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C H A P T E R  T H R E E  

Eight Problems 

1 .  ACUTE DISSECTION 

GIVE~N A TRIANGLE with one obtuse angle, is i t  possible to cut the 
triangle into smaller triangles, all of them acute? (An acute 
triangle is a triangle with three acute angles. A right angle is of 
cour,se neither acute nor obtuse.) If this cannot be done, give a 
proof of impossibility. If i t  can be done, what is the smallest num- 
ber of acute triangles into which any obtuse triangle can be dis- 
sected ? 

Figure 10 shows a typical attempt that  leads nowhere. The tri- 
angle has been divided into three acute triangles, but the fourth 
is ob~tuse, so nothing has been gained by the preceding cuts. 

The problem (which came to me by way of Me1 Stover of Win- 
nipeg) is amusing because even the best mathematician is likely 
to be led astray by i t  and come to a wrong conclusion. My pleasure 

FIG. 10 
Can this trianale be cut into - .  - 
acute ones? 
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in working on it led me to ask myself a related question: "VVhat 
is the smallest number of acute triangles into which a square can 
be dissected?" For days I was convinced that  nine was the an- 
swer; then suddenly I saw how to reduce it to eight. I wonder 
how many readers can discover an eight-triangle solution, or 
perhaps an even better one. I am unable to prove that eight is the 
minimum, though I strongly suspect that it is. 

2 .  H O W  L O N G  I S  A " L U N A R " ?  

I N  H. G. WELLS'S NOVEL T h e  First M e n  in t h e  Moon  our natural 
satellite is found to be inhabited by intelligent insect creatures 
who live in caverns below the surface. These creatures, let us 
assume, have a unit of distance that  we shall call a "lunar." I t  was 
adopted because the moon's surface area, if expressed in square 
lunars, exactly equals the moon's volume in cubic lunars. The 
moon's diameter is 2,160 miles. How many miles long is a lunar? 

3 .  THE G A M E  OF G O O G O L  

IN 1958 JOHN H. FOX, JR., of the Minneapolis-Honeywell R8egu- 
lator Company, and L. Gerald Marnie, of the Massachusetts Insti- 
tute of Technology, devised an unusual betting game which they 
call Googol. I t  is played as follows : Ask someone to take as niany 
slips of paper as he pleases, and on each slip write a different 
positive number. The numbers may range from small fractions of 
1 t o  a number the size of a "googol" (1 followed by a hundred 
0's) or even larger. These slips are turned face down and shuffled 
over the top of a table. One a t  a time you turn the slips face up. 
The aim is to stop turning when you come to the number that; you 
guess to be the largest of the series. You cannot go back and pick 
a previously turned slip. If you turn over all the slips, then of 
course you must pick the last one turned. 

Most people will suppose the odds against your finding the 
highest number to be a t  least five to one. Actually if you adopt the 
best strategy, your chances are a little better than one in tlhree. 
Two questions arise. First, what is the best strategy? (Note that 
this is not the same as asking for a strategy that will maximize 
the value of the selected number.) Second, if you follow this 
strategy, how can you calculate your chances of winning? 
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When there are only two slips, your chance of winning is 
obviously 112, regardless of which slip you pick. As the slips 
increase in number, the probability of winning (assuming that 
you use the best strategy) decreases, but the curve flattens quick- 
ly, and there is very little change beyond ten slips. The probability 
never drops below 113. Many players will suppose that they can 
make the task more difficult by choosing very large numbers, but 
a little reflection will show that the sizes of the numbers are 
irrel~evant. I t  is only necessary that the slips bear numbers that 
can be arranged in increasing order. 

The game has many interesting applications. For example, a 
girl decides to marry before the end of the year. She estimates 
that she will meet ten men who can be persuaded to propose, but 
once she has rejected a proposal, the man will not try again. 
What strategy should she follow to maximize her chances of 
accepting the top man of the ten, and what is the probability that 
she will succeed? 

The strategy consists of rejecting a certain number of slips of 
paper (or proposals), then picking the next number that exceeds 
the highest number among the rejected slips. What is needed is a 
formula for determining how many slips to reject, depending on 
the total number of slips. 

4 .  M A R C H I N G  CADETS A N D  A  T R O T T I N G  D O G  

A SQUARE FORMATION of Army cadets, 50 feet on the side, is 
marching forward a t  a constant pace [see Fig. 111. The company 
mascot, a small terrier, starts a t  the center of the rear rank 
[position A in the illustration], trots forward in a straight line to 

FIG. I 1  
How far does the dog trot? 
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the center of the front rank [posi t ion  Bl, then trots back again in 
a straight line to the center of the rear. At the instant he returns 
to position A, the cadets have advanced exactly 50 feet. Assuming 
that the dog trots a t  a constant speed and loses no time in t,urn- 
ing, how many feet does he travel? 

If you solve this problem, which calls for no more than a kn~owl- 
edge of elementary algebra, you may wish to tackle a much more 
difficult version proposed by the famous puzzlist Sam Loyd. (See 
Mathemat ical  Puzz les  o f  S a m  Lozjd, Vol. 2, Dover paperback, 
1960, page 103.) Instead of moving forward and back through 
the marching cadets, the mascot trots with constant speed around 
the outside of the square, keeping as close as possible to the square 
a t  all times. (For the problem we assume that  he trots along the 
perimeter of the square.) As before, the formation has marched 
50 feet by the time the dog returns to point A. How long izr the 
dog's path? 

Barr's belt (top) and an unsatisfactory way to fold it (bottom). 

5 .  B A R R ' S  B E L T  

STEPHEN BARR of Woodstock, New York, says that his dresssing 
gown has a long cloth belt, the ends of which are cut at 45-degree 
angles as shown in Figure 12. When he packs the belt for a trip, 
he likes to roll i t  up as neatly as possible, beginning a t  one end, 
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but the slanting ends disturb his sense of symmetry. On the 
other hand, if he folds over an end to make i t  square off, then the 
uneven thicknesses of cloth put lumps in the roll. He experiment- 
ed with more complicated folds, but t ry  as he would, he could not 
achieve a rectangle of uniform thickness. For example, the fold 
shown in the illustration produces a rectangle with three thick- 
nesses in section A and two in section B. 

"Nothing is perfect,'' says one of the Philosophers in James 
Stephens' The Crock of Gold. "There are lumps in it." Nonethe- 
less, Barr finally managed to fold his belt so that  each end was 
straight across and part of a rectangle of uniform thickness 
throughout. The belt could then be folded into a neat roll, free of 
lumps. How did Barr fold his belt? A long strip of paper, properly 
cut a t  the ends, can be used for working on the problem. 

6 .  W H I T E ,  BLACK A N D  B R O W N  

PRO~?ESSOR MERLE WHITE of the mathematics department, Pro- 
fessor Leslie Black of philosophy, and Jean Brown, a young 
sten'ographer who worked in the university's office of admissions, 
were lunching together. 

"Isn't it  remarkable," observed the lady, "that our last names 
are Black, Brown and White and that one of us has black hair, 
one brown hair and one white." 

"It is indeed," replied the person with black hair, "and have 
you noticed that not one of us has hair that matches his or her 
name?" 

"13y golly, you're right !" exclaimed Professor White. 
If the lady's hair isn't brown, what is the color of Professor 

Black's hair ? 

7 .  THE P L A N E  I N  THE W I N D  

AN .AIRPLANE FLIES in a straight line from airport A to airport B, 
then back in a straight line from B to A. I t  travels with a constant 
engine speed and there is no wind. Will its travel time for the 
same round trip be greater, less or the same if, throughout both 
flights, a t  the same engine speed, a constant wind blows from 
A to B?  
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8 .  W H A T  P R I C E  P E T S ?  

THE OWNER of a pet shop bought a certain number of hamsters 
and half that many pairs of parakeets. He paid $2 each for the 
hamsters and $1 for each parakeet. On every pet he placed 2% re- 
tail price that was an advance of 10 per cent over what he paid 
for it. 

After all but seven of the creatures had been sold, the owner 
found that he had taken in for them an amount of money exactly 
equal to what he had originally paid for all of them. His potential 
profit, therefore, was represented by the combined retail value of 
the seven remaining animals. What was this value? 

A N S W E R S  

1. A number of readers sent "proofs" that an obtuse triangle 
cannot be dissected into acute triangles, but of course it can. Fig- 
ure 13 shows a seven-piece pattern that applies to any obtuse 
triangle. 

FIG.  13 
Obtuse triangle cut into :seven 
acute ones. 

I t  is easy to see that seven is minimal. The obtuse angle must be 
divided by a line. This line cannot go all the way to the other side, 
for then it  would form another obtuse triangle, which in turn 
would have to be dissected, consequently the pattern for the 
large triangle would not be minimal. The line dividing the obtuse 
angle must, therefore, terminate a t  a point inside the triangle. 
At this vertex, a t  least five lines must meet, otherwise the angles 
a t  this vertex would not all be acute. This creates the inner penta- 
gon of five triangles, making a total of seven triangles in all. 
Wallace Manheimer, a Brooklyn high school teacher a t  the time, 
gave this proof as his solution to problem El406 in American 
Mathematical Monthly, November 1960, page 923. He also showed 
how to construct the pattern for any obtuse triangle. 
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The question arises: Can any obtuse triangle be dissected into 
sevein acute isosceles triangles? The answer is no. Verner E. Hog- 
gatt, Jr., and Russ Denman (American Mathematical Monthly, 
November 1961, pages 912-913) proved that eight such triangles 
are sufficient for all obtuse triangles, and Free Jamison (ibid., 
June-July 1962, pages 550-552) proved that eight are also nec- 
essary. These articles can be consulted for details as to conditions 
under which less than eight-piece patterns are possible. A right 
triangle and an acute nonisosceles triangle can each be cut into 
nine acute isosceles triangles, and an acute isosceles triangle can 
be cut into four congruent acute isosceles triangles similar to the 
original. 

F I G .  14 
Square cut into eight acute 

triangles. 

A square can be cut into eight acute triangles as shown in 
Figure 14. If the dissection has bilateral symmetry, points P and 
P' must lie within the shaded area determined by the four semi- 
circles. Donald L. Vanderpool pointed out in a letter that asym- 
metric distortions of the pattern are possible with point P any- 
wheire outside the shaded area provided i t  remains outside the 
two large semicircles. 

About 25 readers sent proofs, with varying degrees of formal- 
ity, that the eight-piece dissection is minimal. One, by Harry 
Lindgren, appeared in Australian Mathematics Teacher, Vol. 18, 
pages 14-15, 1962. His proof also shows that the pattern, aside 
from the shifting of points P and P' as  noted above, is unique. 
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H. S. M. Coxeter pointed out the surprising fact that for' any 
rectangle, even though its sides differ in length by an arbitrarily 
small amount, the line segment PP' can be shifted to the center 
to give the pattern both horizontal and vertical symmetry. 

Free Jamison found in 1968 that a square can be dividecl into 
ten acute isosceles triangles. See The Fibonacci Quarterly (De- 
cember 1968) for a proof that a square can be dissected into any 
number of acute isosceles triangles equal or greater than 10. 

Figure 15 shows how the pentagram (regular five-pointed 
star) and the Greek cross can each be dissected into the sm;sllest 
possible number of acute triangles. 

2. The volume of a sphere is 4 ~ 1 3  times the cube of the radius. 
Its surface is 4~ times the square of the radius. If we express the 
moon's radius in "lunars" and assume that its surface in square 
lunars equals its volume in cubic lunars, we can determine the 
length of the radius simply by equating the two formulas, and 
solving for the value of the radius. Pi cancels out on both sides, 
and we find that the radius is three lunars. The moon's radius is 
1,080 miles, so a lunar must be 360 miles. 

3. Regardless of the number of slips involved in the ganne of 
Googol, the probability of picking the slip with the largest num- 
ber (assuming that the best strategy is used) never drops below 
.367879. This is the reciprocal of e, and the limit of the probalbility 
of winning as the number of slips approaches infinity. 

If there are ten slips (a convenient number to use in playing 
the game), the probability of picking the top number is .398. The 
strategy is to turn three slips, note the largest number arnong 
them, then pick the next slip that exceeds this number. In the 
long run you stand to win about two out of every five games. 

What follows is a compressed account of a complete analysis of 
the game by Leo Moser and J. R. Pounder of the University of 
Alberta. Let n be the number of slips and p the number rejected 
before picking a number larger than any on the p slips. Nuimber 
the slips serially from 1 to n. Let k + 1 be the number of the slip 
bearing the largest number. The top number will not be chosen 
unless k is equal to or greater than p (otherwise it will be rejected 
among the first p slips), and then only if the highest number from 
1 to k is also the highest number from 1 to p (otherwise this inum- 
ber will be chosen before the top number is reached). The prob- 
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F I G .  IS 
Minimum dissections for the pentagram and Greek cross. 
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ability of finding the top number in case it is on the k + 1 slip is 
plk, and the probability that the top number actually is on the 
k + 1 slip is l l n .  Since the largest number can be on only one 
slip, we can write the following formula for the probabi1i.t~ of 
finding it : 

Given a value for n (the number of slips) we can determine p 
(the number to reject) by picking a value for p that gives the 
greatest value to the above expression. As n approaches intinity, 
p ln  approaches l l e ,  so a good estimate of p is simply the nearest 
integer to nle. The general strategy, therefore, when the ga.me is 
played with n slips, is to let n le  numbers go by, then pick the 
next number larger than the largest number on the nle  slips 
passed up. 

This assumes, of course, that  a player has no knowledge of the 
range of the numbers on the slips and therefore no bask for 
knowing whether a single number is high or low within the range. 
If one has such knowledge, the analysis does not apply. For ex- 
ample, if the game is played with the numbers on ten one-dollar 
bills, and your first draw is a bill with a number that begins with 
9, your best strategy is to keep the bill. For similar reasons, the 
strategy in playing Googol is not strictly applicable to the un- 
married girl problem, as many readers pointed out, because the 
girl presumably has a fair knowledge of the range in value of her 
suitors, and has certain standards in mind. If the first marl who 
proposes comes very close to her ideal, wrote Joseph P. Rob:inson, 
"she would have rocks in her head if she did not accept a t  once." 

Fox and Marnie apparently hit independently on a problem 
that had occurred to others a few years before. A number of 
readers said they had heard the problem before 1958 --one re- 
called working on it in 1955 - but I was unable to find any pub- 
lished reference to it. The problem of maximizing the value (of the 
selected object (rather than the chance of getting the object of 
highest value) seems first to have been proposed by the f~lmous 
mathematician Arthur Cayley in 1875. (See Leo Moser, "On a 
Problem of Cayley," in Scripta Mathematics, September-Decem- 
ber 1956, pages 289-292.) 
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4. Let 1 be the length of the square of cadets and also the time 
i t  takes them to march this length. Their speed will also be 1. Let 
x be 1;he total distance traveled by the dog and also its speed. On 
the dog's forward tr ip his speed relative to the cadets will be x - 1. 
On the return tr ip his speed relative to the cadets will be x + 1. 
Each tr ip is a distance of 1 (relative to the cadets), and the two 
trips are completed in unit time, so the following equation can be 
written : 

Th.is can be expressed as the quadratic: x2 - 22 - 1 = 0, for 
which x has the positive value of 1 + fl Multiply this by 50 to 
get the final answer: 120.7+ feet. In other words, the dog trav- 
els a total distance equal to the length of the square of cadets plus 
that  same length times the square root of 2. 

Loyd's version of the problem, in which the dog trots around 
the moving square, can be approached in exactly the same way. 
I pariaphrase a clear, brief solution sent by Robert F. Jackson of 
the Computing Center a t  the University of Delaware. 

As before, let 1 be the side of the square and also the time it 
takes the cadets to go 50 feet. Their speed will then also be 1. Let 
x be the distance traveled by the dog and also his speed. The dog's 
speed with respect to the speed of the square will be x - 1 on his 
forward trip, d m  on each of his two transverse trips, and 
x + I on his backward trip. The circuit is completed in unit time, 
so we can write this equation: 

This can be expressed as the quartic equation: x4 - 4 9  - 
2x2 + 4x + 5 = 0. Only one positive real root is not extraneous: 
4.18112+. We multiply this by 50 to get the desired answer: 
209.056+feet. 

Theodore W. Gibson, of the University of Virginia, found that 
the first form of the above equation can be written as follows, 
simply by taking the square root of each side: 
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which is remarkably similar to the equation for the first version 
of the problem. 

Many readers sent analyses of variations of this problem: a 
square formation marching in a direction parallel to the square's 
diagonal, formations of regular polygons with more than four 
sides, circular formations, rotating formations, and so on. Th~omas 
J. Meehan and David Salsburg each pointed out that the problem 
is the same as that of a destroyer making a square search palttern 
around a moving ship, and showed how easily it could be solved 
by vector diagrams on what the Navy calls a "maneuvering 
board." 

5. The simplest way to fold Barr's belt so that each end is 
straight across and part of a rectangle of uniform thickness is 
shown in Figure 16. This permits the neatest roll (the seams 
balance the long fold) and works regardless of the belt's length 
or the angles a t  which the ends are cut. 

F I G .  16 
How Burr folds his beh. 

6. The assumption that  the "lady" is Jean Brown, the s1;enog- 
rapher, quickly leads to a contradiction. Her opening remark 
brings forth a reply from the person with black hair, theirefore 
Brown's hair cannot be black. I t  also cannot be brown, for then 
it would match her name. Therefore it must be white. This 'leaves 
brown for the color of Professor Black's hair and black foir Pro- 
fessor White. But a statement by the person with black hair 
prompts an exclamation from White, so they cannot be the same 
person. 

I t  is necessary to assume, therefore, that Jean Brown is a man. 
Professor White's hair can't be white (for then i t  would .match 
his or her name), nor can i t  be black because he (or she) replies 
to the black-haired person. Therefore i t  must be brown. If the 
lady's hair isn't brown, then Professor White is not a lady. Brown 
is a man, so Professor Black must be the lady. Her hair can't be 
black or brown, so she must be a platinum blonde. 

7. Since the wind boosts the plane's speed from A to IB and 
retards i t  from B to A, one is tempted to suppose that these 
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forces; balance each other so that  total travel time for the com- 
bined flights will remain the same. This is not the case, because 
the tiirne during which the plane's speed is boosted is shorter than 
the time during which i t  is retarded, so the over-all effect is one 
of retardation. The total travel time in a wind of constant speed 
and clirection, regardless of the speed or direction, is always 
greater than if there were no wind. 

8. ]Let x be the number of hamsters originally purchased and 
also the number of parakeets. Let y be the number of hamsters 
among the seven unsold pets. The number of parakeets among 
the seven will then be 7 - ?I. The number of hamsters sold (at  a 
price of $2.20 each, which is a markup of 10 per cent over cost) 
will be x - y, and the number of parakeets sold (a t  $1.10 each) 
will be x - 7 + y. 

The cost of the pets is therefore 2x dollars for the hamsters and 
x dollars for the parakeets - a total of 3x  dollars. The hamsters 
that  were sold brought 2.2 ( x  - y) dollars and the parakeets sold 
brought 1.1 ( x  - 7 + y) dollars - a total of 3 . 3 ~  - 1.121 - 7.7 
dollars. 

We are  told that  these two totals are  equal, so we equate them 
and simplify to obtain the following Diophantine equation with 
two integral unknowns : 

3x  = l l y  + 77 

Sin'ce x and y are positive integers and y  is not more than 7, 
i t  is a simple matter to t ry  each of the eight possible values (in- 
cluding zero) for y to determine which of them makes x also 
integral. There are  only two such values: 5 and 2. Each would 
lead to a solution of the problem were i t  not for the fact that  the 
parakeets were bought in pairs. This eliminates 2 as a value for 
y because it would give x (the number of parakeets purchased) 
the odld value of 33. We conclude therefore that  y is 5. 

A complete picture can now be drawn. The shop owner bought 
44 harnsters and 22 pairs of parakeets, paying altogether $132 for 
them. He sold 39 hamsters and 21 pairs of parakeets for a total 
of $132. There remained five hamsters worth $11 retail and two 
parakeets worth $2.20 retail - a combined value of $13.20, which 
is  the answer to the problem. 




