O2) \ (O1 ∩O2) ⊆ O3 ⊆ (O1 ∪O2) \ {x}.

For an oriented version of the open set axioms, Figure 8 gives a guideline.
The smallest open sets are the cocircuits. The union of two cocircuits V ◦ W
should be the cell of the arrangement that we get, when we perturb V slightly
in the direction of W . Hence in that example V ◦ W = (+ + + + −+) and
W ◦ V = (+ + + + ++). For that purpose we define the composition of two
signed vectors U, V as

(U ◦ V )e =

�
Ue if Ue �= 0
Ve otherwise.

We call a signed vector that is the composition of a (possibly empty) sequence
of cocircuits a covector. The empty composition yields the all zero vector, resp.
the empty signed set. Now we can give the covector axioms.

Theorem 14. A set O is the set of covectors of an oriented matroid if and only
if

V0: ∅ ∈ O
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V1: O = −O.

V2: ∀U, V ∈ O : U ◦ V ∈ O.

V3: ∀U, V ∈ O ∀e ∈ sep(U, V ) ∃W ∈ O : W+ ⊆ (U+ ∪ V +) \ {e},
W− ⊆ (U− ∪ V −) \ {e}, and ∀f �∈ sep(U, V ) : Wf = (U ◦ V )f .

In the central hyperplane arrangement from Example 3 c) the covectors
correspond exactly to the cells in the conic decomposition defined by the hy-
perplanes. We gave already an interpretation of V2. To visualize V3 consider a
straight line connecting the two cells U and V . Since e separates the two cells,
this line has to pass the hyperplane He. The signed vector of this intersection
yields W as desired.

We close this section with an analogue of Theorem 2 c). If X ⊆ Y and
sep(X,Y ) = ∅, we sayX conforms to Y and writeX � Y . We call a composition
X1 ◦ . . . ◦Xk a conformal sum if ∀1 ≤ i, j ≤ k : sep(Xi, Xj) = ∅ .

Proposition 3. Let O be the set of covectors of an oriented matroid and X ∈ O.
Then X is the conformal sum of cocircuits of O.

Proof. We proceed by induction on the size of the support of X. If X = ∅ or
X is elementary, there is nothing to prove. Otherwise let D be a cocircuit and
D ⊂ X. If D � X then by applying V3 to X and −D (possibly repeatedly)
we find a covector Z � X such that Z ⊂ X and Z ∪ D = X and the claim
follows by induction. The case −D � X is analogous. Otherwise, sep(D,X) �=
∅ �= sep(−D,X) and eleminating on the separator between both pairs (possibly
repeatedly) we find Z1, Z2 � X such that Zi ⊂ X and Z1 ∪ Z2 = X and the
claim follows by induction.

4 The Topological Representation Theorem and

Pseudoline Arrangements

Example 3 c) is in a certain sense the general case. Different from ordinary
matroids, where sometimes geometric models seem to be a little artificial, ori-
ented matroids always do represent a geometric situation. Since not all oriented
matroids are realizable, i.e. they are given as in Example 3 c), we have to allow
some small perturbations within the hyperplanes. To make this more precise,
first we remove some redundancy from our hyperplane arrangement. Namely
if we intersect it with the standard sphere Sn−1 we get a cell decomposition
of the sphere, where the cells correspond to the covectors of the matroid. The
hyperplanes now have become hyperspheres, i.e. codimension one linear sub-
spheres of Sn−1. For our general model we replace these linear hyperspheres by
topological hyperspheres, but require that their intersection locally behaves like
the intersection of linear spheres.

Definition 2. Let Sd = {x ∈ Rd+1 | �x� = 1} denote the d-dimensional
standard sphere. A pseudosphere of Sd is any homeomorphic image S of Sd−1
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in Sd i.e. the image of a homeomorphism

ϕ : Sd−1
→ Sd.

The two connected components of Sd \ S are the sides of S. An oriented pseu-
dosphere is a pseudo hypersphere together with a choice of one of its sides.

A finite family A = (Se)e∈E of pseudospheres of Sd indexed by E is an
arrangement of pseudospheres if

A1: ∀A ⊆ E : SA :=
�

e∈A Se is a topological sphere.

A2: If SA �⊆ Se and S+
e , S−

e are the sides of Se, then SA ∩ Se is a codimension
one topological subsphere of SA with sides SA ∩ S+

e , SA ∩ S−
e .

If the pseudospheres are oriented, we call the arrangement a signed arrange-
ment of pseudospheres.

Recall the following theorem about geometric lattices, (i.e. about simple
matroids):

Theorem 15. A finite atomic lattice L is geometric if and only if for all atoms
p ∈ L and all � ∈ L either p ≤ � or � ∨ p covers �.

From this it is immediate that A2 defines a matroid on E. If A is a signed
arrangement, then the cell decomposition of the sphere induced by A defines a
set O(A) of signed vectors.

In fact this is just another axiom system for oriented matroids:

Theorem 16 (Topological Representation, Folkman and Lawrence 1978). Let
O denote a set of signed vectors. Then the following conditions are equivalent:

a). O is a set of covectors of a loopless oriented matroid of rank d+ 1.

b). O = O(A) for some signed pseudosphere arrangement A on Sd.

If I ⊆ E and if we change the signs in all covectors O in entries in I, inter-
changing + and − but leaving 0, we get another oriented matroid denoted by

IO and say that IO arises from O by reorientation of I. Clearly, O and IO are
represented by the same pseudosphere arrangement just with a different orien-
tation. Being connected by reorientation is an equivalence relation and hence
a pseudosphere arrangement corresponds to a reorientation class of oriented
matroids.

4.1 Pseudoline Arrangements

By the topological representation theorem a rank 3 oriented matroid has a
representation as a pseudocircle arrangement on S2. If we cut this in half we get
an oriented arrangement of pseudolines. The theory of pseudoline arrangements,
introduced by Levi in 1926, coincides (up to considering orientation) with the
theory of oriented matroids of rank 3.
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Since the polygon matroid of the K4 is of rank 3, there must be some line ar-
rangement representing it, namely the arrangement in Figure 8. It corresponds
to the orientation of the K4 as given in Figure 11 to the left. To the right we
have cut the sphere at a different place. Note, that the corresponding arrange-
ments are projectively equivalent, vertex V in Figure 8 corresponds to the vertex
with the open circle in the arrangement in Figure 11.

2

1

4
6

5
3

1

6

2
4

5
3

2

4
6

3

1

5

Figure 11: The orientation of K4 corresponding to Figure 8 and another acyclic
orientation with its pseudoline configuration, the cut corresponds to the vertex
with the open circle.

In general oriented matroids with the same underlying matroid need not
form a single reorientation class. In particular uniform matroids have many
different reorientation classes. Figure 12 depicts the four reorientation classes
of U6

3 .

Figure 12: The four reorientation classes of U6
3 .

Already pseudoline arrangements provide many non-realizable matroids. Non-
realizabilty here means, that the arrangement cannot be defined by straight lines
without changing the oriented matroid. In Figure 13 we sketched two pseudoline
arrangements violating Pappus’ Theorem respectively Desargues’ Theorem.

We end this section with some remarks on matroids with unique reorientation
classes.

While already uniform oriented matroids of rank three have exponentially
many reorientation classes, regular matroids have just one.

Theorem 17 (Bland, Las Vergnas 1978). Regular matroids have a unique re-
orientation class.

In this field the following conjecture is still open.
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B�
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C �

Figure 13: A non-Pappus and a non-Desargues configuration

Conjecture 1 (Las Vergnas et al. 1991). The affine d-cube has a unique reori-
entation class.

The conjecture is known to hold true for d ≤ 4.

5 Polyhedral Theory and Oriented Matroid Pro-

gramming

Recall that we defined the relation X � Y if X ⊆ Y and sep(X,Y ) = ∅.
Obviously, this defines a partial order. If we add an artificial 1 to the poset it
becomes a lattice, called the face lattice of the oriented matroid. This is, why
oriented matroids are a tool to work in polyhedral theory. Every polyhedron
P = {x ∈ Rn | Ax ≤ b} defines an oriented matroid, where P is the vector of
all plusses. For that purpose consider C = {

�x
t

�
∈ Rn+1 | (A,−b)

�x
t

�
≤ 0}. This

defines a hyperplane arrangement as in Example 3 c).
Several theorems from polyhedral theory have oriented matroid analogues,

but some have not. Consider the cell decomposition of Sd associated with an
oriented matroid of rank d+1. We call a d-dimensional cell of this arrangement
of pseudopspheres a simplicial tope if it is adjacent to exactly d + 1 cocircuits.
Hence simplicial topes “are” full dimensional simplices.

Theorem 18 (Shannon 1979). Every linear arrangement of n hyperplanes,
where the intersection of all hyperplanes is the empty set, contains at least n
simplicial topes.

Jürgen Richter-Gebert [8] has constructed a class of orientations of U4n
4 with

only 3n+ 1 simplicial topes. But the following is still unknown:

Conjecture 2 (Las Vergnas). Every uniform oriented matroid has at least one
simplicial tope.

Very little is known about the sphere systems associated with graphic or co-
graphic matroids. It seems that they are very structured, i.e. from a polyhedral
point of view they have a high degeneracy. The maximal cells in the sphere
system of a graph correspond to the acyclic orientations, namely, if we make
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a cell an all positive covector, all circuits must be orthogonal to it and hence
cannot be directed.

The following exercise is intended to point at some possible connections one
might find between directed graph theory and oriented matroids. It may be a
bit too advanced for somebody inexperienced with oriented matroids, but we
sketch a solution in the last section.

Exercise 4. Let O be an oriented matroid. We call a basis B of O a depth first
basis, if for some orientation of O all fundamental circuits of B are directed.

Let O be an oriented matroid and let A(O∗) be a pseudosphere arrangement
on Sd representing its dual. Then there is a bijection between the depth first
bases of O and the antipodal pairs of simplicial topes of A(O∗).

5.1 Oriented Matroid Programming

The most widely known offspring of oriented matroid theory is probably Bland’s
rule to prevent cycling in linear programming. It is a purely combinatorial rule
and can be stated in oriented matroid setting. Here we will give an idea of how
to translate terminology from linear programming to oriented matroids.

Given A ∈ Rm×n, b ∈ Rm and c ∈ Rn, we call the problem

max{c�x | Ax ≤ b}

a linear program. We have already learned that the polyhedron P = {x ∈ Rn |

Ax ≤ b} is the all positive cell in an oriented matroid. But how to encode the
linear functional and maximization? Maximization makes only sense in affine
space. Oriented matroids work properly only in “two-sided projective spaces”.
To overcome that problem we add a pseudosphere Sg “at infinity”. Our “visible
world” are those covectors which are strictly positive on g (see Figure 14).
The linear functional c corresponds to a family of parallel hyperplanes. These
intersect in a hypersphere of Sg. Hence we may use an oriented hypersphere Sf

which must intersect Sg and yields the partition

Sg = (Sg ∩ Sf )∪̇(Sg ∩ S+
f )∪̇(Sg ∩ S−

f ).

A direction is now a vertex (cocircuit) in Sg and a direction D is improving if
V ∈ (Sg ∩S+

f ). An oriented matroid program is unbounded, if its feasible region
has a face on the positive side of infinity.

With these preparations, we can define an oriented matroid program as triple
(O, g, f) meaning

max Yf

s.t. Yg = +
Ye ≥ 0 ∀e ∈ E \ {f, g}
Y ∈ O.

Definition 3. An improving direction is a covector Z such that Zg = 0 and
Zf = +. A covector Y is feasible for (O, g, f) if ∀e ∈ E \ {f, g} : Ye ∈ {0,+}.
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An improving direction Z is feasible for a feasible covector Y if Y ◦ Z is a
feasible covector. A covector Y 0 is optimal if there is no improving direction
which is feasible for Y 0. An oriented matroid program is unbounded if there is
a covector Y ∈ O such that Yg = 0, ∀e ∈ E \ {f, g} : Ye ∈ {0,+} and Yf = +.

g = ∞

f

Figure 14: An oriented matroid program in rank 3

Example 5. Consider the program depicted in Figure 14. The feasible covectors
form the shaded region together with its boundary. We indicated the improving
directions by putting arrows at the edges of the feasible region. Hence the white
vertex is the unique optimal solution of this program.

6 Solutions of the Exercises

Solution 1 (to Exercises 1 and 3). F7 is not orientable.

Proof. If an orientation of a matroid is given we may reorient it on a set I
by replacing all (C+, C−) ∈ C with ((C+ \ I) ∪ (I ∩ C−), (C− \ I) ∪ (I ∩ C+))
and all (D+, D−) ∈ D with ((D+ \ I) ∪ (I ∩D−), (D− \ I) ∪ (I ∩D+)), i.e. by
changing the sign in the coordinates of I in all characteristic vectors. Also
changing the order of an ordered partition yields another orientation.

a

e

f

db
c

g

If F7 were orientable, we might assume that the circuits {a, b, e}, {a, c, f},
and {a, d, g} are positive, i.e. C− = ∅. By orthogonality we have the cocircuit
({a}, {b, c, d}). Again by orthogonality the elements
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• b, d must be in different parts of the partition of the circuit {b, d, f},

• b, c must be in different parts of the partition of the circuit {b, c, g},

• c, d must be in different parts of the partition of the circuit {c, d, e}.

Using this and the orientation of the three three-point lines containing a we
conclude that we have cocircuits ({c, d}, {f, g}) and ({b, c}, {e, f}). Now con-
sidering the third element in {b, d, f} we get a contradiction.

Solution 2 (to Exercise 2). If C ⊆ S is a minimally affinely dependent set, then
there is a unique partition C = (C+, C−) defined by the signs of the coefficients,
called the Radon partition such that the intersection of the convex hulls of C+

and C− is non-empty.

Proof. Let C = {c1, . . . , ck}, then C is affinely dependent, iff there exist λ1, . . . ,λk,
not all equal to zero, such that

k�

i=1

λici = 0 and
k�

i=1

λici = 0.

Set C+ = {i | 1 ≤ i ≤ k and λi > 0}, C− = {1, . . . , k} \ I+. Then λ :=�
i∈C+ λi =

�
i∈C− −λi > 0,

�

i∈I+

λi

λ
ci =

�

i∈I−

−λi

λ
ci and

�

i∈I+

λi

λ
=

�

i∈I−

−λi

λ
= 1.

Hence we have found a partition such that the intersection of the convex hulls
is non-empty. The same way any partition with this property gives rise to co-
efficients proving affine dependency. Assume, we have two partitions (C+, C−)
and (C̃+, C̃−). These give rise to linear combinations proving affine dependency

k�

i=1

λici = 0 and
k�

i=1

λici = 0,
k�

i=1

µici = 0 and
k�

i=1

µici = 0.

Since these equations are invariant under linear scaling, and since all coefficients
must be non-zero by minimality of the dependency, we may assume that λ1 =
µ1 = 1. Now,

n�

i=2

(λi − µi)ci = 0 and
n�

i=2

(λi − µi) = 0.

Hence by minimality of the dependency we conclude that λi = µi for all 1 ≤

i ≤ k. We conclude that, in particular, the partition must be unique.

Solution 3 (to Exercise 4). There is a bijection between the depth first bases
of O and the antipodal pairs of simplicial topes of O.
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Proof. Let B be a depth first basis of O and assume that O is reoriented such
that all fundamental circuits are positive. Let B = E \ B denote the corre-
sponding cobasis. Then all fundamental cocircuits of B are directed, since the
fundamental cocircuits of B coincide with the fundamental circuits of B. Hence
we have |E| − |B| = d + 1 positive cocircuits. Since B is a basis of O the
intersection of the corresponding pseudospheres must be empty and the orien-
tation defines a simplex of the arrangement of B on Sd, the vertices of which
correspond to the fundamental cocircuits. Since they are all positive no further
pseudospere from B may intersect this simplex, hence we have found a simplicial
tope.

On the other hand a simplicial tope T defines an orientation of O∗. Let B
denote the set of elements which do not define a facet of T . Then, similar to the
arguments above, B is a basis of O and all its fundamental circuits correspond
to vertices of T and hence are directed.

Note that the simplex antipodal to T defines the same bases. Instead of
the determinant function χ we find −χ which give rise to the same oriented
matroid.

References

[1] Achim Bachem and Walter Kern. Linear Programming Duality: An Intro-
duction to Oriented Matroids. Springer, September 1992.

[2] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Günter M. Ziegler. Oriented matroids, volume 46 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, sec-
ond edition, 1999.

[3] Robert G. Bland and Michel Las Vergnas. Orientability of matroids. Jour-
nal of Combinatorial Theory Series B, 23:94–123, 1978.
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