Each item in this index is listed under the topics for which it might be used in the classroom or for enrichment after the topic has been presented. Within each topic entries are listed in chronological order of publication. Each entry is given in the form:

Title, author, volume:issue, year, page range, [C or F], [other topic cross-listings]

where C indicates a classroom capsule or short note and F indicates a Fallacies, Flaws and Flimflam note. If there is nothing in this position the entry refers to an article unless it is a book review.

The topic headings in this index are numbered and grouped as follows:

<table>
<thead>
<tr>
<th>0</th>
<th>Precalculus Mathematics (also see 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Arithmetic (also see 9.3)</td>
</tr>
<tr>
<td>0.2</td>
<td>Algebra</td>
</tr>
<tr>
<td>0.3</td>
<td>Synthetic geometry</td>
</tr>
<tr>
<td>0.4</td>
<td>Analytic geometry</td>
</tr>
<tr>
<td>0.5</td>
<td>Conic sections</td>
</tr>
<tr>
<td>0.6</td>
<td>Trigonometry (also see 5.3)</td>
</tr>
<tr>
<td>0.7</td>
<td>Elementary theory of equations</td>
</tr>
<tr>
<td>0.8</td>
<td>Business mathematics</td>
</tr>
<tr>
<td>0.9</td>
<td>Techniques of proof (including mathematical induction</td>
</tr>
<tr>
<td>0.10</td>
<td>Software for precalculus mathematics</td>
</tr>
</tbody>
</table>

1	Mathematics Education
1.1	Teaching techniques and research reports
1.2	Courses and programs

2	History of Mathematics
2.1	History of mathematics before 1400
2.2	History of mathematics after 1400
2.3	Interviews

3	Discrete Mathematics
3.1	Graph theory
3.2	Combinatorics
3.3	Other topics in discrete mathematics (also see 6.3)
3.4 Software for discrete mathematics

4 Linear Algebra
4.1 Matrices, systems of linear equations, and matrix algebra
4.2 Determinants (also see 5.5)
4.3 Vector spaces and inner product spaces (also see 5.5)
4.4 Linear transformations
4.5 Eigenvalues and eigenvectors
4.6 Numerical methods of linear algebra
4.7 Other topics in linear algebra
4.8 Software for linear algebra

5 Calculus
5.1 Limits and differentiation
5.1.1 Limits (including l'Hopital's rule)
5.1.2 The derivative and mean value theorems
5.1.3 Tangents, differentials, and differentiation
5.1.4 Maxima and minima
5.1.5 Graphs of functions
5.2 Integration
5.2.1 Definition of integrals and the fundamental theorem
5.2.2 Numerical integration
5.2.3 Change of variable (substitution)
5.2.4 Partial fraction decomposition
5.2.5 Integration by parts
5.2.6 Area
5.2.7 Volume
5.2.8 Arc length
5.2.9 Other theory and applications of integration
5.2.10 Improper integrals
5.3 Elementary and special functions
5.3.1 Inverse trigonometric functions
5.3.2 Exponential and logarithmic functions
5.3.3 Hyperbolic functions and their inverses
5.3.4 Special functions
5.4 Sequences and series
5.4.1 Sequences
5.4.2 Numerical series (convergence tests and summation)
5.4.3 Taylor polynomials and power series
5.5 Vector algebra and geometry (and 3x3 determinants)

5.6 Curves and surfaces
5.6.1 Parametric and polar curves
5.6.2 Surfaces and coordinate systems in space
5.7 Multivariable calculus
 5.7.1 Multivariable differential calculus
 5.7.2 Multiple integrals
 5.7.3 Line and surface integrals and vector analysis

5.8 Software for calculus

6 Differential Equations and Dynamical Systems
 6.1 First order equations
 6.2 Higher order linear equations and linear systems
 6.3 Difference equations, dynamical systems, and fractals
 6.4 Nonlinear differential equations
 6.5 Numerical methods for differential equations
 6.6 Other topics in differential equations
 6.7 Software for differential equations and dynamical systems

7 Probability and Statistics
 7.1 Games of chance (also see 9.2)
 7.2 Probability
 7.3 Statistics (also see 9.10)
 7.4 Software for probability and statistics

8 Computer Science
 8.1 Programming and algorithms
 8.2 Data structures
 8.3 Computer graphics
 8.4 Other topics in computer science

9 Other Topics
 9.1 Set theory and logic (also see 0.9)
 9.2 Recreational mathematics (also see 7.1)
 9.3 Number theory (also see 0.1)
 9.4 Abstract algebra
 9.5 Analysis
 9.6 Numerical analysis
 9.7 Modern and non-Euclidean geometry
 9.8 Topology and differential geometry
 9.9 Operations research, including linear programming
 9.10 Mathematical modelling and simulation
 9.11 Software for advanced topics

10 Book Reviews
1970 – 2022.3 Topic Index
for the College Mathematics Journal

0 Precalculus Mathematics (also see 9)

0.1 Arithmetic (also see 9.3)

Remedial or Developmental? Confusion over Terms, Don Ross, 1:2, 1970, 27-31, 1.2
Two-Pan Weighings, Chris Burditt, 3:2, 1972, 80-81, C
Computation of Repeating Decimals, James E. McKenna, 7:2, 1976, 55-58
Smith Numbers, A. Wilansky, 13:1, 1982, 21, 9.3
Cryptology: From Cesar Ciphers to Public-Key Cryptosystems, Dennis Luciano and Gordon Prichett, 18:1, 1987, 2-17, 7.2, 9.3
What's Significant about a Digit?, David A. Smith, 20:2, 1989, 136-139, C, 9.6
FFF #85. Unto Everyone That Hath Shall Be Given, John W. Kenelly, 26:1, 1995, 36, F
Number Words in English, Steven Schwartzman, 26:3, 1995, 191-195
The Mathematical Judge: A Fable, William G. Frederick and James R. Hersberger, 26:5, 1995, 377-381, 1.1
The Square of Any Odd Number is the Difference Between Two Triangular Numbers (Proof Without Words), Roger B. Nelsen, 27:2, 1996, 118, C, 9.3
Fractions with Cycling Digit Patterns, Dan Kalman, 27:2, 1996, 109-115, 9.3
FFF #112. United in Purpose, Bruce Yoshiwara, 28:2, 1997, 119, F
FFF #138. Fifty per cent more for fifty per cent less, Norton Starr, 30:1, 1999, 39-40, F
Interval Arithmetic and Analysis, James Case, 30:2, 1999, 106-111, 9.5
FFF #140. Whose Real World?, Elizabeth Berman Appelbaum, 30:2, 1999, 130, F
FFF #144. Spoiled for Choice, Norton Starr, 30:3, 1999, 210, F, 3.2
Saving Digits, Mark McKinzie, 31:2, 2000, 146, C
FFF #167. Double from nothing, Richard Askey, 32:1, 2001, 48, F
FFF #173. Loss of face, R. Askey, 32:1, 2001, 50-51, F
Word Problems, Lawrence Braden, 32:1, 2001, 70-71, C
Miscellanea: The Doctor and the Mathematician, Edwin Rosenberg, 32:4, 2001, 318, C
FFF #192. Addition by juxtaposition, Brendan Kelly, 33:3, 2002, 226, F
FFF #193. Slide into poverty, by student, 33:3, 2002, 226-227, F
FFF #194. Hitting the sales, the editor, 33:3, 2002, 227, F
Musharraf Exposed, Margaux Marie Siegel, 33:3, 2002, 229, C
Adding Fractions, Dan Kalman, 34:1, 2003, 41, C, 5.1.2
A large square consisting only of digits 7, 8 and 9, Hisanori Mishima, 34:4, 2003, 303, C, 9.3
How Many Checks?, Ted Ridgway, 36:2, 2005, 113, C
Federal Money, Joseph Crukshank, 36:3, 2005, 208, C
FFF #242. Lighter than air, Marie S. Wilcox, 36:4, 2005, 316-317, F
Where are the missing “8-terms”?, Johann Hoehn and Larry Hoehn, 37:1, 2006, 68, C
Watch Your Units!, Stan Wagon, 37:2, 2006, C
Teaching Tip: How large is n!?, Leonard J. Lipkin, 37:2, 2006, 109, C
Alligation, Joseph Crukshank, 37:2, 2006, 113, C
FFF #251. Hot stuff in Canada, Neal Madras, 27:2, 2006, 123, F
FFF #254. Computing the cost of a fence, Johnny Lott and Georgia Cobbs, 37:4, 2006, 291, F
Bad Ad Arithmetic, Stan Lipovetsky, 37:5, 2006, 363, C
FFF #262. Attributed to Vladimir Putin, Andre Toom, 38:1, 2007, 44, F
Freaky fractions, Rick Kreminsky, 38:1, 2007, 46, C, 9.3
Misusing “percent”, Ted Ridgway, 38:2, 2007, 95, C
Kong size percent, Art Friedel, 38:2, 2007, 123, C
Was He Serious?, Julian Fleron, 38:2, 2007, 130, C
Literate maybe, but numerate?, Alfinio Flores, 38:4, 2007, 277, C
Compound Addition, Joseph Crukshank, 38:5, 2007, 377 and 387, C
It Was Only a Sign Error, David Cox, 39:2, 2008, 135, C
One-Upmanship in Creating Designer Decimals, James Smoak, 39:3, 2008, 211, C
Missteps in Mathematics Books, Jerome Dancis, 39:5, 2008, 280-382, F, 0.2
Proof Without Words: Powers of Two, James Tanton, 40:2, 2009, 86, C, 5.4.2
Three Poems, Caleb Emmons, 40:3, 2009, 188, 9.2
Family Occasion, Ian Stewart, 40:3, 2009, 203, C
Teaching Tip: Accepting that .999... = 1, David W. Cohen and James M. Henle, 40:4, 2009, 258, C
Brown Sharpie: .999... = 1 (Cartoon), Courtney Gibbars, 40:4, 2009, 262, C
341 is a Brilliant Number, P. D. James, 40:5, 2009, 368, C, 9.3
Visualizing Elections using Saari Triangles, Mariah Birgen, 41:4, 2010, 325-328, 0.3, 3.3
The Rascal Triangle, Alif Anggoro, Eddy Liu, and Angus Tulloch, 41:5, 2010, 393-395, 3.2
Sum-Difference Numbers, Yixun Shi, 41:5, 2010, 404-405, C, 9.3
Minuend & Subtrahend, Merriam-Webster Dictionary, 42:4, 2011, 316, C
Just Take the Limit!, Jody Picoult, 42:5, 2011, 431, C, 0.8, 9.10
A Numerical Challenge, Robert Wainright, 43:1, 2012, 19, 63, C
Carryless Arithmetic Mod 10, David Applegate, Marc LeBrun, and N. J. A. Sloane, 43:1, 2012, 43-50, 5.4.1, 9.2, 9.4
Squaring, Cubing, and Cube Rooting, Arthur T. Benjamin, 43:1, 2012, 58-63, 0.2, 9.2
50 Percent Plus One: Innumeracy or Mendacity?, William J. Polley, 44:3, 2013, 176, C
Proof Without Words: Triangular Sums, Yuko Kobayashi, 44:3, 2013, 189, C, 9.3
Zbikowski's Divisibility Criterion, Yonah Cherniavsky and Artour Mouftakhov, 45:1, 2014, 17-21, 9.3
Proof Without Words: Limit of a Recursive Arithmetic Mean, Angel Plaza, 45:5, 2014, 364, C, 5.1.1, 5.4.1
Groupoid Cardinality and Egyptian Fractions, Julia E. Bergner and Christopher D. Walker, 46:2, 2015, 122-129, 9.3, 9.4
Proof Without Words: A Surprising Integer Result, Roger B. Nelsen, 47:2, 2016, 94, C, 0.3
Multiplying by 9, Arthur Benjamin and Rohan Chandra, 47:4, 2016, 281, C, 0.2
Factoring Numbers with Conway's 150 Method, Arthur T. Benjamin, 49:2, 2018, 122-125, 9.3
Marching in Squares, Burkard Polster and Marty Ross, 49:3, 2018, 181-186, 0.2, 9.3
Extrapolating Plimpton 322, Andrew J. Simoson, 50:3, 2019, 210-220, 0.2, 2.1, 9.3
Converting Between Dates in the Hebrew and Roman Calendars, John Conway, Gabrielle Agus & David Slusky, 51:5, 2020, 322-329, 9.2
An Infinite Family of Divisibility Tests, Darrin Frey and Adam Hammett, 52:1, 2021, 2-10, 9.3

0.2 Algebra

Mathematics, A Solitary Game, Olof Hanner, 1:2, 1970, 5-16, 4.1
Gog and Gug, Howard W. Eves, 1:1, 1970, 8, C
The Irrationality of Certain Numbers, Peter A. Lindstrom, 1:1, 1970, 30-31, 9.3
A Computer-Oriented Multiplication Algorithm, John Peterson, 1:2, 1970, 106, C
A Geometric Approach to the Orders of Infinity, Harold L. Schoen, 3:2, 1972, 74-76, C, 9.5
Pascal's k-Simplex, Dale Woods and Mary Jane Kohlenberg, 4:3, 1973, 38-43
Teaching Inequalities Involving Absolute Values, Frances W. Lewis, 4:2, 1973, 87-90, C
Maximize x(a-x), L. H. Lange, 5:1, 1974, 22-24, 0.7, 5.1.4
A Further Note on the Orders of Infinity, Harold L. Schoen, 5:1, 1974, 80-81, C, 9.5
Investigations of Linear and Reciprocal Functions by the Line-to-Line Technique, David R. Duncan and Bonnie H. Litwiller, 6:2, 1975, 2-7, 0.7
Distributivity with Respect to All Four Rational Operations, Myles Greene, 6:2, 1975, 10-12
Mathematical Induction: If Student k Understands It, Will Student K + 1?, Judith L. Gersting, 6:2, 1975, 18-20, 0.9
Easter Revisited, Daniel T. Bleck, 6:3, 1975, 38-40
Functional Notation—An Intuitive Approach, Ann D. Holley, 7:3, 1976, 14-15, 1.2
Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 52-54, 0.7, 9.6
Mathematics and Computing without Computers, William S. Dorn, 8:2, 1977, 101-105
The Perfect Curve: at Least for Grades, Lawrence Sher, 8:3, 1977, 148-152
Operational and Intuitive Algebra, Betsey Whitman and Donald Cook, 8:3, 1977, 155-161
Stirling's Triangle of the First Kind-Absolute Value Style, Hugh Ouellette and Gordon Bennett, 8:4, 1977, 195-202, 6.3
An Elementary Construction of the Common Log Tables, James H. Jordan, 8:5, 1977, 274-278
Applicable Mathematics in Two Year Colleges, Ralph Mansfield, 9:3, 1978, 148-153
Some Pre-Calculus Algebra, John Staib, 10:2, 1979, 89-95
The Discovery of a Generalization: An Example in Problem Solving, Hugh Ouellette and Gordon Bennett, 10:2, 1979, 100-106, 0.3
Polygonal Roots, Barnabas B. Hughes, 10:5, 1979, 313-318, 0.7
Distance from a Point to a Line, Warren B. Gordon, 10:5, 1979, 348-349, C
A Technique for Determining When a General Quadratic Expression is Factorable, Leo Chosid, 10:5, 1979, 354-355, C, 0.7
Luddhar’s Method of Solving a Cubic Equation with a Rational Root, R. S. Luthar, 11:2, 1980, 107-110, 0.7
Computer Solution of Alphametics, Sarah Brooks, 11:2, 1980, 111-114
Why Not Teach Synthetic Multiplication?, Kenneth R. Kundert, 11:2, 1980, 121-122, C
A Precalculus Approximation of n!, Norman Schaumberger, 11:3, 1980, 202-204, C, 5.4.2
An Error-Detecting Check by Substitution, Charles G. Moore, 11:5, 1980, 326-327, C
A "Proof" that M=N, W. Thurmon Whitley, 12:3, 1981, 211, C
Inventor’s Paradox, Man-Keung Siu, 12:4, 1981, 267, C
Misguided Mathematical Maxim-Makers, Betsy Darken Smith, 12:5, 1981, 309-316, 1.2
Selection of a Fair Currency Exchange Rate, Allen J. Schwenk, 13:2, 1982, 154-155, C, 0.8
The Thrills of Abstraction, P. R. Halmos, 13:4, 1982, 243, 1.2
A Logarithm Algorithm for Four-Function Calculators, David Cusick, 14:4, 1983, 322, 5.3.2
The Address Problem, Michael Tennor, 14:5, 1983, 407-414, 9.3
Approximation of Square Roots, Leon Wejntrob, 14:5, 1983, 427-430, 0.7, 9.6
Is the Venn Diagram Good Enough?, Mou-Liang Kung and George C. Harrison, 15:1, 1984, 48-50, 9.1
A Geometrical Interpretation of the Weighted Mean, Larry Hoehn, 15:2, 1984, 135-139, 0.4, 7.3
On Problems with Solutions Attainable in More Than One Way, Jean Pedersen and George Polya, 15:3, 1984, 218-228, 0.4, 5.4.2
Complex Roots Made Visible, Alec Norton and Benjamin Lotto, 15:3, 1984, 248-249, C, 0.7
Pythagorean Systems of Numbers, Joseph Wiener, 15:4, 1984, 324-326, C, 0.4, 9.3
The Factorial Triangle and Polynomial Sequences, Steven Schwartzman, 15:5, 1984, 424-426, C, 5.4.1, 6.3
Right Triangles with Perimeter and Area Equal, William Parsons, 15:5, 1984, 429, C, 0.4
What Do I Know? A Study of Mathematical Self-Awareness, Philip J. Davis, 16:1, 1985, 22-41, 9.3
Nested Polynomials and Efficient Exponential Algorithms for Calculators, Dan Kalman and Warren Page, 16:1, 1985, 57-60, C, 0.7, 9.6
Behold! The Arithmetic-Geometric Mean Inequality, Roland H. Eddy, 16:3, 1985, 208, C, 0.3
Instances of Simpson's Paradox, Thomas R. Knapp, 16:3, 1985, 209-211, C, 7.3
Approximating Solutions for Exponential Equations, Norman Schaumberger, 16:3, 1985, 211-212, C
Graphing the Complex Roots of a Quadratic Equation, Floyd Vest, 16:4, 1985, 257-261, C, 0.7, 9.5
A New Divisibility Algorithm, Joseph Whittaker, 16:4, 1985, 268-276, 9.3
A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.9, 3.1, 3.2, 5.4.2, 6.3
Routine Problems, Sherman Stein, 16:5, 1985, 383-385, 5.1.5, 1.2
A Babylonian Geometrical Algebra, James K. Bidwell, 17:1, 1986, 22-31, 0.3
Irrationality Made Easy, Robert Bumcrot, 17:3, 1986, 243-244, C
The Change of Base Formula for Logarithms, Chris Freiling, 17:5, 1986, 413, C, 5.3.2
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 4.1, 5.1.2, 5.1.5, 5.2.3, 5.2.4, 5.2.5
Behold! The Graphs of f and f inverse are Reflections about the Line y=x, Ayoub B. Ayoub, 18:1, 1987, 52, C, 5.3.2
Powers and Roots by Recursion, Joseph F. Aita, 18:5, 1987, 411-416, 0.7, 6.3
Behold! The Graphs of f and f inverse are Reflections about the Line y=x, Ayoub B. Ayoub, 18:1, 1987, 52, C, 5.3.2
FFF #25. Solving an Inequality, Ed Barbeau, 21:4, 1990, 303, F
Geometrical and Graphical Solutions of Quadratic Equations, E. John Hornsby, Jr., 21:5, 1990, 362-369, 0.4
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.4, 0.6, 1.2
FFF #49. Two Transcendental Equations, Ed Barbeau, 23:1, 1992, 36, F, 5.3.2
FFF #52. An Application of the Cauchy-Schwartz Inequality, Ed Barbeau, 23:2, 1992, 142, F, 9.5
Infinitely Many Different Quartic Polynomial Curves, Nitsa Movshovitz-Hader and Alla Shmukler, 23:3, 1992, 186-195, 0.7
Commutativity of Polynomials, Shmuel Avital and Edward Barbeau, 23:5, 1992, 386-395, 6.3, 0.7
FFF. Matrices and the TI-81 Graphics Calculator, Constance J. Gardner, 24:1, 1993, 64, F, 4.1
FFF #58. A Rational Combination of Two Transcendentals, Ed Barbeau, 24:3, 1993, 229, F, 5.3.2
FFF #59. A Formula that Works Only for n=1, Ed Barbeau, 24:3, 1993, 229-230, F, 0.9
FFF #60. A Two-Valued Function, Ed Barbeau, 24:3, 1993, 230, F, 5.3.2
FFF #65. Solving a Cubic, Ed Barbeau, 24:4, 1993, 344, F, 0.7 (also 25:4, 1994, 311)
FFF #70. Reading a Calculator Display, Sandra Z. Keith, 25:1, 1994, 36, F, 5.1.3
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 4.5, 5.4.2, 9.3, 9.5
Extending Bernoulli's Inequality, Ronald L. Persky, 25:3, 1994, 230, C, 9.5
FFF #84. A Method for Solving a Cubic Equation, Ed Barbeau, 26:1, 1995, 35-36, F, 0.7
FFF #86. Watch Your Ears!, Bruce Yoshiwara, 26:1, 1995, 36, F
FFF #87. Do You Know How to Split the Atom?, Milt Eisner, 26:1, 1995, 37, F
The Product of Four (Positive) Numbers in Arithmetic Progression is Always the Difference of Two Squares (Proof Without Words), Roger B. Nelsen, 26:2, 1995, 131, C
A Geometric Approach to Linear Functions, Jack E. Graver, 26:5, 1995, 389-394, C, 0.4, 6.3
FFF #120. A Quick (?) Proof of Irrationality, Richard Askey, 28:4, 1997, 286, F
Visualizing the Complex Roots of Quadratics (Proof Without Words), Shaun Pieper, 28:5, 1997, 359, C, 0.7
FFF #124. The Number of Tickets Sold, Robert W. Vallin, 29:1, 1998, 34-35, F
FFF. Distributing Addition over Multiplication, S. R. S. Sastry, 29:3, 1998, 221, F
FFF #137. Drenching a sphere, David Cantrell, 30:1, 1999, 39, F
Multiplying and Dividing Polynomials Using Geloxia, Jeff Suzuki, 30:1, 1999, 50-53, C
The Trinomial Triangle, James Chappell and Thomas Osler, 30:2, 1999, 141-142, C, 3.2
An Identity for n(n+1)(n+2)(n+3)+1, Alfinio Flores, 30:3, 1999, 247, C
FFF. Mathematical oxymorons, Richard Francis, 30:4, 1999, 308, F
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 5.4.2, 6.1
a^2+b^2 ≥ 2ab (Mathematics Without Words), Alfinio Flores, 31:2, 2000, 106, C
FFF #156. An Imaginary Absolute Value?, Peter M. Jarvis and Paul S. Shuette, 31:3, 2000, 207, F
Binomials to Binomials, Thomas Osler, 31:3, 2000, 211-212, C, 6.3
Colin Maclaurin’s Quant Word Problems, Bruce Hedman, 31:4, 2000, 286-289
Tangents without Calculus, Jorge Aarao, 31:5, 2000, 406-407, C, 0.7, 5.1.3
a^3 + b^3 = a^2*b + ab^2 (Mathematics Without Words), Norman Schaumberger, 32:1, 2001, 38, C
FFF #169. Strengthening a theorem on linear fractional transformations, Peter M. Jarvis, 32:1, 2001, 49, F
Linear Relations Between Powers of Terms in Arithmetic Progression, Calvin Long and Boyd Henry, 32:2, 2001, 135-137, C, 3.2
Factoring Quadratics, Stephen Kaczkowski, 32:3, 2001, 203-204, C
There Are No New Word Problems, Charles Marion, 32:3, 2001, 238-239, C
FFF #183. Dimensions of a yard, a student, 33:1, 2002, 39, F
FFF #186. The illegal moves method for quadratics, John C. and Holly M. Hoover, 33:1, 2002, 40, F
Solutions to x+y=xy (Mathematics Without Words), Roger Nelsen, 33:2, 2002, 130, C, 0.6
FFF #188. An appeal to symmetry, a student, 33:2, 2002, 137, F
Sums of Roots and Poles of Rational Functions, Paul Deiermann, 33:2, 2002, 148-149, C
What is This? F(g(hung)) = hung in effigy, Marvin Johnson, 33:3, 2002, 225, C
The Roots of a Quadratic, Leonard Gillman, 33:3, 2002, 237-238, C, 0.7
FFF #198. An answer hard to get at, Li Zhou, 33:4, 2002, 310, F
The Exponential Formula, the Editor, 33:4, 2002, 349, C
Quadratic and Exponential Formulas, David Marcus, 34:1, 2003, 49, C
FFF #201. Solution of a rational equation, Carl Libis, 34:1, 2003, 50-51, F
FFF #203. Toothpicks, Elaine Simmt, 34:1, 2003, 52, F
FFF. Factoring quadratics, Ed Barbeau, 34:1, 2003, 53, F
Keyboard Inequalities, Monte Zerger, 34:1, 2003, 67, C, 9.5
How (Not) to Solve Quadratic Equations, Yves Nievergelt, 34:2, 2003, 90-104, 9.6
Clarifying Compositions with Cobwebs, Nial Neger and Michael Frame, 34:3, 2003, 196-204, 6.3
FFF #210. Summing squares by averages, Shailesh Shirali, 34:3, 2003, 224, F
FFF #211. A surd equation, Carl Libis, 34:3, 2003, 225, F
FFF #212. ab^k = (ab)^k, Carl Libis and Parviz Khalili, 34:3, 2003, 225, F
For What Functions Is f^i(x) = 1/f(x)?, Sharon MacKendrick, 34:4, 2003, 304-311, 9.5
The Band Around a (non)Convex Set, Jack Stewart and Annalisa Crannell, 34:5, 2003, 377-379, 0.7, 9.4
A Rational Root Theorem for Imaginary Roots, Sharon Barrs, James Braselton, and Lorraine Braselton, 34:5, 2003, 380-382, 0.7, 9.4
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.4, 9.7
The root mean square of a and b (Mathematics Without Words), Ruma Falk, 35:3, 2004, 170, C
FFF #224. The square root of -1 is real, Teik-Cheng Lim, 35:3, 2004, 214, F
Algebra in Respiratory Care, David F. Snyder, 35:4, 2004, 300-302, C, 9.10
Introducing the Sums of Powers, Jeff A. Suzuki, 35:4, 2004, 303-304, C
FFF #228. An exponential equation, Ed Barbeau, 35:5, 2004, 382, F, 5.3.2
A Perplexing Polynomial Puzzle, I. B. Keene, 36:2, 2005, 100, C
FFF #235. A lot of values, Ed Barbeau, 36:2, 2005, 141-142, F
 Roots of Integers, Revisited, Andrea Rothbart, 36:4, 2005, 317, C (see also 36:1, 56)
Truck Drivers, a Straw, and Two Glasses of Water, Kevin Iga and Kendra Kilpatrick, 37:2, 2006, 82-92, 6.3
FFF. BEDMAS, Jack Weiner, 37:2, 2006, 123-124, F
FFF #258. Right on target!, Larry Braden, 37:5, 2006, 381-383, F
FFF #260. Increasing a square to a square, Chris Fisher, 38:1, 2007, 43, F, 9.3
FFF #263. Reciprocrating for success, M. A. Khan, 38:2, 2007, 131-132, F
Quirky Quadratics, Christopher S. Withers and Saralees Nadarajah, 38:3, 2007, 178, C, 0.7
Teaching Tip: A Function is a Bow, Salvatore Anastasio, 38:3, 2007, 184, C
FFF #266. The escaped criminal, Ed Barbeau, 38:3, 2007, 218, F
FFF #268. An algebra problem, anonymous, 38:3, 2007, 220, F
FFF #275. More striking results, Peter Schumer and Michael A. Jones, 39:1, 2008, 50, F, 5.1.1
Missteps in Mathematics Books, Jerome Dancis, 39:5, 2008, 280-382, F, 0.1
FFF #287. Logging the solutions of an equation, Ed Barbeau, 39:5, 2008, 383-384, F, 5.3.2
Sam Loyd’s Courier Problem with Diophantus, Pythagoras, and Martin Gardner, Owen O’Shea, 39:5, 2008, 387-391, C, 0.7, 9.2
Short Division of Polynomials, Li Zhou, 40:1, 2009, 44-46, C
Dogs Don’t Need Calculus, Michael Bolt and Daniel C. Isaksen, 41:1, 2010, 10-16, 5.1.4, 9.5
Fermat’s Last Theorem for Fractional and Irrational Exponents, Frank Morgan, 41:3, 2010, 182-185, 9.3
Cubic Polynomials with Rational Roots and Critical Points, Shiv K. Gupta and Waclaw Szymanski, 41:5, 2010, 365-369, 0.7, 9.3
One Problem, Nine Student-Produced Proofs, Geoffrey Birky, Connie M. Campbell, Manya Raman, James Sandefur, and Kay Somers, 42:5, 2011, 355-360, 0.9, 9.3
The Perfect Ploy?, Louise Wener, 42:5, 2011, 378, C
Squaring, Cubing, and Cube Rooting, Arthur T. Benjamin, 43:1, 2012, 58-63, 0.1, 9.2
Teaching Tip: How to Manipulate Test Scores, Colin Foster, 43:2, 2012, 121-122, C, 1.1
Proof Without Words: The Square of a Balancing Number is a Triangular Number, Michael A. Jones, 43:3, 2012, 212, C, 9.3
Teaching Tip: When does \(f(g(x)) = x \) imply \(g(f(x)) = x \)?, Li Zhou, 43:4, 2012, 290, C
On the Steiner Minimizing Point and the Corresponding Algebraic System, Ioannis M. Roussos, 43:4, 2012, 305-308, 0.3
Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of \((n + \frac{1}{2}) \), Reuben Hersh, 43:4, 2012, 322-324, 9.3
Proof Without Words: An Algebraic Inequality, Madeubek Kungozhin and Sidney Kung, 44:1, 2013, 16, C, 0.6, 9.5
Polynomial Graphs and Symmetry, Geoff Goehle and Mitsuo Kobayashi, 44:1, 2013, 37-42, 0.7, 9.5
Proof Without Words: Completing the Square via the Difference of Squares, Munir Mahmood and Ibtihal Mahmood, 45:1, 2014, 21, C
Proof Without Words: Componendo et Dividendo, a Theorem on Proportions, Yukio Kobayashi, 45:2, 2014, 115, C, 0.3
Proof Without Words: Summing Squares by Counting Triangles, Roger B. Nelsen, 45:5, 2014, 349, C
Adjusting Child Support Payments in Michigan, Michael A. Jones and Jennifer Wilson, 46:1, 2015, 3-9, 0.8, 5.1.5
What Distributes Over Exponentiation?, Sherman Stein, 46:1, 2015, 11-14, 9.4, 9.5
Maxima and Minima Without Derivatives?, Lucio Cadeddu and Giampaolo Lai, 46:1, 2015, 15-22, 2.2, 5.1.3, 5.1.4, 5.1.5
Proof Without Words: A Trigonometric Proof of the Arithmetic Mean-Geometric Mean Inequality, Roger B. Nelsen, 46:1, 2015, 42, C
Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.7, 3.2, 5.1.1, 5.4.1, 9.2, 9.3
A Very Elementary Proof of Bernoulli’s Inequality, Cristinel Mortici, 46:2, 2015, 136-137, C, 9.5
To Be (a Circle) or Not to Be?, Hassan Boualem and Robert Brouzet, 46:3, 2015, 197-206, 0.5, 5.2.8, 5.6.1, 9.8
Proof Without Words: Centered Triangular Numbers, Roger B. Nelsen, 46:5, 2015, 335, C, 3.2, 9.3
Waiter! One Classic Calculus Problem, Hold the Calculus, Ricardo E. Rojas, 47:1, 2016, 59-60, C, 5.1.4, 9.5
Proof Without Words: Arithmetic Mean of Two Means, Angel Plaza, 47:2, 2016, 125, C, 0.3, 9.5
Pedagogically Inconvenient Functions for Teaching Transformations, Todd Abel and Jeremy Brazas, 47:3, 2016, 200-206, 5.1.5, 9.5
Multiplying by 9, Arthur Benjamin and Rohan Chandra, 47:4, 2016, 281, C, 0.1
Pythagorean Triples for Easy Solutions of Certain Quadratics and a Newly Generated Tree, Edward R. Forringer, 48:2, 2017, 112-114, 9.3
Pythagorean Triples, Complex Numbers, and Perplex Numbers, Howard Sporn, 48:2, 2017, 115-122, 9.3
Proof Without Words: Sum of a Row in Pascal’s Triangle, Angel Plaza, 48:3, 2017, 188, C, 3.2
Proof Without Words: Nested Square Roots, Roger B. Nelsen, 48:3, 2017, 204, C, 5.4.1
Did Elvis Know Cauchy-Schwarz?, Li Zhou, 48:5, 2017, 335-338, 5.1.4, 9.5, 9.10
Marching in Squares, Burkard Polster and Marty Ross, 49:3, 2018, 181-186, 0.1, 9.3
When Fractions Make Cycles, Mark Dalthorp, 50:1, 2019, 3-8, 6.3, 9.3, 9.5
Proof Without Words: Sophie Germain’s Identity, Samuel G. Moreno, 50:3, 2019, 197, C, 9.3
Extrapolating Plimpton 322, Andrew J. Simoson, 50:3, 2019, 210-220, 0.1, 2.1, 9.3
Visual Decompositions of Polygonal Numbers, Tom Edgar, 51:1, 2020, 9-12, 4.3, 9.3
Limits on Legs of Pythagorean Triples and Fermat's Last Theorem, Richard Kaufman, 51:1, 2020, 53-56, 9.3
Chance Encounters with Large Polynomials, Brian D. Jones, 51:3, 2020, 174-181, 3.2, 7.2
Proof Without Words: Sums of Polygonal Numbers, Gunhan Caglayan, 51:4, 2020, 304, C, 9.3
Proof Without Words: Centered Nonagonal Numbers are Triangular, Gunhan Caglayan*, 51:5, 2020, 371, C, 9.3
Extending Extending Bernoulli’s Inequality, Peter R. Mercer, 53:2, 2022, 149-150, C, 9.5
Tetration: Iterative Enjoyment, Abe Edwards & Brielle Komosinski, 53:3, 2022, 209-219, 5.3.2, 5.4.2, 9.5

0.3 Synthetic geometry

Kepler's explanation of the Timaeus associations, Howard Eves, 1:2, 1970, 31, C, 2.2
Shapes of the Future, Victor Klee, 2:2, 1971, 14-27, 3.1
Plaited Platonic Puzzles, Jean J. Pedersen, 4:2, 1973, 23-37
Partitions of the Plane, Nathan Hoffman, 5:2, 1974, 71-73, C, 3.1
Some Insight into the Convex Quadrilateral, Benjamin Greenberg, 5:3, 1974, 14-17
A Finite Field—A Finite Geometry and Triangles, Marc Swadener, 5:3, 1974, 22-26, 9.4
Polygons, Both Perfect and Regular, Richard L. Francis, 6:2, 1975, 20-21
Some Consequences of a Property of the Centroid of a Triangle, Norman Schaumberger, 8:3, 1977, 142-144
Guessing and Proving, George Polya, 9:2, 1978, 21-27
The Discovery of a Generalization: An Example in Problem Solving, Hugh Ouellette and Gordon Bennett, 10:2, 1979, 100-106, 0.2
Circles and Spheres, G. D. Chakerian, 11:1, 1980, 26-41
Inscribed Figures of Maximum Area: A Geometric Approach for a Geometric Problem, Peter Renz, 11:2, 1980, 147-149
The Pentagram and the Discovery of an Irrational Number, James R. Choike, 11:5, 1980, 312-316, 2.2
Euclid's Elements'- excerpts from a 1660 edition, 12:2, 1981, 117, 5.3.2, 5.3.3
From an Inequality to Inversion, Man-Keung Siu, 12:2, 1981, 149-151, C
A Space-Filling Torus, Dan Wheeler and David Sklar, 12:4, 1981, 246-248
Commadino's Theorem, Norman Schaumberger, 13:5, 1982, 331, C
The Butterfly Problem and Other Delicacies from the Noble Art of Euclidean Geometry—Part I, Ross Honsberger, 14:1, 1983, 2-8, 0.4
The Steiner-Lehmus Theorem as a Challenge problem, Ken Seydel and Carl Newman, 14:1, 1983, 72-75, 0.4, 0.6
Some Unusual Locus Problems, Shephen B. Maurer, 14:2, 1983, 146-153
The Butterfly Problem and Other Delicacies from the Noble Art of Euclidean Geometry—Part 2, Ross Honsberger, 14:2, 1983, 154-158, 0.4
How to Make a Bank Shot, Richard C. Bollinger, 14:2, 1983, 169-170, C
How Big is a Point?, Richard J. Trudeau, 14:4, 1983, 295-300
The Construction of Integral Cevians, Charles G. Moore, 14:4, 1983, 301-308
Ellipses from a Circular and Spherical Point of View, Alden R. Partridge, 14:5, 1983, 436-438, 0.5
Behold! The Arithmetic-Geometric Mean Inequality, Roland H. Eddy, 16:3, 1985, 208, C, 0.2
The International Mathematical Olympiad Training Session, Cecil Rousseau and Gregg Patruno, 16:5, 1985, 362-365, 2.2, 9.3
A Babylonian Geometrical Algebra, James K. Bidwell, 17:1, 1986, 22-31, 0.2
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, 5.5
Behold! The Vertex Angles of a Star Sum to 180 degrees, Fouad Nakli, 17:4, 1986, 338, C
Pythagorean Theorem: $a^2 + b^2 = c^2$, Enzo R. Gentile, 20:1, 1989, 58, C
Hippocrates and Archytas Double the Cube: A Heuristic Interpretation, Barnabas B. Hughes, 20:1, 1989, 42-48, 2.1
Surface Area of a Cone, Herb Holden, 20:5, 1989, 432, C
Trisection of an Angle in an Infinite Number of Steps, Eric Kincanon, 21:5, 1990, 393, C
Two Surprising Theorems on Cavalieri Congruence, Howard Eves, 22:2, 1991, 118-124, 2.2
Misconceptions about the Golden Ratio, George Markowsky, 23:1, 1992, 2-19, 2.1, 2.2
A "Very Pleasant Theorem", Roger Herz-Fischler, 24:4, 1993, 318-324, 2.2
The Geometer's Sketchpad and Cabri-Geometre (software review), Dennis DeTurck, 24:4, 1993, 370-376, 0.4, 0.10
Two Trisectrices for the Price of One Rolling Coin, Jack Eidswick, 24:5, 1993, 422-430, 0.4, 9.7
Tangents to Conics, Eccentrically, Frederick Gass, 25:1, 1994, 43-45, C, 0.5
Kepler Orbits More Geometrico, Andrew Lenard, 25:2, 1994, 90-98, 5.5
A Three-Circle Theorem, R. S. Hu, 25:3, 1994, 211, C
Nothing New Under the Sun (The "Three-Circle Theorem"), H. Guggenheimer, 26:1, 1995, 10
FFF. The Spirit Is Willing But the Ham Is Rotten, John Kinloch and Rick Norwood, 26:1, 1995, 37, F
Functions of a Curve: Leibniz's Original Notion of Functions and Its Meaning for the Parabola, David Dennis and Jere Confray, 26:2, 1995, 124-131, 0.5, 2.2
FFF #89. A Case of Irregularity, Herb Bailey, 26:3, 1995, 221-222, F (see also 27:4, 1996, 284)
Inductive Tiling of the Plane by Penrose Aperiodic Rhombi (by picture), Dean Clark and E. R. Suryanarayan, 26:4, 1995, 266-267, C
The 9-Point Circle Is in Fact a 12-Point Circle (by picture), Jingcheng Tong and Sidney H. Kung, 26:5, 1995, 371, C
Volume of a Frustum of a Square Pyramid (Proof Without Words), S. H. Kung, 27:1, 1996, 32, C
Geometry Class (Poem), JoAnne Growney, 27:2, 1996, 143, C
A Concurrence Theorem and Geometer's Sketchpad, Larry Hoehn, 28:2, 1997, 129-132, C
Tiling with Squares and Parallelograms (proof by picture), Alfinio Flores, 28:3, 1997, 171, C
FFF. The Pup Tent Problem, Ed Barbeau, 29:3, 1998, 220-221, F
A Law of Sines (proof without words), Sidney H. Kung, 29:3, 1998, 221, C
A Far-reaching Formula, Kil S. Lee, 30:2, 1999, 138-140, C
A Simple Geometric Solution to De l’Hospital’s Pulley Problem, Raymond Boute, 30:4, 1999, 311-314, C, 0.6
FFF #152. A geometry problem, Ho Juan Beng, 30:5, 1999, 383-384, F
The Pop-up Cuboctahedron, Hans Walser, 31:2, 2000, 89-92
Sum of Perpendicular Distances (Proof Without Words), Raymond Spaulding, 31:3, 2000, 244, C
The Pascal Pyramid, Hans Walser, 31:5, 2000, 383-392, 3.2
FFF #168. How to approximate a sphere, Robert Foote, 32:1, 2001, 48, F
Barrow’s Fundamental Theorem, Jack Wagner, 32:1, 2001, 58-59, C, 5.2.1
Slippery Centroids, John M. Alongi and Steve Kennedy, 32:3, 2001, 197-199, F
Heron’s Formula via Proofs Without Words, Roger B. Nelsen, 32:4, 2001, 290-292, C, 0.6
Upside-down Pythagorean Theorem (Mathematics Without Words), Vincent Ferlini, 33:2, 2002, 170, C
The “Origin” of Geometry, Reuben Hersh, 33:3, 2002, 207-211, 2.1, 9.2
Forming a Circle (Mathematics Without Words), James Tanton, 34:1, 2003, 14, C
A Pythagorean-like Theorem (Mathematics Without Words), Manual Moran Cabre, 34:2, 2003, 172, C
Area Relations on the Skewed Chessboard, Larry Hoehn, 34:3, 2003, 232-236, C
Lost Horizon, Richard Kubelka, 34:3, 2003, 238, C
Constructing a Poincare Line with Straightedge and Compass, David Hecker, 34:5, 2003, 362-366, 9.7
Mathematics Without Words: A Property of Secants, Norman Schaumberger, 34:5, 2003, 411, C
Another Pythagorean-like Theorem (Proof Without Words), Roger B. Nelsen, 35:3, 2004, 215, C
A Non-Visual Counterexample in Elementary Geometry, Marita Barabash, 26:5, 2005, 397-400, C
FFF #246. There are no isosceles triangles, Ed Barbeau, 37:1, 2006, 41, F
Conviction With an Angle is Upheld by Court of Appeals By Michael Cooper, Jerry Porter, 37:5, 2006, 343, C
The Converse of Viviani’s Theorem, Zhibo Chen and Tian Liang, 37:5, 2006, 390-391, C
A New Method of Trisection, David Alan Brooks, 38:2, 2007, 78-81
Rectangles, Parallelograms, or Trapezoids, Richard Syverson, 38:2, 2007, 81, 105, C (see also 38:4, 2007, 259)
An Iterative Angle Trisection, Donald L. Muench, 38:2, 2007, 82-84
A New and Improved Method for Finding the Center of Gravity of a Quadrilateral, Behzad Khorshidi, 38:3, 2007, 225-226, C
Christian Huygens and the Problem of the Hanging Chain, John Bukowski, 39:1, 2008, 2-11, 2.2, 5.3.3
The Right Triangle on the Sphere, William Dickinson and Mohammad Salmassi, 39:1, 2008, 24-33, 9.7
Proof Without Words: Carnot’s Theorem for Acute Triangles, Claudi Alsina and Roger B. Nelsen, 39:2, 2008, 111, C, 9.7
Designing a Table Both Swinging and Stable, Greg N. Frederickson, 39:4, 2008, 258-266, 9.7
Factoring Heron, Vaughan Pratt, 40:1, 2009, 15-16
Diometric Quadrilaterals with Two Equal Sides, Raymond A. Beauregard, 40:1, 2009, 17-21, 0.4
Proving that Three Lines Are Concurrent, Daniel Maxim, 40:2, 2009, 128-130, C, 9.7
Pompeiu’s Theorem Revisited, Arpad Benyi and Ioan Casu, 40:4, 2009, 252-258, 9.7
The Helen of Geometry, John Martin, 41:1, 2010, 17-28, 2.2, 5.6.1
Proving the Pythagorean Theorem by Letting the Sides Vary, Zsolt Lengvarszky, 46:1, 2015, 52-55, 5.1.3
Proof Without Words: The Vertex Angle Sum of a Regular Star Polygon, Matthew Jakubowski and Raymond Viglione, 46:2, 2015, 109, C, 0.4
Circular Reasoning: Who First Proved That C Divided by d Is a Constant?, David Richeson, 46:3, 2015, 162-171, 2.1
An Intrinsic Formula for the Cross Ratio in Spherical and Hyperbolic Geometries, Robert L. Foote and Xidian Sun, 46:3, 2015, 182-188, 0.6, 9.7
Rational and Implicit Equations for Some Polar Curves, Dave Boyles, 46:3, 2015, 189-196, 5.4.3, 5.6.1, 9.7, 9.8
Proof Without Words: The Pentagon-Hexagon-Decagon Identity, Roger B. Nelsen, 47:1, 2016, 10, C
Proof Without Words: A Surprising Integer Result, Roger B. Nelsen, 47:2, 2016, 94, C, 0.1
Proof Without Words: Integer Right Triangle Hypotenuses Without Pythagoras, Colin Foster, 47:2, 2016, 101, C
Proof Without Words: Arithmetic Mean of Two Means, Angel Plaza, 47:2, 2016, 125, C, 0.2, 9.5
Do the Twist! (on Polygon-Base Boxes), sarah-marie belcastro and Tamara Veenstra, 47:5, 2016, 340-345, 0.6, 9.2
Proof Without Words: The Lateral Surface Area of a Conical Frustum, Miyeon Kwon, 47:5, 2016, 346, C
A New and Rather Long Proof of the Pythagorean Theorem by Way of a Proposition on Isosceles Triangles, Kaushik Basu, 47:5, 2016, 356-360
Leonardo da Vinci’s Proof of the Pythagorean Theorem, Franz Lemmermeyer, 47:5, 2016, 361-364, 2.2
Proof Without Words: The Triangle with Maximum Area for a Given Base and Perimeter, Angel Plaza, 48:1, 2017, 51, C, 0.5, 5.1.4
The Centroid as a Nontrivial Area Bisecting Center of a Triangle, Allan Berele and Stefan Catoiu, 49:1, 2018, 27-34, 9.7
Proof Without Words: Volume of a Pedestal Prismoid, Lucas Amiras, 49:2, 2018, 92, C
Why the Centroid is the Centroid: Modern Variations on a Theme of Archimedes, William C. Mercier, 49:2, 2018, 93-102, 5.4.2, 9.7
Dividing the Circle, Pedro J. Freitas and Hugo Tavares, 49:3, 2018, 187-194, 0.6, 5.3.1, 9.3
A New Angle on the Fermat-Toricelli Point, David Benko and Dan Coroian, 49:3, 2018, 195-199, 5.1.4, 9.7
Reframing the Pythagorean Theorem, Ian M. Adelstein and George L. Ashline, 50:1, 2019, 28-35, 2.1
The Many Sides of the Pythagorean Theorem, Vlastimil Dlab and Kenneth S. Williams, 50:3, 2019, 162-172, 9.7
Bisecting Horn Angles, Sergiy Koshkin, 51:2, 2020, 124-131, 0.5, 9.7
Proof Without Words: Magic of Tangential Polygons, Francesco Laudano, 51:3, 2020, 218, C, 9.7
Shortest Paths on Cubes, Richard Goldstone, Rachel Roca & Robert Suzzi Valli, 52:2, 2021, 121-132, 0.4, 3.2, 9.7, 9.8
Statistical Significance of the Median of a Set of Points on the Plane, Antonio J. Moreno Verdejo, Abraham Lopez Viveros & Rafael Ramirez Ucles, 52:3, 2021, 205-218, 0.4, 7.3, 9.7
Proof Without Words: Another Pythagorean Theorem, Claudi Alsina & Roger Nelsen, 53:1, 2022, 38, C
A Proof of the Reflective Property of the Parabola, Howard Sporn, 53:1, 2022, 67-68, C, 0.5
The Law of Cosines with Differential Calculus and Without, Zsolt Lengvarszky & Tibor Szarvas, 53:2, 2022, 98-103, 0.6, 5.1.3
Using the Intermediate Value Theorem to Circumscribe Hyperbolic Triangles, Brian Johnson & Lorna Wenzel, 53:2, 2022, 116-121, 9.7
Proof Without Words: A Property of a Cyclic Polygon with an Even Number of Vertices, Alik Palatnik & Moshe Stupel, 53:2, 2022, 146, C, 0.5, 9.7
A Variant of the Eyeball Theorem, Emmanuel Antonio Jose Garcia, 53:2, 2022, 147-148, C, 9.7
Why is it that the Ratio of Any Circle’s Circumference to its Diameter is a Constant?, F. M. S. Lima & P. G. F. Jordao, 53:3, 2022, 171-182, 2.1, 5.2.8
Integer Solutions to Angle Optimization Problems, James N. Brawner & Nadou Lawson, 53:3, 2022, 197-208, 5.1.4, 5.3.1, 9.3

0.4 Analytic geometry

Geometry via Physics, Ross Honsberger, 10:4, 1979, 271-276
Distance from a Point to a Line, K. R. S. Sastry, 12:2, 1981, 146-147, C
A Classroom Approach to $x^2 + y^2 + z^2 = w^2$, Norman Schaumberger, 12:5, 1981, 331-332, C
An Analytic Approach to the Euler Line, Jonathman W. Lewin, 15:1, 1984, 52-53, C
The Fractal Geometry of Mandelbrot, Anthony Barcellos, 15:2, 1984, 98-114, 9.8
A Geometrical Interpretation of the Weighted Mean, Larry Hoehn, 15:2, 1984, 135-139, 0.2, 7.3
On Problems with Solutions Attainable in More Than One Way, Jean Pedersen and George Polya, 15:3, 1984, 218-228, 0.2, 5.4.2
Proving Heron's Formula Tangentially, David E. Dobbs, 15:3, 1984, 252-253, C, 0.6
Pythagorean Systems of Numbers, Joseph Wiener, 15:4, 1984, 324-326, C, 0.2, 9.3
Distance From a Point to a Line, Abdus Sattar Gazdar, 15:4, 1984, 328-329, C
Right Triangles with Perimeter and Area Equal, William Parsons, 15:5, 1984, 429, C, 0.2
A Nonstandard Solution to a Standard Problem, Florence S. Gordon, 17:1, 1986, 74, C
Angling for Pythagorean Triples, Dan Kalman, 17:2, 1986, 167-168, C, 9.3
Geometric Parametrization of Pythagorean Triples, Alvin Tirman, 17:2, 1986, 168, C
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, 5.5
A Pretrigonometry Proof of the Reflection Property of the Ellipse, Zalman P. Usiskin, 17:5, 1986, 418, C
Behold! The Pythagorean Theorem via Mean Proportions, Michael Hardy, 17:5, 1986, 422, C
Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 3.3, 8.1
Heron's Area Formula, Roger C. Alperin, 18:2, 1987, 137-138, C
Equiangular Lattice Polygons and Semiregular Lattice Polyhedra, Paul R. Scott, 18:4, 1987, 300-306
Some Properties of Polygons Inside a Circle, Larry Hoehn, 18:5, 1987, 397-401
Newton's nth Root Method Without Derivatives, David A. Smith, 18:5, 1987, 403-406, C, 0.7
An Unexpected Appearance of the Golden Ratio, George Manuel and Amalia Santiago, 19:2, 1988, 168-170, C, 5.1.1
Behold! Two Extremum Problems and the Arithmetic-Geometric Mean Inequality, Paolo Montuchi and Warren Page, 19:4, 1988, 347, C, 5.1.4
Pythagorean Theorem: $aa' + bb' = cc'$, Enzo R. Gentile, 20:1, 1989, 58, C
To View an Ellipse in Perspective, Charles G. Moore, 20:2, 1989, 134-136, C, 0.5
The Root Mean Square–Arithmetic Mean–Geometric Mean–Harmonic Mean Inequality, Roger B. Nelsen, 20:3, 1989, 231, C, 9.5
Harmonic, Geometric, Arithmetic, Root Mean Inequality, Sidney Kung, 21:3, 1990, 227, C, 9.5
Geometrical and Graphical Solutions of Quadratic Equations, E. John Hornsby, Jr., 21:5, 1990, 362-369, 0.2
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.2, 0.6, 1.2
Triquetras and Porisms, Dana N. Mackenzie, 23:2, 1992, 118-131
Optimal Locations, Bennett Eisenberg and Samir Khabbaz, 23:4, 1992, 282-289, 3.1, 9.9
The Geometer's Sketchpad and Cabri-Geometre (software review), Dennis DeTurck, 24:4, 1993, 370-376, 0.3, 0.10
Two Trisectrices for the Price of One Rolling Coin, Jack Eidswick, 24:5, 1993, 422-430, 0.3, 9.7
Cutting Corners: A Four-gon Conclusion, S. C. Althoen and K. E. Schilling and M. F. Wyneken, 25:4, 1994, 266-279, 0.5, 9.5
The Arithmetic Mean-Geometric Mean Inequality (Proof by Picture), Sidney H. Kung, 26:1, 1995, 38, C
A Geometric Approach to Linear Functions, Jack E. Graver, 26:5, 1995, 389-394, C, 0.2, 6.3
How to Kick a Field Goal, Daniel C. Isaksen, 27:4, 1996, 267-271
The Arithmetic Mean - Geometric Mean Inequality (proof by picture), Sidney H. Kung, 28:2, 1997, 88, C
The Brahmagupta Triangles, Raymond A. Beauregard and E. R. Suryanarayan, 29:1, 1998, 13-17, 9.3
A Sharp Triangle Inequality, Murray S. Klamkin, 29:1, 1998, 33, C
FFF #151. Going for the stars, Rick Mabry, 30:5, 1999, 383, F
The Asymmetric Propeller Revisited, Gillian Saenz and Chris Jackson and Ryan Crumley, 31:5, 2000, 347-349, 9.7
Constructing the Root Mean Square (Mathematics Without Words), Juan-Bosco Romero Marquez, 32:2, 2001, 118, C
A Property of Quadrilaterals, Joseph B. Dence and Thomas P. Dence, 32:4, 2001, 292-294, C
The Volume of a Tetrahedron, Cho Jinsok, 32:4, 2001, 294-296, C, 0.6
Dipsticks for Cylindrical Storage Tanks – Exact and Approximate, Pam Littleton and David Sanchez, 32:5, 2001, 352-358, 5.2.7, 5.3.1
Centering, Jim Sauerberg and Alan Tarr, 33:1, 2002, 24-31, 3.3, 6.3
Constructing the Root Mean Square and an Inequality (Mathematics Without Words), Irving C. Tang and Ruma Falk, 33:2, 2002, 168-169, C
Mathematics Without Words: A Property of Centroids, Norman Schaumberger, 33:4, 2002, 324, C
Euler’s Theorem for Generalized Quadrilaterals, Geoffrey A. Kandall, 33:5, 2002, 403-404, C
Predicting Sunrise and Sunset Times, Donald A. Teets, 34:4, 2003, 317-321, C, 0.6
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.2, 9.7
The Pythagorean Theorem and Beyond: a Classification of Shapes and Triangles, Guanshen Ren, 35:4, 2004, 305-307, C
The Theorem of Cosines for Pyramids, Alexander Kheyfits, 35:5, 2004, 385-388, C, 0.6
FFF #237. The area of a cross section, Ed Barbeau, 36:2, 2005, 142-143, F
Making a Bed, Anthony Wexler and Sherman Stein, 36:3, 2005, 213-221, 5.1.4
FFF #240. Clipping the corners off, Ed Barbeau, 36:4, 2005, 315, F
Straw in a Box, Richard Jerrard, Joel Schneider, Ralph Smallberg, and John Wetzel, 37:2, 2006, 93-102, 9.10
How To View A Flatland Painting, Mark Schlatter, 37:2, 2006, 114-120, 9.7
As the Crow Flies?, Linda Greenhouse, 38:4, 2007, 271, C (see also 37:5, 343)
The Normals to a Parabola and the Real Roots of a Cubic, Manjinder S. Bains and J. B. Thoo, 38:4, 2007, 272-277, 0.5, 9.7
FFF #270. Maximizing an area, Ed Barbeau, 38:5, 2007, 375, F, 5.1.4
Conic Sections from the Plane Point of View, Sidney H. Kung, 38:5, 2007, 383-384, C, 0.5
Hermit Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 5.7.1, 9.2
Two Problems with Table Saws, William R. Vautaw, 39:2, 2008, 121-128, 0.6, 5.1.3
Squaring a Circular Segment, Russell A. Gordon, 39:3, 2008, 212-220, 5.4.2, 9.6
How to Measure Angles with a Ruler, Travis Kowalski, 39:4, 2008, 273-279, 5.1.4
Diametric Quadrilaterals with Two Equal Sides, Raymond A. Beauregard, 40:1, 2009, 17-21, 0.3
Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 2.1, 9.2
Lattice Triangles for Mathematicians, James Tanton, 40:5, 2009, 336, 360, 369, 375, C
A Pi Curiosity, David W. Hoffman, 40:5, 2009, 399, C, 9.6
POEM’s and Newton’s Aerodynamic Frustrum, Jaime Cruz-Sampedro and Margarita Tetlalmatzi-Montiel, 41:2, 2010, 145-153, 0.5, 5.1.4, 9.10
How Spherical Are the Archimedean Solids and Their Duals?, P. K. Aravind, 42:2, 2011, 98-107, 0.3
The Symmedian Point: Constructed and Applied, Robert K. Smither, 42:2, 2011, 115-117, 0.3, 9.7
The Shad-Fack Transms, Annalisa Crannell, 42:4, 2011, 309-316, 0.3, 5.4.2
Three Equal Lines, Two Midpoints |\overline{AG}||\overline{AB}|=?, Jo Niemeyer, 43:2, 2012, 151, C
The Spider and the Fly, Keith E. Mellinger and Raymond Viglione, 43:2, 2012, 169-172, C, 9.2
Geometry of Sum-Difference Numbers, Paul Yiu, 43:5, 2012, 408-409, C, 9.3
When Can One Expect a Stronger Triangle Inequality?, Valerii Faiziev, Robert Powers and Prasanna Sahoo, 44:1, 2013, 24-31, 0.6, 9.5, 9.7
An n-dimensional Pythagorean Theorem, William J. Cook, 44:2, 2013, 4.2, 5.5
An Ellipse Morphs to a Cosine Graph!, L. R. King, 44:2, 2013, 117-123, 0.5, 5.2.8, 9.8
Proof Without Words: The Area of an Inner Square, Marc Chamberland, 44:4, 2013, 322, C
How Inge Lehmann Discovered the Inner Core of the Earth, Christiane Rousseau, 44:5, 2013, 399-408, 2.2, 9.10
Proof Without Words: Monotonicity of (\sin x)/x on (0, \pi/2), Xiaoxue Li, 44:5, 2013, 408, C, 9.5
Descartes’ Calculus of Subnormals: What Might Have Been, Gregory Mark Boudreaux and Jess E. Wells, 44:5, 2013, 409-420, 2.2, 5.1.3
Proof Without Words: Monotonicity of (\tan x)/x on (0, \pi/2), Xiaoxue Li, 44:5, 2013, 420, C, 9.5
Proof Without Words: Ensphering Three Capped Prisms, David Seppala-Holtzman, 45:1, 2014, 49, C
Reinventing Heron, Karl-Dieter Crisman and Michael H. Veatch, 45:3, 2014, 191-197, 5.4.3, 9.6
0.5 Conic sections

An Ellipse Problem Beyond the Reach of Calculus, Ivan Niven, 10:3, 1979, 162-168, 0.6
Stories in Combinatorial Geometry, Ross Honsberger, 10:5, 1979, 344-347, 3.2
The Curve Parallel to a Parabola is not a Parabola: Parallel Curves, F. Max Stein, 11:4, 1980, 239-246, 0.7
Conic Section or Degenerate Form—A Simple Test, Stewart Venit, 11:5, 1980, 316-319
Chords of the Parabola, Herb Holden, 13:3, 1982, 186-190
Ellipses from a Circular and Spherical Point of View, Alden R. Partridge, 14:5, 1983, 436-438, 0.3
Deriving the Equations of the Ellipse and Hyperbola, John C. Huber and Joseph Wiener, 15:1, 1984, 58-59, C
Reflection Property of the Ellipse and the Hyperbola, Michael K. Brozinsky, 15:2, 1984, 140-142, C
Geometric Procedures for Graphing the General Quadratic Equation, Duane W. DeTemple, 15:4, 1984, 313-323, 0.7
Constructing the Foci and Directrices of a Given Ellipse, Charles G. Moore, 16:2, 1985, 122-128
Area of a Parabolic Region, R. Rozen and A. Sofo, 16:5, 1985, 400-402, C, 5.2.6
A Pretrigonometry Proof of the Reflection Property of the Ellipse, Zalman P. Usiskin, 17:5, 1986, 418, C, 0.4
To View an Ellipse in Perspective, Charles G. Moore, 20:2, 1989, 134-136, C, 0.4
Moiré Fringes and the Conic Sections, M. R. Cullen, 21:5, 1990, 370-378, 5.7.1
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 5.1.5, 5.6.1, 5.6.2
Visualization of Limits and Limits of Visualization: Student Research Projects, Lee H. Minor, 23:1, 1992, 48-51, 0.4, 5.1.3
Rotation of Axes—Not Just for Conics, Steven Schonefeld, 23:5, 1992, 418-425, 5.6.1
FFF #59. A Puzzling Graph, Richard L. Francis, 24:1, 1993, 63, F (also 25:3, 1994, 224-225)
Stacking Ellipses—Revisited, Calvin Jongsma, 24:5, 1993, 453, C
Tangents to Conics, Eccentrically, Frederick Gass, 25:1, 1994, 43-45, C, 0.3
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 2.2, 5.1.3, 5.4.3, 5.6.1
In Defense of Newton: A Physicist's View, A. P. French, 25:3, 1994, 206-209, 2.2, 5.6.1
Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 2.2, 6.4, 6.5
Robert Weinstock's Response to Nauenberg, Robert Weinstock, 25:3, 1994, 221-222, 2.2
Cutting Corners: A Four-gon Conclusion, S. C. Althoen and K. E. Schilling and M. F. Wyneken, 25:4, 1994, 266-279, 0.4, 9.5
Functions of a Curve: Leibniz's Original Notion of Functions and Its Meaning for the Parabola, David Dennis and Jere Confrey, 26:2, 1995, 124-131, 0.3, 2.2
Cylinder and Cone Cutting, Michael R. Cullen, 28:2, 1997, 122-123, C
Construction Without Words: Focus and Directrix, Michel Bataille, 30:3, 1999, 212, C
The Average Distance of the Earth from the Sun, David Deever, 30:3, 1999, 218-220, C, 5.2.3, 5.2.8
A Quick Construction of Tangents to an Ellipse, Arthur Segal, 31:2, 2000, 131, C
Elliptical Tangents, I, Barnabas Hughes, 32:1, 2001, 69, C
Miscellanea: Tangents to an Ellipse, David Bloom, 32:4, 2001, 317-318, C
Miscellanea: The Center of an Ellipse, Sidney Kung, 32:4, 2001, 318, C
Using Differential Equations to Describe Conic Sections, Ranjith Munasinghe, 33:2, 2002, 145-148, C, 6.4
The Eccentricity of a Conic Section, Ayoub B. Ayoub, 34:2, 2003, 116-121
The Tangent Lines of a Conic Section, Daniel Wilkins, 34:4, 2003, 296-303, 9.5
Intersections of Tangent Lines of Exponential Functions, Timothy G. Feeman and Osvaldo Marrero, 36:3, 2005, 205-208, 5.1.3, 5.3.2
Archimedes' Quadrature of the Parabola: A Mechanical View, Thomas J. Osler, 37:1, 2006, 24-28, 5.2.6
Folding Beauties, Leah Wrenn Berman, 37:3, 2006, 176-186, 5.6.1, 9.7
The Normals to a Parabola and the Real Roots of a Cubic, Manjinder S. Bains and J. B. Thoo, 38:4, 2007, 272-277, 0.4, 9.7
Conic Sections from the Plane Point of View, Sidney H. Kung, 38:5, 2007, 383-384, C, 0.4
Proof Without Words: The Volume of an Ellipsoid via Cavalieri’s Principle, Sidney H. Kung, 39:3, 2008, 190, C, 5.2.7
The Dance of the Foci, David Seppala-Holtzman, 41:2, 2010, 122-128, 5.6.1
The Locus of the Focus of a Rolling Parabola, Anurag Agarwal and James Marengo, 41:2, 2010, 129-133, 5.2.8
POEM’s and Newton’s Aerodynamic Frustrum, Jaime Cruz-Sampedro and Margarita Tetlalmatzi-Montiel, 41:2, 2010, 145-153, 0.4, 5.1.4, 9.10
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 5.6.1, 5.7.3, 9.8 (see also 43:5, 429)
From the Dance of the Foci to a Strophoid, Andrew Jobbings, 42:4, 2011, 289-298, 5.6.1
Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 5.1.4, 5.6.1, 9.10
The Catenary as Roulette, Javier Sanchez-Reyes, 43:3, 2012, 185-189, 0.3, 2.1
A Treatise of Conic Sections (Reprint of sixth edition) by George Salmon, 49:1, 2018, 68-72, reviewed by Brigitte Servatius, 0.4, 10
Archimedes Redux: Center of Mass Applications from The Method, Shirley Gray and Cye H. Waldman, 49:5, 2018, 346-352, 0.4, 5.2.7, 5.7.2
Conics as Envelopes of Families of Plane Curves, Juan Carlos Ponce Campuzano, 50:2, 2019, 115-122, 0.4, 5.6.1, 9.7
Bisecting Horn Angles, Sergiy Koshkin, 51:2, 2020, 124-131, 0.3, 9.7
A New Derivation of Snell’s Law Without Calculus, John A. Quintanilla, 53:2, 2022, 140-145, 5.1.4, 9.10
A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger, 53:3, 1974, 26-30, 5.1.4

0.6 Trigonometry (also see 5.3)

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 5.1.2, 3.2, 9.1
An Interesting Correspondence and Its Consequence, Sidney Penner, 2:1, 1971, 40-44
A "Doodling" Inequality, Benjamin Greenberg, 4:1, 1973, 78-79, C
A Classroom Theorem on Trigonometric Irrationalities, Norman Schaumberger, 5:1, 1974, 73-76, C
Square Functions, Helmer Junghans, 5:2, 1974, 15-18, 0.7
A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger, 5:3, 1974, 26-30, 5.1.4
A Generator of Trigonometric Identities, Aron Pinker, 5:4, 1974, 54-55, C
Mathematical Astronomy, Vincent J. Motto, 6:1, 1975, 21-26
Closing the Loopholes, Morton Bloomfield and Frank Lasak, 6:2, 1975, 42-44, C
An Interesting Use of Generating Functions, Aron Pinker, 6:4, 1975, 39-45, 5.4.2, 9.5
Closing the Loopholes in "Closing the Loopholes", Gene Zirkel, 7:3, 1976, 55-58, C
Another Note on "Closing the Loopholes", Larry F. Bennett, 7:3, 1976, 56-58, C
Quasi-Pythagorean Triples for an Oblique Triangle, Kay Dundas, 8:3, 1977, 152-155, 9.3
Geometric Proofs of the Formulas for Sin(x+y) and Cos(x+y), Norman Schaumberger, 10:1, 1979, 35, C
An Ellipse Problem Beyond the Reach of Calculus, Ivan Niven, 10:3, 1979, 162-168, 0.5
Why Can't We Trisect an Angle This Way?, David Beran, 10:3, 1979, 199-200, C
Products of Sines, Zalman Usiskin, 10:5, 1979, 334-340
Trigonometric Solutions to the Quadratic Equation, Leo Chosid, 11:2, 1980, 125-126, C
A Formula for Sin (A+B), Simon J. Lawrence, 11:2, 1980, 126, C
Formulas for sin(x+y) and Cos(x+y), Robert Geist, 11:2, 1980, 126, C
Sum Formulas for Sine and Cosine, Dan Kalman, 14:1, 1983, 32-41, 9.5
Where There is Pattern, There is Significance, Lloyd Olson, 20:4, 1989, 321, C
(Sin x)^2: A Sheep in Wolf's Clothing, Mark E. Saul, 21:1, 1990, 43-44, C, 5.1.5
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.2, 0.4, 1.2
Trigonometric Identities through Calculus, Herb Silverman, 21:5, 1990, 403, C, 5.3.1
Cos(s-t) from the Distance Formula, Gilbert Strang, 23:4, 1992, 333, C
The Half-Angle Formulas for the Tangent, Sidney H. Kung, 25:3, 1994, 205, C
A Simple Geometric Proof of the Addition Formula for the Sine, Jeffrey Li-chieh Ho, 25:3, 1994, 229-230, C
An Early Iterative Method for the Determination of Sine of One Degree, Farhad Riahi, 26:1, 1995, 16-21, 2.1
cos(x+y) (Proof Without Words), Sidney H. Kung, 26:2, 1995, 145, C
The Double-Angle Formulas via the Laws of Sines and Cosines, Sidney H. Kung, 27:2, 1996, 155, C
Trigonometric Identity: The Difference of Two Sines or Two Cosines (proof without words), Yukio Kubayashi, 29:2, 1998, 133, C
Trigonometric Identity: The Sum of Two Sines or Two Cosines (proof without words), Yukio Kobayashi, 29:2, 1998, 157, C
FFF #133. Identifying the Angle, K. R. S. Sastry, 29:5, 1998, 405-406, F
Proof Without Words: tan(a-b), Guanshen Ren, 30:3, 1999, 212, C
A Simple Geometric Solution to De l’Hospital’s Pulley Problem, Raymond Boute, 30:4, 1999, 311-314, C, 0.3
One Figure: Six Identities, Roger Nelsen, 31:2, 2000, 145-146, C
2 arctan(1/3)+arctan(1/7)=π/4 (Mathematics Without Words), Norman Schaumberger, 31:5, 2000, 372, C
FFF #160. The perimeter of a triangle, Peiyi Zhao, 31:5, 2000, 393-394, F
FFF #161. Conditions of equality, the editor, 31:5, 2000, 394, F
FFF #162. Proof that a 3-4-5 right triangle does not exist, Jeff Suzuki, 31:5, 2000, 394-395, F
Solution of a Triangle (Mathematics Without Words), Rex Wu, 32:1, 2001, 68-69, C
Law of Tangents (Mathematics Without Words), Roger Nelsen, 32:3, 2001, 222, C
Heron’s Formula via Proofs Without Words, Roger B. Nelsen, 32:4, 2001, 290-292, C, 0.3
The Volume of a Tetrahedron, Cho Jinsok, 32:4, 2001, 294-296, C, 0.4
Was Calculus Invented in India?, David Bressoud, 33:1, 2002, 2-13, 2.2, 5.4.3
A Sum of Inverse Tangents (Mathematics Without Words), Geoffrey A. Kandall, 33:1, 2002, 13, C
Solutions to x+y=xy (Mathematics Without Words), Roger Nelsen, 33:2, 2002, 130, C, 0.2
An Identity of Euler, Don Goldberg, 33:4, 2002, 345, C
Arctan(n/m) (Mathematics Without Words), Roger Nelsen, 34:1, 2003, 10, C
A Tangent Identity (Mathematics Without Words), Roger Nelsen, 34:3, 2003, 193, C
A Triple Angle Formula for Tangent, Yuichiro Kakihara, 34:3, 2003, 227-228, C
Predicting Sunrise and Sunset Times, Donald A. Teets, 34:4, 2003, 317-321, C, 0.4
Proof Without Words: Sine and Cosine Sums That Equal 0, Tingyao Zheng, 35:2, 2004, 96, C
A new trigonometric facts (Proof Without Words), Larry Hoehn, 35:4, 2004, 282, C
The Theorem of Cosines for Pyramids, Alexander Kheyfits, 35:5, 2004, 385-388, C, 0.4
Trigonometric Identities on a Graphing Calculator, Joan Weiss, 35:5, 2004, 393-396, C, 5.1.5
FFF #238. Important knowledge about triangles, Associated Press, 36:2, 2005, 143, F
FFF #259. The additive formula for sine, Juan Tolosa, 37:5, 2006, 383, F
Two Problems with Table Saws, William R. Vautaw, 39:2, 2008, 121-128, 0.4, 5.1.3
The Right Theta, William Freed and Athanasios Tavouktsooglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 5.3.1, 5.7.3
CORDIC: How Hand Calculators Calculate, Alan Sultan, 40:2, 2009, 87-92, 9.6
The Hardest Straight-In Pool Shot, Rick Mabry, 41:1, 2010, 49-56, 5.1.4, 9.5
Teaching Tip: How tan(x) Grows, Juan Tolosa, 41:3, 2010, 219-220, C, 5.1.1
Proof Without Words: Double Sum for Sine and Cosine, Hasan Unal, 43:3, 2012, 220-225, 0.7, 9.3
When Can One Expect a Stronger Triangle Inequality?, Valerii Faiziev, Robert Powers and Prasanna Sahoo, 44:1, 2013, 24-31, 0.4, 9.5, 9.7
Proof Without Words: Cotangent Double Angle Identity, K. B. Subramaniam, 46:2, 2015, 121, C, 0.2
Trigonometric Derivatives Made Easy, Piotr Josevich, 47:5, 2016, 365-366, C, 5.1.1, 5.1.2
Proof Without Words: The Product-to-Sum Identities, John Molokach, 49:3, 2018, 187-194, 0.3, 5.3.1, 9.3
Euler's Insignia: Some Admirable Curves Having a Simple Trigonometric Equation in a Natural Form, Zarema Seidametova and Valerii Temnenko, 50:2, 2019, 134-139, 5.6.1, 9.8
A Morsel from Euler, William Dunham, 51:1, 2020, 3-8, 5.4.2
Are We Ever Our Best Possible Selves? An Application of Bezout’s Identity to Find Coincident Peaks of Multiple Sine Curves, James Blackburn-Lynch, 53:3, 2022, 183-189, 9.3, 9.10

0.7 Elementary theory of equations
Maximize \(x(a-x) \), L. H. Lange, 5:1, 1974, 22-24, 0.2, 5.1.4

Square Functions, Helmer Junghans, 5:2, 1974, 15-18, 0.6

Investigations of Linear and Reciprocal Functions by the Line-to-Line Technique, David R. Duncan and Bonnie H. Litwiller, 6:2, 1975, 2-7, 0.2

A Precalculus Unit on Area Under Curves, Samuel Goldberg, 6:4, 1975, 29-35, 5.4.2

Several Hyperbolic Encounters, L. H. Lange, 7:1, 1976, 2-6

Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 52-54, 0.2, 9.6

Can This Polynomial Be Factored?, Harold L. Dorwart, 8:2, 1977, 67-72, 9.4

Polygonal Roots, Barnabas B. Hughes, 10:5, 1979, 313-318, 0.2

Luddhar's Method of Solving a Cubic Equation with a Rational Root, R. S. Luthar, 11:2, 1980, 107-110, 0.2

Approximation of Square Roots, Leon Wejnertob, 14:5, 1983, 427-430, 0.2, 9.6

Complex Roots Made Visible, Alec Norton and Benjamin Lotto, 15:3, 1984, 248-249, C, 0.2

Nested Polynomials and Efficient Exponential Algorithms for Calculators, Dan Kalman and Warren Page, 16:1, 1985, 57-60, C, 0.2, 9.6

Graphing the Complex Roots of a Quadratic Equation, Floyd Vest, 16:4, 1985, 257-261, C, 0.2, 9.5

Newton’s nth Root Method Without Derivatives, David A. Smith, 18:5, 1987, 403-406, C, 0.4

Powers and Roots by Recursion, Joseph F. Aieta, 18:5, 1987, 411-416, 0.2, 6.3

Finding Rational Roots of Polynomials, Don Redmond, 20:2, 1989, 139-141, C, 9.3

A Zero-Row Reduction Algorithm for Obtaining the gcd of Polynomials, Sidney H. Kung and Yap S. Chua, 21:2, 1990, 138-141, 4.1, 9.4

Reading Bombelli’s x-purgated Algebra, Abraham Arcavi and Maxim Bruckheimer, 22:3, 1991, 212-219, 2.2

Euler and the Fundamental Theorem of Algebra, William Dunham, 22:4, 1991, 282-293, 2.2

Infinitely Many Different Quartic Polynomial Curves, Nitsa Movshovitz-Hader and Alla Shmukler, 23:3, 1992, 186-195, 0.2

Commutativity of Polynomials, Shmuel Avital and Edward Barbeau, 23:5, 1992, 386-395, 0.2, 6.3

FFF #65. Solving a Cubic, Ed Barbeau, 24:4, 1993, 344, F, 0.2

Roots of Cubics via Determinants, Robert Y. Suen, 25:2, 1994, 115-117, 4.2

FFF #84. A Method for Solving a Cubic Equation, Ed Barbeau, 26:1, 1995, 35-36, F, 0.2

A Genuine Application of Synthetic Division, Descartes' Rule of Signs, and All That Stuff, Dwight D. Freund, 26:2, 1995, 106-110, 0.8

The Hyperbolic Number Plane, Garret Sobczyk, 26:4, 1995, 268-280, 9.5

Visualizing the Complex Roots of Quadratics (Proof Without Words), Shaun Pieper, 28:5, 1997, 359, C, 0.2
How Much Should You Pay for a Derivative?, Bennett Eisenberg, 29:5, 1998, 412-414, C
The Profit in Being Unbalanced, Wolf von Ronik, 32:5, 2001, 348-351, 4.1
Flaws, Fallacies, and Flimflam: What is $100 in Three Years Worth Right Now?, Christopher Thron, 42:4, 2011, 298, F (see also William J. Polley, 43:5, 430)
Just Take the Limit!, Jody Picoult, 42:5, 2011, 431, C, 0.1, 9.10
Adjusting Child Support Payments in Michigan, Michael A. Jones and Jennifer Wilson, 46:1, 2015, 3-9, 0.2, 5.1.5
Grandma Makes Granola, Richard Bedient and Courtney Gibbons, 46:1, 2015, 58-60, C, 5.1.4

0.9 Techniques of proof (including mathematical induction)

Good Induction versus Bad Induction, from Howard Eves, 1:2, 1970, 16, C
If...Some Suggestions on Presenting the Connector "if...then", Aaron Seligman, 1:2, 1970, 22-26, 9.1
Mathematical Induction: If Student k Understands It, Will Student k + 1?, Judith L. Gersting, 6:2, 1975, 18-20, 0.2
The Well-Ordering Principle as an Alternative to Mathematical Induction in Our Lower Division Recursive Formula Proofs, Orrin G. Cocks, 7:1, 1976, 13-14
A Helpful Device: or One More Use for Pascal's Triangle, Robert Rosenfeld, 8:3, 1977, 188-191, C, 5.4.2
A Note on the Principle of Mathematical Induction, Charles M. Bundrick and David L. Sherry, 9:1, 1978, 17-18
Mathematical Induction, or "What Good is All This Stuff if We Are Going to Assume It's True Anyway?", Leonard G. Swanson and Rodney T. Hansen, 12:1, 1981, 8-12
A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 3.1, 3.2, 5.4.2, 6.3
Behold! (1x2)+(2x3)+ ... +nx(n+1) = (1/3)((n+1)\(^3\) - (n+1)), Ali R. Amir-Moez, 18:4, 1987, 318, C
Sum of Squares (Proof by Picture), Pi-Chun Chuang, 20:2, 1989, 123, C
Product of k\(^k\) times k! (Proof by Picture), Edward T. A. Wang, 20:2, 1989, 152, C
Sum of Squares (Proof by Picture), Sidney H. Kung, 20:3, 1989, 205, C
FFF. Four Weighings, Ed Barbeau, 22:2, 1991, 133, F
FFF #45. All Powers of x are Constant, Ed Barbeau, 22:5, 1991, 403, F, 5.1.2
FFF #59. A Formula that Works Only for n=1, Ed Barbeau, 24:3, 1993, 229-230, F, 0.2
FFF. Which Balls are Actually There?, Ruma Falk, 26:1, 1995, 37, F
Count the Dots: 1+2+...+n = [n(n+1)]/2 (proof by picture), S. J. Farlow, 26:3, 1995, 190, C
Sum of Alternating Series (proof by picture), Guanshen Ren, 26:3, 1995, 213, 5.4.2
FFF #92. An Inductive Fallacy, Adrian Riskin and William Stein, 26:5, 1995, 382, F
FFF #94. Every Second Square is the Same, Allen J. Schwenk, 27:1, 1996, 44, F
FFF #103. Polynomial Detection, Ed Barbeau, 27:2, 1996, 118, F
FFF #118. Rabbits Reproduce; Integers Don't, Annie and John Selden, 28:4, 1997, 285, F
Weighing Coins: Divide and Conquer to Detect a Counterfeit, Mario Martelli and Gerald Gannon, 28:5, 1997, 365-367, 3.3
The End of Aviation, Peter Ross, 30:5, 1999, C
Yet Another Refreshing Induction Fallacy, Shay Gueron, 31:3, 2000, 205-207, F, 3.1
Leapfrogs: The Mathematical Details, Matt Wyneken, Steve Althoen, and John Berry, 36:2, 2005, 144-146, C
Towers of Hanoi Puzzle Revisited, Steve Althoen, 40:3, 2009, 225, C
One Problem, Nine Student-Produced Proofs, Geoffrey Birky, Connie M. Campbell, Manya Raman, James Sandefur, and Kay Somers, 42:5, 2011, 355-360, 0.2, 9.3

0.10 Software for precalculus mathematics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
Mathematics by Machine with Mathematica®, Alan Hoenig, 21:2, 1990, 146-149
Derive®, A Mathematical Assistant, Jeanette R. Palmiter, 23:2, 1992, 158-161
The Geometer's Sketchpad and Cabri-Geometre (software review), Dennis DeTurck, 24:4, 1993, 370-376, 0.3, 0.4
Converge, Version 4.0 (Software Review), Lawrence G. Gilligan, 26:1, 1995, 58-63, 5.8
Toolkit for Interactive Mathematics, review by L. Carl Leinbach, 26:2, 1995, 152-156, 5.8
Software Review: f(g) Scholar, David C. Arney and Daniel J. Arney, 26:5, 1995, 401-403, 4.8, 5.8
Software Review: StudyWorks III Mathematics, Pat Stone, 31:4, 2000, 310-313, 5.8

1 Mathematics Education

1.1 Teaching techniques and research reports

Programmed Instruction in Elementary Algebra: An Experiment, Margaret L. Lial, 1:2, 1970, 17-21
New Results of Research Comparing Programmed and Lecture-Text Instruction, Maurice E. Nott, 2:1, 1971, 19-22
Two-Year College Faculty Participation in Professional Mathematics Organizations, John B. Davis and T. J. Pignani, 2:1, 1971, 53-57
An Experiment in Teaching Elementary Algebra, Donald Perry, 2:2, 1971, 40-46
The Crossover Mathematics Program at Milwaukee Area Technical College, Keith J. Roberts and Leo E. Michels, 2:2, 1971, 47-50
Academic Qualifications of North Carolina's Community College Professors, Phillip E. Johnson, 3:2, 1972, 33-36
Do Students Learn From and Like An Audio-Tutorial Course in Freshman Mathematics?, Peter M. Wilson, 3:2, 1972, 37-41
A Look at That 1971 MAA Information Services Survey, Lester H. Lange, 3:2, 1972, 56-69
The Effects of a Laboratory on Achievement in College Freshman Mathematics, Cameron Douthitt, 4:1, 1973, 55-59
A Study: Using CUPM Recommendations As Criteria of the Academic Preparation of Two-Year College Teachers, Donald Perry, 4:2, 1973, 67-71
Achievement, Aptitude and Attitude in Mathematics, Anthony N. Behr, 4:2, 1973, 72-74
An Audio-Tutorial Method of Instruction vs. the Traditional Lecture-Discussion Method, Shelba Jean Morman, 4:3, 1973, 56-61
The Contract Method vs. the Traditional Method of Teaching Developmental Mathematics to Underachievers: A Comparative Analysis, Wayne L. Miller, 5:2, 1974, 45-49
Some Research Support for A Second Chance for Beginning Algebra Students, Paul W. Merritt, 5:2, 1974, 50-54
A Mastery Approach to Mathematical Literacy, Judith Harle Hector, 6:2, 1975, 22-27
Research and Development of Synchronized Slide-Tape Units for a Mathematics Laboratory, Eddie R. Williams and Harold W. Mick, 7:2, 1976, 28-33
Flow Charts in Mathematics Classes for Elementary School Teachers, Janet E. Ford and Douglas B. McLeod, 8:1, 1977, 15-19
A Look at General Education Mathematics Programs, Charles D. Friesen, 9:4, 1978, 218-221
The Two-Year Colleges and the Graduate Schools: The Teachers' Perspective, Robert McKelvey, 10:2, 1979, 136
1978 AMS Survey: Two-Year College Report, Wendell Fleming, 10:2, 1979, 143
A Classroom Experiment Involving Basic Mathematics and Women, Pansy Waycaster Brunson, 14:4, 1983, 318-324
Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.2, 6.1
Assessing the Quantitative Skills of College Juniors, Steven F. Bauman and William O. Martin, 26:3, 1995, 214-220
The Mathematical Judge: A Fable, William G. Frederick and James R. Hersberger, 26:5, 1995, 377-381, 0.1
An Attempt to Foster Students’ Construction of Knowledge During a Semester Course in Abstract Algebra, Thomas G. Edwards and Lawrence Brenton, 30:2, 1999, 120-128, 9.4
Recommendations for Teaching the Reasoning of Statistical Inference, Allan Rossman and Beth Chance, 30:4, 1999, 297-305, 7.3
455 Mathematics Majors: What Have They Done Since?, Patricia Clark Kenschaft, 31:3, 2000, 193-199
Can We Improve the Teaching of Calculus?, Hugh Thurston, 31:4, 2000, 262-267, 5.1.2, 5.7.1
Conceptions of Area: In Students and in History, Bronislaw Czarnocha, Ed Dubinsky, Sergio Loch, Vrunda Prabhu, and Darja Vidakovic, 32:2, 2001, 99-109, 5.2.6
Is There Enough Poison Gas to Kill the City?: The Teaching of Ethics in Mathematics Classes, Bonnie Shulman, 33:2, 2002, 118-125
Independent Thinking, Reuben Hersh, 34:2, 2003, 112-115
Spherical Coordinates, Tevian Dray and Corinne A. Manogue, 34:2, 2003, 168-169, C, 5.6.2
1.2 Courses and programs

The Summer Developmental Mathematics Program at Kalamazoo Valley Community College, Fred Toxopeus, 1:1, 1970, 14-16
Junior College Cooperative Program in Colorado, James C. Davis and Ralph H. Niemann, 1:1, 1970, 41-43
The Use of the Computer in Mathematics Instruction, Albert E. Hickey, 1:1, 1970, 44-54
A New Graduate Degree for Mathematics Teachers, Jon M. Laible, 1:1, 1970, 55-58
A Curriculum Suggestion for Teaching College Arithmetic, Stanley Schmidt, 1:1, 1970, 92
Remedial or Developmental? Confusion over Terms, Don Ross, 1:2, 1970, 27-31, 0.1
Mini-Math: A Program of Short Courses, Larry D. Carter, 1:2, 1970, 36-38
Calculus and the Computer: An Evaluation by Participants, Gary G. Bitter, 1:2, 1970, 41-49
Two-Year Colleges and Post-Secondary Education in Western Europe, Ralph Mansfield, 1:2, 1970, 50-55
Spring Retreat for Community College Mathematics Teachers in Washington, Phil Heft and Charles Ainley, 1:2, 1970, 56-57
Lower Columbia College Mathematics Laboratory, Richard Spangler, 2:1, 1971, 27-31
Calculus as an Experimental Science, R. P. Boas, 2:1, 1971, 36-39
Mathematics for the Undergraduate Physics Major, Mary L. Boas, 2:1, 1971, 49-52
Committing Curricular Heresy, Paul Lawrisuk, 2:1, 1971, 58-64
Calculus and the Computer—CRICISAM, William Stark, 2:2, 1971, 51-54
The MAA and the Mathematics Teacher in the Two-Year College, Joseph Hashisaki, 2:2, 1971, 63-68
The Fredonia Plan for Preparing Two-Year College Teachers, Charles R. Colvin, 2:2, 1971, 69-73
Basic Mathematics for Colleges—the CUPM Recommendations, J. A. Jones, 2:2, 1971, 87-94
"Sample" Tests for Students, June P. Wood, 3:1, 1972, 14-15
Developmental Mathematics: Self-Instruction with Mathematics Laboratory, Joanna S. Burris and Lee Schroeder, 3:1, 1972, 16-22
The Mathematics Laboratory and the Single Student, Ralph C. Williams, 4:1, 1973, 40-47
A Doctorate for the Two-Year College Instructor?, H. Vernon Price, 4:1, 1973, 48-50
Another Challenge in the Classroom, Jack M. Robertson, 4:2, 1973, 48-54
A Flexible Response to Open Admissions, Anthony Giangrasso, 4:2, 1973, 55-58
The Man-Made World: Cultural vs. Remedial Mathematics, Ralph Mansfield, 5:1, 1974, 9-21
Innovative Evaluation, Margaret Maxfield, 5:1, 1974, 47-52
A Bibliography of Literature: Mathematics Education in the Junior and Community Colleges, Nancy F. Carter and Marc Swadener, 5:1, 1974, 53-59
Improving General Education Mathematics, William Mitchell, 5:2, 1974, 32-38
Mini-Calculus, Joseph C. Bodenrader, 5:2, 1974, 74, C
Pills: Mathematics Instructional Models, Louise Dyson and Edward B. Wright, 5:3, 1974, 31-33
Bubbles, Frank O. Armbruster and Jean J. Pedersen, 5:3, 1974, 34-38
A Working Model for Inservice Training, Michael A. Topper, 5:4, 1974, 16-17
A Suggested Recruiting Project: Math Contests, Donald Perry and Wayne L. Miller, 5:4, 1974, 19-21
Survival of the Two-Year College Mathematics Teacher, Peter A. Lindstrom, 6:1, 1975, 11-13
Leonardo, His Rabbits and Other Curiosa, Clyde A. Bridger, 6:1, 1975, 14-20
Factoring Functions and Relations, Thomas J. Brieske, 6:3, 1975, 8-12, 9.4
Note on Teaching the Implication, David Beran, 6:3, 1975, 18-19
Mathematics—Is It Any of Your Business?, Ralph Mansfield, 6:3, 1975, 20-26, 9.1, 3.1
A Survey of Mathematics Programs, Nancy F. Carter, 6:4, 1975, 14-16
Small Groups: An Alternative to the Lecture Method, Julian Weissglass, 7:1, 1976, 15-20
A Search for Trends among Mathematics Programs in Small Colleges, Andrew Sterrett, 7:1, 1976, 21-23
Functional Notation—An Intuitive Approach, Ann D. Holley, 7:3, 1976, 14-15, 0.2
History in the Mathematics Curriculum, Gerald E. Lenz, 7:3, 1976, 27-28
The Open University, Helen B. Siner, 7:3, 1976, 28-32
Basic Algebra in a Balanced Lecture-Program Format, Corrinne J. Brase and Charles H. Brase, 7:4, 1976, 13-17
The Doctor of Arts Degree in Mathematics: University of Illinois at Chicago Circle, Irwin K. Feinstein, 7:4, 1976, 18-20
Getting the Students Involved in the Elementary Statistics Course, Larry J. Stephens, 8:1, 1977, 19-21
Discovery Method Algebra at the University of Washington, Square Partee and Eric Halsey, 8:1, 1977, 27-29
The Community College Basic Mathematics Course, Barbara J. Lederman, 8:1, 1977, 29-35
What's It Good for?, Nancy F. Carter, 8:2, 1977, 79-80
The Sequencing of Instructional Activities in Written Materials, Donald Cohen, 8:2, 1977, 81-87
The Construction and Uses of CATIA, a Computerized Mathematics Testbank, Charles R. Burton and Wanda A Marosz, 8:4, 1977, 212-216
Two Factors Involved in Successful Individualized Mathematics Programs, Michael E. Greenwood, 8:4, 1977, 219-222
Why and How to Use Small Groups in the Mathematics Classroom, Judith L. Gersing and Joseph E. Kuczkowski, 8:5, 1977, 270-274
A Rational Approach to Fractions, John Pace, 9:3, 1978, 154-158
Introductory Mathematics and the Adult Woman Student, Carolyn T. MacDonald, 9:3, 1978, 158-161
Experiment and Conjecture in Mathematics: A Discovery Course for College Freshmen and Sophomores, Benjamin Burrell and Jessie Ann Engle and Henry C. Nixt, 9:4, 1978, 210-215
Exams Can Leverage Learning, Warren Page, 10:1, 1979, 38, C
Homework—A Problem with a Solution, Alban J. Roques, 10:2, 1979, 116, C
More on Guessing and Proving, George Polya, 10:4, 1979, 255-258
Jazz, Literature, and the Teaching of Mathematics, Ralph P. Boas, 10:4, 1979, 264-265
Questions in the Round—An Effective Barometer of Understanding, Warren Page, 10:4, 1979, 278-279,
C
Super Bat Meets the Word Problem, Dave Logothetti, 10:5, 1979, 371
Geometry is Alive and Well: The Coxeter Symposium in Toronto, Jean J. Pedersen, 11:1, 1980, 19-25,
0.3
Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7,
5.1.1, 9.6
Mathematical Proof: What It Is and What It Ought to Be, Peter Renz, 12:2, 1981, 83-103
A Digression on Proof, Yu I. Manin, 12:2, 1981, 104-107
The Nature of Proof: Limits and Opportunities, Kenneth Appel and Wolfgang Haken, 12:2, 1981, 118-119
Shouldn't We Teach GEOMETRY?, Branko Grunbaum, 12:4, 1981, 232-237
The Thrills of Abstraction, P. R. Halmos, 13:4, 1982, 243-251, 0.2
A First Course in Continuous Simulation, Richard Bronson, 13:5, 1982, 300-310, 9.10
Imbedding the Metric, John D. Neff, 14:3, 1983, 197-202
Toward a Common Understanding of the Content of College Preparatory Mathematics, Joan R. Leitzel, 14:3, 1983, 206-209
Nonnumeric Computer Applications to Algebra, Trigonometry, and Calculus, David R. Stoutemyer, 14:3, 1983, 233-239
Integrating Writing into the Mathematics Curriculum, Dorothy Goldberg, 14:5, 1983, 421-424
Zork, RAMS and the Curse of Ra: Computo, ergo sum, Curt Suplee, 15:2, 1984, 158-159
Responses to: Will Discrete Mathematics Surpass Calculus, Saunders MacLane and Daniel H. Wagner and Peter J. Hilton and R. L. Woodriff and Daniel J. Kleitman and Peter D. Lax, 15:5, 1984, 373-380
FORUM: The Algorithmic Way of Life is Best, Stephen B. Maurer, 16:1, 1985, 2-5
Responses to the FORUM on the Algorithmic Way of Life, R. G. Douglas and Bernhard Korte and Peter Hilton and Peter Renz and Craig Smorynski and J. M. Hammersley and P. R. Halmos, 16:1, 1985, 5-21
Testing Understanding and Understanding Testing, Jean Pedersen and Peter Ross, 16:3, 1985, 178-185, 0.2, 5.1.2, 5.2.2
Routine Problems, Sherman Stein, 16:5, 1985, 383-385, 0.2, 5.1.5
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 5.1.1, 5.1.4, 5.7.1
A Mathematics Software Database, R. S. Cunningham and David Smith, 17:3, 1986, 255-266
Computer Algebra Systems in Undergraduate Mathematics, Don Small, John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 5.1.4, 5.1.5, 5.2.2, 5.4.2
Should Mathematicians Teach Statistics?, David S. Moore, 19:1, 1988, 3-7, 7.3
Should Mathematicians Teach Statistics (2) ?, A. Blanton Godfrey, 19:1, 1988, 8-11, 7.3
No! But Who Should Teach Statistics?, Judith Tanur, 19:1, 1988, 11-12, 7.3
Statistics Teachers need Experience With Data, R. Gnanadesikan and J. R. Kettenring, 19:1, 1988, 12-14, 7.3
The Mathematicians' Statistics Has a Subsidiary Role, Barbara A. Bailar, 19:1, 1988, 14-15, 7.3
Growth and Advances in Statistics, Frederick Mosteller, 19:1, 1988, 15-16, 7.3
It's Not "By Whom" But Rather "How", John E. Freund, 19:1, 1988, 20-21, 7.3
Let the Experts Teach and Judge, David L. Hanson, 19:1, 1988, 21-24, 7.3
Who Teaches What to Whom?, Michael Reed, 19:1, 1988, 24-26, 7.3
What Should the Introductory Statistics Course Contain?, Gerald J. Hahn, 19:1, 1988, 26-30, 7.3
Mathematics is Only One Tool that Statisticians Use, Ronald D. Snee, 19:1, 1988, 30-32, 7.3
Reaction to Responses to "Should Mathematicians Teach Statistics?", David S. Moore, 19:1, 1988, 32-35, 7.3
A Computer in the Classroom: The Time is Right, David P. Kraines and David A. Smith, 19:3, 1988, 261-267
Teaching with CAL: A Mathematics Teaching and Learning Environment, James E. White, 19:5, 1988, 424-443, 5.1.5
Copyright Law As It Applies to Computer Software, Michael Gemignani, 20:4, 1989, 332-338
Notational Collisions, J. Hillel, 20:5, 1989, 418-422, C, 4.1
Graphing with the HP-28S, John Selden and Annie Selden, 20:5, 1989, 423-432, 5.1.5
Sum the Alternating Harmonic Series, Dave P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 433-435, C, 5.4.2
Taylor Polynomials, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 435-436, C, 5.4.2
Calculus Quiz, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 437-438, C, 5.1.5
What's an Assignment Like You Doing in a Course Like This? Writing to Learn Mathematics, George D. Gopen and David A. Smith, 21:1, 1990, 2-19
Let's Teach Philosophy of Mathematics!, Reuben Hersh, 21:2, 1990, 105-111
Proofs by -Tion, John S. Robertson, 21:3, 1990, 220-222, C
Recruitment and Retention of Students in Undergraduate Mathematics, Miriam P. Cooney and Jacqueline M. Dewar and Patricia Clark Kenschaft and Vivian Kraines and Brenda Latka and Barbara LiSanti, 21:4, 1990, 294-301
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.2, 0.4, 0.6
Forward Homework, Raymond A. McGivney, 21:5, 1990, 400-402, C
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 5.2.1, 6.1

How Should We Introduce Integration?, David M. Bressoud, 23:4, 1992, 296-298, 5.2.1

The Growing Importance of Linear Algebra in Undergraduate Mathematics, Alan Tucker, 24:1, 1993, 3-9

Teaching Linear Algebra: Must the Fog Always Roll In?, David Carlson, 24:1, 1993, 29-40, 4.1

A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 5.7.1, 8.3

Old Calculus Chestnuts: Roast, or Light a Fire?, Margaret Cibes, 24:3, 1993, 241-243, C, 5.1.4

Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 6.1, 6.2, 6.4

Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.1, 6.1

The Computer-oriented Calculus Course at Rensselaer Polytechnic Institute, William E. Boyce and Joseph G. Ecker, 26:1, 1995, 45-50

On “Rethinking Rigor in Calculus …,” or Why We Don’t Do Calculus on the Rational Numbers, Scott E. Brodie, 30:2, 1999, 135-138, C, 5.1.2

Verse, Marylou Zapf, 34:2, 2003, 169-170, C

Mathematics, Sustainability, and a Bridge to Decision Support, Mary Lou Zeeman, 44:5, 2013, 346-349, C, 1.1

Commentary: The MAA and Environmental Mathematics, Ben Fusaro, 44:5, 2013, 448-449, C, 2.2

2 History of Mathematics

2.1 History of mathematics before 1400

The origin of our word "sine", Howard Eves, 1:1, 1970, 93, C

On the origin of ">" and "<", Howard Eves, 1:1, 1970, 94, C

The Genesis and Development of Set Theory, Phillip E. Johnson, 3:1, 1972, 55-62

Hippocrates and Archytas Double the Cube: A Heuristic Interpretation, Barnabas B. Hughes, 20:1, 1989, 42-48, 0.3

Misconceptions about the Golden Ratio, George Markowsky, 23:1, 1992, 2-19

An Early Iterative Method for the Determination of Sine of One Degree, Farhad Riahi, 26:1, 1995, 16-21

Did Plutarch Get Archimedes' Wishes Right?, Lester H. Lange, 26:3, 1995, 199-204, 5.2.7

Mathematics and the Liberal Arts, Hardy Grant, 30:2, 1999, 96-105

Mathematics and the Liberal Arts II, Hardy Grant, 30:3, 1999, 197-203, 2.2

Where Do Functions Come From?, Leigh Atkinson, 33:2, 2002, 107-112, 2.2

The “Origin” of Geometry, Reuben Hersh, 33:3, 2002, 207-211, 0.3, 9.2

Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 4.5, 9.3

When the Pope was a Mathematician, Leigh Atkinson, 36:5, 2005, 354-362

Fibonacci’s Forgotten Number, Ezra Brown and Jason C. Brunson, 39:2, 2008, 112-120, 0.7, 9.6

Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 0.4, 9.2

Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 5.1.3, 9.6

False Position, Double False Position and Cramer’s Rule, Eugene C. Boman, 40:4, 2009, 279-283, 0.2, 4.2

Archimedes Curves, Gordon A. Swain, 44:3, 2013, 185-189, 0.3, 0.5

Circular Reasoning: Who First Proved That C Divided by d Is a Constant?, David Richeson, 46:3, 2015, 162-171, 0.3

Five Families Around a Well: A New Look at an Old Problem, Ezra Brown and Matthew Crawford, 49:3, 2018, 162-168, 3.2, 4.1, 4.2

The Oldest Trig in the Book, Harlod P. Boas, 50:1, 2019, 9-20, 0.6, 2.2

Reframing the Pythagorean Theorem, Ian M. Adelslein and George L. Ashline, 50:1, 2019, 28-35, 0.3

Extrapolating P intim, Andrew J. Simoson, 50:3, 2019, 210-220, 0.1, 0.2, 9.3

Why is it that the Ratio of Any Circle’s Circumference to its Diameter is a Constant?, F. M. S. Lima & P. G. F. Jordao, 53:3, 2022, 171-182, 0.3, 5.2.8

2.2 History of mathematics after 1400

The History of the Calculus, Carl B. Boyer, 1:1, 1970, 60-86

Kepler's Explanation of the Timaeus Associations, Howard Eves, 1:2, 1970, 31, C, 0.3

Mathematics of the Yoruba People and of Their Neighbors in Southern Nigeria, Claudia Zaslavsky, 1:2, 1970, 76-79

Terminology: logarithm, Howard Eves, 2:2, 1971, 27, C

Mathematician, Violinist, Fencer—Bolyai, Howard Eves, 3:1, 1972, 41, C

How Gauss was Won to Mathematics, Howard Eves, 3:1, 1972, 65, C

Eighteenth Century British Mathematics, Phillip E. Johnson, 7:2, 1976, 22-27

A Brief History of Logarithms, R. C. Pierce, Jr., 8:1, 1977, 22-26

Women Mathematicians, Debra Charpentier, 8:2, 1977, 73-79

Martin Gardner: Defending the Honor of the Human Mind, Irving Joshua Matrix, 10:4, 1979, 227-244

The Pentagram and the Discovery of an Irrational Number, James R. Choike, 11:5, 1980, 312-316, 0.3

On the History and Solution of the Four-Color Map Problem, John Mitchem, 12:2, 1981, 108-119, 3.1

The Universal Domination of Geometry, J. Dieudonne, 12:4, 1981, 227-231

A Profile of Ronald L. Graham, Gina Bari Kolata, 12:5, 1981, 290-301

A Machine as Smart as God, Rudy Rucker, 13:2, 1982, 115-121, 9.1

The Thread, Philip J. Davis, 14:2, 1983, 98-104

The International Mathematical Olympiad Training Session, Cecil Rousseau and Gregg Patruno, 16:5, 1985, 362-365, 0.3, 9.3
The Autobiography of Julia Robinson, Constance Reid, 17:1, 1986, 2-21
Teaching Elementary Probability through its History, Sharon Kunoff and Sylvia Pines, 17:3, 1986, 210-219, 7.2
The Bernoullis and the Harmonic Series, William Dunham, 18:1, 1987, 18-23, 5.4.2
Charlotte Angas Scott 1858-1931, Patricia C. Kenschaft, 18:2, 1987, 98-110
The Function sin x / x, William B. Gearhart and Harris Shultz, 21:2, 1990, 90-99, 5.1.2, 5.1.5
Two Surprising Theorems on Cavalieri Congruence, Howard Eves, 22:2, 1991, 118-124, 0.3
Reading Bombelli's x-purgated Algebra, Abraham Arcavi and Maxim Bruckheimer, 22:3, 1991, 212-219, 0.7
Euler and the Fundamental Theorem of Algebra, William Dunham, 22:4, 1991, 179-192, 0.5, 5.1.3, 5.4.3, 5.6.1
Newton's Orbit Problem: A Historian's Response, Curtis Wilson, 25:3, 1994, 193-200, 0.5, 6.4
In Defense of Newton: His Biographer Replies, Richard S. Westfall, 25:3, 1994, 201-205, 5.4.3
In Defense of Newton: A Physicist's View, A. P. French, 25:3, 1994, 206-209, 0.5, 5.6.1
Robert Weinstock Replies, Robert Weinstock, 25:3, 1994, 209-211
Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 0.5, 6.4, 6.5
Robert Weinstock's Response to Nauenberg, Robert Weinstock, 25:3, 1994, 221-222, 0.5
Leibniz and the Spell of the Continuous, Hardy Grant, 25:4, 1994, 291-294, 9.5
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 5.2.4, 5.2.5, 5.2.9
Functions of a Curve: Leibniz's Original Notion of Functions and Its Meaning for the Parabola, David Dennis and Jere Confrey, 26:2, 1995, 124-131, 0.3, 0.5
Mathematics and the Liberal Arts II, Hardy Grant, 30:3, 1999, 197-203, 2.1
Artemas Martin: An Amateur Mathematician of the Nineteenth Century, Patricia R. Allaire and Antonella Cupillari, 31:1, 2000, 22-34
Against the Odds, Martin Gardner, 32:1, 2001, 39-43, 3.2
Was Calculus Invented in India?, David Bressoud, 33:1, 2002, 2-13, 0.6, 5.4.3
How Simple is Gravitation?, Paul Wolfson, 33:4, 2002, 350-352, C
Phoebe Floats!, Ezra Brown, 36:2, 2005, 114-122, 6.3, 9.6
Taylor Series – A Matter of Life or Death, The Observer (U.K.), 36:3, 2005, 237, C, 5.4.3
Jan Hudde and the Quotient Rule before Newton and Leibniz, Daniel J. Curtin, 36:4, 2005, 262-272
Mathematical Streets, Charles Marion, 38:4, 2007, 264, C
Christiaan Huygens and the Problem of the Hanging Chain, John Bukowski, 39:1, 2008, 2-11, 0.3, 5.3.3
Tuning with Triangles, Leon Harkleroad, 39:5, 2008, 367-373, 9.2
Under-represented Then Over-represented: A Memoir of Jews in American Mathematics, Reuben Hersh, 41:1, 2010, 2-9
The Helen of Geometry, John Martin, 41:1, 2010, 17-28, 0.3, 5.6.1
Emmy Noether?, Michael Henle, 41:1, 2010, 27, C, 9.4
Biangular Coordinates Redux: Discovering a New Kind of Geometry, Michael Naylor and Brian Winkel, 41:1, 2010, 29-41, 9.7
Augustus De Morgan Behind the Scenes, Charlotte Simmons, 42:1, 2011, 33-39
Eradicating a Disease: Lessons from Mathematical Epidemiology, Matthew Glomski and Edward Ohanian, 43:2, 2012, 123-132, 6.4, 9.10
Women and Mathematics in the Time of Euler, Betty Mayfield, 44:2, 2013, 82-88
Who Solved the Bernoulli Differential Equation and How Did They Do It?, Adam Parker, 44:2, 2013, 89-97, 6.1
How Inge Lehmann Discovered the Inner Core of the Earth, Christiane Rousseau, 44:5, 2013, 399-408, 0.4, 9.10
Descartes’ Calculus of Subnormals: What Might Have Been, Gregory Mark Boudreaux and Jess E. Wells, 44:5, 2013, 409-420, 0.4, 5.1.3
Commentary: The MAA and Environmental Mathematics, Ben Fusaro, 44:5, 2013, 448-449, C, 1.2
Projective Geometry for All, Meighan Dillon, 45:3, 2014, 169-178, 9.7
A Prehistory of Nim, Lisa Rougetet, 45:5, 2014, 358-363, 3.2, 9.2
Maxima and Minima Without Derivatives?, Lucio Cadeddu and Giampaolo Lai, 46:1, 2015, 15-22, 0.2, 5.1.3, 5.1.4, 5.1.5
The Origin of Quaternions, Thomas Bannon, 46:1, 2015, 43-50, 5.6.2, 9.4
William Neile's Contribution to Calculus, Andrew Leahy, 47:1, 2016, 42-49, 5.2.8
How to Find the Logarithm of Any Number Using Nothing but a Piece of String, Viktor Blasjo, 47:2, 2016, 95-100, 0.4, 5.3.2, 5.3.3
What’s in a Name: Why Cauchy and Euler Share the Cauchy-Euler Equation, Adam E. Parker, 47:3, 2016, 191-198, 6.2
The Sine of a Single Degree, Travis Kowalski, 47:5, 2016, 322-332, 0.4, 0.6, 9.5
Leonardo da Vinci’s Proof of the Pythagorean Theorem, Franz Lemmermeyer, 47:5, 2016, 361-364, 0.3
A Visual Validation of Viète’s Verification, Tom Edgar and N. Chris Meyer, 48:2, 2017, 90-96, 0.7, 5.1.5
A Systematic Treatment of “Linear Algebra” in 17th-Century China, Jiang-Ping Jeff Chen, 49:3, 2018, 169-179, 4.1
The Oldest Trig in the Book, Harlod P. Boas, 50:1, 2019, 9-20, 0.6, 2.1
50 Years of CMJ: The First Decade, Dominic Klyve, 51:1, 2020, 51-52
The (Two-Year) College Mathematics Journal during the 1980s, Warren Page, 51:2, 2020, 144-145, C
The College Mathematics Journal during the Decade of the 2000s, Lowell Beineke, 51:4, 2020, 302-303
The Fifth Decade of the CMJ, Brian Hopkins, 51:5, 2020, 358-359
The Equivalence of Definitions of the Natural Logarithm Function, Henry Ricardo, 53:3, 2022, 190-196, 5.1.1, 5.3.2, 5.4.1, 9.5

2.3 Interviews

George Polya, Interviewed on His Ninetieth Birthday, G. L. Alexanderson, 10:1, 1979, 13-19
An Interview with Morris Kline: Part 1, G. L. Alexanderson, 10:3, 1979, 172-178
3.1 Graph theory

Shapes of the Future, Victor Klee, 2:2, 1971, 14-27, 0.3
Topological Regular Solids, Stewart S. Cairns, 4:1, 1973, 74-76, C
Partitions of the Plane, Nathan Hoffman, 5:2, 1974, 71-73, C, 0.3
Mathematics—Is It Any of Your Business?, Ralph Mansfield, 6:3, 1975, 20-26, 1.2, 9.1
The Game of Sprouts, Gordon D. Prichett, 7:4, 1976, 21-25, 9.2
Binary Grids and a Related Counting Problem, Nathan Hoffman, 9:4, 1978, 267-272, 6.3
The Pigeonhole Principle, Kenneth R. Rebman, 10:1, 1979, 3-13, 9.3
Who Stole the Apples and The Sticks?, Ross Honsberger, 10:1, 1979, 30-32, 3.3
An Application of Turan's Theorem, Ross Honsberger, 11:3, 1980, 196-200
On the History and Solution of the Four-Color Map Problem, John Mitchem, 12:2, 1981, 108-119. 2.2
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.3, 9.2
Labeling of Graphs, J. L. Brenner, 14:1, 1983, 36-41
Connect-It Games, Frank Harry and Robert W. Robinson, 15:5, 1984, 411-419, 9.2
Realization of Parity Visits in Walking a Graph, Robert C. Bugham and Ronald D. Dutton and Phyllis Z. Chinn and Frank Harary, 16:4, 1985, 280-282, C
A Discrete Look at $1 + 2 + \ldots + n$, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 9.9, 3.2, 5.4.2, 6.3
Trees and Tennis Rankings, Curtis Cooper, 17:1, 1986, 76-78, C, 3.2
Coloring Points in the Unit Square, Charles H. Jepsen, 17:3, 1986, 231-237, 5.1.4
Combinatorics by Coin Flipping, Joel Spencer, 17:5, 1986, 407-412, 3.2, 7.2
Facility Location Problems, Fred Buckley, 18:1, 1987, 24-32, 9.10
One Factorization of Graphs: Tournament Applications, W. D. Wallis, 18:2, 1987, 116-123
How to Define an Irregular Graph, Gery Chartrand and Paul Erdos and Ortrud B. Oellermann, 19:1, 1988, 36-42
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 4.5, 9.10
Are Graphs Finally Surfacing?, Lowell W. Beineke, 20:3, 1989, 206-225
The Number of Paths in a Rooted Binary Tree of Infinite Height, Roger H. Marty, 21:4, 1990, 305-307, C
Using Euler's Formula to Solve Plane Separation Problems, Thomas L. Moore, 22:2, 1991, 125-130, 3.2
Optimal Locations, Bennett Eisenberg and Samir Khabbaz, 23:4, 1992, 282-289, 0.4, 9.9
Graphs, Matrices, and Subspaces, Gilbert Strang, 24:1, 1993, 20-28, 4.1, 4.3
The Linear Transformation Associated with a Graph: Student Research Project, Irl C. Bivens, 24:1, 1993, 76-78, 4.3, 9.1
A Combinatorial Queueing Model, Shahar Boneh and David C. Ogden, 26:5, 1995, 346-357, 3.2
The "Join the Club" Interpretation of Some Graph Algorithms, Harold Reiter and Isaac Sonin, 27:1, 1996, 54-58, C
Colored Polygon Triangulations, Duane W. DeTemple, 29:1, 1998, 43-47, C
Modeling Trees with a Stochastic Matrix, Anne M. Burns, 29:3, 1998, 230-236, 8.3
FFF. Yet another refreshing induction fallacy, Shay Gueron, 31:2, 2000, 120-123, F
Yet Another Refreshing Induction Fallacy, Shay Gueron, 31:3, 2000, 205-207, F; 0.9
Tree Diagram (poem), Michael Naylor, 32:3, 2001, 238, C
Tiling with Dominoes, Nathan S. Mendelsohn, 35:2, 2004, 115-120, 3.2
The Growth of Trees (Student Research Projects), Philip K. Hotchkiss and John Meier, 35:2, 2004, 143-151, 9.8
The Truth about Konigsberg, Brian Hopkins and Robin J. Wilson, 35:3, 2004, 198-207
Proof Without Words: A Graph Theoretic Summation of the First n Integers, Joe DeMaio and Joey Tyson, 38:4, 2007, C, 3.2
FFF #276. Eight is enough, I. B. Keene, 39:2, 2008, 136, F
Graph Theory and Surface Reconstruction, Darren A. Narayan, 39:4, 2008, 301-303, C
Flipping Triangles!, Marc Zucker, 40:3, 2009, 189-193, 9.2
Lewis Carroll, Voting, and the Taxicab Metric, Thomas C. Ratliff, 41:4, 2010, 303-311, 0.3, 3.3
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.2, 9.2, 5.4.1, 9.8
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 9.2, 9.4, 9.8
A Platonic Sextet for Strings, Karl Schaffer, 3:1, 2012, 64-69, 0.3, 9.2
The Continuing Saga of Snarks, sarah-marie belcastro, 43:1, 2012, 82-87
Counting Triangles to Sum Squares, Joe DeMaio, 43:4, 2012, 297-303, 3.2
The Combinatorial Trace Method in Action, Mike Krebs and Natalie C. Martinez, 44:1, 2013, 32-36, 3.2, 4.5, 9.3
Proof Without Words: An Alternating Sum of Squares, Joe DeMaio, 44:3, 2013, 170, C, 3.2
Instant Insanity II, Tom Richmond and Aaron Young, 44:4, 2013, 265-272, 3.2, 9.2
Boggle Logic Puzzles: Minimal Solutions, Jonathan Needleman, 44:4, 2013, 293-299, 3.2, 9.2
Domination and Independence on a Triangular Honeycomb Chessboard, Joe DeMaio and Hong Lien Tran, 44:4, 2013, 307-314, 3.2, 9.2
Matroids on Groups?, Jeremy S. LeCrone and Nancy Ann Neudauer, 45:2, 2014, 121-128, 3.2, 9.1, 9.4
On God’s Number(s) for Rubik’s Slide, Michael A. Jones, Brittany C. Shelton, and Miriam E. Weaverdyck, 45:4, 2014, 267-275, 3.2, 9.2, 9.4
Graph Theory Problems from Hexagonal and Traditional Chess, Stan Wagon, 45:4, 2014, 278-287, 9.2
Technology Review: Illustrating Planar Graphs and Kuratowski’s Theorem on Smartphone Apps, 47:1, 2016, 67-72, reviewed by Anne Quinne, 10
An Introduction to Lazy Cops and Robbers on Graphs, Brendan W. Sullivan, Nikolas Townsend, and Mikayla L. Werzanski, 48:5, 2017, 322-333, 9.2
Proof Without Words: A Sum Computed by Self-Similarity, Yukio Kobayashi, 49:1, 2018, 10, C, 3.2, 5.4.2
Harris Graphs – A Graph Theory Activity for Students and Their Instructors, Douglas J. Shaw, 49:5, 2018, 323-326
Unfoldings of the Cube, Richard Goldstone and Robert Suzzi Valli, 50:3, 2019, 173-184, 0.3, 3.2, 9.7
A Fast-Growing Sequence Inspired by TREE(k), Kevin Y. Du, 51:1, 2020, 43-50, 3.2, 5.4.1
Linking Numbers of Klein Links, Steven Beres, Vesta Coufal, Kate Kearney, Ryan Lattanzi & Hayley Olson, 52:2, 2021, 106-114, 9.8
Distances Between Factorizations of the Chicken McNugget Monoid, Scott Chapman, Pedro Garcia-Sanchez & Christopher O’Neill, 52:3, 2021, 158-176, 3.2, 9.2, 9.4
The Sock Problem Revisited, William Paulsen, 52:3, 2021, 193-203, 3.2, 5.4.1, 6.3, 7.2, 9.6
Counting Christmas Trees, Tiffany N. Kolba and Jonathan Beagley, 52:5, 2021, 338-344, 3.2
Arranging Beetles, Robert Gallant & Georg Gunther, 53:1, 2022, 3-12, 3.2, 9.2

3.2 Combinatorics

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 5.1.2, 9.1
Pascal's Triangle, Karl J. Smith, 4:1, 1973, 1-13, 0.6, 9.2
Checkerboards and Sugar Cubes: Geometric Counting Patterns, David R. Duncan and Bonnie H. Litwiller, 4:2, 1973, 41-47
A Study of the Coefficients $J[n, i]$, David L. Jones, 5:4, 1974, 12-15
A Computer Solution to "Instant Insanity", Larry Collister, 6:2, 1975, 36-41
Stories in Combinatorial Geometry, Ross Honsberger, 10:5, 1979, 344-347, 0.5
An Application from Combinatorics to Dice-Sum Frequencies, David L. Pugh, 11:5, 1980, 331-333, C, 7.1
An Alternative Proof to Dirac's Theorem, Penelope Barlow, 12:1, 1981, 57-58, C
On Dice-Sum Frequencies, V. N. Murty, 12:3, 1981, 209-211, C, 7.2
Paths and Pascal Numbers, John F. Lucas, 14:4, 1983, 329-341, 9.2
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 5.2.7, 5.7.2
Pascal's Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 5.4.1, 6.3, 9.2
On the Probability that the Better Team Wins the World Series, James L. Kepner, 16:4, 1985, 250-256, 7.2
A Discrete Look at $1 + 2 + \ldots + n$, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 0.9, 5.4.2, 3.1, 6.3
Trees and Tennis Rankings, Curtis Cooper, 17:1, 1986, 76-78, C, 3.1
The Pascal Polypode: An Extension of Pascal's Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 5.4.1, 6.3, 9.2
Combinatorics by Coin Flipping, Joel Spencer, 17:5, 1986, 407-412, 3.1, 7.2
A Division Game: How Far Can You Stretch Mathematical Induction?, William H. Ruckle, 18:3, 1987, 212-218, 0.9, 9.9
Pascal Triangles and Combinations Where Repetitions Are Allowed, Kendell Hyde, 19:1, 1988, 60-62, C, 9.2
Rencontres Reencountered, Karl David, 19:2, 1988, 138-148, 9.4
How Many Bridge Actions?, Douglas S. Jungreis and Erich Friedman, 19:2, 1988, 171-172, C, 7.1
Ties at Rotation, Howard Lewis Penn, 19:3, 1988, 230-239, 9.10
Musical Notes, Angela B. Shiflet, 19:4, 1988, 345-347, C, 7.2, 9.2
A Chessboard Coloring Problem, May Beresin and Eugene Levine and John Winn, 20:2, 1989, 106-114
Herbert and the Hungarian Mathematician: Avoiding Certain Subsequence Sums, Dean S. Clark and James T. Lewis, 21:2, 1990, 100-104
Using Euler's Formula to Solve Plane Separation Problems, Thomas L. Moore, 22:2, 1991, 125-130, 3.1
Counting It Twice, Doris Schattschneider, 22:3, 1991, 203-211
FFF #46. A Straightforward Cancellation, Ed Barbeau, 22:5, 1991, 403-404, F, 0.2
Sums of Uniformly Distributed Variables: A Combinatorial Approach, Jeanne Albert, 33:3, 2002, 201-206, 7.2
Introducing Binary and Ternary Codes via Weighings, James Tanton, 33:4, 2002, 313-314, C, 0.1
Two Quick Combinatorial Proofs of the Sum of the First n Cubes, Arthur T. Benjamin and Michael E. Orrison, 33:5, 2002, 406-408, C
A Codeword Proof of the Binomial Theorem, Mark Ramras, 34:2, 2003, 144, C
Dice Distributions Using Combinatorics, Recursion, and Generating Functions, Janet M. McShane and Michael I. Ratliff, 34:5, 2003, 370-376, 7.2
The Old Hats Problem Revisited, Heba Hathout, 35:2, 2004, 97-102
Tiling with Dominoes, Nathan S. Mendelsohn, 35:2, 2004, 115-120, 3.1
Combinatorial Proofs via Flagpole Arrangements, Duane DeTemple, 35:2, 2004, 129-133, C
The Probability that an Amazing Card Trick Is Dull, Christopher Swanson, 36:3, 2005, 209-212, 7.2
Graeco-Latin Squares and a Mistaken Conjecture of Euler, Dominic Klyve and Lee Stemkoski, 37:1, 2006, 15, 9.2, 9.4
FFF #244. Combination lock, Ed Barbeau, 37:1, 2006, 40, F
Pizza Combinatorics Revisited, Griffin Weber and Glen Weber, 37:1, 2006, 43-44, C
Streaks and Generalized Fibonacci Sequences, Shahla Ahdout, Sheldon Rothman, and Helen Strassberg, 37:3, 2006, 221-223, C
Names in Boxes Puzzle, Peter Winkler, 37:4, 2006, 260, 285, 289, C, 9.4
Fibonacci Identities via the Determinant Sum Property, Michael Z. Spivey, 37:4, 2006, 286-289, 4.2, 9.3
Exhaustive sampling and related binomial identities, Jim Ridenhour and David Grimmett, 37:4, 2006, 296-299, C, 7.2
Not Just Hats Anymore: Binomial Inversion and the Problem of Multiple Coincidences, Leith Hathout, 38:3, 2007, 179-184, 7.2
Some Half-Row Sums from Pascal’s Triangle via Laplace Transforms, Thomas P. Dence, 38:3, 2007, 205-209, 6.4
Proof Without Words: A Graph Theoretic Summation of the First n Integers, Joe DeMaio and Joey Tyson, 38:4, 2007, C, 3.1
Finding All Solutions to the Magic Hexagram, Alexander Karabegov and Jason Holland, 39:2, 2008, 102-106, 9.2
Sums of Integer Powers via the Stolz-Cesaro Theorem, Sidney H. Kung, 40:1, 2009, 42-44, C, 5.4.1
Lobb’s Generalization of Catalan’s Parenthesization Problem, Thomas Koshy, 40:2, 2009, 99-107
n-Card Tricks, Hang Chen and Curtis Cooper 40:3, 2009, 196-201, 9.2
Reflections on the $N + k$ Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 4.1, 9.2
Summations Involving Binomial Coefficients, Hidefumi Katsuura, 40:4, 2009, 275-278
Bijective Proof Without Words, Martin Griffiths, 41:2, 2010, 100, C
Deranged Exams, Michael Z. Spivey, 41:3, 2010, 197-202
Counting Squares to Sum Squares, Duane W. DeTemple, 41:3, 2010, 214-219
Taking Turns, Brian Hopkins, 41:4, 2010, 289-297, 3.3, 9.4
The Tower and Glass Marbles Problem, Richard Denman, David Hailey, and Michael Rothenberg, 41:5, 2010, 350-356, 8.1
The Rascal Triangle, Alif Anggoro, Eddy Liu, and Angus Tulloch, 41:5, 2010, 393-395, 0.1
An Application of Group Theory to Change Ringing, Michele Intermont and Aileen Murphy, 42:3, 2011, 223-228, 9.4
Student Research Project: Making Change Efficiently, Jack E. Graver, 42:4, 2011, 317-322, 0.1, 5.1.4, 9.9
Student Research Project: One-dimensional Czedli-type Islands, Eszter K. Horvath, Attila Mader, and Andreja Tepavcevic, 42:5, 2011, 374-378, C, 0.9, 9.2, 9.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 9.2, 9.4, 9.8
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 5.4.1, 9.2, 9.8
Cups and Downs, Ian Stewart, 43:1, 2012, 15-19, 4.1, 9.2
The Secretary Problem from the Applicant’s Point of View, Darren Glass, 43:1, 2012, 76-81, 7.2
30 Years of Bulgarian Solitaire, Brian Hopkins, 43:2, 2012, 135-140, 9.2, 9.3
Convergence of a Catalan Series, Thomas Koshy and Zhenguang Gao, 43:2, 2012, 141-146, 5.4.2, 9.3
RATWYT, Aviezri S. Fraenkel, 43:2, 2012, 160-164, 3.1, 9.2
Ben-Hur Staircase Climbs, John Dodge and Andrew Simoson, 43:4, 2012, 274-284
Counting Triangles to Sum Squares, Joe DeMaio, 43:4, 2012, 297-303, 3.1
The Combinatorial Trace Method in Action, Mike Krebs and Natalie C. Martinez, 44:1, 2013, 32-36, 3.1, 4.5, 9.3
A Family of Identities via Arbitrary Polynomials, Dong Fengming, Ho Weng Kin, and Lee Tuo Yeong, 44:1, 2013, 43-46
Multi-Peg Tower of Hanoi, Paul Ishihara and Doeke Buursma, 44:2, 2013, 110-116, 9.2
Proof Without Words: An Alternating Sum of Squares, Joe DeMaio, 44:3, 2013, 170, C, 3.1
Instant Insanity II, Tom Richmond and Aaron Young, 44:4, 2013, 265-272, 3.1, 9.2
Chomp in Disguise, Andrew MacLaughlin and Alex Meadows, 44:4, 2013, 284-292, 9.2
Tetriz Sudoku, Philip Riley and Laura Taalman, 44:4, 2013, 292, C, 9.2
Boggle Logic Puzzles: Minimal Solutions, Jonathan Needleman, 44:4, 2013, 293-299, 3.1, 9.2
Domination and Independence on a Triangular Honeycomb Chessboard, Joe DeMaio and Hong Lien Tran, 44:4, 2013, 307-314, 3.1, 9.2
Power Series for Up-Down Min-Max Permutations, Fiacha Heneghan and T. Kyle Petersen, 45:2, 2014, 83-91, 5.4.3
Matroids on Groups?, Jeremy S. LeCrone and Nancy Ann Neudauer, 45:2, 2014, 121-128, 3.1, 9.1, 9.4
On God’s Number(s) for Rubik’s Slide, Michael A. Jones, Brittany C. Shelton, and Miriam E. Weaverdyck, 45:4, 2014, 267-275, 3.1, 9.2, 9.4
A Prehistory of Nim, Lisa Rougetet, 45:5, 2014, 358-363, 2.2, 9.2
A Combinatorial Proof of a Theorem of Katsuura, Brian K. Miceli, 45:5, 2014, 365-369, 9.4
Proof Without Words: Sums of Every Third Triangular Number, Roger B. Nelsen, 46:2, 2015, 98, C, 9.3
When is the Generating Function of the Fibonacci Numbers an Integer?, Dae S. Hong, 46:2, 2015, 110-112, 9.3
Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.2, 0.7, 5.1.1, 5.4.1, 9.2, 9.3
On an Identity Involving Powers of Binomial Coefficients, Ulrich Abel, 46:2, 2015, 138, C
Candy Crush Combinatorics, Dana Rowland, 46:4, 2015, 255-262, 9.2
A Magic Trick Leads to an Identity: Some Induction Fun, Robert W. Vallin, 46:4, 2015, 295-298, C, 0.9, 9.2
Proof Without Words: Centered Triangular Numbers, Roger B. Nelsen, 46:5, 2015, 335, C, 0.2, 9.2, 9.3
Journal Problems Sections: Modern Challenges and Teaching Tools, Brian D. Beasley and David R. Stone, 46:5, 2015, 336-346, 0.7, 5.2.9, 5.6.1, 6.1, 9.3
Explicit Form of the Faulhaber Polynomials, Jose Luis Cereceda, 46:5, 2015, 359-363, 5.4.2
Proof Without Words: Powers of Three and Triangular Numbers, C. David Leach, 47:2, 2016, 120, C
Lattice Paths and Harmonic Means, Marc Zucker, 47:2, 2016, 121-124
The Chu-Vandermonde Identity via Leibniz’s Identity for Derivatives, Michael Spivey, 47:3, 2016, 219-220, C
The FA Cup Draw and Pairing Up Probabilities, Patrick Sullivan, 47:4, 2016, 282-292, 7.2, 9.2
Proof Without Words: Sum of a Row in Pascal’s Triangle, Angel Plaza, 48:3, 2017, 188, C, 0.2
Partitioning the Natural Numbers to Prove the Infinitude of Primes, Arpan Sadhukhan, 48:3, 2017, 217-218, C, 9.3
Proof Without Words: A Pascal-Like Triangle With Pell Number Row Sums, Angel Plaza, 48:5, 2017, 346, C, 5.4.1, 6.3, 9.3
Bet(ch)a my Team Wins the Playoffs, Roger W. Johnson, 48:5, 2017, 347-353, 7.2
Proof Without Words: A Sum Computed by Self-Similarity, Yukio Kobayashi, 49:1, 2018, 10, C, 3.1, 5.4.2
Proof Without Words: Sum of Squares of Consecutive Fibonacci Numbers, Tim Price, 49:2, 2018, 121, C, 9.3
Five Families Around a Well: A New Look at an Old Problem, Ezra Brown and Matthew Crawford, 49:3, 2018, 162-168, 2.1, 4.1, 4.2
Bringing Calculus into Discrete Math via the Discrete Derivative, Christopher J. Catone, 50:1, 2019, 21-27, 3.3, 5.1.2, 5.1.3, 5.4.1
A Birthday in St. Petersburg, Enrique Trevino, 50:1, 2019, 36-40, 7.2
The Barycenter Theorem: Averaging Possible-Paths to Produce Optimal Discrete Straight-line Segments, Robert M. French and Patrick Gehant, 50:2, 2019, 103-114, 8.3, 9.7
Unfoldings of the Cube, Richard Goldstone and Robert Suzzi Valli, 50:3, 2019, 173-184, 0.3, 3.1, 9.7
Coloring a 1-by-n Chessboard, Elias Abboud, Rathi Saleh, and Amal-Sharif Rassian, 49:5, 2019, 322-330, 5.4.2, 9.2
Sums of Powers of Consecutive Integers and Pascal's Triangle, Semyon Litvinov and Frantisek Marko, 51:1, 2020, 25-31, 4.1, 5.2.1, 9.3
Connected Subsets of an n x 2 Rectangle, Samuel Durham and Tom Richmond, 51:1, 2020, 32-42, 5.4.1, 8.3, 9.7
A Fast-Growing Sequence Inspired by TREE(k), Kevin Y. Du, 51:1, 2020, 43-50, 3.1, 5.4.1
Randomly Generated Identities, David Treeby, 51:2, 2020, 90-94, 5.4.2, 7.2
The Proportion of Comets in the Card Game SET, Dan May and Dan Swenson, 51:3, 2020, 162-172, 4.3, 6.3, 7.2, 9.1, 9.2, 9.4
Chance Encounters with Large Polynomials, Brian D. Jones, 51:3, 2020, 174-181, 0.2, 7.2
Shortest Paths on Cubes, Richard Goldstone, Rachel Roca & Robert Suzzi Valli, 52:2, 2021, 121-132, 0.3, 0.4, 9.7, 9.8
Visual Triangular Number Identities from Positional Number Systems, Tom Edgar, 52:2, 2021, 133-136, 6.3, 9.3
Distances Between Factorizations of the Chicken McNugget Monoid, Scott Chapman, Pedro Garcia-Sanchez & Christopher O’Neill, 52:3, 2021, 158-176, 3.1, 9.2, 9.4
The Sock Problem Revisited, William Paulsen, 52:3, 2021, 193-203, 3.1, 5.4.1, 6.3, 7.2, 9.6
An Unusual Recursive Formula to Answer a Question Regarding Fixed Points in Permutations, Melanie Tian & Enrique Trevino, 52:3, 2021, 219-220, C, 6.3, 7.2
Parked Functions: Choose Your Own Adventure, Joshua Carlson, Alex Christensen, Pamela E. Harris, Zakiya Jones & Andrés Ramos Rodríguez, 52:4, 2021, 254-26, 7.2, 9.2
Counting Christmas Trees, Tiffany N. Kolba and Jonathan Beagley, 52:5, 2021, 338-344, 3.1
Arranging Beetles, Robert Gallant & Georg Gunther, 53:1, 2022, 3-12, 3.1, 9.2
Connections Between Partitions and Divisors Related to the Parity of the Partition Function, Mircea Merca, 53:1, 2022, 33-37, 9.3
On the Sum of k-th Powers in Terms of Earlier Sums, Steven J. Miller & Enrique Trevino, 53:3, 2022, 220-225, 9.3

3.3 Other topics in discrete mathematics (also see 6.3)
Who Stole the Apples and The Sticks?, Ross Honsberger, 10:1, 1979, 30-32, 3.1
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.1, 9.2
Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 0.4, 8.1
Putting the Pieces Together: Understanding Robinson's Nonperiodic Tilings, Aimee Johnson and Kathleen Madden, 28:3, 1997, 172-181, 0.3
Weighing Coins: Divide and Conquer to Detect a Counterfeit, Mario Martelli and Gerald Gannon, 28:5, 1997, 365-367, 0.9
A Discrete Intermediate Value Theorem, Richard Johnsonbaugh, 29:1, 1998, 42, C, 0.9
Recursion in Action, Peter Ross, 31:1, 2000, 68, C
Ten into Eight Won't Go?, Marc Brodie, 32:4, 2001, 296, C
In Search of a Missing Link: A Case Study in Error-Correcting Codes, Andy Liu, 32:5, 2001, 343-347
Centering, Jim Sauerberg and Alan Tarr, 33:1, 2002, 24-31, 0.4, 6.3
Apportionment and the 2000 Election, Michael G. Neubauer and Joel Zeitlin, 34:1, 2003, 2-10
Simmons’ Subliminal Channel, Hector Rosario, 35:3, 2004, 208-212
Taking Turns, Brian Hopkins, 41:4, 2010, 289-297, 3.2, 9.4
Who Does the Housework?, Angela Vierling-Claassen, 41:4, 2010, 298-302
Lewis Carroll, Voting, and the Taxicab Metric, Thomas C. Ratliff, 41:4, 2010, 303-311, 0.3, 3.1
Visualizing Elections using Saari Triangles, Mariah Birgen, 41:4, 2010, 325-328, 0.1, 0.3
A Talmudic Fair-Division Problem, Theodore Hill, 41:4, 2010, 338, C, 0.1
Two-Person Pie-Cutting: The Fairest Cuts, Julius B. Barbanel and Steven J. Brams, 42:1, 2011, 25-32
Retrolife and the Pawns Neighbors, Yossi Elran, 43:2, 2012, 147-151, 9.2, 9.10
Balanced Nontransitive Dice, Alex Schaefer and Jay Schweig, 48:1, 2017, 10-16, 7.1, 7.2, 9.2
The Solution to a Hanoi-ing Little Problem, John P. Bonomo, 49:4, 2018, 288-291, 6.3, 8.1, 9.2
Bringing Calculus into Discrete Math via the Discrete Derivative, Christopher J. Catone, 50:1, 2019, 21-27, 3.2, 5.1.2, 5.1.3, 5.4.1
A Plea for Finite Calculus, Michael Schmitz, 52:2, 2021, 94-105, 1.1, 2.2, 5.1.2

3.4 Software for discrete mathematics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
The Complete Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
Forget Not the Lowly Spreadsheet, Michael G. Henle, 26:4, 1995, 320-328, 6.7

4 Linear Algebra

4.1 Matrices, systems of linear equations, and matrix algebra
Mathematics, A Solitary Game, Olof Hanner, 1:2, 1970, 5-16, 0.2
On One-Sided Inverses of Matrices, Elmar Zemgalis, 2:1, 1971, 45-48
On Transformations and Matrices, Marc Swadener, 4:3, 1973, 44-51, 4.4
Binomial Matrices, Jay E. Strum, 8:5, 1977, 260-266
Integer Matrices Whose Inverses Contain Only Integers, Robert Hanson, 13:1, 1982, 18-21
Mathematics in Archaeology, Gareth Williams, 13:1, 1982, 56-58, C
Basic Null Space Calculations, Dan Kalman, 15:1, 1984, 42-47
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 5.4.1, 7.3, 9.6
Visual Thinking about Rotations and Reflections, Tom Brieske, 15:5, 1984, 406-410, 4.4
Classifying Row-reduced Echelon Matrices, Stewart Venit and Wayne Bishop, 17:2, 1986, 169-170, C
Self-Inverse Integer Matrices, Robert Hanson, 16:3, 1985, 190-198
Using Minitab in Linear Algebra, Raymond N. Greenwell, 16:3, 1985, 216-218
Harvesting a Grizzly Bear Population, Michael Caulfield and John Kent and Daniel McCaffrey, 17:1, 1986, 34-46, 4.6, 9.10
Teaching Mathematics Using APL, Edward J. LeCuyer, Jr., 17:4, 1986, 344-357
On Polynomial Matrix Equations, Harley Flanders, 17:5, 1986, 388-391, 4.5
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 5.1.2, 5.1.5, 5.2.3, 5.2.4, 5.2.5
Why Should We Pivot in Gaussian Elimination?, Edward Rozema, 19:1, 1988, 63-72, 4.6
Notational Collisions, J. Hillel, 20:5, 1989, 418-422, C, 1.2
Minimum Dimension for a Square Matrix of Order n, Robert Hanson, 21:1, 1990, 28-34, 9.4
A Tool for Teaching Linear Programming within MATLAB, David R. Hill, 21:1, 1990, 55-56, C, 9.9
Software Review: Linear Algebra Software for the IBM PC, David P. Kraines and Vivian Y. Kraines, 21:1, 1990, 57-64, 4.8
A Zero-Row Reduction Algorithm for Obtaining the gcd of Polynomials, Sidney H. Kung and Yap S. Chua, 21:2, 1990, 138-141, 0.7, 9.4
Graphs, Matrices, and Subspaces, Gilbert Strang, 24:1, 1993, 20-28, 3.1, 4.3
Teaching Linear Algebra: Must the Fog Always Roll In?, David Carlson, 24:1, 1993, 29-40, 1.2
Linear Algebra and Affine Planar Transformations, Gerald J. Porter, 24:1, 1993, 47-51, 0.4, 4.4
FFF. Matrices and the TI-81 Graphics Calculator, Constance J. Gardner, 24:1, 1993, 64, F, 0.2
Iterative Methods in Introductory Linear Algebra, Donald R. LaTorre, 24:1, 1993, 79-88, 4.5, 9.6
Software Review: Spreadsheets in Linear Algebra, Deane Arganbright, 24:1, 1993, 89-94, 4.8
How Does the NFL Rate the Passing Ability of Quarterbacks?, Roger W. Johnson, 24:5, 1993, 451-453, C (also 25:4, 1994, 340)
Using Computer Algebra Systems to Teach Linear Algebra (software review), Maurino P. Bautista, 24:5, 1993, 462-471, 4.5, 4.8
Matrix Patterns and Undertermined Coefficients, Herman Gollwitzer, 25:5, 1994, 444-448, C, 6.2
For matrices: AB transpose equals B transpose times A transpose (proof by picture), James G. Simmonds, 26:3, 1995, 250, C
Linear Algebra on the Gridiron, Daniel C. Isaksen, 26:5, 1995, 358-360
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.2, 5.1.4, 5.7.1
FFF #114. An Inversion Conundrum, Barry D. Ganapol, 28:2, 1997, 120, F
A Diagonal Perspective on Matrices, Eugene C. Boman and Margaret A. Misconish, 29:1, 1998, 37-38, C
Using Consistence Condition to Solve Linear Systems, Geza Schay, 30:3, 1999, 226-229, C
N-Site Insights, Bret Draayer, 31:4, 2000, 250-258, 5.5
The Profit in Being Unbalanced, Wolf von Ronik, 32:5, 2001, 348-351, 0.8
When is 1/(a-b) = 1/a + 1/b, Anyway?, Eugene Boman and Frank Uhlig, 33:4, 2002, 296-300, 9.5
Obtaining the QR Decomposition by Pairs of Row and Column Operations, Sidney H. Kung, 33:4, 2002, 320-321, C, 4.6
An Underdetermined Linear System for GPS, Dan Kalmar, 33:5, 2002, 384-390
FFF. Matrix Inverses and the Great Injustice, Zoran Sunik, 33:5, 2002, 395-398, F
Parrondo’s Paradox – Hope for Losers!, Darrell P. Minor, 34:1, 2003, 15-20, 7.2
On the Square Root of aa^T + bb^T, Dietrich Trenkler and Gotz Trenkler, 34:1, 2003, 39-41
A Class of Exponential Matrices, M. A. Khan, 34:3, 2003, 194-195
Reflections on the N + k Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 3.2, 9.2
Student Research Project: Golden Matrix Families, Anne Fontaine and Susan Hurley, 42:2, 2011, 140-147, 4.5, 9.4
The Easiest Lights Out Games, Bruce Torrence, 42:5, 2011, 361-371, 4.3, 9.2
Cups and Downs, Ian Stewart, 43:1, 2012, 15-19, 3.2, 9.2
Push-To Telescope Mathematics, Donald Teets, 43:3, 2012, 227-231, 4.4
Asset Pricing, Financial Markets, and Linear Algebra, Marcio Diniz, 44:1, 2013, 2-8, 4.3, 7.2, 9.9
Teaching Tip: When a Matrix and Its Inverse Are Stochastic, J. Ding and N. H. Rhee, 44:2, 2013, 108-109, C
Understanding Singular Vectors, David James and Cynthia Botteron, 44:3, 2013, 220-226, 4.5, 4.6, 4.7, 9.6
The Rank of Recurrence Matrices, Christopher Lee and Valerie Peterson, 45:3, 2014, 207-215, 6.3
Predicting Wins and Losses: A Volleyball Case Study, Elizabeth Knapper and Hope McIlwain, 46:5, 2015, 352-358, 7.3, 9.10
The Advantage of the Coin Toss for the New Overtime System in the National Football League, Jacqueline Leake and Nicholas Pritchard, 47:1, 2016, 2-9, 7.2, 9.9
Abbott-and-Costello Numbers, Howard Sporn, 47:2, 2016, 126-132, 9.2, 9.3
Horse Racing Odds: Can You Beat the Track by Hedging Your Bets?, Joel Pasternack and Stewart Venit, 47:4, 2016, 275-280, 7.2, 9.2
A Curious Feature of Regression, Carl V. Lutzer, 48:3, 2017, 189-198, 7.3
A Short Introduction to Optimal Line Packings, Dustin G. Mixon and James Solazzo, 49:2, 2018, 82-91, 4.3, 4.5
The Double-Sidedness of Matrix Inverses; Yet Another Proof, Esther M. Garcia-Caballero and Samuel G. Moreno, 49:2, 2018, 136-137, C
Five Families Around a Well: A New Look at an Old Problem, Ezra Brown and Matthew Crawford, 49:3, 2018, 162-168, 2.1, 3.2, 4.2
A Systematic Treatment of “Linear Algebra” in 17th-Century China, Jiang-Ping Jeff Chen, 49:3, 2018, 169-179, 2.2
Sums of Powers of Consecutive Integers and Pascal's Triangle, Semyon Litvinov and Frantisek Marko, 51:1, 2020, 25-31, 3.2, 5.2.1, 9.3
The Last Two Days in Elementary Linear Algebra, Donald L. Muench, 51:3, 2020, 222-224, C, 4.3, 4.5
Determinants: A Short Program, Alban J. Roques, 10:5, 1979, 340-343
Predetermined Determinants, David C. Buchtal, 16:4, 1985, 277-279, C
The Surveyor's Area Formula, Bart Braden, 17:4, 1986, 326-337, 5.2.6, 5.2.8
Computing Determinants, Clyde Dubbs and David Siegel, 18:1, 1987, 48-50, C
Cramer's Rule via Selective Annihilation, Dan Kalman, 18:2, 1987, 136-137, C, 4.3
Apropos Predetermined Determinants, Antal E. Fekete, 19:3, 1988, 254-257, C
Evaluating "Uniformly Filled" Determinants, Simon M. Goberstein, 19:4, 1988, 343-345, C

4.2 Determinants (also see 5.5)
Determinants of Sums, Marvin Marcus, 21:2, 1990, 130-134, C
On 'Uniformly Filled' Determinants, Carsten Thomassen and Herbert S. Wilf, 21:2, 1990, 135-137, C
Determinantal Loci, Marvin Marcus, 23:1, 1992, 44-47, C
Roots of Cubics via Determinants, Robert Y. Suen, 25:2, 1994, 115-117, 0.7
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 5.1.4, 5.7.1
Cramer's Rule (proof by picture), The Mathematica Initiative, 28:2, 1997, 118, C
Finding a Determinant and Inverse Matrix by Bordering, Yong-Zhuo Chen and Richard F. Melka, 29:1, 1998, 38-39, C
Taylor’s Formula via Determinants, K. S. Sarkaria, 32:1, 2001, 53, C, 5.4.3
FFF #207. Evaluating a determinant, Michel Bataille, 34:2, 2003, 135-136, F
“Shutting up like a telescope”: Lewis Carroll’s “Curious” Condensation Method for Evaluating Determinants, Adrian Rice and Eve Torrence, 38:2, 2007, 85-95
A Tricky Linear Algebra Example, David Sprows, 39:1, 2008, 54-56, C, 4.3
False Position, Double False Position and Cramer’s Rule, Eugene C. Boman, 40:4, 2009, 279-283, 0.2, 2.1
Computing Determinants by Double-Crossing, Deanna Leggett, John Perry, and Eve Torrence, 42:1, 2011, 43-53
An n-dimensional Pythagorean Theorem, William J. Cook, 44:2, 2013, 0.4, 5.5
Five Families Around a Well: A New Look at an Old Problem, Ezra Brown and Matthew Crawford, 49:3, 2018, 162-168, 2.1, 3.2, 4.1
Chaos in Determinant Condensation Calculations, Hou-Biao Li, Hong Li, and Ting-Zhu Huang, 52:5, 2021, 345-354, 9.6

4.3 Vector spaces and inner product spaces (also see 5.5)

Vectors Point Toward Pisa, Richard A. Dean, 2:2, 1971, 28-39, 6.3
Cramer's Rule via Selective Annihilation, Dan Kalman, 18:2, 1987, 136-137, C, 4.2
FFF #35. Yet Another Proof that 0=1, Ed Barbeau, Editor, 22:2, 1991, 131, F
Graphs, Matrices, and Subspaces, Gilbert Strang, 24:1, 1993, 20-28, 4.1, 3.1
Arithmetic Matrices and the Amazing Nine-Card Monte, Dean Clark and Dilip K. Datta, 24:1, 1993, 52-56
Subspaces and Echelon Forms, David C. Lay, 24:1, 1993, 57-62
A Geometric Interpretation of the Columns of the (Pseudo)Inverse of A, Melvin J. Maron and Ghansham M. Manwani, 24:1, 1993, 73-75, C
When Is "Rank" Additive?, David Callan, 29:2, 1998, 145-147, C
A Picture is Worth a Thousand Words, J. B. Thoo, 29:5, 1998, 408-411, C
FFF #153. The Schwarz-Cauchy Inequality, M. J. de la Puente, 30:5, 1999, 385, F
Elementary Linear Algebra and the Division Algorithm, Airton von Sohsten de Medeiros, 33:1, 2002, 51-52, C, 9.4
Mind Your ∀ ’s and ∃’s, Stephen M. Walk, 35:5, 2004, 362-369, 9.1
The Sample Correlation Coefficient from a Linear Algebra Perspective, C. Ray Rosentrater, 37:1, 2006, 47-50, C, 7.3
A Geometric View of Complex Trigonometric Functions, Richard Hammack, 38:3, 2007, 210-217, 0.6, 9.5
A Direct Proof that Row Rank Equals Column Rank, Nicholas Loehr, 38:4, 2007, 300-301, C
A Tricky Linear Algebra Example, David Sprows, 39:1, 2008, 54-56, C, 4.2
An Elementary Treatment of General Inner Products, Jack E. Graver, 42:1, 2011, 5-59, C
An Excursion Through the Double Sidedness of the Matrix Inverse, Jose Angel Cid, 52:1, 2021, 54-56, C, 4.1

4.4 Linear transformations

On Transformations and Matrices, Marc Swadener, 4:3, 1973, 44-51, 4.1
Visual Thinking about Rotations and Reflections, Tom Brieske, 15:5, 1984, 406-410, 4.1
The Matrix of a Rotation, Roger C. Alperin, 20:3, 1989, 230, C, 8.3
Linear Algebra and Affine Planar Transformations, Gerald J. Porter, 24:1, 1993, 47-51, 0.4, 4.1
Rotation Matrices in the Plane without Trigonometry, Arnold J. Insel, 24:1, 1993, 71-73, C
The Linear Transformation Associated with a Graph: Student Research Project, Irl C. Bivens, 24:1, 1993, 76-78, 3.1, 9.1
Fractals in Linear Algebra, James A. Walsh, 27:4, 1996, 298-304, 6.3
Additivity + Homogeneity, Michael J. Bradley and Michael St. Vincent and David L. Finn, 30:2, 1999, 133-135, C (see also Joseph Ling, 31:4, 332, C)
The Orbits of a Unimodular Affine Transformation, Roman W. Wong, 31:4, 2000, 290-296, 6.3
Linear Transformation of the Unit Circle in R^2, Pratiibha Ghatage and Sally Shao, 32:3, 2001, 204-206, C
The Mathematics of “Go To” Telescopes, Donald Teets, 38:3, 2007, 170-178, 5.6.2
Push-To Telescope Mathematics, Donald Teets, 43:3, 2012, 227-231, 4.1
Computing a Satellite Orbit From Photographs, Donald Teets, 48:2, 2017, 102-110, 5.6.2, 5.7.3
Why Hamilton Couldn’t Multiply Triples, Adrian Rice & Ezra Brown, 52:3, 2021, 185-192, 4.3, 5.5, 9.4
On the Two “Dimension Theorems”, Eli Leher, 53:2, 2022, 151, C, 4.5

4.5 Eigenvalues and eigenvectors

Linear Algebra: A Potent Tool, Anneli Lax, 7:2, 1976, 3-15
On Polynomial Matrix Equations, Harley Flanders, 17:5, 1986, 388-391, 4.1
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 3.1, 9.10
The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra, David Carlson and Charles R. Johnson and David C. Lay and A. Duane Porter, 24:1, 1993, 41-46, 1.2, 4.1, 4.2, 4.3
Iterative Methods in Introductory Linear Algebra, Donald R. LaTorre, 24:1, 1993, 79-88, 4.1, 9.6
Using Computer Algebra Systems to Teach Linear Algebra (software review), Maurino P. Bautista, 24:5, 1993, 462-471, 4.1, 4.8
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 5.4.2, 9.3, 9.5
The Matrix Exponential Function and Systems of Differential Equations Using Derive®, Robert J. Hill and Mark S. Mazur, 26:2, 1995, 146-151, 6.2
Eigenpictures: Picturing the Eigenvector Problem, Steven Schonefeld, 26:4, 1995, 316-319, C
Eigenpictures and Singular Values of a Matrix, Peter Zizler and Holly Fraser, 28:1, 1997, 59-62, C, 5.7.3
Clock Hands Pictures for 2x2 Real Matrices, Charles R. Johnson and Brenda K. Kroschel, 29:2, 1998, 148-150, C
The Eigenvalues of an Infinite Matrix, Bobette Thorsen, 31:2, 2000, 107-110
Eigenvalues of Matrices of Low Rank, Stewart Venit and Richard Katz, 31:3, 2000, 208-210, C
Collapsed Matrices with (Almost) the Same Eigenstuff, Donald E. Hooley, 31:4, 2000, 297-299, C
Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 2.1, 9.3
Tennis with Markov, Roman Wong and Megan Zigarovich, 38:1, 2007, 53-55, C, 7.2, 9.9, 9.10
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remski, 42:2, 2011, 86-95, 4.6, 4.7 (see also 2. Correction, 42:5, 2011, 429)

Student Research Project: Golden Matrix Families, Anne Fontaine and Susan Hurley, 42:2, 2011, 140-147, 4.1, 9.4

An Application of Sylvester’s Rank Inequality, Sidney H. Kung, 42:2, 2011, 148, C

An Intuitive Proof of the Singular Value Decomposition of a Matrix, Keith J. Coates, 42:5, 2011, 394-395, C, 4.3, 4.6

A Real Proof of the Principal Axis Theorem, Suk-Geun Hwang, 43:2, 2012, 172-173, C

The Numerical Range of the Luoshu Is a Piece of Cake – Almost, Gotz Trenkler and Dietrich Trenkler, 43:5, 2012, 371-376, 4.6

The Combinatorial Trace Method in Action, Mike Krebs and Natalie C. Martinez, 44:1, 2013, 32-36, 3.1, 3.2, 9.3

Understanding Singular Vectors, David James and Cynthia Botteron, 44:3, 2013, 220-226, 4.1, 4.6, 4.7, 9.6

A Short Introduction to Optimal Line Packings, Dustin G. Mixon and James Solazzo, 49:2, 2018, 82-91, 4.1, 4.3

Solving Systems of Differential Equations in the Case of a Defective Coefficient Matrix, Sylvia Carlisle and William R. Green, 49:5, 2019, 372-374, C, 6.2

The Last Two Days in Elementary Linear Algebra, Donald L. Muench, 51:3, 2020, 222-224, C, 4.1, 4.3

Formula for the Computation of the Matrix Exponential, João Teixeira & Maria João Borges, 51:5, 2020, 345-350, 4.1, 6.2

An Eigenargument for Irrational Roots, Gary R. Lawlor, 52:2, 2021, 140-141, C, 0.7

Being Rational About Algebraic Numbers, Matt David, Adam E. Parker, and Daniel A. N. Vargas, 52:5, 2021, 327-337, 4.1, 5.4.1, 6.3, 9.4, 9.6

On the Two “Dimension Theorems”, Eli Leher, 53:2, 2022, 151, C, 4.4

Two Eigenvectors for the Price of One, Juan Tolosa, 53:3, 2022, 227-229, C

4.6 Numerical methods of linear algebra

Harvesting a Grizzly Bear Population, Michael Caulfield and John Kent and Daniel McCaffery, 17:1, 1986, 34-46, 4.1, 9.10

Why Should We Pivot in Gaussian Elimination?, Edward Rozema, 19:1, 1988, 63-72, 4.1

A Singularly Valuable Decomposition: The SVD of a Matrix, Dan Kalman, 27:1, 1996, 2-23

Of Memories, Neurons, and Rank-One Corrections, Kevin G. Kirby, 28:1, 1997, 2-19, 8.4

Gaussian Elimination and Dynamical Systems, Kathie Yerion, 28:2, 1997, 89-97, 9.6

A Fresh Approach to the Singular Value Decomposition, Colm Mulcahy and John Rossi, 29:3, 1998, 199-207

If It’s in the Textbook, It Must Be True, Donald A. Teets, 31:4, 2000, 307-308, F, 6.6
Obtaining the QR Decomposition by Pairs of Row and Column Operations, Sidney H. Kung, 33:4, 2002, 320-321, C, 4.1
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remski, 42:2, 2011, 86-95, 4.5, 4.7 (see also 2. Correction, 42:5, 2011, 429)
The Numerical Range of the Luoshu Is a Piece of Cake – Almost, Gotz Trenkler and Dietrich Trenkler, 43:5, 2012, 371-376, 4.5
Understanding Singular Vectors, David James and Cynthia Botteron, 44:3, 2013, 220-226, 4.1, 4.5, 4.7, 9.6

4.7 Other topics in linear algebra

Some Applications of Elementary Linear Algebra in Combinatorics, Richard A. Brualdi and Jennifer J. Q. Massey, 24:1, 1993, 10-19, 3.2
Problem Collection for Linear Algebra, Ed Barbeau, 24:1, 1993, 64-66, F
Image Reconstruction in Linear Algebra, Andrzej Kedzierawski and Olympia Nicodemi, 32:2, 2001, 128-134, C
Teaching Linear Algebra: Issues and Resources, Dan Kalman and Jane Day, 32:3, 2001, 162-168, 1.1
Linear Algebra in the Financial World, Barbara Swart, 32:3, 2001, 208-210, C
A Remark on the Chain Rule for Exponential Matrix Functions, James H. Liu, 34:2, 2003, 141-143, C
Breaking the Holiday Inn Priority Club CAPTCHA, Edward Aboufadel, Julia Olsen, and Jesse Windle, 36:2, 2005, 101-108, 8.3, 9.10
FFF #249. Linearly dependent sets of polynomials, R. Bruce Mattingly, 37:2, 2006, 122, F
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remski, 42:2, 2011, 86-95, 4.5, 4.6 (see also 2. Correction, 42:5, 2011, 429)
Understanding Singular Vectors, David James and Cynthia Botteron, 44:3, 2013, 220-226, 4.1, 4.5, 4.6, 9.6
Classifying Nilpotent Maps via Partition Diagrams, Nicholas Loehr, 45:2, 2014, 108-115, 4.3, 4.4

4.8 Software for linear algebra

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
Linear Algebra Software for the IBM PC, David P. Kraines and Vivian Y. Kraines, 21:1, 1990, 57-64, 4.1
Mathematics by Machine with Mathematica®, Alan Hoenig, 21:2, 1990, 146-149
Derive®, A Mathematical Assistant, Jeanette R. Palmier, 23:2, 1992, 158-161
Spreadsheets in Linear Algebra, Deane Arganbright, 24:1, 1993, 89-94, 4.1
5 Calculus

5.1 Limits and differentiation

5.1.1 Limits (including l'Hopital's rule)

Delta as a Function of Epsilon, A Suggestion for the Calculus Teacher, John W. LeDuc, 4:3, 1973, 85-86, C
A Note on Epsilons and Deltas, Peter A. Lindstrom, 5:3, 1974, 12-14
Another Note on Epsilons and Deltas, Larry F. Bennett, 7:3, 1976, 18
Comparing a^b and b^a Using Elementary Calculus, John T. Varner III, 7:4, 1976, 46, C, 5.1.2
An Interesting Approach to Delta, Epsilon Proofs, Allen R. Angel, 8:5, 1977, 278-280
Note on l'Hopital's Rule for the Indeterminate Form infinity over infinity, James E. Carpenter, 9:2, 1978, 73-74
A Neglected Approach to the Logarithm, Bruce S. Babcock and John W. Dawson, Jr., 9:3, 1978, 136-140, 5.3.2
Stirling's Formula Improved, Jerry B. Keiper, 10:1, 1979, 38-39, C
l'Hopital's Rule and the Continuity of the Derivative, J. P. King, 10:3, 1979, 197-198, C
Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.2.2, 5.4.2, 9.6
Calculators to Motivate Infinite Composition of Functions, E. D. McCune and R. G. Dean and W.D. Clark, 11:3, 1980, 189-195
Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7, 1.2, 9.6
Probability Solution to a Limit Problem, Homer W. Austin, 13:4, 1982, 272, C, 7.2
The Epsilon-Delta Connection, Larry King, 14:1, 1983, 42-47
Some Subtleties in l'Hopital's Rule, Robert J. Bumcrot, 15:1, 1984, 51-52, C
Alternate Approach to Two Familiar Results, Norman Schaumberger, 15:5, 1984, 422-423, C, 5.1.2
Bernoulli's Inequality and the Number e, Joseph Wiener, 16:5, 1985, 399-400, C
Using Riemann Sums in Evaluating a Familiar Limit, Frank Burk, 17:2, 1986, 170-171, C, 5.2.1, 5.3.2
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 5.1.4, 5.7.1, 1.2
Picturing Infinite Values, Robert A. Cicenia, 17:4, 1986, 322-325
An Unexpected Appearance of the Golden Ratio, George Manuel and Amalia Santiago, 19:2, 1988, 168-170, C, 0.4
A Generalization of the limit of [(n!)^(1/n)]/n = e^(e^(-1)), Norman Schaumberger, 20:5, 1989, 416-418, C, 9.5
A Recursively Computed Limit, Stephan C. Carlson and Jerry M. Metzger, 21:3, 1990, 222-224, C
A Geometric Proof of the limit as d approaches 0 from the positive side of -d ln d equals 0, John H. Mathews, 23:3, 1992, 209-210, C
A Circular Argument, Fred Richman, 24:2, 1993, 160-162, C
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.5, 5.6.1
FFF. Two Limit Fallacies, Ed Barbeau, editor, 28:1, 1997, 44-46, F
Introduction to Limits, or Why Can't We Just Trust the Table?, Allen J. Schwenk, 28:1, 1997, 186, C
Proof of a Common Limit (x / e^x) (proof without words), Alan H. Stein and Dennis McGavran, 29:2, 1998, 147, C

Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.2, 5.2.1, 5.2.6, 5.4.2, 6.1
The Limit of t ln t as t approaches 0 (Proofs Without Words), Thomas Gantner, 31:4, 2000, 273, C
FFF #175. A Proof that –1 = 1, Sung Soo Kim, 32:4, 2001, 282, F
The Logarithm Function and Riemann Sums, Frank Burk, 32:5, 2001, 369-370, C, 5.2.1
FFF #197. Hospitalization, Bill Sands, 33:4, 2002, 309, F
FFF #202. A limit at negative infinity, Dunrun Huang, 34:1, 2003, 51-52, F
On the Indeterminate Form 0^0, Leonard J. Lipkin, 34:1, 2003, 55-56, C
A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfahl, 37:4, 2006, 269-278, 5.7.3, 9.8
Skipping over logs in finding limits of the form 1^∞: Teaching Tip, Sidney Kung, 38:1, 2007, 42, C
The Convergence Behavior of \(f_a(x) = (1 + 1/x)^{x^a} \), Cong X. Kang and Eunjeong Yi, 38:5, 2007, 385-387, C, 5.3.2, 9.5
The Depletion Ratio, C. W. Groetsch, 39:1, 2008, 43-48, 5.2.1, 9.10
FFF #275. More striking results, Peter Schumer and Michael A. Jones, 39:1, 2008, 50, F, 0.2
Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Lawrence Downey, Boon W. Ong, and James A. Sellers, 39:5, 2008, 391-394, C, 5.2.5, 5.4.2
A Class of Multivariable Limits, Yingfan Liu and Youguo Wang, 41:2, 2010, 154-156, C, 5.7.1
Teaching Tip: The Limit of (sin t)/t; Claudi Alsina and Roger Nelsen, 41:3, 2010, 192, C
Teaching Tip: How tan(x) Grows, Juan Tolosa, 41:3, 2010, 219-220, C, 0.6
Intriguing Limit, Roman Witula and Damian Slota, 42:4, 2011, 328, C
Limit Interchange and l'Hopital’s Rule, Michael W. Ecker, 42:5, 2011, 382-383, C, 5.2.9
Other Indeterminate Forms, Kurt Fink and Jawad Sadek, 44:1, 2013, 55-57, C
Proof Without Words: Limit of a Recursive Arithmetic Mean, Angel Plaza, 45:5, 2014, 364, C, 0.1, 5.4.1
A Squeeze for Two Common Sequences that Converge to \(e \), Branko Curigus, 45:5, 2014, 391-392, C, 5.4.1
Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.2, 0.7, 3.2, 5.4.1, 9.2, 9.3
Trigonometric Derivatives Made Easy, Piotr Josevich, 47:5, 2016, 365-366, C, 0.6, 5.1.2
On a Genocchi-Peano Example, Krzysztof Chris Ciesielski and David Miller, 48:3, 2017, 205-213, 9.5
On Zero-Over-Zero Form Limits of a Special Type, Jonathan Hoseana, 49:3, 2018, 219-221, C
Greedy Queens on an Infinite Chessboard, William Paulsen, 49:4, 2019, 288-294, 5.4.1, 9.2
Calculus Limits Unified and Simplified, C. Bryan Dawson, 49:5, 2019, 331-342, 9.5
Euler’s Limit and Stirling’s Estimate, Adam Hammett, 51:5, 2020, 330-336, 5.3.2, 5.4.2, 9.5
The Equivalence of Definitions of the Natural Logarithm Function, Henry Ricardo, 53:3, 2022, 190-196, 2.2, 5.3.2, 5.4.1, 9.5
5.1.2 The derivative and mean value theorems

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 3.2, 9.1
How Steep Is a Hill?, Robert L. Page, 3:1, 1972, 66-67, C
A Note on Derivatives of Polynomials, Aron Pinker, 3:2, 1972, 77-78, C
Generalizing Rolle's Theorem in Elementary Calculus, Rodney D. Gentry, 4:3, 1973, 11-17
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.4, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.7.2, 5.2.10, 5.4.2, 5.6.1
Continuous Deformation of a Polynomial into Its Derivatives, Roland E. Larson, 5:2, 1974, 68-69, C, 0.7
When Does (fg)'=f'g'?, Lewis G. Maharam and Edward P. Shaughnessy, 7:1, 1976, 38-39, C
Comparing a^b and b^a Using Elementary Calculus, John T. Varner III, 7:4, 1976, 46, C, 5.1.1
An Elementary Result on Derivatives of Polynomials, Robert L. Page, 3:1, 1972, 66-67, C
Comparing a^b and b^a Using Elementary Calculus, John T. Varner III, 7:4, 1976, 46, C, 5.1.1
Some Elementary Results Related to the Mean Value Theorem, Roy E. Myers, 8:1, 1977, 51-53, C
Differentiating Area and Volume, Jay I. Miller, 9:1, 1978, 47-49, C
Differentiation and Synthetic Division, Dan Kalman, 10:1, 1979, 37, C
Travelers' Surprises, R. P. Boas, 10:2, 1979, 82-88
Another Application of the Mean Value Theorem, Norman Schaumberger, 10:2, 1979, 114-115, C
An Alternate Approach to the Derivative of the Trigonometric Functions, Norman Schaumberger, 10:4, 1979, 276-277, C
Wavefronts, Box Diagrams, and the Product Rule: A Discovery Approach, John W. Dawson, Jr., 11:2, 1980, 102-106, 7.2
The Sums of Zeros of Polynomial Derivatives, Michael W. Ecker, 13:5, 1982, 328-329, C
Exactly n-Times Differentiable Functions, Robert Bumcrot, 14:3, 1983, 258-259, C
The Derivatives of Sin x and Cos x, Norman Schaumberger, 15:2, 1984, 143-145, C
An Alternate Approach to Two Familiar Results, Norman Schaumberger, 15:3, 1984, 249-250, C, 5.4.1
Alternate Approaches to Two Familiar Results, Norman Schaumberger, 15:5, 1984, 422-423, C, 5.1.1
A Self-Contained Derivation of the Formula of the Derivative with Respect to x of x^n for Rational n, Peter A. Lindstrom, 16:2, 1985, 131-132, C
Average Values and Linear Functions, David E. Dobbs, 16:2, 1985, 132-135, 5.2.1
Testing Understanding and Understanding Testing, Jean Pedersen and Peter Ross, 16:3, 1985, 178-185, 0.2, 1.2, 5.2.2
More Applications of the Mean Value Theorem, Norman Schaumberger, 16:5, 1985, 397-398, C
Rolle over Lagrange—Another Shot at the Mean Value Theorem, Robert S. Smith, 17:5, 1986, 403-406
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.4, 4.1, 5.1.5, 5.2.3, 5.2.4, 5.2.5
The Derivatives of the Sine and Cosine Functions, Barry A. Cipra, 18:2, 1987, 139-140, C, 5.2.1
A General Form of the Arithmetic-Geometric Mean Inequality via the Mean Value Theorem, Norman Schaumberger, 19:2, 1988, 172-173, C, 9.5
A Direct Proof of the Integral Formula for Arctangent, Arnold J. Insel, 20:3, 1989, 235-237, C, 5.2.6, 5.2.3
The Power Rule and the Binomial Formula, Stephen H. Friedberg, 20:4, 1989, 322, C, 5.4.2
A Simple Auxiliary Function for the Mean Value Theorem, Herb Silverman, 20:4, 1989, 323, C
The Function sin x / x, William B. Gearhart and Harris S. Shultz, 21:2, 1990, 90-99, 2.2, 5.1.5
5.1.3 Tangents, differentials, and differentiation

A Simple Proof of the Reflection Property for Parabolas, R. H. Cowen, 7:2, 1976, 59-60, C, 0.5
Mappings, Diagrams, Continuous Functions and Derivatives, Thomas J. Brieske, 9:2, 1978, 67-72
A Note on the Derivative of a Composite Function, V. N. Murty, 11:1, 1980, 50, C
Derivatives Without Limits, Harry Sedinger, 11:1, 1980, 54-55, C, 5.1.2
Related Rates and the Speed of Light, Steven C. Althoen and John F. Weidner, 16:3, 1985, 186-189
What a Tangent Line is When it isn't a Derivative, Irl C. Bivens, 17:2, 1986, 133-143
Transitions, Jeanne L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.6.1, 9.10
A Chaotic Search for i, Gilbert Strang, 22:1, 1991, 3-12, 6.3, 9.5
FFF #47. A Natural Way to Differentiate and Exponentiate, Ed Barbeau, 22:5, 1991, 404, F, 5.1.2 (also
Who Needs the Sine Anyway?, Carlos C. Huerta, 23:1, 1992, 43-44, C, 5.4.2
Visualization of Limits and Limits of Visualization: Student Research Projects, Lee H. Minor, 23:1, 1992, 48-51, 0.4, 0.5
An Exponential Rule, G. E. Bilodeau, 24:4, 1993, 350-351, C
FFF #70. Reading a Calculator Display, Sandra Z. Keith, 25:1, 1994, 36, F, 0.2
Euler and Differentials, Anthony P. Ferzola, 25:2, 1994, 102-111, 2.2
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 2.2, 5.4.3, 5.6.1
The Dynamics of Newton's Method for Cubic Polynomials, James A. Walsh, 26:1, 1995, 22-28, 6.3
The Spider's Spacewalk Derivation of sin' and cos', Tim Hesterberg, 26:2, 1995, 144-145, C
The Falling Ladder Paradox, Paul Scholten and Andrew Simoson, 27:1, 1996, 49-54, C, 6.2
Bond Duration: An Application of Calculus, John C. Hegarty, 27:1, 1996, 47-49, C
Area and Perimeter, Volume and Surface Area, Jingcheng Tong, 28:1, 1997, 57, C, 0.4
A Continuous Version of Newton's Method, Steven M. Hetzler, 28:5, 1997, 348-351, 6.3
The Derivative of Sin theta, Selvaratnam Sridharma, 30:4, 1999, 314-315, C
Normal Lines and Curvature, Kirby C. Smith, 31:1, 2000, 54-56, C, 9.8
Related Rates Collide with Vectors, Stephen Fulling, 31:2, 2000, 116-119, 5.5
Normal Lines and the Evolute Curve, David Sanchez and Kirby C. Smith, 31:5, 2000, 397-403, C, 5.6.1
Tangents without Calculus, Jorge Aarao, 31:5, 2000, 406-407, C, 0.2, 0.7
Derivative of the Tangent (Mathematics Without Words), Yukio Kobayashi, 32:1, 2001, 14, C
Off on a Tangent, Russell A. Gordon and Brian C. Dietel, 34:1, 2003, 62-63, C, 9.5
Tangent Line Transformations, Steven Butler, 34:2, 2003, 105-106
FFF #214. The area under a tangent, Ed Barbeau, 34:4, 2003, 312-313, F, 5.1.4
FFF #216. A simple way to differentiate a quotient, Anand Kumar, 34:4, 2003, 313-314, F
Finding the Tangent to a Conic Section Without Calculus, Sidney H. Kung, 34:5, 2003, 394-395, C, 0.2
On Determining the Non-Circularity of a Plane Curve, Lane F. Burgette and Russell A. Gordon, 35:2, 2004, 74-83, 5.2.8, 9.7
A Property Possessed by Every Differentiable Function, Jingcheng Tong, 35:3, 2004, 216-217, C
Successive Differentiation and Leibniz’s Theorem, P. K. Subramanian, 35:4, 2004, 274-282, 5.4.3, 6.2
Logarithmic Differentiation: Two Wrongs Make a Right, Noah Samuel Brannen and Ben Ford, 35:5, 2004, 388-390, C
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.2.1, 5.3.1
Intersections of Tangent Lines of Exponential Functions, Timothy G. Feeman and Osvaldo Marrero, 36:3, 2005, 205-208, 0.5, 5.3.2
FFF #247. Tangent howlers, Carl Libis, 37:1, 2006, 41, F
Descartes Tangent Lines, William Barnier and James Jantosciak, 38:1, 2007, 47-49, C
Two Problems with Table Saws, William R. Vautaw, 39:2, 2008, 121-128, 0.4, 0.6
The Naïve Chain Rule, M. Leigh Lunsford, Marcus Pendergrass, Phillip Poplin and David Shoenthal, 39:2, 2008, 142-145, C
Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 2.1, 9.6
A Characterization of a Quadratic Function in \mathbb{R}^n, Conway Xu, 41:3, 2010, 212-214, 5.7.1
The Product and Quotient Rules Revisited, Roger Eggleton and Vladimir Kustov, 42:4, 2011, 323-325, C
Using Differentials to Differentiate Trigonometric and Exponential Functions, Tevian Day, 44:1, 2013, 17-23, 5.3.2, 5.3.3, 9.7
Maxima and Minima Without Derivatives?, Lucio Cadeddu and Giampaolo Lai, 46:1, 2015, 15-22, 0.2, 2.2, 5.1.4, 5.1.5
When You Wander off on a Tangent, Where Do You End Up?, Melissa Mark and Michael Switkes, 47:5, 2016, 334-339, 9.5
The Falling Ladder Paradox Revisited, Brittany A. Burke, Zach Jackson and Steven J. Kifowit, 49:1, 2018, 36-40, 6.2
Bringing Calculus into Discrete Math via the Discrete Derivative, Christopher J. Catone, 50:1, 2019, 21-27, 3.2, 3.3, 5.1.2, 5.4.1
Truck Versus Human 2.0: Mathematical Follow-Up Under Increasing Pressure, and How Kepler’s Laws Come to the Rescue, Miguel A. Lerma, 52:1, 2021, 22-30, 6.1, 9.10
Chain Rule Note, Peter A. Loeb, 52:1, 2021, 57-58, C, 9.5
The Law of Cosines with Differential Calculus and Without, Zsolt Lengvarszky & Tibor Szarvas, 53:2, 2022, 98-103, 0.3, 0.6

5.1.4 Maxima and minima
Using Polyhedrons to Define Maximum Volumes, D. L. Carleton, 3:1, 1972, 30-32
Some Socionally Relevant Applications of Elementary Calculus, Colin Clark, 4:2, 1973, 1-15, 6.1
An Interpolation Question Resolved by Calculus, Martin D. Landau and William R. Jones, 4:1, 1973, 36-39
Four Theorems About Montana, H. E. Reinhardt, 4:1, 1973, 76-78, C
Construction of an Exercise Involving Minimum Time, Robert Owen Armstrong, 5:2, 1974, 12-14
Maximize \(x(a-x)\), L. H. Lange, 5:1, 1974, 22-24, 0.2
A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger, 5:3, 1974, 26-30, 0.6
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2
A Calculus Proof of the Arithmetic-Geometric Mean Inequality, Norman Schaumberger, 9:1, 1978, 16-17
On the "Rule of 72", Warren B. Gordon and Harold D. Shane, 10:2, 1979, 117-118, C
An interesting way to test students' understanding of the first derivative test, Dick A. Wood, 10:2, 1979, 118, C
How Good is the "Rule of 72"?, Alan Kroopnick, 10:4, 1979, 279-280, C
Another way to test understanding of the first derivative test, Thomas M. Greene, 10:4, 1979, 282-283, C
Must a "Dud" Necessarily Be an Inflection Point?, Michael W. Ecker, 12:5, 1981, 332-333, C
A Bifurcation Problem in First Semester Calculus, W. L. Perry, 14:1, 1983, 57-60, C
When Does a Square Give Maximum Area?, Ray C. Shiflet and Harris S. Shultz, 14:3, 1983, 194-196
To Build a Better Box, Kay Dundas, 15:1, 1984, 30-36
The Maximum and Minimum of Two Numbers Using the Quadratic Formula, Dan Kalman, 15:4, 1984, 329-330, C, 9.5
The Problem of Managing a Strategic Reserve, David Cole, Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 6.1, 9.10
A Note on Differentiation, Russell Euler, 17:2, 1986, 166-167, C
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 1.2, 5.1.1, 5.7.1
Coloring Points in the Unit Square, Charles H. Jepsen, 17:3, 1986, 231-237, 3.1
Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.5, 5.2.2, 5.4.2
A Surprising Max-Min Result, Herbert Bailey, 18:3, 1987, 225-229, C
On Partitioning a Real Number, William Staton, 19:1, 1988, 53-54, C, 9.3
Behold! Two Extremum Problems (and the Arithmetic-Geometric Mean Inequality), Paolo Montuchi and Warren Page, 19:4, 1988, 347, C, 0.4
Hanging a Bird Feeder: Food for Thought, John W. Dawson, Jr., 21:2, 1990, 129-130, C
Using a Computer Algebra System to Solve for Maxima and Minima, Robert Lopez and John Mathews, 21:5, 1990, 410-414
Extrema and Saddle Points, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 416-418, C, 5.7.1
FFF #34. The Shortest Distance from a Point to a Parabola, Ed Barbeau, 22:2, 1991, 131, F (also 23:1, 1992, 38)
The Curious 1/3, James E. Duemmel, 24:3, 1993, 236-237, C
Old Calculus Chestnuts: Roast, or Light a Fire?, Margaret Cibes, 24:3, 1993, 241-243, C, 1.2
A Visual Proof of Eddy and Fritsch's Minimal Area Property, Robert Pare, 26:1, 1995, 43-44, C, 5.7.2
The Chair, the Area Rug, and the Astroid, Mark Schwartz, 26:3, 1995, 229-231, C, 5.6.1
The Rental Car Problem, Gary D. White and Kirby Smith, 27:5, 1996, 374-378, C, 5.2.1
Halley's Gunnery Rule, C. W. Groetsch, 28:1, 1997, 47-50, C
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 4.2, 5.7.1
The Pen and the Barn, Peter Schumer, 28:3, 1997, 205-206, C
FFF #123. A Foot by Any Other Name, David Protas, 29:1, 1998, 34, F (see also 30:2, 1999, 132)
Two Historical Applications of Calculus, Alexander J. Hahn, 29:2, 1998, 93-103, 5.2.9
Minimal Pyramids, Michael Scott McClendon, 29:3, 1998, 224-226, C
FFF #146. Maximizing a Subtended Angle, Richard Askey, 30:3, 1999, 210-211, F
Measuring the Curl of Paper, Joseph Paullet and Richard Bertram, 30:4, 1999, 315-317, C, 0.6
Cable-laying and Intuition, Yael Roitboerg and Joseph Roitberg, 32:1, 2001, 52-54, C
FFF #177. A Standard Box Problem, Dale R. Buske, 32:4, 2001, 282, F
Research Questions from Elementary Calculus (Student Research Projects), Jack E. Graver and Lawrence J. Lardy, 32:5, 2001, 388-393
It’s Perfectly Rational, Philip K. Hotchkiss, 33:2, 2002, 113-117, 9.3
The Distance Between Two Graphs, Rhonda Huettenmueller, 33:2, 2002, 142-143, C
Moving a Couch Around a Corner, Christopher Moretti, 33:3, 2002, 196-200, 9.5
A Generalization of a Minimum Area Problem, Russell A. Gordon, 34:1, 2003, 21-23
A Dozen Minima for a Parabola, Leon M. Hall, 34:2, 2003, 139-141, C
Constrained Optimization with Implicit Differentiation, Gary W. DeYoung, 34:2, 2003, 148-152, C
A New Wrinkle on an Old Folding Problem, Greg N. Frederickson, 34:4, 2003, 258-263, 5.2.7
FFF #214. The area under a tangent, Ed Barbeau, 34:4, 2003, 312-313, F, 5.1.3
Maximizing the Area of a Quadrilateral, Thomas Peter, 34:4, 2003, 315-316, C
A Hairy Parabola, Aaron Montgomery, 34:5, 2003, 395-397, C
Maximal Revenue With Minimal Calculus, Byron L. Walden, 34:5, 2003, 402-404, C
FFF #222. Falling ball, Karl Havlak, 35:2, 2004, 122-123, F
An Apothem Apparently Appears, Pat Cade and Russell A. Gordon, 36:1, 2005, 52-55, C
Making a Bed, Anthony Wexler and Sherman Stein, 36:3, 2005, 213-221, 0.4
The Flip-Side of a Lagrange Multiplier Problem, Angelo Segalla and Saleem Watson, 36:3, 2005, 232-235, C, 5.7.1
Differentiate Early, Differentiate Often!, Robert Dawson, 36:5, 2005, 404-407, C
Do Dogs Know Related Rates Rather than Optimization?, Pierre Perruchet and Jorge Gallego, 37:1, 2006, 16-18, 9.10
The Tippy Trough, Donald Francis Young, 37:3, 2006, 205-213, 9.10
An Exceptional Exponential Function, Branko Curgus, 37:5, 2006, 344-354, 5.3.2, 5.3.4
An Introduction to Simulated Annealing, Brian Albright, 38:1, 2007, 37-42, 9.9

FFF #270. Maximizing an area, Ed Barbeau, 38:5, 2007, 375, F, 0.4

FFF #271. Two distributivity howlers, John A. Quintanilla, 38:5, 2007, 375-376, F, 5.2.1

How to Measure Angles with a Ruler, Travis Kowalski, 39:4, 2008, 273-279, 0.4

Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.2.6, 5.2.7, 9.10

Dogs Don’t Need Calculus, Michael Bolt and Daniel C. Isaksen, 41:1, 2010, 10-16, 0.2, 9.5

The Hardest Straight-In Pool Shot, Rick Mabry, 41:1, 2010, 49-56, 0.6, 9.5

POEM’s and Newton’s Aerodynamic Frustrum, Jaime Cruz-Sampedro and Margarita Tetlalmatzi-Montiel, 41:2, 2010, 145-153, 0.4, 0.5, 9.10

Teaching Tip: A Slippery Slope, R. A. Beauregard, 42:3, 2011, 206, C

Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 0.5, 5.6.1, 9.10

Student Research Project: Making Change Efficiently, Jack E. Graver, 42:4, 2011, 317-322, 0.1, 3.2, 9.9

Teaching Tip: Consider a Circular Cow, Ezra Halleck, 43:2, 2012, 133, C

Student Research Project: The optimal level of insulation in a home attic, Paul Martin and Kirthi Premadasa, 43:2, 2012, 165-168, 9.10

Better Than Optimal By Taking A Limit?, David Betounes, 43:5, 2012, 379-386, 5.7.1

Integer Solutions to Box Optimization Problems, Vincent Coll, Jeremy Davis, Martin Hall, Colton Magnant, James Stankewicz, and Hua Wang, 45:3, 2014, 180-190, 9.3

Maxima and Minima Without Derivatives?, Lucio Cadeddu and Giampaolo Lai, 46:1, 2015, 15-22, 0.2, 2.2, 5.1.3, 5.1.5

Grandma Makes Granola, Richard Bedient and Courtney Gibbons, 46:1, 2015, 58-60, C, 0.8

The Fastest Path Between Two Points, with a Symmetric Obstacle, Kathleen Bell, Shania Polson, and Tom Richmond, 46:2, 2015, 92-97, 5.1.2, 9.10

Waiter! One Classic Calculus Problem, Hold the Calculus, Ricardo E. Rojas, 47:1, 2016, 59-60, C, 0.2, 9.5

A Canine Conundrum, or What Would Elvis Do?, Michael Maltenfort, 47:2, 2016, 106-107

Proof Without Words: The Triangle with Maximum Area for a Given Base and Perimeter, Angel Plaza, 48:1, 2017, 51, C, 0.3, 0.5

Optimizing Prisms of All Shapes and Dimensions, Maria Nogin, 48:3, 2017, 199-203, 5.2.7

Did Elvis Know Cauchy-Schwarz?, Li Zhou, 48:5, 2017, 335-338, 0.2, 9.5, 9.10

The Geometer Dog Who Did Not Know Calculus, Alda Carvalho, Carlos Pereira dos Santos, and Jorge Nuno Silva, 48:5, 2017, 339-345, 0.4, 9.10

The Calculus Behind Generic Drug Equivalence, Stanley R. Huddy and Michael A. Jones, 49:1, 2018, 2-9, 5.2.6, 5.2.10, 5.3.4

A New Angle on the Fermat-Toricelli Point, David Benko and Dan Coroian, 49:3, 2018, 195-199, 0.3, 9.7

Calculus with Curtains, Tom Richmond, 49:5, 2018, 369-370, C

Two Friends and a Bike, Phillip H. Schmidt, 52:1, 2021, 11-21, 9.5, 9.10

5.1.5 Graphs of functions

The Quadratic Polynomial and Its Zeroes, C. A. Long, 3:1, 1972, 23-29, 0.7, 9.5
Graphing a Cubic Using Calculus and a Computer, Roland E. Larsen, 6:1, 1975, 32-40, 0.7
Darboux's Theorem and Points of Inflection, Michael Olinick and Bruce B. Peterson, 7:3, 1976, 5-9
A Flexible Model for Peak, Ridge, and Pass, Cliff Long, 7:3, 1976, 16-17
Discovering a Calculus Theorem, John Taylor Varner III, 8:5, 1977, 304, C
Income Tax Averaging and Convexity, Michael Henry and G. E. Trapp, Jr., 15:3, 1984, 253-255, C, 0.8, 5.7.1, 9.5
Geometrically Asymptotic Curves, Dan Kalman, 16:3, 1985, 199-206, 9.5
Routine Problems, Sherman Stein, 16:5, 1985, 383-385, 0.2, 1.2
Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.4, 5.2.2, 5.4.2
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.2.3, 5.2.4, 5.2.5
Problem Solving Using Microcomputers, Franklin Demana and Bert Waits, 18:3, 1987, 236-241
Pitfalls in Graphical Computation, or Why a Single Graph Isn't Enough, Franklin Demana and Bert K. Waits, 19:2, 1988, 177-183, 0.6
Parameter-generated Loci of Critical Points of Polynomials, F. Alexander Norman, 19:3, 1988, 223-229, 0.7, 9.5
Teaching with CAL: A Mathematics Teaching and Learning Environment, James E. White, 19:5, 1988, 424-443, 1.2
Graphing the Complex Zeros of Polynomials Using Modulus Surfaces, Cliff Long and Thomas Hern, 20:2, 1989, 98-105, 0.7, 9.5
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 8.3, 9.5
Graphing with the HP-28S, John Selden and Annie Selden, 20:5, 1989, 423-432, 1.2
Calculus Quiz, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 437-438, C, 1.2
(Sin x)^2: A Sheep in Wolf's Clothing, Mark E. Saul, 21:1, 1990, 43-44, C, 0.6
Quick Function Evaluation, Daniel S. Yates, 21:1, 1990, 51, C, 0.2
The Function sin x / x, William B. Gearhart and Harris S. Shultz, 21:2, 1990, 90-99, 2.2, 5.1.2
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 0.5, 5.6.1, 5.6.2
Positivity from Evaluation of a Single Point, Henry Mark Smith, 22:3, 1991, 230-231, C, 0.2
Individualized Computer Investigations for Calculus, Sheldon P. Gordon, 23:5, 1992, 426, C, 0.7, 5.1.4
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.1, 5.6.1
Can We Use the First Derivative to Determine Inflection Points?, Duane Kouba, 26:1, 1995, 31-34
Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.8, 9.5
Bounding the Roots of Polynomials, Holly P. Hirst and Wade T. Macey, 28:4, 1997, 292-295, C, 0.7
Undersampled Sine Waves, J. C. Derderian and Enriqueta Rodriguez-Carrington, 29:3, 1998, 213-218, 0.6
FFF #181. Finding Asymptotes, Carl Libis, 32:5, 2001, 366, F, 0.2
FFF #230. The function y = x^(6/7) has a node at the origin, Robert J. MacG. Dawson, 35:5, 2004, 383-384, F
Trigonometric Identities on a Graphing Calculator, Joan Weiss, 35:5, 2004, 393-396, C, 0.6
Spraying a Wall with a Garden Hose, James Alexander, 36:2, 2005, 149-152, C, 9.10
From Chebyshev to Bernstein: A Tour of Polynomials Small and Large, Matthew Boelkins, Jennifer Miller, and Benjamin Vugteveen, 37:3, 2006, 194-204, 9.5
The Intermediate Value Theorem is NOT Obvious – and I Am Going to Prove It to You, Stephen M. Walk, 42:4, 2011, 254-259, 5.1.2
Mathematical Minute: Rotating a Function Graph, Daniel Bravo and Joseph Fera, 44:2, 2013, 124-125, C, 5.1.2, 9.5
Student Research Project: About the Pace of Climate Change: Write a Report to the President, Lily Khadjavi, 44:5, 2013, 428-432, C, 7.3, 9.10
Adjusting Child Support Payments in Michigan, Michael A. Jones and Jennifer Wilson, 46:1, 2015, 3-9, 0.2, 0.8
Maxima and Minima Without Derivatives?, Lucio Cadeddu and Giampaolo Lai, 46:1, 2015, 15-22, 0.2, 2.2, 5.1.3, 5.1.4
Secants, Tangents, Rotations, and Reflections, Michael Maltenfort, 46:1, 2015, 24-34, 5.1.3, 9.5
Pedagogically Inconvenient Functions for Teaching Transformations, Todd Abel and Jeremy Brazas, 47:3, 2016, 200-206, 0.2, 9.5
A Function Worth a Second Look, Michael Maltenfort, 48:1, 2017, 55-57, C, 5.2.1, 5.3.1
A Visual Validation of Viete’s Verification, Tom Edgar and N. Chris Meyer, 48:2, 2017, 90-96, 0.7, 2.2
The Rational Approximation of Small Angles, Harvey Diamond, 49:1, 2018, 57-59, C, 0.4, 5.5, 5.7.3
Visualizing the Complex Roots of Quadratic and Cubic Polynomial Functions in Three Dimensions, Aniket Sanghi, 52:5, 2021, 373-379, 0.7, 8.3, 9.6
Elementary Functions, Angel S. Muleshkov & Kurt R. Sweat, 53:1, 2022, 54-63, 5.3.1, 5.3.2, 9.5

5.2 Integration

5.2.1 Definition of integrals and the fundamental theorem

Evaluating the integral from a to b of x^k dx Where k Is Any Negative Integer Other Than -1, Norman Schaumberger, 4:2, 1973, 91-93, C
Some Comments on the Exceptional Case in a Basic Integral Formula, Norman Schaumberger, 5:3, 1974, 58, C, 5.3.2
Mean Value Type Theorems of Integral Calculus, C. W. Baker, 10:1, 1979, 35-37, C
Using Integrals to Evaluate Voting Power, Philip D. Straffin, Jr., 10:3, 1979, 179-191, 7.2
Is Ln the Other Shoe?, Byron L. McAllister and J. Eldon Whitesitt, 12:1, 1981, 20-23, 5.3.2
Finding Bounds for Definite Integrals, W. Vance Underhill, 15:5, 1984, 426-429, C, 5.2.2
Inverse Functions, Ralph P. Boas, 16:1, 1985, 42-47, 5.3.2, 5.4.2
Average Values and Linear Functions, David E. Dobbs, 16:2, 1985, 132-135, C, 5.1.2
Using Riemann Sums in Evaluating a Familiar Limit, Frank Burk, 17:2, 1986, 170-171, C, 5.1.1, 5.3.2
The Derivatives of the Sine and Cosine Functions, Barry A. Cipra, 18:2, 1987, 139-140, C, 5.1.2
Two Simple Recursive Formulas for Summing $1^k + 2^k + \ldots + n^k$, Michael Carchidi, 18:5, 1987, 406-409, C, 6.3
Riemann Integral of $\cos x$, John H. Mathews and Haines S. Schultz, 20:3, 1989, 237, C
Sums and Differences vs. Integrals and Derivatives, Gilbert Strang, 21:1, 1990, 20-27
Using the Finite Difference Calculus to Sum Powers of Integers, Lee Zia, 22:4, 1991, 294-300, 5.4.1, 5.4.2
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 1.2, 6.1
How Should We Introduce Integration?, David M. Bressoud, 23:4, 1992, 296-298, 1.2
The Point-Slope Formula Leads to the Fundamental Theorem of Calculus, Anthony J. Macula, 26:2, 1995, 135-139, C
The Rental Car Problem, Gary D. White and Kirby Smith, 27:5, 1996, 374-378, C, 5.1.4
An Example Demonstrating the Fundamental Theorem of Calculus, Bob Palais, 29:4, 1998, 311-312, C
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.6, 5.4.2, 6.1
Barrow’s Fundamental Theorem, Jack Wagner, 32:1, 2001, 58-59, C, 0.3
Integration from First Principles, Paddy Barry, 32:4, 2001, 287-289, C
The Logarithm Function and Riemann Sums, Frank Burk, 32:5, 2001, 369-370, C, 5.1.1
An Average Value Inequality (Mathematics Without Words), Stephen Kaczkowski, 33:2, 2002, 166, C
FFF. No antiderivative needed, Anand Kumar, 34:1, 2003, 52, F
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.1.3, 5.3.1
If $F(x)$ equals the integral from x to $2x$ of $f(t)$ dt is Constant, Must $f(t) = c/t$?, Tian-Ziao He, Zachariah Sinkala, and Xiaoya Zha, 36:3, 2005, 199-204, 9.5
The Definition of the Integral from a to b of $f(x)$ dx, Aaron Cinzori, 37:1, 2006, 42, C
FFF #267. The integral of the derivative of any integrable function vanishes, Larry Glasser, 38:3, 2007, 219-220, F
FFF #271. Two distributivity howlers, John A. Quintanilla, 38:5, 2007, 375-376, F, 5.1.4
The Depletion Ratio, C. W. Groetsch, 39:1, 2008, 43-48, 5.1.1, 9.10
FFF #274. The generality of the trapezoid rule, M. A. Khan, 39:1, 2008, 50, F, 5.2.2
Sledge-Hammer Integration, Henry F. Ahner, 40:1, 2009, 6-9, 5.2.2
Computing Definite Integrals using the Definition, Jim Hartman, 41:1, 2010, 58-60, C
Waiting to Turn Left?, Maureen T. Carroll, Elyn K. Ryken, and Jody M. Sorensen, 41:1, 2010, 60-63, C, 9.10
Teaching Tip: Is This Integral Zero?, Ken Luther, 42:5, 2011, 373, C, 5.7.2
Forest Carbon Update and the Fundamental Theorem of Calculus, John Zobitz, 44:5, 2013, 421-424, C, 5.2.2

Area of a Circle via the Second Fundamental Theorem of Calculus, Denis Bell, 46:4, 2015, 299, C, 5.2.6

A Note on the Fundamental Theorem of Calculus, Zengxiang Tong, 46:5, 2015, 367-368, C, 5.2.9

Rubber Band Calculus, Fred Kuczmarski, 47:2, 2016, 82-93, 5.1.2, 5.2.3, 5.6.2, 5.7.3

A Function Worth a Second Look, Michael Maltenfort, 48:1, 2017, 55-57, C, 5.1.5, 5.3.1

A Riemann Sum Approach to Buffon's Needle, Stephen Kaczkowski, 50:2, 2019, 93-102, 7.2, 7.3

Riemann Sums for Generalized Integrals, Jean-Paul Truc, 50:2, 2019, 123-132, 5.2.9, 5.2.10, 5.4.2, 8.4

Visualization of the Riemann-Stieltjes Integral, Trienko Grobler, 50:3, 2019, 198-209, 5.2.9, 9.5

Spirals, Triangles, and Tie-Dyed T-Shirts, Douglas Lyman Corey, Jacob Badger, and Steven Lauzon, 49:4, 2019, 250-259, 0.4, 5.2.8, 5.6.1, 6.1

"Sum" Visual Rearrangements of the Alternating Harmonic Series, Yajun An and Tom Edgar, 49:4, 2019, 280-285, 5.3.2, 5.4.2

Some Geometric Objects Related to a Classical Problem of Galileo, Zarema Seidametova and Valerii Temnenko, 51:1, 2020, 57-65, 5.6.1, 5.6.2

5.2.2 Numerical integration

Encouraging Mathematical Inquisitiveness, Carl L. Main, 1:1, 1970, 32-36, 5.4.2

Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2

An Integral Approximation Exact for Fifth-Degree Polynomials, Burt M. Rosenbaum, 7:3, 1976, 10-14, 9.6

Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.1.1, 5.4.2, 9.6

Finding Bounds for Definite Integrals, W. Vance Underhill, 15:5, 1984, 426-429, C, 5.2.1

Behold! The Midpoint Rule is Better than the Trapezoidal Rule for Concave Functions, Frank Burk, 16:1, 1985, 56, C

Testing Understanding and Understanding Testing, Jean Pedersen and Peter Ross, 16:3, 1985, 178-185, 0.2, 1.2, 5.1.2

Numerical Integration via Integration by Parts, Frank Burk, 17:5, 1986, 418-422, C, 5.2.5

Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.4, 5.1.5, 5.4.2

Archimedes' Quadrature and Simpson's Rule, Frank Burk, 18:3, 1987, 222-223, C

A Clamped Simpson's Rule, James A. Uetrecht, 19:1, 1988, 43-52, 9.6

Applications of Transformation to Numerical Integration, Chris W. Avery and Frank D. Soler, 19:2, 1988, 166-168, C

Circumference of a Circle—The Hard Way, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:2, 1990, 142-144, C, 5.2.10

Cubic Splines from Simpson's Rule, Nishan Krikorian and Mark Ramras, 27:2, 1996, 124-126, C, 9.6

Simpson’s Rule with Constant Weights, R. S. Pinkham, 32:2, 2001, 91-93, 9.6
Estimating Large Integrals: The Bigger They Are, The Harder They Fall, Ira Rosenholtz, 32:5, 2001, 322-329, 9.6
Integrals of Fitted Polynomials and an Application to Simpson’s Rule, Allen D. Rogers, 38:2, 2007, 124-130, 9.6
FFF #274. The generality of the trapezoid rule, M. A. Khan, 39:1, 2008, 50, F, 5.2.1
Sledge-Hammer Integration, Henry F. Ahner, 40:1, 2009, 6-9, 5.2.1
Forest Carbon Update and the Fundamental Theorem of Calculus, John Zobitz, 44:5, 2013, 421-424, C, 5.2.1
Proof Without Words: Bounding the Euler-Mascheroni Constant, Meiyue Shao, 46:5, 2015, 347, C, 5.2.6, 5.4.2

5.2.3 Change of variable (substitution)

Some Problems of Utmost Gravity, William C. Stretton, 3:1, 1972, 72-75, C, 5.7.2
Formal Integration: Dangers and Suggestions, S. K. Stein, 5:1, 1974, 1-7, 5.2.8
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2
A Simple Antidifferentiation Technique, Alan H. Schoenfeld, 9:2, 1978, 104-105, C
Another Approach to the integral of sec x dx, Norman Schaumberger, 10:3, 1979, 202, C
A Standard Integral Formula, R. S. Luthar, 12:5, 1981, 329-330, C
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.1.5, 5.2.4, 5.2.5
Computing Pi, Harley Flanders, 18:3, 1987, 230-235, 5.4.2, 8.1
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.5, 5.3.2, 6.1
Gather; Don't Strew, Bob Weinstock, 23:5, 1992, 372, C
FFF #101. The Disappearing Factor, James C. Kirby, 27:2, 1996, 117, F, 5.2.10 (see also 30:2, 1999, 131)
Antiderivative Formulas, Jingcheng Tong, 29:1, 1998, 32, C
The Average Distance of the Earth from the Sun, David Deever, 30:3, 1999, 218-220, C, 0.5, 5.2.8
FFF #165. Two separate answers?., Ken Taylor, 31:5, 2000, 396, F, 5.2.5
FFF #180. Integration Discrepancies, Roger B. Nelsen, 32:5, 2001, 365-366, F
Four Ways to Skin a Definite Integral, Joseph B. Dence and Thomas P. Dence, 41:2, 2010, 134-144, 5.2.4, 9.5
Teaching Tip: Practice Integration on Problem Triplets, Meg B. Huddleston, 42:3, 2011, 214, C, 5.2.4, 5.2.5
A Fifth Way to Skin a Definite Integral, Satyanand Singh, 43:5, 2012, 377-378, 5.2.4, 5.2.10
Rubber Band Calculus, Fred Kuczmarski, 47:2, 2016, 82-93, 5.1.2, 5.2.1, 5.6.2, 5.7.3
The Demise of Trig Substitutions?, David Betounes and Mylan Redfern, 48:4, 2017, 284-287, C
Further Integral Skinning with Applications, Roger B. Nelsen, 49:5, 2018, 327-332, 5.2.4, 5.2.5, 5.2.9, 5.2.10

An Unorthodox Approach to Skinning a Definite Integral, Yusuf Z. Gurtas, 53:2, 2022, 134-139, 5.2.4, 5.2.5, 5.2.10, 9.5

5.2.4 Partial fraction decomposition

An Alternative for Partial Fractions (part of the time), J.E Nymann, 14:1, 1983, 60-61, C
Efficient Techniques for Partial Fractions, Padmini T. Joshi, 14:2, 1983, 110-118
An Algebraic Approach to Partial Fractions, Phillip Schultz, 14:4, 1983, 346-348, C
An Alternative for Certain Partial Fractions, Sylvan Burgstahler, 15:1, 1984, 57-58, C
An Algebraic Approach to Partial Fractions, Joseph Wiener, 17:1, 1986, 71-72, C
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.1.5, 5.2.3, 5.2.5
A Shortcut to Partial Fractions, Xun-Cheng Huang, 22:5, 1991, 413-415, C
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.5, 5.2.9
Designing a Calculus Mobile, Tom Farmer, 33:2, 2002, 131-136, 5.4.2
Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:4, 2003, 264-269, 5.4.2, 9.6
Proof Without Words: A Partial Fraction Decomposition, Steven J. Kifowit, 36:2, 2005, 122, C
Partial Fraction Decomposition by Division, Sidney H. Kung, 37:2, 2006, 132-134, C
Partial Fractions by Substitution, David A. Rose, 38:2, 2007, 145-147, C
FFF #278. The integral of a positive function equals 0, Hongwei Chen, 39:3, 2008, 227-228, F, 5.3.1
Four Ways to Skin a Definite Integral, Joseph B. Dence and Thomas P. Dence, 41:2, 2010, 134-144, 5.2.3, 5.2.5
Teaching Tip: Another Way to Break Up Partial Fractions, William Paulsen, 41:3, 2010, 221, C
Teaching Tip: Practice Integration on Problem Triplets, Meg B. Huddleston, 42:3, 2011, 214, C, 5.2.3, 5.2.5
A Fifth Way to Skin a Definite Integral, Satyanand Singh, 43:5, 2012, 377-378, 5.2.3, 5.2.10
Yet More Ways to Skin a Definite Integral, Brian Bradie, 47:1, 2016, 11-18, 5.3.4, 5.4.2
Further Integral Skinning with Applications, Roger B. Nelsen, 49:5, 2018, 327-332, 5.2.3, 5.2.5, 5.2.9, 5.2.10
An Alternative to Integration by Partial Fractions Technique, Yusuf Z. Gurgas, 50:2, 2019, 140-142, C
An Unorthodox Approach to Skinning a Definite Integral, Yusuf Z. Gurtas, 53:2, 2022, 134-139, 5.2.3, 5.2.5, 5.2.10, 9.5

5.2.5 Integration by parts

The integral of f(x) exp(ax)dx, H. L. Kung, 1:2, 1970, 106, C, 5.3.2
Integration by Undetermined Coefficients, Louise Grinstein, 2:2, 1971, 98-100, 5.3.2
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.10, 5.4.2, 5.6.1, 5.7.2
Inter-related Concepts: An Example, Mark D. Galit and John P. Pace, 7:1, 1976, 7-10
A Discovery Approach to Integration by Parts, John Staib and Howard Anton, 10:5, 1979, 353-354, C
Integration by Parts, V. N. Murty, 11:2, 1980, 90-94
Creative Teaching by Mistakes, Andrejs Dunkels and Lars-Erik Persson, 11:5, 1980, 296-300, 6.1
Evaluating Integrals by Differentiation, Joseph Wiener, 14:2, 1983, 168-169, C, 5.3.1
Evaluating the integrals of sec x dx and (sec x)^3 dx, Bruce Sommer and Norman Schaumberger, 14:3, 1983, 256-257, C, 5.3.3
A Note on Integration by Parts, Andre L. Yandl, 16:4, 1985, 282-283, C
Numerical Integration via Integration by Parts, Frank Burk, 17:5, 1986, 418-422, C, 5.2.2
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.1.5, 5.2.3, 5.2.4
Pi/4 and ln 2 Recursively, Frank Burk, 18:1, 1987, 51, C, 5.4.2
FFF #17. cosh x = sinh x and 1 = 0, Ed Barbeau, 21:2, 1990, 128, F, 5.3.3
Moments on a Rose Petal, Douglass L. Grant, 21:3, 1990, 225-227, C, 5.6.1
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.3.2, 6.1
Integrals of Products of Sine and Cosine with Different Arguments, Sherrie J. Nicol, 24:2, 1993, 158-160, C
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.4, 5.2.9
FFF #96. Derivative of Products, W. Heierman, 27:1, 1996, 45, F
Who Cares if X^2 + 1 = 0 Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 0.7, 5.4.2, 6.2
FFF #165. Two separate answers?, Ken Taylor, 31:5, 2000, 396, F, 5.2.3
FFF. Integration by parts, Karl Havlak, 33:2, 2002, 139, F
Column Integration and Series Representations, Thomas P. Dence and Joseph B. Dence, 34:2, 2003, 144-148, C, 5.4.2
A Quotient Rule Integration by Parts Formula, Jennifer Switkes, 36:1, 2005, 58-60, C
Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Lawrence Downey, Boon W. Ong, and James A. Sellers, 39:5, 2008, 391-394, C, 5.1.1, 5.4.2
Trick or Technique?, Michael Sheard, 40:1, 2009, 10-14
Teaching Tip: Practice Integration on Problem Triplets, Meg B. Huddleston, 42:3, 2011, 214, C, 5.2.3, 5.2.4
The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 42:5, 2011, 389-393, C, 5.2.9, 9.10
Quotient-Rule-Integration-by-Parts, Michael Deveau and Robie Hennigar, 43:3, 2012, 254-256, C
Integration by the Wrong Parts, William Kronholm, 47:2, 2016, 102-105
Newton’s Shell Theorem via Archimedes’s Hat Box and Single-Variable Calculus, Peter McGrath, 49:2, 2018, 5.2.6, 5.2.8
Cutting Against the Grain: Volumes of Solids of Revolution via Cross-Sections Parallel to the Rotation Axis, Kevin P. Knudson, 49:2, 2018, 114-120, 5.2.6, 5.2.7
Euler’s Sine Product Formula: An Elementary Proof, David Salwinski, 49:2, 2018, 126-135, 5.3.3, 5.4.2, 9.5
Further Integral Skinning with Applications, Roger B. Nelsen, 49:5, 2018, 327-332, 5.2.3, 5.2.4, 5.2.9, 5.2.10
An Unorthodox Approach to Skinning a Definite Integral, Yusuf Z. Gurtas, 53:2, 2022, 134-139, 5.2.3, 5.2.4, 5.2.10, 9.5

5.2.6 Area
Integration by Geometric Insight—A Student's Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.3.1, 5.3.2
Area of a Parabolic Region, R. Rozen and A. Sofo, 16:5, 1985, 400-402, C, 0.5
The Surveyor's Area Formula, Bart Braden, 17:4, 1986, 326-337, 4.2, 5.2.8
Annuities as Areas, Kurt W. Riemann, 18:1, 1987, 45-47, C
Relations between Surface Area and Volume in Lakes, Daniel Cass and Gerald Wildenberg, 21:5, 1990, 384, 5.2.7
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1, 5.4.2, 6.1
Do Most Cubic Graphs Have Two Turning Points?, Robert Fakler, 30:5, 1999, 367-369, 0.7, 7.2
Sequences of Chords and of Parabolic Segments Enclosing Proportional Areas, Timothy Feeman and Osvaldo Marrero, 31:5, 2000, 379-382, 5.2.8, 9.5
Conceptions of Area: In Students and in History, Bronislaw Czarnocha, Ed Dubinsky, Sergio Loch, Vrunda Prabhu, and Draga Vidakovic, 32:2, 2001, 99-109, 1.1
Solids in \mathbb{R}^n Whose Area Is the Derivative of the Volume, Michael Dorff and Leon Hall, 34:5, 2003, 350-358, 5.2.7
Symmetry at Infinity, Richard Winton, 36:3, 2005, 228-231, C
How Do You Slice The Bread?, James Colin Hill, Gail Nord, Eric Malm and John Nord, 36:4, 2005, 323-326, C, 5.2.8
Centers of the United States, David Richeson, 36:5, 2005, 366-373, 5.2.8
Archimedes’ Quadrature of the Parabola: A Mechanical View, Thomas J. Osler, 37:1, 2006, 24-28, 0.5
Pairs of Equal Surface Functions, Daniel Cass and Gerald Wildenberg, 30:1, 2008, 51-54, C, 5.6.2, 9.8
Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.7, 5.2.8, 9.10
Proof Without Words: Area of a Cycloidal Arch, John Martin, 41:1, 2010, 28, C, 0.3
Area of a Circle via the Second Fundamental Theorem of Calculus, Denis Bell, 46:4, 2015, 299, C, 5.2.1
Proof Without Words: Bounding the Euler-Mascheroni Constant, Meiyue Shao, 46:5, 2015, 347, C, 5.2.2, 5.4.2
The Calculus Behind Generic Drug Equivalence, Stanley R. Huddy and Michael A. Jones, 49:1, 2018, 2-9, 5.1.4, 5.2.10, 5.3.4
A Fourth Century Theorem for Twenty-First Century Calculus, Andrew Leahy, 49:2, 2018, 103-108, 5.2.7, 5.2.8, 5.2.9
Newton’s Shell Theorem via Archimedes’s Hat Box and Single-Variable Calculus, Peter McGrath, 49:2, 2018, 5.2.5, 5.2.8
Cutting Against the Grain: Volumes of Solids of Revolution via Cross-Sections Parallel to the Rotation Axis, Kevin P. Knudson, 49:2, 2018, 114-120, 5.2.5, 5.2.7
Areas of a Total Eclipse, John P. Millis and Courtney K. Taylor, 49:5, 2019, 375-377, C, 5.3.1, 5.6.1
A Closer Look at the Compensating Polar Planimeter, John Eggers, 51:2, 2020, 105-116, 5.7.3, 6.6, 9.7

5.2.7 Volume

Another Way of Looking at n!, David Hsu, 11:5, 1980, 333-334, C, 5.7.2
A Note on the Surface of a Sphere, Arthur C. Segal, 13:1, 1982, 63-64, C
The Grazing Goat in n Dimensions, Marshall Fraser, 15:2, 1984, 126-134
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 3.2, 5.7.2
Return of the Grazing Goat in n Dimensions, Mark D. Meyerson, 15:5, 1984, 430-431
Exploring the Volume - Surface Area Relationship, Keith A. Struss, 21:1, 1990, 40-43, C, 5.2.6
Relations between Surface Area and Volume in Lakes, Daniel Cass and Gerald Wildenberg, 21:5, 1990, 384-389, 5.2.6
Disks, Shells, and Integrals of Inverse Functions, Eric Key, 25:2, 1994, 136-138, C
Did Plutarch Get Archimedes' Wishes Right?, Lester H. Lange, 26:3, 1995, 199-204, 2.1
Finding Volumes with the Definite Integral: A Group Project, Mary Jean Winter, 26:3, 1995, 227-228, C
The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.3.4, 9.5
Characterizing Power Functions by Volumes of Revolution, Bettina Richmond and Tom Richmond, 29:1, 1998, 40-41, C, 6.4
FFF #166. Several wrongs make a right, Carl Libis, 31:5, 2000, 396, F
Dipsticks for Cylindrical Storage Tanks – Exact and Approximate, Pam Littleton and David Sanchez, 32:5, 2001, 352-358, 0.4, 5.3.1
FFF. Solid of revolution of 1/x, Don Koks, 33:3, 2002, 227-228, F, 5.6.1
On the Work to Fill a Water Tank, Robert R. Rogers, 34:1, 2003, 56-58, C, 5.2.9
A New Wrinkle on an Old Folding Problem, Greg N. Frederickson, 34:4, 2003, 258-263, 5.1.4
A Calculation of the integral from 0 to infinity of e to the negative x-squared dx, Alberto Delgado, 34:4, 2003, 321-323, C
Solids in \mathbb{R}^n Whose Area Is the Derivative of the Volume, Michael Dorff and Leon Hall, 34:5, 2003, 350-358, 5.2.6
FFF #236. The volume of a cone, Dale R. Buske, 36:2, 2005, 142, F
A Paradoxical Paint Pail, Mark Lynch, 36:5, 2005, 402-404, C, 5.2.6, 9.5
Complementary Coffee Cups, Thomas Banchoff, 37:3, 2006, 170-175 (see also 38:2, 2007, 191)
A Bug Problem, Aaron Melman, 37:3, 2006, 219-221, C, 5.2.8
Proof Without Words: The Volume of an Ellipsoid via Cavalieri's Principle, Sidney H. Kung, 39:3, 2008, 190, C, 0.5
Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.6, 5.2.8, 9.10
Optimizing Prisms of All Shapes and Dimensions, Maria Nogin, 48:3, 2017, 199-203, 5.1.4
A Fourth Century Theorem for Twenty-First Century Calculus, Andrew Leahy, 49:2, 2018, 103-108, 5.2.6, 5.2.8, 5.2.9
Cutting Against the Grain: Volumes of Solids of Revolution via Cross-Sections Parallel to the Rotation Axis, Kevin P. Knudson, 49:2, 2018, 114-120, 5.2.5, 5.2.6
5.2.8 Arc length

Formal Integration: Dangers and Suggestions, S. K. Stein, 5:2, 1974, 1-7, 5.2.3
Some Ridge-Length Problems, John W. Dawson, Jr., 7:4, 1976, 43-45, C
Surface Area and the Cylindrical Area Paradox, Frieda Zames, 8:4, 1977, 207-211
Rectangular Aids for Polar Graphs, Alice W. Essary, 13:3, 1982, 200-205, 5.6.1
The Surveyor's Area Formula, Bart Braden, 17:4, 1986, 326-337, 4.2, 5.2.6
A Note on the Ratio of Arc Length to Chordal Length, Paul Eenigenburg, 28:5, 1997, 391-393, C
The Buckled Rail: Three Formulations, James E. Mann Jr., 29:2, 1998, 138-141, C
Maximizing the Arc Length in the Cannonball Problem, Ze-Li Dou and Susan G. Staples, 30:1, 1999, 44-45, C
The Average Distance of the Earth from the Sun, David Deever, 30:3, 1999, 218-220, C, 0.5, 5.2.3
Sequences of Chords and of Parabolic Segments Enclosing Proportional Areas, Timothy Feeman and Osvaldo Marrero, 31:5, 2000, 379-382, 5.2.6, 9.5
FFF. Arc length, E. T. H. Wang, 33:2, 2002, 139, F
FFF. Arc length, Robert Weinstock, 34:1, 2003, 53-54, F
Centers of the United States, David Richeson, 36:5, 2005, 366-373, 5.2.6
A Bug Problem, Aaron Melman, 37:3, 2006, 219-221, C, 5.2.7
Finding Curves with Computable Arc Length, John Ferdinands, 38:3, 2007, 221-222, C
Arc Length and Pythagorean Triples, Courtney Moen, 38:3, 2007, 222-223, C
Teaching Tip: An Integration Technique, Roger Pinkham, 39:1, 2008, 42, C, 5.3.3
Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.6, 5.2.7, 9.10
The Locus of the Focus of a Rolling Parabola, Anurag Agarwal and James Marengo, 41:2, 2010, 129-133, 0.5
An Ellipse Morphs to a Cosine Graph!, L. R. King, 44:2, 2013, 117-123, 0.4, 0.5, 9.8
To Be (a Circle) or Not to Be?, Hassan Boualem and Robert Brouzet, 46:3, 2015, 197-206, 0.2, 0.5, 5.6.1, 9.8
William Neile's Contribution to Calculus, Andrew Leahy, 47:1, 2016, 42-49, 2.2
A Fourth Century Theorem for Twenty-First Century Calculus, Andrew Leahy, 49:2, 2018, 103-108, 5.2.6, 5.2.7, 5.2.9
Newton’s Shell Theorem via Archimedes’s Hat Box and Single-Variable Calculus, Peter McGrath, 49:2, 2018, 5.2.5, 5.2.6
Spirals, Triangles, and Tie-Dyed T-Shirts, Douglas Lyman Corey, Jacob Badger, and Steven Lauzon, 49:4, 2019, 250-259, 0.4, 5.2.1, 5.6.1, 6.1
Some Geometric Objects Related to a Classical Problem of Galileo, Zarema Seidametova and Valerii Temnenko, 51:1, 2020, 57-65, 5.2.1, 5.6.1, 5.6.2

Why is it that the Ratio of Any Circle’s Circumference to its Diameter is a Constant?, F. M. S. Lima & P. G. F. Jordao, 53:3, 2022, 171-182, 0.3, 2.1

5.2.9 Other theory and applications of integration

A New Look at an Old Work Problem, Bert K. Waits and Jerry L. Silver, 4:3, 1973, 52-55

Bat and Superbat, Herbert R. Bailey, 18:4, 1987, 307-314, 6.4

FFF. The Surface Area of a Sphere, Ed Barbeau, 23:3, 1992, 206, F

An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.4, 5.2.5

Symmetry and Integration, Roger Nelsen, 26:1, 1995, 39-41, C

A Generalization of the Mean Value Theorem for Integrals, M. Sayrafiezadeh, 26:3, 1995, 223-224, C

A Normal Density Project, Robert K. Stump, 26:4, 1995, 310-312, C

Computers and Advanced Mathematics in the Calculus Classroom, Kurt Cogswell, 30:3, 1999, 213-216, C

Integrals of (cos x)^2n and (sin x)^2n, Joseph Wiener, 31:1, 2000, 60-61, C

Plummeting: Check This Calculation!, Jonathan Franzen, 31:4, 2000, 296

Fast-Food-Frusta and the Center of Gravity, Andrew Simoson, 31:4, 2000, 303-306, C

Differentiation with Respect to a Parameter, Joseph Wiener, 32:3, 2001, 180-184

The Attraction of Surfaces of Revolution, Adam Coffman, 32:5, 2001, 372-375, C

Mathematics Without Words: An Integral Transform, Sidney Kung, 33:4, 2002, 278, C

A Generalization of the Mean Value Theorem for Integrals, Jingcheng Tong, 33:5, 2002, 408-409, C

On the Work to Fill a Water Tank, Robert B. Rogers, 34:1, 2003, 56-58, C, 5.2.7

Odd-like (Even-like) Functions on (a, b), Zhibo Chen, Peter Hammond and Lisa Hazinski, 34:1, 2003, 64-67, C, 9.5

FFF #232. Pi = 3, Frank Burk, 36:1, 2005, 50, F

The Cobb-Douglas Function and Holder’s Inequality, Thomas E. Goebeler, Jr., 42:5, 2011, 387-388, C, 9.5

The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 42:5, 2011, 389-393, C, 5.2.5, 9.10

Sharing the Work, Walden Freedman, 44:3, 2013, 229-232, C, 9.10

On the Inverse Curvature Problem, Adam Glesser, James Shade, and Bogdan D. Suceava, 46:3, 2015, 207-214, 5.5, 5.6.1, 6.4, 9.8

Journal Problems Sections: Modern Challenges and Teaching Tools, Brian D. Beasley and David R. Stone, 46:5, 2015, 336-346, 0.7, 3.2, 5.6.1, 6.1, 9.3

A Note on the Fundamental Theorem of Calculus, Zengxiang Tong, 46:5, 2015, 367-368, C, 5.2.1

A Short and Elementary Proof of the Basel Problem, Samuel G. Moreno, 47:2, 2016, 134-135, C, 9.3

A Fourth Century Theorem for Twenty-First Century Calculus, Andrew Leahy, 49:2, 2018, 103-108, 5.2.6, 5.2.7, 5.2.8

The Gini Index and Grayscale Images, Roberta La Haye and Petr Zizler, 49:3, 2018, 205-211, 9.7, 9.10

Further Integral Skinning with Applications, Roger B. Nelsen, 49:5, 2018, 327-332, 5.2.3, 5.2.4, 5.2.5, 5.2.10
5.2.10 Improper integrals

Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.5, 5.4.2, 5.6.1, 5.7.2

Circumference of a Circle—The Hard Way, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:2, 1990, 142-144, C, 5.2.2

Numerical Methods for Improper Integrals, Gerald Flynn, 26:4, 1995, 284-291, 9.6

FFF #101. The Disappearing Factor, James C. Kirby, 27:2, 1996, 117, F, 5.2.3

FFF #117. Blowing up the Integrand, Ronald J. Fischer, 28:3, 1997, 199, F

Two Historical Applications of Calculus, Alexander J. Hahn, 29:2, 1998, 93-103, 5.1.4

Gabriel’s Wedding Cake, Julian F. Fleron, 30:1, 1999, 35-38, 5.4.2

An Improper Application of Green’s Theorem, Robert L. Robertson, 38:2, 2007, 142-145, C, 5.7.3

A Fifth Way to Skin a Definite Integral, Satyanand Singh, 43:5, 2012, 377-378, 5.2.3, 5.2.4

The Calculus Behind Generic Drug Equivalence, Stanley R. Huddy and Michael A. Jones, 49:1, 2018, 2-9, 5.1.4, 5.2.6, 5.3.4

Further Integral Skinning with Applications, Roger B. Nelsen, 49:5, 2018, 327-332, 5.23, 5.2.4, 5.2.5, 5.2.9

Riemann Sums for Generalized Integrals, Jean-Paul Truc, 50:2, 2019, 123-132, 5.2.1, 5.2.9, 5.4.2, 8.4

An Unorthodox Approach to Skinning a Definite Integral, Yusuf Z. Gurtas, 53:2, 2022, 134-139, 5.2.3, 5.2.4, 5.2.5, 9.5

5.3 Elementary and special functions

5.3.1 Inverse trigonometric functions

Applying Complex Arithmetic, Herbert L. Holden, 12:3, 1981, 190-194, 0.6, 9.3, 9.5

Integration by Geometric Insight—A Student’s Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.2.6, 5.3.2

The Derivative of Arctan x, Norman Schaumberger, 13:4, 1982, 274-276, C

Evaluating Integrals by Differentiation, Joseph Wiener, 14:2, 1983, 168-169, C, 5.2.5

The Derivatives of Arccsc x, Arctan x, and Tan x, Norman Schaumberger, 17:3, 1986, 244-246, C

Three Familiar Formulas for pi via Geometry, Norman Schaumberger, 17:4, 1986, 339, C

Behold! Sums of Arctan, Edward M. Harris, 18:2, 1987, 141, C

Trigonometric Identities through Calculus, Herb Silverman, 21:5, 1990, 403, C, 0.6

Gudermann and the Simple Pendulum, John S. Robertson, 28:4, 1997, 271-276, 6.4

The Derivative of the Inverse Sine, Craig Johnson, 29:4, 1998, 313, C
An Arctangent Triangle, Michael W. Ecker, 31:2, 2000, 119, C
Arcos(sin(n/2)): A Surprising Formula?, Russell Eskew, 31:2, 2000, 147, C
arctan 1 + arctan 2 + arctan 3 = Pi (Mathematics Without Words), Johathan Schaer, 32:1, 2001, 68, C
Arctan (x + sqrt(1+x^2)) (Mathematics Without Words), P. D. Barry, 32:1, 2001, 69, C
Arctangent Sums, Louis Bragg, 32:4, 2001, 255-257, 5.4.2
Dipsticks for Cylindrical Storage Tanks – Exact and Approximate, Pam Littleton and David Sanchez, 32:5, 2001, 352-358, 0.4, 5.2.7
FFF #199. Arctangents with the same derivative, David M. Bloom, 33:4, 2002, 310, F
Arctangent Identities (Mathematics Without Words), Rex H. Wu, 34:2, 2003, 115, 138, C
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.1.3, 5.2.1
How to Avoid the Inverse Secant (and Even the Secant Itself), S. A. Fulling, 36:5, 2005, 381-387, 5.3.3
Revisited: arctan 1 + arctan 2 + arctan 3 = Pi, Michael W. Ecker, 37:3, 2006, 218-219, C
Transcendental Functions and Initial Value Problems: A Different Approach to Calculus II, Byungchul Cha, 38:4, 2007, 288-296, 5.3.2, 5.3.3, 6.1
The Right Theta, William Freed and Athanasios Tavouktoglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 0.6, 5.7.3
FFF #278. The integral of a positive function equals 0, Hongwei Chen, 39:3, 2008, 227-228, F, 5.2.4
Differentiating the Arctangent Directly, Eric Key, 40:4, 2009, 287-289, C
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.3, 5.4.2, 9.5
Proof Without Words: An Arctangent Identity, Hasan Unal, 45:5, 2014, 357, C
A Function Worth a Second Look, Michael Maltenfort, 48:1, 2017, 55-57, C, 5.1.5, 5.2.1
Dividing the Circle, Pedro J. Freitas and Hugo Tavares, 49:3, 2018, 187-194, 0.3, 0.6, 9.3
Areas of a Total Eclipse, John P. Millis and Courtney K. Taylor, 49:5, 2019, 375-377, C, 5.2.6, 5.6.1
Machin's Formula via a Proof Without Words, Roger Nelsen, 52:5, 2021, 355, C, 9.6
Elementary Functions, Angel S. Muleshkov & Kurt R. Sweat, 53:1, 2022, 54-63, 5.1.5, 5.3.2, 9.5
Integer Solutions to Angle Optimization Problems, James N. Brawner & Nadou Lawson, 53:3, 2022, 197-208, 0.3, 5.1.4, 9.3

5.3.2 Exponential and logarithmic functions

The integral of f(x)exp(ax) dx, H. L. Kung, 1:2, 1970, 106, C, 5.2.5
Integration by Undetermined Coefficients, Louise Grinstein, 2:2, 1971, 98-100, 5.2.5
Which is Larger, e^pi or pi^e?, Ivan Niven, 3:2, 1972, 13-15
An Alternate Classroom Proof of the Familiar Limit for e, Norman Schaumberger, 3:2, 1972, 72-73, C
Random Sieving and the Prime Number Theorem, Karl Greger, 5:1, 1974, 41-46, 9.3
Some Comments on the Exceptional Case in a Basic Integral Formula, Norman Schaumberger, 5:3, 1974, 58, C, 5.2.1
Two More Proofs of a Familiar Inequality, Erwin Just and Norman Schaumberger, 6:2, 1975, 45, C
A Geometric Approach to a Basic Limit, Norman Schaumberger, 7:1, 1976, 11-12
Using Inverse Functions in Integration, Robert C. Crawford, 8:2, 1977, 107-109, C, 5.3.3
A Neglected Approach to the Logarithm, Bruce S. Babcock and John W. Dawson, Jr., 9:3, 1978, 136-140, 5.1.1
Is Ln the Other Shoe?, Byron L. McAllister and J. Eldon Whitesitt, 12:1, 1981, 20-23, 5.2.1
Obtaining a Numerical Estimate for e, David H. Anderson, 12:1, 1981, 30-33
A "Proof" that 0=1, Norman Schaumberger, 12:3, 1981, 211, C
Euclid's 'Elements' excerpts from a 1660 edition, 12:2, 1981, 117, 0.3, 5.3.3
Integration by Geometric Insight—A Student's Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.2.6, 5.3.1
A Nonlogarithmic Proof That \((1 + 1/n)^n\) has limit e, Lee Badger, 13:5, 1982, 331-332, C
A Logarithm Algorithm for Four-Function Calculators, David Cusick, 14:4, 1983, 322, 0.2
A Logarithm Algorithm for a Five-Function Calculator, Donald L. Muench and Gerald Wildenberg, 14:4, 1983, 324-326
Another Way to Introduce Natural Logarithms and e, Robert R. Christian, 14:5, 1983, 424-426
Evaluating \(e^{x}\) Using Limits, Sheldon P. Gordon, 15:1, 1984, 63-65, 5.4.2
Evaluating \(e^x\) Using Limits, Sheldon P. Gordon, 15:1, 1984, 63-65, 5.4.2
Inverse Functions, Ralph P. Boas, 16:1, 1987, 50, C
Behold! The Graphs of \(f\) and \(f^{-1}\) are Reflections about the Line \(y=x\), Ayoub B. Ayoub, 18:1, 1987, 52, C, 0.2
A Depreciation Model for Calculus Classes, John C. Hegarty, 18:3, 1987, 219-221, C
The Relationship Between Hyperbolic and Exponential Functions, Roger B. Nelsen, 19:1, 1988, 54-56, C, 5.3.3
The Snowplow Problem Revisited, Xiao-peng Xu, 22:2, 1991, 139, C, 6.1
FFF #44. A New Way to Obtain the Exponential, Ed Barbeau, 22:5, 1991, 403, F
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.2.5, 6.1
FFF #49. Two Transcendental Equations, Ed Barbeau, 23:1, 1992, 36, F, 0.2
The Relationship Between Hyperbolic and Exponential Functions—Revisited, Roger B. Nelsen, 23:3, 1992, 207-208, C, 5.3.3
Napier's Inequality (two proofs), Roger B. Nelsen, 24:2, 1993, 165, C
FFF #58. A Rational Combination of Two Transcendentials, Ed Barbeau, 24:3, 1993, 229, F, 0.2
FFF #60. A Two-Valued Function, Ed Barbeau, 24:3, 1993, 230, F, 0.2 (also 25:3, 1994, 225)
An Alternative Definition of the Number e, Carl Swenson and Andre Yandl, 24:5, 1993, 458-461
Another Proof of the Formula \(e = \text{the infinite sum of reciprocals of } n!\), Norman Schaumberger, 25:1, 1994, 38-39, C, 5.1.2
Log Cabin (Lost at C), Paul R. Halmos, 25:1, 1994, 70, C
Proof Without Words: (\(a+b\)/2) > SQR\[ab\], Michael K. Brozinsky, 25:2, 1994, 98, C
FFF #95. The Integral of ln sin x, Russ Euler, 27:1, 1996, 44-45, F
A Visual Proof that \(\ln(ab) = \ln(a) + \ln(b)\), Jeffrey Ely, 27:4, 1996, 304, C
FFF #115. A Double Exponential Function, Leszek Garwarecki, 28:2, 1997, 120-121, F
A Discover-e, Helen Skala, 28:2, 1997, 128-129, C
In re: e, David Fowler, 28:3, 1997, 230, C
When is \(b^e = a^e\) > a^e^b\?, Norman Schaumberger, 30:4, 1999, 296, C
FFF #149. Lack of technical unanimity, Carlton A. Lane, 30:4, 1999, 306, F
Limit of \((1 + 1/n)^n = e\) (Mathematics Without Words), Roger B. Nelsen, 32:1, 2001, 71, C
Good Rational Approximations to Logarithms, Tom M. Apostol and Mamikon Mnatsakanian, 32:3, 2001, 172-179
Mathematics Without Words: Integration of the Natural Logarithm, Roger Nelsen, 32:5, 2001, 368, C
An Elementary Approach to \(e^x\), John W. Hagood, 32:5, 2001, 375-376, C
Why It Might Seem That Christmas is Coming Early This Year, David Strong, 32:5, 2001, 376-377, C
Ln 2 (Mathematics Without Words), Norman Schaumberger, 33:1, 2002, 23, C, 5.4.2
Hat Derivatives, Stephen B. Maurer, 33:1, 2002, 32-37, 5.1.2
Sums of Logarithms, Colonel Johnson, Jr., 33:1, 2002, 41, 5.1.2
An Overlooked Calculus Question, Eugene Couch, 33:5, 2002, 399-400, 5.1.2
Improving the Convergence of Newton’s Series Approximation for e, Harlan J. Brothers, 35:1, 2004, 34-39, 5.4.2
FFF #228. An exponential equation, Ed Barbeau, 35:5, 2004, 382, F, 0.2 (see also Henry J. Barten, 37:1, 2006, 42)
Placing the Natural Logarithm and the Exponential Function on an Equal Footing, Michel Helfgott, 35:5, 2004, 390-393, 5.3.3
Improving the Convergence of Newton’s Series Approximation for e, Harlan J. Brothers, 35:1, 2004, 34-39, 5.4.2
FFF #228. An exponential equation, Ed Barbeau, 35:5, 2004, 382, F, 0.2 (see also Henry J. Barten, 37:1, 2006, 42)
Placing the Natural Logarithm and the Exponential Function on an Equal Footing, Michel Helfgott, 35:5, 2004, 390-393, 5.3.3
Approaching ln x, James V. Peters, 36:2, 2005, 146-147, 9.5
An Elementary Proof of the Monotonicity of (1+1/n)^n and (1+1/n)^(n+1), Duane W. DeTemple, 36:2, 2005, 147-149, 5.3.3
Intersections of Tangent Lines of Exponential Functions, Timothy G. Feeman and Osvaldo Marrero, 36:3, 2005, 205-208, 0.5, 5.1.3
Differentiability of Exponential Functions, Philip M. Anselone and John W. Lee, 36:5, 2005, 388-393
FFF. Logarithmic behaviour as metaphor, Norton Starr, 36:5, 2005, 394-396, 5.1.4, 5.3.4
Transcendental Functions and Initial Value Problems: A Different Approach to Calculus II, Byungchul Cha, 38:4, 2007, 288-296, 5.3.1, 5.3.3, 6.1
The Convergence Behavior of \(f_a(x) = (1 + 1/x)^{x+a} \), Cong X. Kang and Eunjeong Yi, 38:5, 2007, 385-387, C, 5.1.1, 9.5
Teaching Tip: An Introduction to eix without Series, James Tanton, 39:1, 2008, 23, C, 5.4.3, 6.1
FFF #287. Criticizing a critical point, Ollie Nanyes, 39:5, 2008, F, 383, 5.1.4
FFF #287. Logging the solutions of an equation, Ed Barbeau, 39:5, 2008, 383-384, F, 0.2
Using Differentials to Differentiate Trigonometric and Exponential Functions, Tevian Day, 44:1, 2013, 17-23, 5.1.3, 5.3.3, 5.3.4
How to Find the Logarithm of Any Number Using Nothing but a Piece of String, Viktor Blasjo, 47:2, 2016, 95-100, 0.4, 2.2, 5.3.3
Iterating the Logarithmic Function, Xianglong Ni, 47:3, 2016, 172-178, 6.3
"Sum" Visual Rearrangements of the Alternating Harmonic Series, Yajun An and Tom Edgar, 49:4, 2019, 280-285, 5.2.1, 5.4.2
A Geometric Approach to the Natural Exponential Function, Andrea Gasparini, Eric Key, and David Radcliffe, 49:5, 2019, 357-363, 5.3.3
Euler’s Limit and Stirling’s Estimate, Adam Hammett, 51:5, 2020, 330-336, 5.1.1, 5.4.2, 9.5
Elementary Functions, Angel S. Muleshkov & Kurt R. Sweat, 53:1, 2022, 54-63, 5.1.5, 5.3.1, 9.5
Using Linear Interpolation to Implement the Change of Variables in Double Integrals, Yuanting Lu, 53:1, 2022, 64-66, C, 5.2.3, 5.7.2
Using Linear Interpolation to Implement the Change of Variables in Double Integrals, Yuanting Lu, 53:1, 2022, 64-66, C, 5.7.2
The Equivalence of Definitions of the Natural Logarithm Function, Henry Ricardo, 53:3, 2022, 190-196, 5.1.1, 5.4.1, 9.5
Tetration: Iterative Enjoyment, Abe Edwards & Brielle Komosinski, 53:3, 2022, 209-219, 0.2, 5.4.2, 9.5

5.3.3 Hyperbolic functions and their inverses

Hyperbolic Functions, David Bender, 6:3, 1975, 42-45, C
Using Inverse Functions in Integration, Robert C. Crawford, 8:2, 1977, 107-109, C, 5.3.2
Euclid's 'Elements' excerpts from a 1660 edition, 12:2, 1981, 117, 0.3, 5.3.2
Evaluating the integrals of sec x dx and (sec x)^3 dx, Bruce Sommer and Norman Schaumberger, 14:3, 1983, 256-257, C, 5.2.5
Inverse Hyperbolic Functions as Areas, B. M. Saler, 16:2, 1985, 129-131, C
Some Interesting Consequences of a Hyperbolic Inequality, Frank Burk, 17:1, 1986, 75-76, C
Elementary Transcendental Functions, Harley Flanders and J. Sutherland Frame, 18:5, 1987, 417-421, 6.3
The Relationship Between Hyperbolic and Exponential Functions, Roger B. Nelsen, 19:1, 1988, 54-56, C, 5.3.2
FFF #17. cosh x = sinh x and 1 = 0, Ed Barbeau, 21:2, 1990, 128, F, 5.2.5
The Relationship Between Hyperbolic and Exponential Functions—Revisited, Roger B. Nelsen, 23:3, 1992, 207-208, C, 5.3.2
Hyperbolic Functions and Proper Time in Relativity, Howard Shaw, 26:4, 1995, 312-315, C
An Exercise (Hyperbolic Identity), The Editor, 30:1, 1999, 43, C
Reexamining the Catenary, Paul Cella, 30:5, 1999, 391-393, C
Verhulst's Logistic Curve, David Bradley, 32:2, 2001, 94-98, 6.1
An Exercise on the Catenary, Leon Gerber, 33:2, 2002, 170-171, C
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.4, 6.4
How to Avoid the Inverse Secant (and Even the Secant Itself), S. A. Fulling, 36:5, 2005, 381-387, 5.3.1
FFF #250. Minding the technology, Paul H. Schuette, 37:2, 2006, 122-123, F, 5.3.2
The Ubiquitous cosh – a Square-wheeled Tricycle, Stan Wagon, Ken Moffett, Wayne Roberts, and Dave Bole, 37:3, 2006, 186, 193, 204, C
Transcendental Functions and Initial Value Problems: A Different Approach to Calculus II, Byungchul Cha, 38:4, 2007, 288-296, 5.3.1, 5.3.2, 6.1
Christiaan Huygens and the Problem of the Hanging Chain, John Bukowski, 39:1, 2008, 2-11, 0.3, 2.2
Teaching Tip: An Integration Technique, Roger Pinkham, 39:1, 2008, 42, C, 5.2.8
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.1, 5.4.2, 9.5
Using Differentials to Differentiate Trigonometric and Exponential Functions, Tevian Day, 44:1, 2013, 17-23, 5.1.3, 5.3.2, 9.7
How to Find the Logarithm of Any Number Using Nothing but a Piece of String, Viktor Blasjo, 47:2, 2016, 95-100, 0.4, 2.2, 5.3.2
A Direct Proof of the Integral Formulae for the Inverse Hyperbolic Functions, John Engbers and Adam Hammett, 47:4, 2016, 297-299, C
Euler’s Sine Product Formula: An Elementary Proof, David Salwinski, 49:2, 2018, 126-135, 5.2.5, 5.4.2, 9.5
A Geometric Approach to the Natural Exponential Function, Andrea Gasparini, Eric Key, and David Radcliffe, 49:5, 2019, 357-363, 5.3.2

5.3.4 Special functions

The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.2.7, 9.5
A Generalized Logarithm for Exponential-Linear Equations, Dan Kalman, 32:1, 2001, 2-14
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.3, 6.4
Sums of Harmonic-Type Series, James Lesko, 35:3, 2004, 171-182, 5.4.2
An Exceptional Exponential Function, Branko Curgus, 37:5, 2006, 344-354, 5.1.4, 5.3.2
5.4 Sequences and series

5.4.1 Sequences

A General Formula for the Nth term of a Sequence, Etta Mae Whitton, 2:2, 1971, 96-98, 6.3
Two Unusual Sequences, Ronald E. Kutz, 12:5, 1981, 316-319
Isomorphisms on Magic Squares, Ali R. Amir-Moez, 14:1, 1983, 48-51, 0.2, 9.3
A Simple Calculator Algorithm, Lyle Cook and James McWilliam, 14:1, 1983, 52-54
Application of a Generalized Fibonacci Sequence, Curtis Cooper, 15:2, 1984, 145-146, C, 7.2
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 7.3, 9.6
Another Look at \(x^{(1/x)} \), Norman Schaumberger, 15:3, 1984, 249-250, C, 5.1.2
The Factorial Triangle and Polynomial Sequences, Steven Schwartzman, 15:5, 1984, 424-426, C, 0.2, 6.3
Arithmetic Progressions and the Consumer, John D. Baildon, 16:5, 1985, 395-397, C, 0.8
Using the Finite Difference Calculus to Sum Powers of Integers, Lee Zia, 22:4, 1991, 294-300, 5.2.1, 5.4.2
A Sequence Related to the Harmonic Series, E. Ray Bobo, 26:4, 1995, 308-310, C
Another Way to Graph a Sequence, David Olson, 27:3, 1996, 208-209, C
Proofs Without Words: Galileo's Ratios Revisited, Alfinio Flores, 36:3, 2005, 198, C, 9.5
Sequence converging to Pi, Andrew Cusumano, 37:2, 2006, 120, C
A Geometric Look at Sequences that Converge to Euler's Constant, Duane W. DeTemple, 37:2, 2006, 128-131, C
Sums of Integer Powers via the Stolz-Cesaro Theorem, Sidney H. Kung, 40:1, 2009, 42-44, C, 3.2
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 3.2, 9.2, 9.8
Carryless Arithmetic Mod 10, David Applegate, Marc LeBrun, and N. J. A. Sloane, 43:1, 2012, 43-50, 0.1, 9.2, 9.4
A Closer Look at Bobo's Sequence, Daniel T. Clancy and Steven J. Kifowit, 45:3, 2014, 199-206, 9.5
Proof Without Words: Limit of a Recursive Arithmetic Mean, Angel Plaza, 45:5, 2014, 364, C, 0.1, 5.1.1
A Squeeze for Two Common Sequences that Converge to e, Branko Curgus, 45:5, 2014, 391-392, C, 5.1.1
Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.2, 0.7, 3.2, 5.1.1, 9.2, 9.3
Proof Without Words: Nested Square Roots, Roger B. Nelsen, 48:3, 2017, 204, C, 0.2
Proof of a Conjecture of Merca on an Average of Square Roots, John Zacharias, 49:5, 2018, 342-345, 9.5
Bringing Calculus into Discrete Math via the Discrete Derivative, Christopher J. Catone, 50:1, 2019, 21-27, 3.2, 3.3, 5.1.2, 5.1.3
Greedy Queens on an Infinite Chessboard, William Paulsen, 49:4, 2019, 288-294, 5.1.1, 9.2
Pinpoint the Flitting Fly, Albert Natian, 49:5, 2019, 351-356, 9.10
Connected Subsets of an \(n \times 2 \) Rectangle, Samuel Durham and Tom Richmond, 51:1, 2020, 32-42, 3.2, 8.3, 9.7
A Fast-Growing Sequence Inspired by \(\text{TREE}(k) \), Kevin Y. Du, 51:1, 2020, 43-50, 3.1, 3.2
Discontinuous Functions as Limits of Compactly Supported Formulas, J. Marshall Ash, 51:5, 2020, 337-344, 9.5
The Sock Problem Revisited, William Paulsen, 52:3, 2021, 193-203, 3.1, 3.2, 6.3, 7.2, 9.6
Applications of Squeeze Theorem to Limiting Processes Involving Riemann Integration, Brian Becsi, Solomon Huang, Verenalei Schoenfeld, Bogdan D. Suceava & Ashley Thune-Aguayo, 52:3, 2021, 224-226, C, 5.2.9, 9.5
Being Rational About Algebraic Numbers, Matt David, Adam E. Parker, and Daniel A. N. Vargas, 52:5, 2021, 327-337, 4.1, 4.5, 6.3, 9.4, 9.6
The Equivalence of Definitions of the Natural Logarithm Function, Henry Ricardo, 53:3, 2022, 190-196, 2.2, 5.1.1, 5.3.2, 9.5

5.4.2 Numerical series (convergence tests and summation)

Encouraging Mathematical Inquisitiveness, Carl L. Main, 1:1, 1970, 32-36, 5.2.2
Telescoping Sums and the Summation of Sequences, G. Baley Price, 4:2, 1973, 16-29, 6.3
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.6.1, 5.7.2
A Precalculus Unit on Area Under Curves, Samuel Goldberg, 6:4, 1975, 29-35, 0.7
An Interesting Use of Generating Functions, Aron Pinker, 6:4, 1975, 39-45, 0.6, 9.5
A Helpful Device: or One More Use for Pascal's Triangle, Robert Rosenfeld, 8:3, 1977, 188-191, C, 0.9
A Coin Game, Thomas P. Dence, 8:4, 1977, 240-246, 9.9, 9.10
A Note on Infinite Series, Louise S. Grinstein, 9:1, 1978, 46-47, C
A Note on the Integral Test, Peter A. Lindstrom, 9:2, 1978, 105-106, C
On Sum-Guessing, Mangho Ahuja, 10:2, 1979, 95-99
The Sum of the Reciprocals of the Primes, W. G. Leavitt, 10:3, 1979, 198-199, C
Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.1.1, 5.2.2, 9.6
A Precalculus Approximation of \(n! \), Norman Schaumberger, 11:3, 1980, 202-204, C, 0.2
Some Sum of Sums, Gerald Lenz, 12:3, 1981, 208-209, C
Infinite Series Flow Chart for the Sum of \(a(n) \), Franklin Kemp, 13:3, 1982, 199, C
Taxes on Taxes, Thomas E. Eisner, 13:4, 1982, 266-269
The Sums of Zeros of Polynomial Derivatives, Michael W. Ecker, 13:5, 1982, 328-329, C, 0.7, 5.1.2
Closed-Form Formulas for Quasi-Geometric Series, Arthur C. Segal, 14:2, 1983, 118-122
On Sums of Powers of Natural Numbers, Myren Krom, 14:4, 1983, 349-351, C, 9.1
Instant Hindsight!, Norman Schaumberger, 14:4, 1983, 351, C
Evaluating e^x Using Limits, Sheldon P. Gordon, 15:1, 1984, 63-65, 5.3.2
On Problems with Solutions Attainable in More Than One Way, Jean Pedersen and George Polya, 15:3, 1984, 319-322, 0.2, 0.4
Approximate Angle Trisection, David Gauld, 15:5, 1984, 420-422, 0.6
Inverse Functions, Ralph P. Boas, 16:1, 1985, 42-47, 5.2.1, 5.3.2
A Discrete Look at $1 + 2 + \ldots + n$, Loren C. Larson, 16:5, 1985, 389-399, C
Cantor's Disappearing Table, Larry E. Knop, 17:1, 1986, 66-70
Counterexamples to a Comparison Test for Alternating Series, J. Richard Morris, 17:2, 1986, 165-166, C
A Case of True Interest, Soo Tang Tan, 17:3, 1986, 247-248, C, 0.8
Another Approach to a Class of Slowly Diverging Series, Norman Schaumberger, 17:5, 1986, 417, C
Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.4, 5.1.5, 5.2.2
The Bernoullis and the Harmonic Series, William Dunham, 18:1, 1987, 18-23, 2.2
$\pi/4$ and $\ln 2$ Recursively, Frank Burk, 18:1, 1987, 51, C, 5.2.5
Behold! Sums of Arctan, Edward M. Harris, 18:2, 1987, 141, C
Computing π, Harley Flanders, 18:3, 1987, 230-235, 5.2.3, 8.1
A Shorter, More Efficient Proof of the limit as n goes to infinity of $[(n!)^{1/n}] / n = 1/e$, Joseph Wiener, 18:4, 1987, 319, C
Evaluating the Sum of the Series $\sum (k^n / M^k)$, Alan Gorfin, 20:4, 1989, 329-331, C
Sum the Alternating Harmonic Series, Dave P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 433-435, C, 1.2
Using the Finite Difference Calculus to Sum Powers of Integers, Lee Zia, 22:4, 1991, 294-300, 5.2.1, 5.4.1
The Sum is 1, John H. Mathews, 22:4, 1991, 322, C
Summation by Parts, Gregory Fredricks and Roger B. Nelsen, 23:1, 1992, 39-42, C, 5.1.2, 5.4.1, 9.3
Summing Geometric Series by Holding a Tournament, Vincent P. Schielack, 23:3, 1992, 210-211, C
Six Ways to Sum a Series, Dan Kalman, 24:5, 1993, 402-421, 9.5
The Series n^m times x^n and a Pascal-like Triangle, David Neal, 25:2, 1994, 99-101
Sum of Squares via the Centroid, Sydney H. Kung, 25:2, 1994, 111, C
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 4.5, 9.3, 9.5
FFF #76. Telescoping Series, Eleanor A. Maddock, 25:4, 1994, 309, F
FFF. Pi is approximately $\ln 4$, Frank Burk, 25:4, 1994, 311, F
Sum of Alternating Series (proof by picture), Guanshen Ren, 26:3, 1995, 213, 0.9
Divergence of a Series (by picture), Sidney H. Kung, 26:4, 1995, 301, C
Sums of General Geometric Series (by picture), John Mason, 26:5, 1995, 381, C
FFF #111. The Bouncing Ball, Daniel J. Scully, 27:5, 1996, 372-373, F
Some Sums of Some Significance, Martha E. Dasef and Steven M. Kautz, 28:1, 1997, 52-55, C
Using Simpson's Rule to Approximate Sums of Infinite Series, Rick Kreminski, 28:5, 1997, 368-376
Can You Sum This Familiar Series (Proof Without Words), Dennis Gittinger, 28:5, 1997, 393, C
Sum of Cubes (proof without words), Alfinio Flores, 29:1, 1998, 61, C
Who Cares if \(x^2 + 1 = 0 \) Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 0.7, 5.2.5, 6.2
Harmonic Series, Andrew Cusumano, 30:1, 1999, 34, C
Gabriel’s Wedding Cake, Julian F. Fleron, 30:1, 1999, 35-38, 5.2.10
FFF #141. Evaluation of a Sum, Joe Howard, 30:2, 1999, 130-131, F
Natural Logarithms via Long Division, Frank Burk, 30:4, 1999, 309-311, C
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 6.1
The Series for \(e \) via Integration, Marc Chamberland, 30:5, 1999, 397, C
Summing Series via Integrals, Frank Burk, 31:3, 2000, 178-181
Sum of Infinite Series (Mathematics Without Words), Rick Mabry, 32:1, 2001, 19, C
Sum of a geometric series (Mathematics Without Words), Carlos G. Spaht and Craig M. Johnson, 32:2, 2001, 109, C
A series for \(\ln k \), James Lesko, 32:2, 2001, 119-122, C
What’s Harmonic About the Harmonic Series?, David Kullman, 32:3, 2001, 201-203, C
Convergence-Divergence of \(p \)-Series, Rasul Khan, 32:3, 2001, 206-208, C
Arctangent Sums, Louis Bragg, 32:4, 2001, 255-257, 5.3.1
Geometric Progressions – A Geometric Approach, Michael Strizhevsky and Dmitry Kreslavskiy, 32:5, 2001, 359-362, 0.6
Sum Rearrangements, Russell A. Gordon, 32:5, 2001, 377-380, C
\(\ln 2 \) (Mathematics Without Words), Norman Schaumberger, 33:1, 2002, 23, C, 5.3.2
FFF #182. New exponent laws, Carl Libis, 33:1, 2002, 38, F
A Tale of Two Series, Thomas J. Osler and Marcus Wright, 33:2, 2002, 99-106, 7.2
Designing a Calculus Mobile, Tom Farmer, 33:2, 2002, 131-136, 5.2.4
An Application of Condensation, Sidney Kung, 33:2, 2002, 168, C
Investigating Possible Boundaries Between Convergence and Divergence, Frederick Hartmann and David Sprows, 33:5, 2002, 405-406, C, 9.5
FFF #200. A lopsided interval of convergence, Ed Barbeau, 34:1, 2003, 50, F
FFF #206. A series that converges and diverges, Doug Kuhlman, 34:2, 2003, 135, F
Column Integration and Series Representations, Thomas P. Dence and Joseph B. Dence, 34:2, 2003, 144-148, C, 5.2.5
Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:4, 2003, 264-269, 5.2.4, 9.6
Proof Without Words: Bounding the Euler-Mascheroni Constant, Meiyue Shao, 46:5, 2015, 347, C, 5.2.2, 5.2.6
Explicit Form of the Faulhaber Polynomials, Jose Luis Cereceda, 46:5, 2015, 359-363, 3.2
Yet More Ways to Skin a Definite Integral, Brian Bradie, 47:1, 2016, 11-18, 5.2.4, 5.3.4
De Morgan’s Series Test, C. W. Groetsch, 47:2, 2016, 136-137, C
Proof Without Words: A Sum Computed by Self-Similarity, Yukio Kobayashi, 49:1, 2018, 10, C, 3.1, 3.2
Proof Without Words: Rearranged Alternating Harmonic Series, Yajun An and Tom Edgar, 49:1, 2018, 35, C
Why the Centroid is the Centroid: Modern Variations on a Theme of Archimedes, William C. Mercier, 49:2, 2018, 93-102, 0.3, 9.7
Euler’s Sine Product Formula: An Elementary Proof, David Salwinski, 49:2, 2018, 126-135, 5.2.5, 5.3.3, 9.5
Proof Without Words: An Alternating Geometric Series, Angel Plaza, 49:3, 2018, 200, C
Proof Without Words: Riemann Meets Euler-Mascheroni, Gerald E. Bilodeau, 49:5, 2018, 341, C, 9.5
Riemann Sums for Generalized Integrals, Jean-Paul Truc, 50:2, 2019, 123-132, 5.2.1, 5.2.9, 5.2.10, 8.4
Geek Tragedy (Poem), Kenneth Mulder, 50:2, 2019, 133, C, 9.2
"Sum" Visual Rearrangements of the Alternating Harmonic Series, Yajun An and Tom Edgar, 49:4, 2019, 280-285, 5.2.1, 5.3.2
Coloring a 1-by-n Chessboard, Elias Abboud, Rathi Saleh, and Amal-Sharif Rassian, 49:5, 2019, 322-330, 3.2, 9.2
A Morsel from Euler, William Dunham, 51:1, 2020, 3-8, 0.6
Randomly Generated Identities, David Treeby, 51:2, 2020, 90-94, 3.2, 7.2
Euler’s Limit and Stirling’s Estimate, Adam Hammert, 51:5, 2020, 330-336, 5.1.1, 5.3.2, 9.5
Geometric Series in an Equilateral Triangle – Three Proofs Without Words, 51:5, 2020, Stephan Berenkonk, 385, C, 0.4
Atypical Series Representations of Riemann-Integrable Functions, Andrzej Piotrowski, 52:1, 2021, 31-38, 5.2.9, 9.5, 9.6
Proofs Without Words: A Visual Proof for an Infinite Alternating Sign Series, Ivica Martinjak & Ana Mimica, 52:3, 2021, 204, C
An Elementary Derivation of the Duration of Play in the Gambler’s Ruin Problem, Greg Orosi, Ricardo Alfaro, Lixing Han & Kenneth Schilling, 52:4, 2021, 299-301, C, 7.1, 7.2
Tetration: Iterative Enjoyment, Abe Edwards & Brielle Komosinski, 53:3, 2022, 209-219, 0.2, 5.3.2, 9.5

5.4.3 Taylor polynomials and power series

Extending the Series for ln 2, Norman Schaumberger, 18:3, 1987, 223-225, C
Spreadsheets, Power Series, Generating Functions, and Integers, Donald R. Snow, 20:2, 1989, 143-152, 6.3
5.5 Vector algebra and geometry (including 2x2 and 3x3 determinants)

A Note on the Vector Triple Product, Thomas A. McCullough, 11:3, 1980, 206-207, C
From an Inequality to Inversion, Man-Keung Siu, 12:2, 1981, 149-151, C, 0.4
Generalized Pythagorean Triples, W. J. Hildebrand, 16:1, 1985, 48-52, 0.6, 9.3
Tetrahedra, Skew Lines and Volume, James Smith and Mason Henderson, 16:2, 1985, 138-140, C
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, C, 0.3
Distance from a Point to a Plane with a Variation on the Pythagorean Theorem, Abdus Sattar Gazdar, 23:5, 1992, 410-412, C
Kepler Orbits More Geometrico, Andrew Lenard, 25:2, 1994, 90-98, 0.3
On the Distance from a Point to a Curve, Mark Schwartz, 25:4, 1994, 317-319, C
Formulas of Linear Geometry, Heinrich W. Guggenheimer, 27:1, 1996, 24-32
FFF #145. The Height of a Trapezoid, Dale R. Buske, 30:3, 1999, 210, F
Related Rates Collide with Vectors, Stephen Fulling, 31:2, 2000, 116-119, 5.1.3
N-Site Insights, Bret Draayer, 31:4, 2000, 250-258, 4.1
How Long Was Your Day?, Albert Schueller, 35:1, 2004, 31-33
FFF #272. Rotating a vector, Elliot Cohen, 39:1, 2008, 49, F
The Pearson and Cauchy-Schwarz Inequalities, David Rose, 39:1, 2008, 64, C, 7.3, 9.5
FFF #277. The all-inclusive span, Ayoub B. Ayoub, 39:2, 2008, 136, F
The Cross Product as a Polar Decomposition, Gotz Trenkler, 39:3, 2008, 237-239, C, 4.1, 4.3
Teaching Tip: A Vector Proof of the Addition Law for Cosines, Zhibo Chen, 41:5, 2010, 415, C, 0.6
Lattice Cubes, Richard Parris, 42:2, 2011, 118-125
An n-dimensional Pythagorean Theorem, William J. Cook, 44:2, 2013, 0.4, 4.2
A Simple Proof of the Right-Hand Rule, Fuchang Gao, 44:3, 2013, 227-229, C
On the Inverse Curvature Problem, Adam Glesser, James Shade, and Bogdan D. Suceava, 46:3, 2015, 207-214, 5.2.9, 5.6.1, 6.4, 9.8
An Even Simpler Proof of the Right-Hand Rule, Eric Thurschwell, 46:3, 2015, 215-217, C, 0.6
Finding Polygonal Areas with the Corset Theorem, Stuart M. Anderson and Owen D. Byer, 48:3, 2017, 171-178, 0.4
The Rational Approximation of Small Angles, Harvey Diamond, 49:1, 2018, 57-59, C, 0.4, 5.1.5, 5.7.3
Fitting a Cubic Bezier to a Parametric Function, Alvin Penner, 50:3, 2019, 185-196, 5.6.1, 5.7.3, 5.8, 8.3, 9.6
Orientation of the Cross Product of 3-vectors, Suk-Geun Hwang, 49:4, 2019, 298-299, C, 4.3
Why Hamilton Couldn’t Multiply Triples, Adrian Rice & Ezra Brown, 52:3, 2021, 185-192, 4.3, 4.4, 9.4
Unlawful Calculations: A Look Into Lie’s Notebook, Johnner Barrett, 53:2, 2022, 104-115, 5.7.3, 6.1, 6.2, 6.6
5.6 Curves and surfaces

5.6.1 Parametric and polar curves

Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.7.2
Rectangular Aids for Polar Graphs, Alice W. Essary, 13:3, 1982, 200-205, 5.2.8
On Hypocycloids and their Diameters, I. J. Schoenberg, 16:4, 1985, 262-267, 9.5
Vectors in a LOGO Learning Environment, Will Watkins, 16:4, 1985, 286-300
Defining Areas in Polar Coordinates, Frances W. Lewis, 17:5, 1986, 414-416, C
Transitions, Jeanne L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.1.3, 9.10
Connecting the Dots Parametrically: An Alternative to Cubic Splines, Wilbur J. Hildebrand, 21:3, 1990, 208-215, 4.6, 9.6
Moments on a Rose Petal, Douglass L. Grant, 21:3, 1990, 225-227, C, 5.2.5
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 0.5, 5.1.5, 5.6.2
Trochoids, Roses, and Thorns—Beyond the Spirograph, Leon M. Hall, 23:1, 1992, 20-35
Rotation of Axes—Not Just for Conics, Steven Schonefeld, 23:5, 1992, 418-425, 0.5
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.1, 5.1.5
Heart to Bell (illustration), Michael W. Chamberlain, 25:1, 1994, 34
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 2.2, 5.1.3, 5.4.3
In Defense of Newton: A Physicist's View, A. P. French, 25:3, 1994, 206-209, 0.5, 2.2
FFF #81. Throwing Another Fallacy out the Window (Using Minimum Energy), Paul Deiermann and Rick Mabry, 25:4, 1994, 434, F (also 26:5, 1995, 383)
The Chair, the Area Rug, and the Astroid, Mark Schwartz, 26:3, 1995, 229-231, C, 5.1.4
FFF #91. A Perpetual Motion Matchine, Eric Chandler, 26:4, 1995, 302-303, F
Rectangular-to-Polar Folding Fans, Dan Pritikin, 26:4, 1995, 305-308, C
FFF #99. Polar Increment of Area, Peter Jarvis and Paul Schuette, 27:2, 1996, 117, F, 5.2.6
Some Comments on "Parametric Equations and Plane Curves", Zhibo Chen, 27:3, 1996, 210-211, C
A Note on the Brachistochrone Problem, Jim Zeng, 27:3, 1996, 206-208, C
A Rose is a Rose is a Rose ..., Melissa Shepard, 28:1, 1997, 55-56, C
An Envelope for a Spirograph, Andrew Simons, 28:2, 1997, 134-139
Visualizing the Geometry of Lissajous Knots, John Meier and Jessica Wolfson, 28:3, 1997, 211-216, 9.8
The Coffee Cup Caustic for Calculus Students, Brian J. Loe and Nathaniel Beagley, 28:4, 1997
Designing a Baseball Cover, Richard B. Thompson, 29:1, 1998, 48-61
Numerically Parametrizing Curves, Steven Wilkinson, 29:2, 1998, 104-119, 5.6.2, 9.8
Pursuit and Regular N-gons, Michael J. Seery, 29:3, 1998, 228-229, C
MATH and Other Four-Letter Words, Marc D. Sanders and Barry A. Tesman, 29:5, 1998, 418-419, C
Spirals and Conchospirals in the Flight of Insects, Khristo N. Boyadzhiev, 30:1, 1999, 23-31, 9.10
Shortest Path Solution by Epitrochoid Machine, Mark Schwartz and Darryl Adams, 30:3, 1999, 221-225
Normal Lines and the Evolute Curve, David Sanchez and Kirby C. Smith, 31:5, 2000, 397-403, C, 5.1.3
The Sun, The Moon, and Convexity, Noah Samuel Brannen, 31:6, 2000, 268-272, 5.7.3
Why the Moon’s Orbit is Convex, Laurent Hodges, 33:2, 2002, 169-170, C, 5.7.3
Can a Bicycle Create a Unicycle Track?, David L. Finn, 33:4, 2002, 283-292, 9.10
Lissajous Figures and Chebyshev Polynomials, Julio Castineira Merino, 34:2, 2003, 122-127, 9.8
The Brachistochrone Problem, Nils P. Johnson, 35:3, 2004, 192-197
Snapshots of a Rotating Water Stream, Steven L. Siegel, 36:2, 2005, 152-154, C, 9.10
(see also Seymour Haber, J. Colin Hill, Daniel Lichtbau, and Daniel E. Loeb, 37:3, 2006, 216-217, F)
Folding Beauties, Leah Wrenn Berman, 37:3, 2006, 176-186, 0.5, 9.7
The Maximal Deflection on an Ellipse, Dan Kalman, 37:4, 2006, 250-260, 5.7.1
Playing Ball in a Space Station, Andrew Simoson, 37:5, 2006, 334-343, 9.10
Mechanical Circle-Squaring, Barry Cox and Stan Wagon, 40:4, 2009, 238-247, 0.4, 9.7, 9.10
The Helen of Geometry, John Martin, 41:1, 2010, 17-28, 0.3, 2.2
The Dance of the Foci, David Seppala-Holtzman, 41:2, 2010, 122-128, 0.5
Finding Rational Parametric Curves of Relative Degree One or Two, Dave Boyles, 41:5, 2010, 371-382, 9.3, 9.4
Newton’s Radii, Maupertuis’ Arc Length, and Voltaire’s Giant, Andrew J. Simoson, 42:3, 2011, 183-190, 5.2.8, 9.10
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.7.3, 9.8
(see also 43:5, 429)
From the Dance of the Foci to a Strophoid, Andrew Jobbings, 42:4, 2011, 289-298, 0.5
Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 0.5, 5.1.4, 9.10
The Catenary as Roulette, Javier Sanchez-Reyes, 43:3, 2012, 216-219, 0.5, 5.7.3
Parametric Equations at the Circus: Trochoids and Poi Flowers, Eleanor Farrington, 46:3, 2015, 173-177, 9.8
Rational and Implicit Equations for Some Polar Curves, Dave Boyles, 46:3, 2015, 189-196, 0.3, 5.4.3, 9.7, 9.8
To Be (a Circle) or Not to Be?, Hassan Boualem and Robert Brouzet, 46:3, 2015, 197-206, 0.2, 0.5, 5.2.8, 9.8
On the Inverse Curvature Problem, Adam Glesser, James Shade, and Bogdan D. Suceava, 46:3, 2015, 207-214, 5.2.9, 5.5, 6.4, 9.8
Journal Problems Sections: Modern Challenges and Teaching Tools, Brian D. Beasley and David R. Stone, 46:5, 2015, 336-346, 0.7, 3.2, 5.2.9, 6.1, 9.3
Conics as Envelopes of Families of Plane Curves, Juan Carlos Ponce Campuzano, 50:2, 2019, 115-122, 0.4, 0.5, 9.7
Euler’s Insignia: Some Admirable Curves Having a Simple Trigonometric Equation in a Natural Form, Zarema Seidametova and Valerii Temtenko, 50:2, 2019, 134-139, 0.6, 9.8
Fitting a Cubic Bezier to a Parametric Function, Alvin Penner, 50:3, 2019, 185-196, 5.5, 5.7.3, 5.8, 8.3, 9.6
Spirals, Triangles, and Tie-Dyed T-Shirts, Douglas Lyman Corey, Jacob Badger, and Steven Lauzon, 49:4, 2019, 250-259, 0.4, 5.2.1, 5.2.8, 6.1
Areas of a Total Eclipse, John P. Millis and Courtney K. Taylor, 49:5, 2019, 375-377, C, 5.2.6, 5.3.1
Some Geometric Objects Related to a Classical Problem of Galileo, Zarema Seidametova and Valerii Temnenko, 51:1, 2020, 57-65, 5.2.1, 5.2.8, 5.6.2

5.6.2 Surfaces and coordinate systems in space

Parametric Surfaces, Harley Flanders, 19:5, 1988, 444-447, 5.6.1, 8.3
Graphing Surfaces in Cylindrical and Spherical Coordinates, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:2, 1990, 144-145, C
Least Squares and Quadric Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.7.1, 7.3
FFF #77. Generalizing an Approach to the Radius of Curvature, Paul Deiermann and Rick Mabry, 25:4, 1994, 309-310, F
Spherical Coordinates from Cylindrical Coordinates on a Torus, Timothy Murdoch, 26:5, 1995, 385-387, C
Doughnut Slicing, Wolf von Ronik, 28:5, 1997, 381-383, C, 0.5
Numerically Parametrizing Curves, Steven Wilkinson, 29:2, 1998, 104-119, 5.6.1, 9.8
Spherical Coordinates, Tevian Dray and Corinne A. Manogue, 34:2, 2003, 168-169, C, 1.1
The Mathematics of “Go To” Telescopes, Donald Teets, 38:3, 2007, 170-178, 4.4
Pairs of Equal Surface Functions, Daniel Cass and Gerald Wildenberg, 39:1, 2008, 51-54, C, 5.2.6, 9.8
The Origin of Quaternions, Thomas Bannon, 46:1, 2015, 43-50, 2.2, 9.4
Rubber Band Calculus, Fred Kuczmarski, 47:2, 2016, 82-93, 5.1.2, 5.2.1, 5.2.3, 5.7.3
Computing a Satellite Orbit From Photographs, Donald Teets, 48:2, 2017, 102-110, 4.4, 5.7.3

Some Geometric Objects Related to a Classical Problem of Galileo, Zarema Seidametova and Valerii Temnenko, 51:1, 2020, 57-65, 5.2.1, 5.2.8, 5.6.1

5.7 Multivariable calculus

5.7.1 Multivariable differential calculus

Income Tax Averaging and Convexity, Michael Henry and G. E. Trapp, Jr., 15:3, 1984, 253-255, C, 0.8, 5.1.5, 9.5
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 1.2, 5.1.1, 5.1.4
Moiré Fringes and the Conic Sections, M. R. Cullen, 21:5, 1990, 370-378
Extreme and Saddle Points, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 416-418, C, 5.1.4
Calculus and Computer Vision, Mark Bridger, 23:2, 1992, 132-141, 8.3
Relative Maxima or Minima for a Function of Two Variables: A Neglected Approach, Paul Chacon, 23:2, 1992, 145-146, C
Erratum: Relative Maxima or Minima for a Function of Two Variables, The Editors, 23:4, 1992, 314, C
A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 1.2, 8.3
Least Squares and Quadric Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.6.2, 7.3
FFF #68. Variable Results with Partial Differentiation, Hugh Thurston, 25:1, 1994, 35-36, F
Calculus in the Brewery, Susan Jane Colley, 25:3, 1994, 226-227, C
Will the Real Best Fit Curve Please Stand Up?, Helen Skala, 27:3, 1996, 220-223, C, 7.3
Real Analysis in the Brewery, Sidney Kravitz, 27:3, 1996, C
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 4.2, 5.1.4
Multiple Derivatives of Compositions: Investigating Some Special Cases, Irl C. Bivens, 28:4, 1997, 299-300, 3.2
Counterexamples to a Weakened Version of the Two-Variable Second Derivative Test, Allan A. Struthers, 28:5, 1997, 383-385, C
Paths of Minimum Length in a Regular Tetrahedron, Richard A. Jacobson, 28:5, 1997, 394-397, C, 0.4
An “Extremely” Cautionary Tale, Mark Krusemeyer, 31:2, 2000, 128-130, C
Can We Improve the Teaching of Calculus?, Hugh Thurston, 31:4, 2000, 262-267, 1.1, 5.1.2
Interactive Teaching Aids for Multivariable Calculus, David E. Bailey and Gerald Kobylski, 32:4, 2001, 283-287, C
Examining Continuity, Partial Derivatives and Differentiability with Cylindrical Coordinates, Thomas C. McMillan, 34:1, 2003, 11-14
Lagrange Multipliers Can Fail to Determine Extrema, Jeffrey Nunemacher, 34:1, 2003, 60-62, C
FFF #208. Particle in circular motion, Peter M. Jarvis, 34:2, 2003, 136, F
Tangent Planes of a Quadratic Function, Panagiotis T. Krasopoulos, 34:3, 2003, 205-206
A Surface Useful for Illustrating the Implicit Function Theorem, Jeffrey Nunemacher, 34:4, 2003, 324-326, C
A Quick Proof that the Least Squares Formulas Give a Local Minimum, W. M. Dunn III, 36:1, 2005, 64-65, C, 7.3
The Flip-Side of a Lagrange Multiplier Problem, Angelo Segalla and Saleem Watson, 36:3, 2005, 232-235, C, 5.1.4
Limits of Functions of Two Variables, Ollie Nanyes, 36:4, 2005, 326-329, C
Teaching Tip: Potatoes in Calculus, Kristin Pfabe, 37:2, 2006, 92, C
The Maximal Deflection on an Ellipse, Dan Kalman, 37:4, 2006, 250-260, 5.6.1
Hermit Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 0.4, 9.2
A Class of Multivariable Limits, Yingfan Liu and Youguo Wang, 41:2, 2010, 154-156, C, 5.1.1
A Characterization of a Quadratic Function in \mathbb{R}^n, Conway Xu, 41:3, 2010, 212-214, 5.1.3
Better Than Optimal By Taking A Limit?, David Betounes, 43:5, 2012, 379-386, 5.1.4
Derivative Sign Patterns in Two Dimensions, Kenneth Schilling, 44:2, 2013, 102-108, 5.1.2, 9.5
Weighted AM-GM Inequality via Elementary Multivariable Calculus, Heiko Hoffmann, 47:1, 2016, 56-58, C, 9.5
Less Mundane Applications of the Most Mundane Functions, Pisheng Ding, 53:3, 2022, 230-232, C, 5.5, 9.5

5.7.2 Multiple integrals

Some Problems of Utmost Gravity, William C. Stetton, 3:1, 1972, 72-75, C, 5.2.3
Interchanging the Order of Integration, Stewart Venit, 5:3, 1974, 20-21
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1
Another Way of Looking at n!, David Hsu, 11:5, 1980, 333-334, C, 5.2.7
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 3.2, 5.2.7
An Alternative to Changing the Order of Integration, Elgin H. Johnston, 20:5, 1989, 405-409, C
A Mathematical Roller Derby, Daniel Drucker, 23:5, 1992, 396-401
Calculus Measures Tank Capacity and Avoids Oil Spills, Yves Nievergelt, 25:2, 1994, 132-136, C
A Visual Proof of Eddy and Fritsch's Minimal Area Property, Robert Pare, 26:1, 1995, 43-44, C, 5.1.4
Looking at Order of Integration and a Minimal Surface, Thomas Hern and Cliff Long and Andy Long, 29:2, 1998, 128-133, 9.8
FFF #143. One-step Double Integration, James C. Kirby, 30:3, 1999, 209, F
FFF #282. Spherical volume via cylindrical coordinates, James Swenson, 39:4, 2008, 300, F
Teaching Tip: Is This Integral Zero?, Ken Luther, 42:5, 2011, 373, C, 5.2.1
How to Approximate the Volume of a Lake, Robert L. Foote and Han Nie, 47:3, 2016, 162-170, 9.6
Triple Integrals for the Sketching-Impaired, Wm. Douglas Withers, 49:1, 2018, 46-53
Archimedes Redux: Center of Mass Applications from The Method, Shirley Gray and Cye H. Waldman, 49:5, 2018, 346-352, 0.4, 0.5, 5.2.7
Using Linear Interpolation to Implement the Change of Variables in Double Integrals, Yuanting Lu, 53:1, 2022, 64-66, C, 5.2.3

5.7.3 Line and surface integrals and vector analysis

Tangent Vectors and Orthogonal Projections, Jerry Johnson, 24:3, 1993, 259-262, C
Independence of Path and All That, Robert E. Terrell, 27:4, 1996, 272-276, 9.8
Eigenpictures and Singular Values of a Matrix, Peter Zizler and Holly Fraser, 28:1, 1997, 59-62, C, 4.5
The Band Around a Convex Set, Junpei Sekino, 32:2, 2001, 110-114
The Sun, The Moon, and Convexity, Noah Samuel Brannen, 32:4, 2001, 268-272, 5.6.1
Why the Moon's Orbit is Convex, Laurent Hodges, 33:2, 2002, 169-170, C, 5.6.1
The Murder Mystery Method for Determining Whether a Vector Field is Conservative, Tevian Dray and Corinne A. Manogue, 34:3, 2003, 228-231, C

A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfahl, 37:4, 2006, 269-278, 5.1.1, 9.8

As the Planimetre’s Wheel Turns: Planimeter Proofs for Calculus Class, Tanya Leise, 38:1, 2007, 24-31

An Improper Application of Green’s Theorem, Robert L. Robertson, 38:2, 2007, 142-145, C, 5.2.10

The Right Theta, William Freed and Athanasios Tavouktoglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 0.6, 5.3.1

The Right Theta, William Freed and Athanasios Tavouktoglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 0.6, 5.3.1

The Band Around a Convex Body, David Swanson, 42:1, 2011, 15-24, 9.5

Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.6.1, 9.8

The Catenary as Roulette, Javier Sanchez-Reyes, 43:3, 2012, 216-219, 0.5, 5.6.1

Rubber Band Calculus, Fred Kuczmarski, 47:2, 2016, 82-93, 5.1.2, 5.2.1, 5.2.3, 5.6.2

Computing a Satellite Orbit From Photographs, Donald Teets, 48:2, 2017, 102-110, 4.4, 5.6.2

The Rational Approximation of Small Angles, Harvey Diamond, 49:1, 2018, 57-59, C, 0.4, 5.1.5, 5.5

Fitting a Cubic Bezier to a Parametric Function, Alvin Penner, 50:3, 2019, 185-196, 5.5, 5.6.1, 5.8, 8.3, 9.3, 9.6

A Closer Look at the Compensating Polar Planimeter, John Eggers, 51:2, 2020, 105-116, 5.2.6, 6.6, 9.5

Is Doom the Inescapable Solution of Initial Value Problems?, Yves Nievergelt, 52:4, 2021, 302-305, C, 5.2.9, 6.1, 9.5

Unlawful Calculations: A Look Into Lie’s Notebook, Johnner Barrett, 53:2, 2022, 104-115, 5.5, 6.1, 6.2, 6.6

5.8 Software for calculus

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11

A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11

The Complet Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11

Mathematics by Machine with Mathematica®, Alan Hoenig, 21:2, 1990, 146-149

IBM Three-Dimensional Graphing Software for Multivariate Calculus, Lillie Crowley and J. Stephen Ott, 23:1, 1992, 64-68

Derive®, A Mathematical Assistant, Jeanette R. Palmiter, 23:2, 1992, 158-161

Theorist®, Francis Gulick, 24:2, 1993, 178-182

MicroCalc Version 6, L. Carl Leinbach, 24:3, 1993, 263-270

Converge, Version 4.0 (Software Review), Lawrence G. Gilligan, 26:1, 1995, 58-63, 0.10

Toolkit for Interactive Mathematics, review by L. Carl Leinbach, 26:2, 1995, 152-156, 0.10

Derive®, Version 3.0, reviewed by Lawrence G. Gilligan, 26:3, 1995, 238-243, 6.7

Software Review: f(g) Scholar, David C. Arney and Daniel J. Arney, 26:5, 1995, 401-403, 0.10, 4.8

TI-92 Graphing Calculator (Review), Sally Fischbeck, 27:3, 1996, 224-230

Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.1.5, 9.5

Function Visualizer, L. Carl Leinbach, 27:5, 1996, 398-403
Differential Equations and Dynamical Systems

6.1 First order equations

Some Socially Relevant Applications of Elementary Calculus, Colin Clark, 4:2, 1973, 1-15, 5.1.4
The Homicide Problem Revisited, David A. Smith, 9:3, 1978, 141-145, 6.2
Creative Teaching by Mistakes, Andrejs Dunkels and Lars-Erik Persson, 11:5, 1980, 296-300, 5.2.5
Differential Equations and the Battle of Trafalgar, David H. Nash, 16:2, 1985, 98-102, 6.2, 9.10
Both a Borrower and a Lender Be, William Miller, 16:4, 1985, 284, C, 0.8
The Problem of Managing a Strategic Reserve, David Cole and Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 5.1.4, 9.10
A Linear Diet Model, Arthur C. Segal, 18:1, 1987, 44-45, C
The Snowplow Problem Revisited, Xiao-peng Xu, 22:2, 1991, 139, C, 5.3.2
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.2.5, 5.3.2
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 1.2, 5.2.1
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.2, 6.4
Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.1, 1.2
Designing a Rose Cutter, J. S. Hartzler, 26:1, 1995, 41-43, C
FFF #142. Calculating the Average Speed, Bill Simpson, 30:3, 1999, 209, F, 5.1.2
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 5.4.2
FFF #163. A solution to savor, Dale R. Buske, 31:5, 2000, 395, F
Verhulst’s Logistic Curve, David Bradley, 32:2, 2001, 94-98, 5.3.3
Models for Growth, Elizabeth B. Appelbaum, 32:4, 2001, 258-259
FFF #209. A fallacy that wasn’t, Bill Gerson, 34:2, 2003, 136-137, F
Temperature Models for Ware Hall, J. K. Denny and C. A. Yackel, 35:3, 2004, 162-170, 6.2
Epidemic Models for SARS and Measles, Edward Rozema, 38:4, 2007, 246-259, 5.3.4, 9.10
New Directions in Elementary Differential Equations, William E. Boyce, 25:5, 1994, 364-371, 1.2, 6.4
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.1, 6.4
A New Look at the Airy Equation with Fences and Funnels, John H. Hubbard, Jean Marie McDill, Anne Noonburg, and Beverly H. West, 25:5, 1994, 419-431, 6.6
FFF #78. Solving a Second-order Differential Equation, Ed Barbeau, 25:5, 1994, 432-433, 6.4
Matrix Patterns and Undertermined Coefficients, Herman Gollwitzer, 25:5, 1994, 444-448, C, 4.1
The Lighter Side of Differential Equations, J. M. McDill and Bjorn Felsager, 25:5, 1994, 448-452, C, 6.4
Sonnet from the Bard of Peirce-upon-Charles (poem), Ezra Hausman, 25:5, 1994, 457
Distinguished Oscillations of a Forced Harmonic Oscillator, T. G. Proctor, 26:2, 1995, 111-117, 6.6
The Matrix Exponential Function and Systems of Differential Equations Using Derive®, Robert J. Hill and Mark S. Mazur, 26:2, 1995, 146-151, 4.5
Projectile Motion with Arbitrary Resistance, Tilak de Alwis, 26:5, 1995, 361-367, 9.10
The Falling Ladder Paradox, Paul Scholten and Andrew Simoson, 27:1, 1996, 49-54, C, 5.1.3
Harmonic Oscillators with Periodic Forcing, Temple H. Fay, 28:2, 1997, 98-105
Who Cares if X^2 + 1 = 0 Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 0.7, 5.2.5, 5.4.2
The Effects of a Stiffening Spring, Sharon Hill and Karen Clark, 30:5, 1999, 379-382
FFF. An Epidemic of Jacobian's, Edward Aboufadel, 32:4, 2001, 279-281, F, 5.7.1
Some Calculus-Based Observations Concerning the Solutions to x”-q(t)x = 0, Allan J. Kroopnick, 33:1, 2002, 52-53, C
Some Linear Differential Equations Forget That They Have Variable Coefficients, Ranjith Munasinghe, 35:1, 2004, 22-25
Temperature Models for Ware Hall, J. K. Denny and C. A. Yackel, 35:3, 2004, 162-170, 6.1
Another Broken Symmetry, C. W. Groetsch, 36:2, 2005, 109-113, 9.10
Taking a Whipper-The Fall-Factor Concept in Rock Climbing, Dan Curtis, 36:2, 2005, 135-140, 9.10
Euler-Cauchy Using Undetermined Coefficients, Doreen De Leon, 41:3, 2010, 236-237, C
Abel’s Theorem Simplifies Reduction of Order, William R. Green, 42:5, 2011, 399-401, C
Modeling Terminal Velocity, Neal Brand and John A. Quintanilla, 44:4, 2013, 57-61, C, 9.10
Collaborative Understanding of Cyanobacteria in Lake Ecosystems, Meredith L. Greer, Holly A. Ewing, Kathryn L. Cottingham and Kathleen C. Weathers, 44:5, 2013, 376-385, 6.5, 9.10
Boundary Value Problems and Finite Differences, Paul T. Allen, 47:1, 2016, 34-41, 6.6
What’s in a Name: Why Cauchy and Euler Share the Cauchy-Euler Equation, Adam E. Parker, 47:3, 2016, 191-198, 2.2
A Lagrangian Simulation of the Floating-Arm Trebuchet, Eric Constans, 48:3, 2017, 179-187, 4.1, 5.7.1, 6.5, 9.10
The Falling Ladder Paradox Revisited, Brittany A. Burke, Zach Jackson and Steven J. Kifowit, 49:1, 2018, 36-40, 5.1.3
The Method of Determined Coefficients, David M. Bradley, 50:1, 2019, 6.1
A Remark on Variation of Parameters, Pisamai Kittipoom, 50:3, 2019, 221-223, C
Sweeping Gestures: A Control Theory Model for Curling, Jeffrey Lawson and Matthew Rave, 51:2, 2020, 132-140, 0.4, 9.10
Formula for the Computation of the Matrix Exponential, João Teixeira & Maria João Borges, 51:5, 2020, 345-350, 4.1, 4.5
An Observation about First-Order Linear ODEs, Michael N. Fried, 52:2, 2021, 137-139, C, 6.1
Similarities in a First Differential Equations Course, Robert L. Sachs, 53:2, 2022, 104-115, 5.5, 5.7.3, 6.1, 6.6

6.3 Difference equations, discrete dynamical systems and fractals

Vectors Point Toward Pisa, Richard A. Dean, 2:2, 1971, 28-39, 4.3
A General Formula for the Nth Term of a Sequence, Etta Mae Whitten, 2:2, 1971, 96-98, 5.4.1
Telescoping Sums and the Summation of Sequences, G. Baley Price, 4:2, 1973, 16-29, 5.4.2
Stirling's Triangle of the First Kind—Absolute Value Style, Hugh Ouellette and Gordon Bennett, 8:4, 1977, 195-202, 0.2
Stirling's Numbers of the Second Kind—Programming Pascal's and Stirling's Triangles, Satish K. Janardan and Konanur G. Janardan, 9:4, 1978, 243-248, 0.2
Binary Grids and a Related Counting Problem, Nathan Hoffman, 9:4, 1978, 267-272, 3.1
Summation of Finite Series—A Unified Approach, Shlomo Libeskind, 12:1, 1981, 41-50, 5.4.2
Pascal's Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 3.2, 5.4.1, 9.2
The Factorial Triangle and Polynomial Sequences, Steven Schwartzman, 15:5, 1984, 424-426, C, 0.2, 5.4.1
A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 0.9, 3.1, 3.2, 5.4.2
The Pascal Polytope: An Extension of Pascal's Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 3.2, 5.4.1, 9.2
Generating Functions, William Watkins, 18:3, 1987, 195-211, 5.4.2, 9.3
Fibonacci Numbers and Computer Algorithms, John Atkins and Robert Geist, 18:4, 1987, 328-336, 5.1.4, 8.1
Two Simple Recursive Formulas for Summing 1^k + 2^k + ... + n^k, Michael Carchidi, 18:5, 1987, 406-409, C, 5.2.1
Powers and Roots by Recursion, Joseph F. Aieta, 18:5, 1987, 411-416, 0.2, 0.7
Elementary Transcendental Functions, Harley Flanders and J. Sutherland Frame, 18:5, 1987, 417-421, 5.3.3
Spreadsheets, Power Series, Generating Functions, and Integers, Donald R. Snow, 20:2, 1989, 143-152, 5.4.2
The Eternal Triangle—a History of a Counting Problem, Mogens Esrom Larsen, 20:5, 1989, 370-384, 3.2
6.4 Nonlinear differential equations

How to Balance a Yardstick on an Apple, Herbert R. Bailey, 17:3, 1986, 220-225, 9.10
Bat and Superbat, Herbert R. Bailey, 18:4, 1987, 307-314, 5.2.9

Newton's Orbit Problem: A Historian's Response, Curtis Wilson, 25:3, 1994, 193-200, 0.5, 2.2
Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 0.5, 2.2, 6.5

Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.1, 6.2

Quenching a Thirst with Differential Equations, Martin Ehrismann, 25:5, 1994, 413-418, 9.10
The Lighter Side of Differential Equations, J. M. McDill and Bjorn Felsager, 25:5, 1994, 448-452, C, 6.2
Gudermann and the Simple Pendulum, John S. Robertson, 28:4, 1997, 271-276, 5.3.1
Characterizing Power Functions by Volumes of Revolution, Bettina Richmond and Tom Richmond, 29:1, 1998, 40-41, C, 5.2.7
Finding Unpredictable Behavior in a Simple Ordinary Differential Equation, Lisa Humphreys and Ray Shammas, 31:5, 2000, 338-346
Using Differential Equations to Describe Conic Sections, Ranjith Munasinghe, 33:2, 2002, 145-148, C, 0.5
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.3, 5.3.4
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models, L. D. Humphreys and P. J. McKenna, 36:1, 2005, 16-26, 6.5
Some Half-Row Sums from Pascal’s Triangle via Laplace Transforms, Thomas P. Dence, 38:3, 2007, 205-209, 3.2
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 5.3.4, 6.3, 9.10
An Exactly Solvable Model for the Spread of Disease, Ronald E. Mickens, 43:2, 2012, 114-120, 9.10
Eradicating a Disease: Lessons from Mathematical Epidemiology, Matthew Glomski and Edward Ohanian, 43:2, 2012, 123-132, 2.2, 9.10
Correspondence Between Geometric and Differential Definitions of the Sine and Cosine, Horia I. Petrache, 45:1, 2014, 11-15, 0.6
On the Inverse Curvature Problem, Adam Glesser, James Shade, and Bogdan D. Suceava, 46:3, 2015, 207-214, 5.2.9, 5.5, 5.6.1, 9.8
Fold-over Regions in Nonlinear First Order PDEs, Milton F. Maritz and Mariët Cloete, 51:3, 2020, 204-215, 6.6, 9.9, 9.10

6.5 Numerical methods for differential equations

Newton’s Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 0.5, 2.2, 6.4
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models, L. D. Humphreys and P. J. McKenna, 36:1, 2005, 16-26, 6.4
Discretization vs. Rounding Error in Euler’s Method, Carlos F. Borges, 42:5, 2011, 396-398, C
Underground Mathematics, Charles Hadlock, 44:5, 2013, 364-375, 9.10
Collaborative Understanding of Cyanobacteria in Lake Ecosystems, Meredith L. Greer, Holly A. Ewing, Kathryn L. Cottingham and Kathleen C. Weathers, 44:5, 2013, 376-385, 6.2, 9.10
Climate Modeling in the Calculus and Differential Equations Classroom, Emek Kose and Jennifer Kunze, 44:5, 2013, 424-427, C, 6.1, 9.10
6.6 Other topics in differential equations

An Alternative Approach to the Vibrating String Problem, James Chew, 12:2, 1981, 147-149, C
A New Look at the Airy Equation with Fences and Funnels, John H. Hubbard, Jean Marie McDill, Anne Noonburg, and Beverly H. West, 25:5, 1994, 419-431, 6.2
Distinguished Oscillations of a Forced Harmonic Oscillator, T. G. Proctor, 26:2, 1995, 111-117, 6.2
Zeroing In on the Delta Function, Joan R. Hundhausen, 29:1, 1998, 27-32
Applications of Fourier Series in Classical Guitar Technique, James R. Hughes, 31:4, 2000, 300-303, C
If It’s in the Textbook, It Must Be True, Donald A. Teets, 31:4, 2000, 307-308, F, 4.6
On a Plucked String, Tommaso Toffoli, 34:5, 2003, 390-393, F
Boundary Value Problems and Finite Differences, Paul T. Allen, 47:1, 2016, 212-215, 7.2, 9.10

A Closer Look at the Compensating Polar Planimeter, John Eggers, 51:2, 2020, 105-116, 5.2.6, 5.7.3, 9.7
Fold-over Regions in Nonlinear First Order PDEs, Milton F. Maritz and Mariët Cloete, 51:3, 2020, 204-215, 6.4, 9.9, 9.10
Similarities in a First Differential Equations Course, Robert L. Sachs, 53:2, 2022, 87-97, 6.1, 6.2

Unlawful Calculations: A Look Into Lie’s Notebook, Johnner Barrett, 53:2, 2022, 104-115, 5.5, 5.7.3, 6.1, 6.2

6.7 Software for differential equations and dynamical systems

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
The Complete Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
Derive, A Mathematical Assistant, Jeannette R. Palmier, 23:2, 1992, 158-161
Theorist@, Francis Gullick, 24:2, 1993, 178-182
MicroCalc Version 6, L. Carl Leinbach, 24:3, 1993, 263-270
Maple@ V (software review), Eric R. Muller and K. J. Srivastava, 25:1, 1994, 56-63, 5.8
ODE Solvers for the Classroom, Andrew Flint and Ron Wood, 25:5, 1994, 458-461
Derive@, Version 3.0, reviewed by Lawrence G. Gilligan, 26:3, 1995, 238-243, 5.8
Forget Not the Lowly Spreadsheet, Michael G. Henle, 26:4, 1995, 320-328, 3.4
Dfield and Pplane, Alan T. Zehnder, 27:2, 1996, 144-148
Interactive Differential Equations, James P. Fink, 28:1, 1997, 63-66
VisualDSolve, Michael Frame, 28:5, 1997, 398-405
SAGE: Open Source Mathematics Software System, reviewed by J. K. Denny, 44:2, 2013, 149-155, C, 4.8, 5.8, 7.4, 9.11

7 Probability and Statistics
7.1 Games of chance (also see 9.2)

A Program for Keno, Karl J. Smith, 3:2, 1972, 16-20, 9.10
An Interesting Penny Game, Keith J. Craswell, 4:1, 1973, 18-25, 7.2
An Application from Combinatorics to Dice-Sum Frequencies, David L. Pugh, 11:5, 1980, 331-333, C, 3.2
Dice Tossing and Pascal's Triangle, John D. Neff, 13:5, 1982, 311-314, 7.2
Blackjack with n Decks, Philip G. Buckhiester, 14:4, 1983, 345-346, C, 7.2
Equalizing a Two-Person Alternation Game, Robert K. Tamaki, 18:2, 1987, 134-135, C, 7.2
How Many Bridge Actions?, Douglas S. Jungreis and Erich Friedman, 19:2, 1988, 171-172, C, 3.2
Maybe the Price Doesn't Have to be Right: Analysis of a Popular TV Game Show, Danny W. Turner and Dean M. Young and Virgil R. Marco, 19:5, 1988, 419-421, C, 7.2
Runs With No Winner in a Lottery, Richard Ilitis, 31:5, 2000, 356-361, 7.2
The Case of the Missing Lottery Number, W. D. Kaigh, 32:1, 2001, 15-19
A New Look at the Probabilities in Bingo, David B. Agard and Michael W. Shackleford, 33:4, 2002, 301-305, 7.2
Winning at Rock-Paper-Scissors, Derek Eyler, Zachary Shalla, Andrew Doumaux, and Tim McDevitt, 40:2, 2009, 125-128, C, 7.2, 9.2
An Empirical Approach to the St. Petersburg Paradox, Dominic Klyve and Anna Lauren, 42:4, 2011, 260-263, 5.4.2, 7.2, 9.10
The Bizarre World of Nontransitive Dice: Games for Two or More Players, James Grime, 48:1, 2017, 2-9, 7.2, 9.2
Balanced Nontransitive Dice, Alex Schaefer and Jay Schweig, 48:1, 2017, 10-16, 3.3, 7.2, 9.2
An Elementary Derivation of the Duration of Play in the Gambler’s Ruin Problem, Greg Orosi, Ricardo Alfaro, Lixing Han & Kenneth Schilling, 52:4, 2021, 299-301, C, 5.4.2, 7.2

7.2 Probability

An Interesting Penny Game, Keith J. Craswell, 4:1, 1973, 18-25, 7.1
How to Find a Needle in a Haystack, Keith J. Craswell, 4:3, 1973, 18-21
Why Isn't Penny Flipping Fairer?, Keith J. Craswell, 5:3, 1974, 18-19
The Birthday Problem Revisited, Joe Dan Austin, 7:4, 1976, 39-42
Independence and Intuition, V. N. Murty, 8:2, 1977, 106-107, C
Some New Ways of Solving a Coin Tossing Problem, Nathan Hoffman, 9:1, 1978, 6-10
Another Solution to a Coin-Tossing Problem, V. N. Murty, 10:1, 1979, 33-35, C
A Gambler's Ruin Problem, Ross Honsberger, 10:2, 1979, 108-111
Using Integrals to Evaluate Voting Power, Philip D. Straffin, Jr., 10:3, 1979, 179-191

Pictures, Probability and Paradox, Robert Nelson, 10:3, 1979, 182-190

Coin-Tossing Problem Revisited, Michael W. Chamberlain, 10:5, 1979, 349-350, C

Snowfalls and Elephants, Pop Bottles and Pi, Ralph Boas, 11:2, 1980, 82-89

Wavefronts, Box Diagrams, and the Product Rule: A Discovery Approach, John W. Dawson, Jr., 11:2, 1980, 102-106, 5.1.2

What are the Odds?—Constructing Competition Probabilities, Gerald D. Brazier, 11:2, 1980, 290-295

On Dice-Sum Frequencies, V. N. Murty, 12:3, 1981, 209-211, C, 3.2

What are the Odds?—Constructing Competition Probabilities, Gerald D. Brazier, 11:5, 1980, 28-35, 3.1

The Law of Succession and Bayes' Rule, V. N. Murty and B. H. Bissinger, 13:1, 1982, 44-51

Probability Solution to a Limit Problem, Homer W. Austin, 13:4, 1982, 272, C, 5.1.1

Dice Tossing and Pascal's Triangle, John D. Neff, 13:5, 1982, 311-314, 7.1

Minimally Favorable Games, Michael W. Chamberlain, 14:2, 1983, 159-164, 9.10

Probabilistic Dependence Between Events, Ruma Falk and Maya Bar-Hillel, 14:3, 1983, 240-243, 9.1

Blackjack with n Decks, Philip G. Buckhiester, 14:4, 1983, 345-346, C, 7.1

The Distribution of First Digits, Stephen H. Friedberg, 15:2, 1984, 120-125, 9.3

Application of a Generalized Fibonacci Sequence, Curtis Cooper, 15:2, 1984, 145-146, C, 5.4.1

The Dice Problem—Then and Now, Janet Bellcourt Pomeranz, 15:3, 1984, 229-237

A Monte Carlo Simulation Related to the St. Petersburg Paradox, Allan J. Cesear, 15:4, 1984, 339-342, 5.4.2, 9.10

On the Probability that the Better Team Wins the World Series, James L. Kepner, 16:4, 1985, 250-256, 3.2

Teaching Elementary Probability Through its History, Sharon Kunoff and Sylvia Pines, 17:3, 1986, 210-219, 2.2

A Geometric Interpretation of Simpson's Paradox, A. Tan, 17:4, 1986, 340-341

Combinatorics by Coin Flipping, Joel Spencer, 17:5, 1986, 407-412, 3.1, 3.2

Cryptology: From Caesar Ciphers to Public-Key Cryptosystems, Dennis Luciano and Gordon Prichett, 18:1, 1987, 2-17, 0.1, 9.3

Equalizing a Two-Person Alternation Game, Robert K. Tamaki, 18:2, 1987, 134-135, C, 7.1

The Probability that the "Sum of the Rounds" Equals the "Round of the Sum", Roger B. Nelsen and James E. Schultz, 18:5, 1987, 389-396, 7.3, 9.10

Theory, Simulation and Reality, Peter Flusser, 19:3, 1988, 210-222, 7.3, 9.10

Musical Notes, Angela B. Shiflet, 19:4, 1988, 345-347, C, 3.2, 9.2

Maybe the Price Doesn't Have to be Right: Analysis of a Popular TV Game Show, Danny W. Turner and Dean M. Young and Virgil R. Marco, 19:5, 1988, 419-421, C, 7.1
FFF. Lewis Carroll, Ed Barbeau, 23:4, 1992, 305, F
FFF. The Paradox of the Nontransitive Dice, Richard P. Savage, Jr., 26:1, 1995, 38, F
FFF. An Update on Probability Problems References, Ed Barbeau, 26:2, 1995, 132-133, F (see also 27:1, 1996, 46)
Pair Them Up! A Visual Approach to the Chung-Feller Theorem, David Callan, 26:3, 1995, 196-198
FFF #100. Getting Black Balls, Ed Barbeau, 27:2, 1996, 117, F (see also 27:3, 1996, 205)
FFF #104. Three Coins in the Fountain, Francis Galton, 27:3, 1996, 204, F
FFF #109. Your Lucky Number is in Pi, Ed Barbeau, 27:5, 1996, 370, F
A Nod to Bertrand Russell, Anthony Lo Bello, 28:2, 1997, 133, C
The Average Distance Between Points in Geometric Figures, Steven R. Dunbar, 28:3, 1997, 187-197, 9.10
Tying Up Loose Ends with Probability, Cathy Liebars, 28:5, 1997, 386-388, C
Singles in a Sequence of Coin Tosses, David M. Bloom, 29:2, 1998, 120-127
The Mathematics of Cootie, Min Deng and Mary T. Whalen, 29:3, 1998, 222-224, C
How Much Money Do You (or Your Parents) Need for Retirement?, James W. Daniel, 29:4, 1998, 278-283, 0.8
Relabeling Dice, Randall J. Swift and Brian C. Fowler, 30:3, 1999, 204-208
Casino Gambling: The Ultimate Strategy, Dennis Connolly, 30:4, 1999, 276-278
Do Most Cubic Graphs Have Two Turning Points?, Robert Fakler, 30:5, 1999, 367-369, 0.7, 5.2.6
A Rational Solution to Cootie, Arthur Benjamin and Matthew Fluet, 31:2, 2000, 124-125, C, 3.2
More on Cootie, Michael Hirschhorn, 31:2, 2000, 126-128, C, 3.2
Runs With No Winner in a Lottery, Richard Iltis, 31:5, 2000, 356-361, 7.1
FFF #164. A wrong route to a right answer, Yongzhi Yang, 31:5, 2000, 395-396, F
FFF #171. Chance of meeting, the editor, 32:1, 2001, 49-50, F
Perfecting the Analog of a Deck of Cards or Why Evolution Can’t Be Left to Chance, J. G. Simmonds, 33:1, 2002, 17-20, 9.10
A Tale of Two Series, Thomas J. Osler and Marcus Wright, 33:2, 2002, 99-106, 5.4.2
The Undying Novena, Christopher M. Rump, 33:2, 2002, 140-142, C
Sums of Uniformly Distributed Variables: A Combinatorial Approach, Jeanne Albert, 33:3, 2002, 201-206, 3.2
A New Look at the Probabilities in Bingo, David B. Agard and Michael W. Shackleford, 33:4, 2002, 301-305, 7.1
Parrondo’s Paradox – Hope for Losers!, Darrell P. Minor, 34:1, 2003, 15-20, 4.1
Tossing a Fair Coin, Leonard Lipkin, 34:2, 2003, 128-133
FFF Random obtuse-angled triangles, Ruma Falk, 34:3, 2003, 226, F
Dice Distributions Using Combinatorics, Recursion, and Generating Functions, Janet M. McShane and Michael I. Ratliff, 34:5, 2003, 370-376, 3.2
A Tale of Two Tickets, Marc Brodie, 35:3, 2004, 217-220, C
The Probability that an Amazing Card Trick Is Dull, Christopher Swanson, 36:3, 2005, 209-212, 3.2
A Geometric Series from Tennis, James Sandefur, 36:3, 2005, 224-226, C, 5.4.2
Exhaustive sampling and related binomial identities, Jim Ridenhour and David Grimmett, 37:4, 2006, 296-299, C, 3.2
Maximizing the Probability of a Big Sweepstakes Win, Michael W. Ecker, 38:1, 2007, 32-36
Tennis with Markov, Roman Wong and Megan Zigarovich, 38:1, 2007, 53-55, C, 4.5, 9.9, 9.10
Bernstein’s Examples on Independent Events, Czeslaw Stepniak, 38:2, 2007, 140-142, C
Not Just Hats Anymore: Binomial Inversion and the Problem of Multiple Coincidences, Leith Hathout, 38:3, 2007, 179-184, 3.2
Proof Without Words: Markov’s Inequality P[X>=a] <= E(X)/a, Pat Touhey, 39:4, 2008, 290, C
Winning at Rock-Paper-Scissors, Derek Eyler, Zachary Shalla, Andrew Doumaux, and Tim McDevitt, 40:2, 2009, 125-128, C, 7.1, 9.2
Cutting Cakes Carefully, Theodore P. Hill and Kent E. Morrison, 41:4, 2010, 312-324, 9.5
Gerrymandering and Convexity, Jonathan K. Hodge, Emily Marshall, and Geoff Patterson, 41:4, 2010, 312-324, 9.5
Probability 1/e, Reginald Koo and Martin L. Jones, 42:1, 2011, 9-13
Teaching Tip: Actuarial Science and Gompertz’s Law of Mortality, Jesse Byrne, 42:1, 2011, 40-42, 6.1
Mathematical Minute: Removing a Dot, Michael A. Jones, 42:2, 2011, 139 (see also 4. A mathematical minute, 42:5, 2011, 430)
Random Breakage of a Rod into Unit Lengths, Joe Gani and Randall Swift, 42:3, 2011, 201-205, 9.10
An Empirical Approach to the St. Petersburg Paradox, Dominic Klyve and Anna Lauren, 42:4, 2011, 260-263, 5.4.2, 7.1, 9.10
The Secretary Problem from the Applicant’s Point of View, Darren Glass, 43:1, 2012, 76-81, 3.2
Lake Wobegon Dice, Jorge Moraleda and David G. Stork, 43:2, 2012, 152-159, 3.3, 9.2, 9.9
Designing Medical Tests: The Other Side of Bayes’ Theorem, Andrew M. Ross, 43:3, 2012, 251-253, C, 9.10
Winning a Racquetball Match, Tom Brown and Brian Pasko, 43:5, 2012, 395-400, 9.10
Asset Pricing, Financial Markets, and Linear Algebra, Marcio Diniz, 44:1, 2013, 2-8, 4.1, 4.3, 9.9
Suspense at the Ballot Box, Nat Kell and Matt Kretchmar, 44:1, 2013, 9-16, 7.3, 9.10
To Replace or Not to Replace – That is the Question, John Engbers and Adam Hammett, 51:2, 2020, 117-123, 7.3

The Proportion of Comets in the Card Game SET, Dan May and Dan Swenson, 51:3, 2020, 162-172, 3.2, 4.3, 6.3, 9.1, 9.2, 9.4

Chance Encounters with Large Polynomials, Brian D. Jones, 51:3, 2020, 174-181, 0.2, 3.2

How to Win at Tenzi, Steve Bacinski and Timothy Pennings, 51:4, 2020, 242-253, 4.1, 7.1, 9.2, 9.9

Some Probability Calculations Concerning the Egyptian Game Senet, Joaquim Noqueira, Fatima Rodrigues, and Luis Trabucho, 51:4, 2020, 271-283, 5.2.6, 9.10

The Sock Problem Revisited, William Paulsen, 52:3, 2021, 193-203, 3.1, 3.2, 5.4.1, 6.3, 9.6

An Unusual Recursive Formula to Answer a Question Regarding Fixed Points in Permutations, Melanie Tian & Enrique Trevino, 52:3, 2021, 219-220, C, 3.2, 6.3

Parking Functions: Choose Your Own Adventure, Joshua Carlson, Alex Christensen, Pamela E. Harris, Zakiya Jones & Andrés Ramos Rodríguez, 52:4, 2021, 254-26, 3.2, 9.2

An Elementary Derivation of the Duration of Play in the Gambler’s Ruin Problem, Greg Orosi, Ricardo Alfaro, Lixing Han & Kenneth Schilling, 52:4, 2021, 299-301, C, 5.4.2, 7.1

7.3 Statistics (also see 9.10)

Cauchy’s Inequality and the Least Squares Line, William Stenger, 6:1, 1975, 2-4

Random Charity: A Stochastic Sieving Problem and its Connection with the Euclidean Algorithm, Roland Engdahl and Karl Greger, 6:4, 1975, 4-9

Statistical Inference for the General Education Student—It Can Be Done, Allen H. Holmes, Walter Sanders and John LeDuc, 8:4, 1977, 223-230

The Use of Sports Data for Integrating Topics in Introductory Statistics, Robert L. Heiny, 9:1, 1978, 28-33

Classroom Demonstration of a Confidence Interval, Wayne Andrepont and Peter Dickinson, 9:1, 1978, 34-36

The Range of the Standard Deviation, Lawrence Sher, 10:1, 1979, 33, C

How Close are the Mean and the Median?, Stephen A. Book, 10:3, 1979, 202-204, C

An Expected Value Problem, Harris S. Schultz, 10:4, 1979, 277-278, C

Bounds for the Sum of Absolute Standard Scores, Lawrence Sher, 10:5, 1979, 351-353, C

An Expected Value Problem Revisited, W. J. Hall, 11:3, 1980, 204-205

A Bound for Standard Scores, Lawrence Sher, 11:2, 1980, 334-335, C

Another Look at the Mean, Median, and Standard Deviation, Ruma Falk, 12:3, 1981, 207-208, C

Bounds for the Ratio of the Arithmetic Mean to the Geometric Mean, M. Perisastry and V. N. Murty, 13:2, 1982, 160-161, C

Nearness Relations Among Measures of Central Tendency and Dispersion: Part 2, Warren Page and V. N. Murty, 14:1, 1983, 8-17
Another Proof of the Inequality \((n^2)(\sigma)^2 < (n^2/4)(R^2)\), V. N. Murty and M. Perisastry, 14:1, 1983, 61-63, C
Interfractile Ranges, Warren Page, 14:2, 1983, 170-172, C
Computer Simulations to Clarify Key Ideas of Statistics, Thomas Kersten, 14:5, 1983, 416-420
Some Breakthroughs in Statistical Methodology, Herbert Robbins, 15:1, 1984, 25-29
On the Mean and Standard Deviation of a Random Sample, Vedula N. Murty, 15:1, 1984, 60-62
A Geometrical Interpretation of the Weighted Mean, Larry Hoehn, 15:2, 1984, 135-139, 0.2, 0.4
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 5.4.1, 9.6
Accurate Computation of Variance, Jerry A. Roberts, 16:2, 1985, 149-150
Instances of Simpson's Paradox, Thomas R. Knapp, 16:3, 1985, 209-211, C, 0.2
The Probability that the "Sum of the ROUNDS" Equals the "Round of the Sum", Roger B. Nelsen and James E. Schultz, 18:5, 1987, 390-396, 7.2, 9.10
Should Mathematicians Teach Statistics?, David S. Moore, 19:1, 1988, 3-7, 1.2
Should Mathematicians Teach Statistics? (Response), A. Blanton Godfrey, 19:1, 1988, 8-32, 1.2
No! But Who Should Teach Statistics?, Judith Tanur, 19:1, 1988, 8-32, 1.2
Statistics Teachers need Experience With Data, R. Gnanadesikan and J. R. Kettenring, 19:1, 1988, 8-32, 1.2
The Mathematicians' Statistics Has a Subsidiary Role, Barbara A. Bailar, 19:1, 1988, 8-32, 1.2
Growth and Advances in Statistics, Frederick Mosteller, 19:1, 1988, 8-32, 1.2
Statistician, Examine Thyself, Gudmund R. Iversen, 19:1, 1988, 8-32, 1.2
It's Not "By Whom" But Rather "How", John E. Freund, 19:1, 1988, 8-32, 1.2
The Need for Good Teaching of Statistics, Henry L. Alder, 19:1, 1988, 8-32, 1.2
Let the Experts Teach and Judge, David L. Hanson, 19:1, 1988, 8-32, 1.2
Who Teaches What to Whom?, Michael Reed, 19:1, 1988, 8-32, 1.2
What Should the Introductory Statistics Course Contain?, Gerald J. Hahn, 19:1, 1988, 8-32, 1.2
Mathematics is Only One Tool that Statisticians Use, Ronald D. Snee, 19:1, 1988, 8-32, 1.2
Reaction to Responses to "Should Mathematicians Teach Statistics?", David S. Moore, 19:1, 1988, 32-34, 1.2
Theory, Simulation and Reality, Peter Flusser, 19:3, 1988, 210-222, 9.10, 7.2
Using Leverage and Influence to Introduce Regression Diagnostics, David C. Hoaglin, 19:5, 1988, 387-401
Conditional Expectations and the Correlation Function, Barthel W. Huff, 20:1, 1989, 55-57, C
A Note on Pascal's Triangle and Simple Random Sampling, Tommy Wright, 20:1, 1989, 59-66
Using Median Splits to Motivate Learning, David P. Doane, 20:3, 1989, 228-229, C
The Longest Run of Heads, Mark F. Schilling, 21:3, 1990, 196-207
Bernoulli Trials and the Central Limit Theorem, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 415-416, C
Least Squares and Quadric Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.7.1, 5.6.2
Determining Sample Sizes for Monte Carlo Integration, David Neal, 24:3, 1993, 254-262, C, 5.2.2, 9.10
Chebyshev's Theorem: A Geometric Approach, Pat Touhey, 26:2, 1995, 139-141, C
MAD Property of Medians: An Induction Proof, Eugene F. Schuster, 26:5, 1995, 387-389, C, 0.9
Will the Real Best Fit Curve Please Stand Up?, Helen Skala, 27:3, 1996, 220-223, C, 5.7.1
What is the Margin of Error of a Poll?, Bennett Eisenberg, 28:3, 1997, 201-203, C
Student's t and Crackers, Paul M. Sommers, 30:1, 1999, 32-34
Recommendations for Teaching the Reasoning of Statistical Inference, Allan Rossman and Beth Chance, 30:4, 1999, 297-305, 1.1
Getting Normal Probability Approximations Without Using Normal Tables, Peter Thompson and Lorrie Lendvoy, 31:1, 2000, 51-54, C
The Geometry of Statistics, David Farnsworth, 31:3, 2000, 200-204
A Calculus Theorem Motivated by a Statistics Problem, David L. Farnsworth, 35:2, 2004, 126-129, C
The Lognormal Distribution, Brian E. Smith and Francis Merceret, 31:4, 2000, 259-261
Well-Rounded Figures, Yves Nievergelt, 32:1, 2001, 30-32, 9.6
Is Presidential Greatness Related to Height?, Paul M. Sommers, 33:1, 2002, 14-16
Distortion of average class size: The Lake Wobegon effect, Allen Schwenk, 37:4, 2006, 293-296, C
A Calculus Theorem Motivated by a Statistics Problem, David L. Farnsworth, 35:2, 2004, 126-129, C
A Recursive Formula for Moments of a Binomial Distribution, Arpad Benyi and Saverio M. Manago, 36:1, 2005, 68-72, C
The Sample Correlation Coefficient from a Linear Algebra Perspective, C. Ray Rosentrater, 37:1, 2006, 47-50, C, 4.3
An Elegant Mode for Determining the Mode, D. S. Broca, 37:2, 2006, 134-137, C
An Upper Bound for the Expected Range of a Random Sample, Manuel Lopez and James Marengo, 41:1, 2010, 42-48
The Distribution of the Sum of Signed Ranks, Brian Albright, 43:3, 2012, 232-236
Suspense at the Ballot Box, Nat Kell and Matt Kretchmar, 44:1, 2013, 9-16, 7.2, 9.10
Gender Bias?, Elizabeth A. Burroughs and Jessica M. Deshler, 44:2, 2013, 88, C
Quiz Today: Should I Skip Class?, Peter Zizler, 44:3, 2013, 166-170
Seasonal Variation in Epidemiology, Osvaldo Marrero, 44:5, 2013, 386-398, 9.10
Student Research Project: About the Pace of Climate Change: Write a Report to the President, Lily Khadjavi, 44:5, 2013, 428-432, C, 5.1.5, 9.10
Calculus from a Statistics Perspective, Kimberly Leung, Chris Rasmussen, Samuel S. P. Shen, and Dov Zazkis, 45:5, 2014, 377-386, 5.1.2, 5.2.1
Predicting Wins and Losses: A Volleyball Case Study, Elizabeth Knapper and Hope McIlwain, 46:5, 2015, 352-358, 4.1, 9.10
Simplified Expectations in the Birthday Problem, Leonard Littleton and Russell May, 47:1, 2016, 50-55, 5.3.4, 5.4.3
Empirical Modeling: Choosing Models and Fitting Them to Data, Glenn Ledder, 47:2, 2016, 109-119, 9.10
Statistics on the Bonus Round of Wheel of Fortune, Kathleen Ryan and Brittany Shelton, 47:4, 2016, 250-253, 7.3, 9.2
A Very Short Proof that the Sum of Independent Normal Random Variables Is Normal, Bennett Eisenberg, 48:2, 2017, 137, C
A Curious Feature of Regression, Carl V. Lutzer, 48:3, 2017, 189-198, 4.1
A Riemann Sum Approach to Buffon's Needle, Stephen Kaczkowski, 50:2, 2019, 93-102, 5.2.1, 7.2
The Choking Index: An Analysis of Performance Under Pressure on the PGA Tour, William W. Miles and Sammi E. Smith, 49:4, 2019, 260-271, 9.2
A Two-Dimensional Perspective on Simpson's Paradox and Its Likelihood, Michael A. Jones, 49:4, 2019, 295-297, C, 0.4, 9.2, 9.10
Modeling Emergency Room Arrivals Using the Poisson Process, Lindsey Bell and Rachel Wagner, 49:5, 2019, 343-350, 7.2, 9.10
To Replace or Not to Replace – That is the Question, John Engbers and Adam Hammett, 51:2, 2020, 117-123, 7.2
Extremal Correlation Coefficients for Bivariate Probability Distributions with Specified Marginal Distributions, Anurag Agarwal, David L. Farnsworth, Carl V. Lutzer, James E. Marengo, and J. A. Stephen Viggiano, 52:1, 2021, 45-53
Statistical Significance of the Median of a Set of Points on the Plane, Antonio J. Moreno Verdejo, Abraham Lopez Viveros & Rafael Ramirez Ucles, 52:3, 2021, 205-218, 0.3, 0.4, 9.7
Proof Without Words: Convex Hulls and Jensen’s Inequality, Dennis L. Sun, 52:4, 2021, 298, C, 9.5
Correlation and Subtraction, Hanumant Singh Shekhwat, 53:3, 2022, 233-234, C

7.4 Software for probability and statistics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
Software Reviews: Activestats, Norman Preston, 32:2, 2001, 138-140
SAGE: Open Source Mathematics Software System, reviewed by J. K. Denny, 44:2, 2013, 149-155, C, 4.8, 5.8, 6.7, 9.11
Statistics Web Apps, Anne Quinn, 48:5, 2017, 378-382

8 Computer Science

8.1 Programming and algorithms

Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 0.4, 3.3
Enhancing the Value of Graphics Programs, Clifford H. Wagner, 18:2, 1987, 142-152, 8.3
Controlling Roundoff Errors in Sums, Harley Flanders, 18:2, 1987, 153-156, 9.6
Computing Pi, Harley Flanders, 18:3, 1987, 230-235, 5.2.3, 5.4.2
Computing mth Roots, Keith Mathews, 19:2, 1988, 174-176

FFF #234. Multiplication algorithms, Yves Nievergelt, 39:2, 2008, 137-138, F, 0.1
The Tower and Glass Marbles Problem, Richard Denman, David Hailey, and Michael Rothenberg, 41:5, 2010, 350-356, 3.2
Winning a Pool is Harder Than You Thought, John P. Bonomo, 47:5, 2016, 347-354

8.2 Data structures

Generating Posets, Harley Flanders, 18:4, 1987, 323-327, 9.4
The Flowering of String Rewriting Systems, Anne M. Burns, 23:3, 1992, 225-235, 8.3

8.3 Computer graphics

Enhancing the Value of Graphics Programs, Clifford H. Wagner, 18:2, 1987, 142-152, 8.1
Drawing a Circle, Harley Flanders, 19:1, 1988, 72-78
Parametric Surfaces, Harley Flanders, 19:5, 1988, 444-447, 5.6.1
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 5.1.5, 9.5
Calculus and Computer Vision, Mark Bridger, 23:2, 1992, 132-141, 5.7.1
The Flowering of String Rewriting Systems, Anne M. Burns, 23:3, 1992, 225-236, 8.2

Complex Vectors and Image Identification, Lyndell Kerley and Jeff Knisley, 24:2, 1993, 166-174, 9.6
A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 1.2, 5.7.1
Making Mountains from a Sum of Molehills, Anne M. Burns, 26:1, 1995, 51-57
Modeling Trees with a Stochastic Matrix, Anne M. Burns, 29:3, 1998, 230-236, 3.1
Breaking the Holiday Inn Priority Club CAPTCHA, Edward Aboufadel, Julia Olsen, and Jesse Windle, 36:2, 2005, 101-108, 4.7, 9.10

The Barycenter Theorem: Averaging Possible-Paths to Produce Optimal Discrete Straight-line Segments, Robert M. French and Patrick Gehant, 50:2, 2019, 103-114, 3.2, 9.7
8.4 Other topics in computer science

Of Memories, Neurons, and Rank-One Corrections, Kevin G. Kirby, 28:1, 1997, 2-19, 4.6
Riemann Sums for Generalized Integrals, Jean-Paul Truc, 50:2, 2019, 123-132, 5.2.1, 5.2.9, 5.2.10, 5.4.2
Idempotent Factorizations in the Cryptography Classroom, Barry S. Fagin, 51:3, 2020, 195-203, 9.3

9 Other Topics

9.1 Set theory and logic (also see 0.9)

If...Some Suggestions on Presenting the Connector "if...then", Aaron Seligman, 1:2, 1970, 22-26, 0.9
Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 5.1.2, 3.2
Some Applications of the Law of the Contraapositive, Morton J. Hellman, 4:3, 1973, 86-88, C, 0.9
The Equivalence of the Well-Ordering Principle and Dirichlet's Box Principle, Aron Pinker, 5:1, 1974, 76-77, C
Godel's Theorem (Part I), Richard Wiebe, 6:2, 1975, 13-17
Godel's Theorem (Part II), Richard Wiebe, 6:3, 1975, 4-7
Mathematics—Is It Any of Your Business?, Ralph Mansfield, 6:3, 1975, 20-26, 3.1, 1.2
Solving Whodunits by Symbolic Logic, Lawrence Sher, 6:4, 1975, 36-38
On the Definition of Implication: Classroom Discussion and Justification, Ray F. Snipes, 8:4, 1977, 247-252, C
Types of Relations, Kenneth Slonneger, 8:5, 1977, 267-269
Boolean Algebra as a Proof Paradigm, Lawrence Sher, 9:3, 1978, 186-190
Analogies and Metaphors to Explain Godel's Theorem, Douglas R. Hofstadter, 13:2, 1982, 98-114
A Machine as Smart as God, Rudy Rucker, 13:2, 1982, 115-121, 2.2
The Asylum of Doctor Tarr and Professor Fether, Raymond Smullyan, 13:2, 1982, 142-146
Probabilistic Dependence Between Events, Ruma Falk and Maya Bar-Hillel, 14:3, 1983, 240-247, 7.2
Is the Venn Diagram Good Enough?, Mou-Liang Kung and George C. Harrison, 15:1, 1984, 48-50, 0.2
The Construction of Venn Diagrams, Branko Grunbaum, 15:3, 1984, 238-247
An Odd Induction Proof, Karl David, 15:3, 1984, 251, C
How to Live to be 100, Robert Geist, 15:4, 1984, 256-263
On Venn Diagrams and the Counting of Regions, Branko Grunbaum, 15:5, 1984, 433-435, C
Satan, Cantor, and Infinity, Raymond M. Smullyan, 16:2, 1985, 118-121

The Game of Sprouts, Gordon D. Prichett, 7:4, 1976, 21-25, 3.1
Connect-It Games, Frank Harry and Robert W. Robinson, 15:5, 1984, 411-419, 3.1
Pascal's Triangle, Karl J. Smith, 4:1, 1973, 1-13, 0.6, 3.2
Fibonacci Numbers and Pineapple Phyllotaxy, Judithlynne Carson, 9:3, 1978, 132-136, 5.4.1
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.1, 3.3
Isomorphisms on Magic Squares, Ali R. Amir-Moez, 14:1, 1983, 48-51, 0.2, 9.3, 9.4
Paths and Pascal Numbers, John F. Lucas, 14:4, 1983, 329-341, 3.2
A Tiling of the Plane with Triangles, Paul T. Mielke, 14:5, 1983, 377-381, 0.3, 9.3
Pascal's Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 3.2, 5.4.1, 6.3
The Pascal Polytope: An Extension of Pascal's Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 3.2, 5.4.1, 6.3
Pascal Triangles and Combinations Where Repetitions Are Allowed, Kendell Hyde, 19:1, 1988, 60-62, C, 3.2
Musical Notes, Angela B. Shiflet, 19:4, 1988, 345-347, C, 7.2, 3.2
Permutation Puzzles: Student Research Project, John H. Wilson, 24:2, 1993, 163-165, 3.2
FFF. A Centennial Tribute to Sam Loyd, Dean Clark, 23:5, 1992, 402-404, F
Digits in Triangular Squares, Dipendra Sengupta, 30:1, 1999, 31, C
Modeling Mathematics With Playing Cards, Martin Gardner, 31:3, 2000, 173-177
On Lunda-Designs and the Construction of Associated Magic Squares of Order 4p, Paulus Gerdes, 31:3, 2000, 182-188, 0.3
Numerology Marches On, David Singmaster, Lawrence Braden, Peter Y. Woo and Brian Stewart Watts, 31:3, 2000, 236-237, C
Some New Results on Magic Hexagrams, Martin Gardner, 31:4, 2000, 274-280, 3.2
Analyzing Games of Information, Randall McCutcheon, 32:2, 2001, 82-90
The Lord Over Better and Worse Births, John Fossa and Glenn Erickson, 32:3, 2001, 185-193, 9.3
Miscellanea: Clock Arithmetic, Carlton A. Lane, 32:4, 2001, 317, C
A Visit With Six, Monte J. Zerger, 33:2, 2002, 74-87, 9.3
A Poem: A Meeting with Sunya, V. V. Dixit, 33:2, 2002, 166-167, C
The “Origin” of Geometry, Reuben Hersh, 33:3, 2002, 207-211, 0.3, 2.1
Alice in Numberland: An Informal Dramatic Presentation in 8 fits, Robin Wilson, 33:5, 2002, 354-377
Lewis Carroll’s Amazing Number-Guessing Game, Richard F. McCoart, 33:5, 2002, 378-383, 0.2
A 51-star U. S. Flag, Gary Kennedy, 34:2, 2003, 170-171, C
FFF #233. Measuring humour, Timandra Harkness and Helen Pilcher, 36:1, 2005, 50-51, F
How to Ensure That Level Heads Prevail, Shmuel Zamir and Ruma Falk, 36:5, 2005, 396, 418, C
Graeco-Latin Squares and a Mistaken Conjecture of Euler, Dominic Klyve and Lee Stemkoski, 37:1, 2006, 2-15, 3.2, 9.4
A Card Trick and the Mathematics Behind It, Gabriela R. Sanchis, 37:2, 2006, 103-109, 9.5
The Non-Attacking Queens Game, Hassan Noon and Glen Van Brummelen, 37:3, 2006, 223-227, C
We Didn’t Start Mathematics (song lyrics), Brian Beasley, 38:3, 2007, 204, 209, C
The Number-Pad Game, Alex Fink and Richard Guy, 38:4, 2007, 260-264
Hermit Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 0.4, 5.7.1
Number Place – The First Sudoku, Ed Pegg, Jr., 39:1, 2008, 33, C
Finding All Solutions to the Magic Hexagram, Alexander Karabegov and Jason Holland, 39:2, 2008, 102-106, 3.2
They Say Mathematics is Beautiful (poem), Kung-Ming Tiong, 39:2, 2008, 128, C
Tuning with Triangles, Leon Harkleroad, 39:5, 2008, 367-373, 2.2
Sam Loyd’s Courier Problem with Diophantus, Pythagoras, and Martin Gardner, Owen O’Shea, 39:5, 2008, 387-391, C, 0.2, 0.7
Two Applications of a Hamming Code, Andy Liu, 40:1, 2009, 2-5, 9.1, 9.3
Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 0.4, 2.1
Winning at Rock-Paper-Scissors, Derek Eyler, Zachary Shalla, Andrew Doumaux, and Tim McDevitt, 40:2, 2009, 125-128, C, 7.1, 7.2
L-Tromino Tilings of Mutated Chessboards, Martin Gardner, 40:3, 2009, 162-168, 9.7
Set of Mutually Orthogonal Sudoku Latin Squares, Ryan M. Pedersen and Timothy L. Vis, 40:3, 2009, 174-180, 9.4
Jeeps Penetrating a Hostile Desert, Herb Bailey, 40:3, 2009, 182-188, 9.9, 9.10
Three Poems, Caleb Emmons, 40:3, 2009, 188, 0.1
Flipping Triangles!, Marc Zucker, 40:3, 2009, 189-193, 3.1
n-Card Tricks, Hang Chen and Curtis Cooper 40:3, 2009, 196-201, 3.2
Reflections on the N + k Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 3.2, 4.1
Crossword Puzzle: \(\pi_1 \cong \mathbb{Z} \oplus \mathbb{Z} \), Gary Kennedy, 40:3, 2009, 212
We shall find the Cube of the Rainbow (poem), Emily Dickinson, 40:5, 2009, 336, C
MoonPi, Bathsheba Grossman, 40:5, 2009, 344, C
To Divine Proportion (poem), Rafael Alberti, 40:5, 2009, 375, C
Brown Sharpie: Advanced Frisbee Calculus, Courtney ??, 41:1, 2010, 16, C
Grobner Basis Representations of Sudoku, Elizabeth Arnold, Stephen Lucas, and Laura Taalman, 41:2, 2010, 101-111, 9.4
Sonnet (poem), Susan Colley, 41:2, 2010, 144, C
Three Poems, Nicole Younger Halpern, 41:3, 2010, 233-234, C
How Bound Tetrahedron Wraps a Real Tetrahedron, Roger Berry, 41:5, 2010, 356, C, 0.3
Poem: A Little Love Story, Bonnie Shulman, 41:5, 2010, C
How Iterated Mobius was constructed, Anne Burns, 42:1, 2011, 14, C
Mathematical Jeopardy?, Andy Liu, 42:1, 2011, 24, C
Boundary Conditions (poem), Ursula Whitcher, 42:1, 2011, 56, C
Mathematics at the Movies, Martin J. Erickson, 42:3, 2011, 228, C
Folding Polyominoes from One Level to Two, Greg N. Frederickson, 42:4, 2011, 265-274, 0.3, 9.7
The Easiest Lights Out Games, Bruce Torrence, 42:5, 2011, 361-371, 4.1, 4.3
Student Research Project: One-dimensional Czedli-type Islands, Eszter K. Horvath, Attila Mader, and Andreja Tepavcevic, 42:5, 2011, 374-378, C, 0.9, 3.2, 9.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 3.2, 9.4, 9.8
Story Puzzles, Oscar Levin, 45:4, 2014, 296, C, 9.1
Knights, Knaves, Normals, and Neutrals, Jason Rosenhouse, 45:4, 2014, 297-306, 9.1
A Prehistory of Nim, Lisa Rougetet, 45:5, 2014, 358-363, 2.2, 3.2
Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.2, 0.7, 3.2, 5.1.1, 5.4.1, 9.3
Proof Without Words: Each But Two Triangular Numbers Is a Sum of Three Triangular Numbers, Roger B. Nelsen, 46:3, 2015, 172, C, 3.2, 9.3
MAA 100th Anniversary CMJ Puzzle A, David Nacin, 46:4, 2015, 254, C
Candy Crush Combinatorics, Dana Rowland, 46:4, 2015, 255-262, 3.2
MAA 100th Anniversary CMJ Puzzle C, David Nacin, 46:4, 2015, 263, C
Square-Sum Pair Partitions, Gordon Hamilton, Kiran S. Kedlaya, and Henri Picciotto, 46:4, 2015, 264-269, 0.1, 9.3
The Uniqueness of Rock-Paper-Scissors-Lizard-Spock, Brian J. Birgen, 46:4, 2015, 270-273, 3.2
MAA 100th Anniversary CMJ Puzzle J, David Nacin, 46:4, 2015, 274, C
MAA 100th Anniversary CMJ Puzzle M, David Nacin, 46:4, 2015, 294, C
A Magic Trick Leads to an Identity: Some Induction Fun, Robert W. Vallin, 46:4, 2015, 295-298, C, 0.9, 3.2
Proof Without Words: Centered Triangular Numbers, Roger B. Nelsen, 46:5, 2015, 335, C, 0.2, 3.2, 9.3
Abbott-and-Costello Numbers, Howard Sporn, 47:2, 2016, 126-132, 4.1, 9.3
Phillip Larkin’s Koan, Paisley Rekdal, 47:2, 2016, 133, C
Proof Without Words: Matchstick Triangles, Tom Edgar, 47:3, 2016, 207, C, 9.3
Babbage and Carroll in the Silent Workshop, 1867, Neil Aitken, 47:3, 2016, 215, C
Rankings Over Time, Michael A. Jones, Alexander Webb, and Jennifer Wilson, 47:4, 2016, 242-248, 5.4.2, 9.8
MAA 101st Anniversary CMJ Puzzle A, David Nacin, 47:4, 2016, 249, C
Statistics on the Bonus Round of Wheel of Fortune, Kathleen Ryan and Brittany Shelton, 47:4, 2016, 250-253, 7.3
MAA 101st Anniversary CMJ Puzzle C, David Nacin, 47:4, 2016, 254, C
MAA 101st Anniversary CMJ Puzzle J, David Nacin, 47:4, 2016, 264, C
Algebra From Geometry in the Card Game SET, Timothy E. Goldberg, 47:4, 2016, 265-273, 9.4, 9.7
MAA 101st Anniversary CMJ Puzzle M, David Nacin, 47:4, 2016, 274, C
Horse Racing Odds: Can You Beat the Track by Hedging Your Bets?, Joel Pasternack and Stewart Venit, 47:4, 2016, 275-280, 4.1, 7.2
The FA Cup Draw and Pairing Up Probabilities, Patrick Sullivan, 47:4, 2016, 282-292, 3.2, 7.2
MAA 101st Anniversary CMJ Puzzles Solutions, David Nacin, 47:4, 2016, 293, C
Form (poem), Sarah Blake, 47:5, 2016, 333, C, 9.8
Do the Twist! (on Polygon-Base Boxes), sarah-marie belcastro and Tamara Veenstra, 47:5, 2016, 340-345, 0.3, 0.6
The Bizarre World of Nontransitive Dice: Games for Two or More Players, James Grime, 48:1, 2017, 2-9, 7.1, 7.2
Balanced Nontransitive Dice, Alex Schaefer and Jay Schweig, 48:1, 2017, 10-16, 3.3, 7.1, 7.2
A Plane Angle Poem, Jordie Albiston, 48:1, 2017, 30, C
Forgotten Equations (poem), Kazim Ali, 48:2, 2017, 111, C
Distances Between Factorizations of the Chicken McNugget Monoid, Scott Chapman, Pedro Garcia-Sanchez & Christopher O’Neill, 52:3, 2021, 158-176, 3.1, 3.2, 9.4
Puzzles of Cardinality, Oscar Levin & Tyler Markkanen, 52:4, 2021, 243-25, 9.1
Parking Functions: Choose Your Own Adventure, Joshua Carlson, Alex Christensen, Pamela E. Harris, Zakiya Jones & Andrés Ramos Rodriguez, 52:4, 2021, 254-26, 3.2, 7.2
Magic Card Tricks on Hamming Codes over Finite Fields, Hideo Nagahashi, 52:4, 2021, 281-288, 4.1, 9.4
Exploring and Extending the Impossible Card Location Trick, Samantha Pezzimenti, Geovanni DiCicco, Aditya Kommoju, and Dhanush Rajesh, 52:5, 2021, 356-363, 9.3
Arranging Beetles, Robert Gallant & Georg Gunther, 53:1, 2022, 3-12, 3.1, 3.2
Report on the 12th Annual USA Junior Mathematical Olympiad, Bela Bajnok & Evan Chen, 53:1, 2022, 13-20, 0.3, 3.2, 5.4.1, 9.1, 9.3, 9.5

9.3 Number theory (also see 0.1)

The Irrationality of Certain Numbers, Peter A. Lindstrom, 1:1, 1970, 30-31, 0.2
F(1) Rejection Theorem, Howard Sarr, 1:2, 1970, 39-40
F(1) and F(d) Rejection Theorems, William I. Miller, 2:2, 1971, 95-96
Pythagorean Triples by Geometry, Steven L. Kleiman, 3:1, 1972, 39-41
Anomalous Cancellation, R. P. Boas, Jr., 3:2, 1972, 21-24
ab=c, Sidney Penner, 4:2, 1973, 86-87, C
Fermat Numbers, W. G. Leavitt, 4:3, 1973, 7-10
Random Sieving and the Prime Number Theorem, Karl Greger, 5:1, 1974, 41-46, 5.3.2
The Computer as an Aid to Discovery, Frederick H. Young, 5:3, 1974, 55-57
On Generalized h-Base, Norman Woo, 6:3, 1975, 16-17
Quasi-Pythagorean Triples for an Oblique Triangle, Kay Dundas, 8:3, 1977, 152-155, 0.6
Methods of Random Number Generation, Edwin G. Landauer, 8:5, 1977, 296-303
A Note on Angle Construction, Richard L. Francis, 9:2, 1978, 73-75
The Pigeonhole Principle, Kenneth R. Rebman, 10:1, 1979, 3-13, 3.1
Triangular Squares, Bill Leonard and Harris S. Schultz, 10:3, 1979, 169-171
Two Distinguished Integers, Ross Honsberger, 10:3, 1979, 195-197
Billiard Balls and a Number Theory Result, Charles H. Jepsen, 10:5, 1979, 306-312
The Use of Generating Functions to Discover and Prove Partition Identities, Henry L. Alder, 10:5, 1979, 318-329
On Sets of Points in the Plane and A Property of the Binomial Coefficients, Ross Honsberger, 11:2, 1980, 116-119, 0.3
Another Derivation of a Double Inequality, Norman Schaumberger, 11:4, 1980, 273, C
An Elementary Gem Concerning pi(n), the Number of Primes less than or equal to n, Ross Honsberger, 11:5, 1980, 305-312
Factoring Factorials, Richard J. Friedlander, 12:1, 1981, 12-20
Short Stories in Number Theory, Ross Honsberger, 12:1, 1981, 34-40
Some Conjectures on Fermat's Last Conjecture, Lawrence Sher and David Sher, 12:1, 1981, 51-52, C
Applying Complex Arithmetic, Herbert L. Holden, 12:3, 1981, 190-194, 0.6, 5.3.1, 9.5
Forward and Backward with Euclid, Gary E. Stevens, 12:5, 1981, 302-306
Sievings Primes on a Micro, Harley Flanders and Alan F. Tomala, 19:4, 1988, 364-367, 8.1
Amalgamation fo Formulae for Sequences, N. S. Mendelsohn, 19:5, 1988, 421-424, C
Finding Rational Roots of Polynomials, Don Redmond, 20:2, 1989, 139-141, C, 0.7
Strings of Strongly Composite Integers and Invisible Lattice Points, Peter Schumer, 21:1, 1990, 1990, 37-40, C
Computer-Aided or Analytic Proof?, Herve Lehning, 21:3, 1990, 228-239
Triangles with Integer Sides and Sharing Barrels, David Singmaster, 21:4, 1990, 278-285, 0.4
The Birth of the Eotvos Competition, Agnes Arvai Wieschenberg, 21:4, 1990, 286-293, 2.2
Polar Summation, Loretta McCarty, 21:5, 1990, 397-398, C
Secrets of the Faro: Student Research Project, Irl C. Bivens, 22:2, 1991, 144-147, 9.4
Summation by Parts, Gregory Fredricks and Roger B. Nelsen, 23:1, 1992, 39-44, C, 5.1.2, 5.4.1, 5.4.2
The Probability that (a, b)=1, Aaron D. Abrams and Matteo J. Paris, 23:1, 1992, 47, C
Number Theory and Linear Algebra: Exact Solutions of Integer Systems, George Mackiw, 23:1, 1992, 52-58, 4.1
A Serendipitous Application of the Pythagorean Triplets, Susan Forman, 23:4, 1992, 312-314, C, 0.2
Sums of Triangular Numbers, Roger B. Nelsen, 23:5, 1992, 417, C
Geometry: A Gateway to Understanding, Peter Hilton and Jean Pedersen, 24:4, 1993, 298-317, 0.3
Towers of Powers Modulo m, Robert J. MacG. Dawson, 25:1, 1994, 22-28
Eisenstein's Misunderstood Geometric Proof of the Quadratic Reciprocity Theorem, Reinhard C. Laubenbacher and David J. Pengelley, 25:1, 1994, 29-34
Frequencies of Digits in Factorials: An Experimental Approach, Michael L. Treuden, 25:1, 1994, 48-55
Euclid's (Gaussian) Algorithm: A Lattice Approach, Steve Benson, 25:2, 1994, 118-124
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 4.5, 5.4.2, 9.5
Sums of Odd Squares, Roger B. Nelsen, 25:3, 1994, 246, C
The Repeating Integer Paradox, Paul Fjelstad, 26:1, 1995, 11-15
A Taylor-made Plug for Wiles' Proof, Nigel Boston, 26:2, 1995, 100-105
A Surprise Regarding the Equation phi(x) = 2(6n+1), Joseph B. Dence and Thomas P. Dence, 26:4, 1995, 297-301
The Square of Any Odd Number is the Difference Between Two Triangular Numbers (Proof Without Words), Roger B. Nelsen, 27:2, 1996, 118, C, 0.1
Fractions with Cycling Digit Patterns, Dan Kalman, 27:2, 1996, 109-115, 0.1
Generalizations of a Mathematical Olympiad Problem, Joe Klerlein and Scott Sportsman, 27:4, 1996, 296-297, 3.2
Digital Permutations, Bryan Dawson, 28:1, 1997, 26, C
A Long Sequence of Composite Numbers, Ed Pegg, Jr., 28:2, 1997, 121, C
Two Identities for Triangular Numbers (proof by picture), Roger B. Nelsen, 28:3, 1997, 197, C
On Dividing Coconuts: A Linear Diophantine Problem, Sahib Singh and Dip Bhattacharya, 28:3, 1997, 203-204, C, 5.4.3
Are There Functions That Generate Prime Numbers?, Paulo Ribenboim, 28:5, 1997, 352-359
The Brahmaagupta Triangles, Raymond A. Beauregard and E. R. Suryanarayan, 29:1, 1998, 13-17, 0.4
A Class of Pleasing Periodic Designs, Federico Fernandez, 29:1, 1998, 18-26, 4.3, 9.4
Egyptian Fractions and the Inheritance Problem, Premchand Anne, 29:4, 1998, 296-300
More Coconuts, Sidney H. Kung, 29:4, 1998, 312-313, C, 0.1
Square Roots From 1;24,51,10 to Dan Shanks, Ezra Brown, 30:2, 1999, 82-95
From Euler to Fermat, Hidefumi Katsuura, 30:2, 1999, 118-119, 9.5
Palindromic Primes, Harvey Dubner, 30:4, 1999, 292, C
Progress on the Tarry-Escott-Prouhet Problem, the editor, 31:1, 2000, 68, C
Recursions That Produce Pythagorean Triples, Peter W. Wade and William R. Wade, 31:2, 2000, 98-101
General Arithmetic Triangles and Bhaskara’s Equation, Raymond Beauregard and E. R. Suryanarayan, 31:2, 2000, 111-115
Three Fermat Trails to Elliptic Curves, Ezra Brown, 31:3, 2000, 162-172
Meta-Problems in Mathematics, Al Cuoco, 31:5, 2000, 373-378, 0.7, 5.1.2
A Polynomial with a Root Mod m for Every m, Allen J. Schwenk, 31:5, 2000, 403-405, C, 9.4
The Lord Over Better and Worse Births, John Fossa and Glenn Erickson, 32:3, 2001, 185-193, 9.2
Powers Made Easy, James Kirby, 32:5, 2001, 329, C, 0.1
Close!, Noam Elkies, 33:1, 2002, 16, C
A Visit With Six, Monte J. Zerger, 33:2, 2002, 74-87, 9.2
It’s Perfectly Rational, Philip K. Hotchkiss, 33:2, 2002, 113-117, 5.1.4
A Ramanujan Result Viewed From Matrix Algebra, Raymond A. Beauregard and E. R. Suryanarayan, 33:3, 2002, 212-214, 4.1, 9.4
Fermat’s Little Theorem From the Multinomial Theorem, Thomas J. Osler, 33:3, 2002, 239, C
A Numerical Introduction to Partial Fractions, Eric L. McDowell, 33:5, 2002, 400-403, C, 5.2.4
A Magic Trick from Fibonacci, James Smoak and Thomas J. Osler, 34:1, 2003, 58-60, C
Recursive Enumeration of Pythagorean Triples, Darryl McCullough and Elizabeth Wade, 34:2, 2003, 107-111
Rational Boxes, Sidney Kung, 34:3, 2003, 182, C, 5.1.4
Coin ToGa: A Coin-Tossing Game, Osvaldo Marrero and Paul C. Pasles, 34:3, 2003, 183-193, 7.2
Variations on a Theme from Pascal’s Triangle, Thomas J. Osler, 34:3, 2003, 216-223
Partitioning Triangular Numbers, Matthew Haines and Michael Jones, 34:4, 2003, 295, C
A large square consisting only of digits 7, 8 and 9, Hisanori Mishima, 34:4, 2003, 303, C, 0.1
On a Diophantine Equation and its Ramifications, Titu Andreescu and Dorin Andrica, 35:1, 2004, 15-21
Midy’s (Nearly) Secret Theorem – An Extension After 165 Years, Brian D. Ginsberg, 35:1, 2004, 26-30
Five Mathematicians, a Bunch of Coconuts, a Monkey, and a Coin, John E. Morrill, 35:4, 2004, 256-257
Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 2.1, 4.5
Irrational Roots of Integers, Ayshhyah Khazad and Allen J. Schwenk, 36:1, 2005, 56-57, C (see also 36:4, 317)
An Upper Bound on the n-th Prime, John H. Jaroma, 36:2, 2005, 158-159, C
M&m Sequences, Harris S. Shultz and Ray C. Shiflett, 36:3, 2005, 191-198, 6.3
On Sums of Cubes, Hajrudin Fejzic, Dan Rinne, and Bob Stein, 36:3, 2005, 226-228, C
Curious Consequences of a Miscopied Quadratic, Jeffrey L. Poet and Donald L. Vestal, Jr., 36:4, 2005, 273-277
Visibles Revisited, Mark Bridger and Andrei Zelevinsky, 36:4, 2005, 289-300
A Variant of the Partition Function, John F. Loase, David Lansing, Cassie Hryczaniuk, and Jamie Cahoon, 36:4, 2005, 320-321, C
Exactly When Is \((a+b)^n\) equivalent to \(a^n + b^n \pmod{n}\)?, Pratibha Ghatage and Brian Scott, 36:4, 2005, 322, C
A Paper-and-Pencil gcd Algorithm for Gaussian Integers, Sandor Szabo, 36:5, 2005, 374-380, 9.4
A Two-Parameter Trigonometry Series, Xiang-Qian Chang, 36:5, 2005, 408-412, C, 9.5
Using Random Tilings to Derive a Fibonacci Congruence, Keith Neu and Paul Deiermann, 37:1, 2006, 44-47, C
Parity and Primality of Catalan Numbers, Thomas Koshy and Mohammad Salmassi, 37:1, 2006, 52-53, C, 3.2
Student Research Project: Integer Points on a Hyperboloid of One Sheet, Margaret Beattie and Chester Weatherby, 37:1, 2006, 54-58, C
No Arithmetic Cyclic Quadrilaterals, Raymond A. Beauregard, 37:2, 2006, 110-113
Searching for Mobius, Al Cuoco, 37:2, 2006, 137-142, C
Where are the zeros of zeta of s? (poem), Tom M. Apostol, 37:2, 2006, 163, C
What Tom Apostol Didn’t Know (poem), Saunders MacLane, 37:2, 2006, 164, C
Fibonacci Identities via the Determinant Sum Property, Michael Z. Spivey, 37:4, 2006, 286-289, 3.2, 4.2
FFF. Sums of 12th powers, Ed Barbeau, 37:4, 2006, 292, F
FFF #260. Increasing a square to a square, Chris Fisher, 38:1, 2007, 43, F, 0.2
Freaky fractions, Rick Kreminsky, 38:1, 2007, 46, C, 0.1
Fibonacci-Like Sequences and Pell Equations, Ayoub B. Ayoub, 38:1, 2007, 49-53, C
Sums of Consecutive Integers, Wai Yan Pong, 38:2, 2007, 119-123
Pythagorean Triples with Square and Triangular Sides, Sharon Brueggeman, 38:2, 2007, 138-140, C
Surprising Connections between Partitions and Divisors, Thomas J. Osler, Abdulkadir Hassan, and Tirupathi R. Chandrupatla, 38:4, 2007, 278-287
Summing Up the Euler phi Function, Paul Loomis, Michael Plytage, and John Polhill, 39:1, 2008, 34-42
A Quick Change of Base Algorithm for Fractions, Juan B. Gil and Michael D. Weiner, 39:1, 2008, 56-59, C
A New Property of Repeating Decimals, Jane Arledge and Sarah Tekansik, 39:2, 2008, 107-111
Remainder Wheels and Group Theory, Lawrence Brenton, 39:2, 2008, 129-135, 0.1, 9.4
On the Number of Trailing Zeros in n!, David S. Hart, James E. Marengo, Darren A. Narayan and David S. Ross, 39:2, 2008, 139-141, C
On a Perplexing Polynomial Puzzle, Bettina Richmond, 40:1, 2009, 2-5, 9.1, 9.2
Minimal Solutions to the Box Problem, Jer-Chin (Luke) Chuang, 40:5, 2009, 354-360, 5.1.4
341 is a Brilliant Number, P. D. James, 40:5, 2009, 368, C, 0.1
Fermat’s Last Theorem for Fractional and Irrational Exponents, Frank Morgan, 41:3, 2010, 182-185, 0.2
A Pumping Lemma for Invalid Reductions of Fractions, Michael N. Fried and Mayer Goldberg, 41:5, 2010, 357-364, 0.1
Cubic Polynomials with Rational Roots and Critical Points, Shiv K. Gupta and Wacław Szymański, 41:5, 2010, 365-369, 0.2, 0.7
Finding Rational Parametric Curves of Relative Degree One or Two, Dave Boyles, 41:5, 2010, 371-382, 5.6.1, 9.4
On a Perplexing Polynomial Puzzle, Bettina Richmond, 41:5, 2010, 400-403, C, 0.7
Sum-Difference Numbers, Yixun Shi, 41:5, 2010, 404-405, C, 0.1
Faulhaber’s Triangle, Mohammad Torabi-Dashti, 42:2, 2011, 96-97 (see also 3. Faulhaber’s Trapezoid, 42:5, 2011, 430)
One Problem, Nine Student-Produced Proofs, Geoffrey Birky, Connie M. Campbell, Manya Raman, James Sandefur, and Kay Somers, 42:5, 2011, 355-360, 0.2, 0.9
Student Research Project: One-dimensional Czedli-type Islands, Eszter K. Horváth, Attila Mader, and Andreja Tepavcèvic, 42:5, 2011, 374-378, C, 0.9, 3.2, 9.2
Mad Tea Party Cyclic Partitions, Robert Bekes, Jean Pedersen, and Bin Shao, 43:1, 2012, 25-36, 3.2, 9.2
Triangular Numbers, Gaussian Integers, and KenKen, John J. Watkins, 43:1, 2012, 37-42, 0.1, 9.2
30 Years of Bulgarian Solitaire, Brian Hopkins, 43:2, 2012, 135-140, 3.2, 9.2
Convergence of a Catalan Series, Thomas Koshy and Zhenguang Gao, 43:2, 2012, 141-146, 3.2, 5.4.2
Proof Without Words: The Square of a Balancing Number is a Triangular Number, Michael A. Jones, 43:3, 2012, 212, C, 0.2
Partitioning Pythagorean Triangles Using Pythagorean Angles, Carl E. Swenson and Andre L. Yandl, 43:3, 2012, 220-225, 0.6, 0.7
Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of (n +½), Reuben Hersh, 43:4, 2012, 322-324, 0.2
Geometry of Sum-Difference Numbers, Paul Yiu, 43:5, 2012, 408-409, C, 0.4

The Combinatorial Trace Method in Action, Mike Krebs and Natalie C. Martinez, 44:1, 2013, 32-36, 3.1, 3.2, 4.5

Irrational Square Roots, Micha Misiurewicz, 44:1, 2013, 53-55, C

Proof Without Words: Triangular Sums, Yuko Kobayashi, 44:3, 2013, 189, C, 0.1

How Weird are Weird Fractions?, Ryan Stuffelbeam, 44:3, 2013, 202-209

Proof Without Words: Squares Modulo 3, Roger B. Nelsen, 44:4, 2013, 283, C

Not All Numbers Can Be Created Equally, John P. Bonomo, 45:1, 2014, 3-10

Proof Without Words: Alternating Sums of Consecutive Squares, Roger Nelsen, 45:1, 2014, 16, C

Zbikowski’s Divisibility Criterion, Yonah Cherniavsky and Artour Mouftakhov, 45:1, 2014, 17-21, 0.1

Proof Without Words: The Difference of Consecutive Integer Cubes is Congruent to 1 Modulo 6, Claudi Alsina, Roger Nelsen, and Hasan Unal, 45:2, 2014, 135, C

Locating Unimodular Roots, Michael A. Brilleslyper and Lisbeth E. Schaubroeck, 45:3, 2014, 162-168, 9.5

Proof Without Words: Pythagorean Quadruples, Roger Nelsen, 45:3, 2014, 179, C

Integer Solutions to Box Optimization Problems, Vincent Coll, Jeremy Davis, Martin Hall, Colton Magnant, James Stankewicz, and Hua Wang, 45:3, 2014, 180-190, 5.1.4

Mancala as Nim, Whitney Rhianna Fillers, Bill Linderman, and Andrew Simoson, 45:5, 2014, 350-356, 3.2, 3.3, 9.2

Unexpected Conjectures about -5 Modulo Primes, David Lowry-Duda, 46:1, 2015, 56-57, C

Proof Without Words: Sums of Every Third Triangular Number, Roger B. Nelsen, 46:2, 2015, 98, C, 3.2

When is the Generating Function of the Fibonacci Numbers an Integer?, Dae S. Hong, 46:2, 2015, 110-112, 3.2

Sequences of Power Lines, Ricardo Alfaro, 46:2, 2015, 113-120, 0.2, 0.7, 3.2, 5.1.1, 5.4.1, 9.2

Groupoid Cardinality and Egyptian Fractions, Julia E. Bergner and Christopher D. Walker, 46:2, 2015, 122-129, 0.1, 9.4

Goldbach’s Pigeonhole, Edward Early, Patrick Kim, and Michael Prouix, 46:2, 2015, 131-135

Proof Without Words: Each But Two Triangular Numbers Is a Sum of Three Triangular Numbers, Roger B. Nelsen, 46:3, 2015, 172, C, 3.2, 9.2

Partial Proof Without Words: Shaping Some Cases of the Erdos-Straus Conjecture, 46:3, 2015, 181, C, 0.1

Square-Sum Pair Partitions, Gordon Hamilton, Kiran S. Kedlaya, and Henri Picciotto, 46:4, 2015, 264-269, 0.1, 9.2

Saints and Scoundrels and Two Theorems That Are Really the Same, Ezra Brown, 46:5, 2015, 326-334, 9.4, 9.6

Proof Without Words: Centered Triangular Numbers, Roger B. Nelsen, 46:5, 2015, 335, C, 0.2, 3.2, 9.2

Journal Problems Sections: Modern Challenges and Teaching Tools, Brian D. Beasley and David R. Stone, 46:5, 2015, 336-346, 0.7, 3.2, 5.2.9, 5.6.1, 6.1

Proof Without Words: The Golden Ratio, Roger B. Nelsen, 47:2, 2016, 108, C, 0.2, 0.3

Abbott-and-Costello Numbers, Howard Sporn, 47:2, 2016, 126-132, 4.1, 9.2

A Short and Elementary Proof of the Basel Problem, Samuel G. Moreno, 47:2, 2016, 134-135, C, 5.2.9

Proof Without Words: Square Triangular Numbers and Almost Isosceles Pythagorean Triples, Roger B. Nelsen, 47:3, 2016, 179, C
Proof Without Words: Nearly Cubic Pythagorean Boxes, Roger B. Nelsen, 47:3, 2016, 190, C
Proof Without Words: Matchstick Triangles, Tom Edgar, 47:3, 2016, 207, C, 9.2
The Generalized Birthday Problem, Stephen Scheinberg, 47:4, 2016, 294-296, C, 7.2
Proof Without Words: Perfect Numbers Modulo 7, Roger B. Nelsen, 48:1, 2017, C
Divisibility Tests, Old and New, Sandy Ganzell, 48:1, 2017, 36-40, 0.1
A Powerful Method of Non-Proof, John Beam, 48:1, 2017, 52-54, C, 9.1
The Chinese Remainder Clock, Antonella Perucca, 48:2, 2017, 82-89
Integral Value of the Generating Functions of Fibonacci and Lucas Numbers, Prapanpong Pongsriiam, 48:2, 2017, 97-101, 3.2
Pythagorean Triples for Easy Solutions of Certain Quadratics and a Newly Generated Tree, Edward R. Forringer, 48:2, 2017, 112-114, 0.2
Pythagorean Triples, Complex Numbers, and Perplex Numbers, Howard Sporn, 48:2, 2017, 115-122, 0.2
If a Prime Divides a Product …, Steven J. Miller and Cesar E. Silva, 48:2, 2017, 123-128
On the Arithmetic Mean of the Square Roots of the First n Positive Integers, Mircea Merca, 48:2, 2017, 129-133, 3.2
Two Short Proofs of the Infinitude of Primes, Sam Northshield, 48:3, 2017, 214-216, C, 5.4.1, 7.2
Partitioning the Natural Numbers to Prove the Infinitude of Primes, Arpan Sadhukhan, 48:3, 2017, 217-218, C, 3.2
Proof Without Words: A Pascal-Like Triangle With Pell Number Row Sums, Angel Plaza, 48:5, 2017, 346, C, 3.2, 5.4.1, 6.3
Proof Without Words: Sum of Squares of Consecutive Fibonacci Numbers, Tim Price, 49:2, 2018, 121, C, 3.2
Factoring Numbers with Conway’s 150 Method, Arthur T. Benjamin, 49:2, 2018, 122-125, 0.1
Proof Without Words: Sums of Squares in a Thin Rectangle, Stephen Berendonk, 49:3, 2018, 180, C, 0.1
Marching in Squares, Burkard Polster and Marty Ross, 49:3, 2018, 181-186, 0.1, 0.2
Dividing the Circle, Pedro J. Freitas and Hugo Tavares, 49:3, 2018, 187-194, 0.3, 0.6, 5.3.1
Variations on the Binary Mind-Reading Trick, Jonathan Hoseana, 49:4, 2018, 262-268, 0.1, 9.2
An Inclusion-Exclusion Proof of Wilson’s Theorem, Enrique Trevino, 49:5, 2018, 367-368, C
When Fractions Make Cycles, Mark Dalthorp, 50:1, 2019, 3-8, 0.2, 6.3, 9.5
Proof Without Words: Sophie Germain’s Identity, Samuel G. Moreno, 50:3, 2019, 197, C, 0.2
Extrapolating Plimpton 322, Andrew J. Simoson, 50:3, 2019, 210-220, 0.1, 0.2, 2.1
Proof Without Words: Pythagorean Primes and Triangular Numbers, Roger B. Nelsen, 49:5, 2019, 378, C
Visual Decompositions of Polygonal Numbers, Tom Edgar, 51:1, 2020, 9-12, 0.2, 4.3
Sums of Powers of Consecutive Integers and Pascal's Triangle, Semyon Litvinov and Frantisek Marko, 51:1, 2020, 25-31, 3.2, 4.1, 5.2.1
Limits on Legs of Pythagorean Triples and Fermat's Last Theorem, Richard Kaufman, 51:1, 2020, 53-56, 0.2
Idempotent Factorizations in the Cryptography Classroom, Barry S. Fagin, 51:3, 2020, 195-203, 8.4
Unimodular Roots of Quadrinomials, Michael A. Brilleslyper, 51:3, 2020, 219-221, C, 9.5
On the Sum of Powers of Consecutive Integers, Chungwu Ho, Gregory Mellblom, and Marc Frodyma, 51:4, 2020, 295-301
Proof Without Words: Sums of Polygonal Numbers, Gunhan Caglayan, 51:4, 2020, 304, C, 0.2
Proof Without Words: Centered Nonagonal Numbers are Triangular, Gunhan Caglayan, 51:5, 2020, 371, C, 0.2
An Infinite Family of Divisibility Tests, Darrin Frey and Adam Hammett, 52:1, 2021, 2-10, 0.1
Visual Proofs for the Sums of Fourth and Fifth Powers of the First n Natural Numbers, Sanja Stevanovi & Dragan Stevanovic, 52:2, 2021, 115-120, 3.2, 5.4.2
Visual Triangular Number Identities from Positional Number Systems, Tom Edgar, 52:2, 2021, 133-136, 3.2, 6.3
Exploring and Extending the Impossible Card Location Trick, Samantha Pezzimenti, Geovanni DiCicco, Aditya Kommoju, and Dhanush Rajesh, 52:5, 2021, 356-363, 9.2
9.4 Abstract algebra

A Condition Equivalent to Associativity for Finite Groups, Roy Dobyns, 3:1, 1972, 10-13
Sneaking Up On a Group, Jean J. Pedersen, 3:2, 1972, 9-12
Complex Numbers as Residue Classes of Polynomials mod(x^2+1), Rosemary Schmalz, S.P., 3:2, 1972, 78-80, C
Rings, Subrings, Identities and Homomorphisms, Pasquale J. Arpaia, 5:1, 1974, 25-28
An Alternative to Euclidean Algorithm, Sidney H. L. Kung, 5:2, 1974, 8-11
A Finite Field—A Finite Geometry and Triangles, Marc Swadener, 5:3, 1974, 22-26, 0.3
Factoring Functions and Relations, Thomas J. Brieske, 6:3, 1975, 8-12, 1.2
Exploring the Gaussian Integers, Robert G. Stein, 7:4, 1976, 4-10
An Algorithm and Its Connection with Abelian Groups, W. G. Leavitt, 7:2, 1976, 16-21
Counterexamples from the Algebra of Polynomials over a Nonfield, Janet B. Pomeranz, 8:1, 1977, 11-14
Can This Polynomial Be Factored?, Harold L. Dorwart, 8:2, 1977, 67-72, 0.7
An Arithmetic Description of the Dihedral Group, L. N. Somanchi, 11:5, 1980, 327-329, C
Compounding Energy Savings, Leo Chosid, 12:1, 1981, 56-57, C, 0.8
Constructing "Different" Examples for Beginning Abstract Algebra Students, Eddie Boyd, Jr., 12:5, 1981, 333-334, C
Doubling: Real, Complex, Quaternion and Beyond ... Well, Maybe, Robert C. Moore, 17:4, 1986, 342-343, C
Generating Posets, Harley Flanders, 18:4, 1987, 323-327, 8.2
Rencontres Reencountered, Karl David, 19:2, 1988, 133-148, 3.2
Codes that Detect and Correct Errors, Chester J. Salwach, 19:5, 1988, 402-416, 9.5
Simple Groups (poem), Anonymous, 20:1, 1989, 26
A Complete Solution to the Magic Hexagram Problem, Harold Reiter and David Ritchie, 20:4, 1989, 307-316, 9.2
Minimum Dimension for a Square Matrix of Order n, Robert Hanson, 21:1, 1990, 28-34, 4.1
A Zero-Row Reduction Algorithm for Obtaining the gcd of Polynomials, Sidney H. Kung and Yap S. Chua, 21:2, 1990, 138-141, 0.7, 4.1
Secrets of the Faro: Student Research Project, Irl C. Bivens, 22:2, 1991, 144-147, 9.3
Towards God’s Number for Rubik’s Cube in the Quarter-Turn Metric, Tomas Rokicki, 45:4, 2014, 242-253, 9.2
Beyond Rubik’s Cube Exhibit, reviewed by Calvin Armstrong and Susan Goldstine, 45:4, 2014, 254-257, 9.2
On God’s Number(s) for Rubik’s Slide, Michael A. Jones, Brittany C. Shelton, and Miriam E. Weaverdyck, 45:4, 2014, 267-275, 3.1, 3.2, 9.2
A Combinatorial Proof of a Theorem of Katsuura, Brian K. Miceli, 45:5, 2014, 365-369, 3.2
What Distributes Over Exponentiation?, Sherman Stein, 46:1, 2015, 11-14, 0.2, 9.5
The Origin of Quaternions, Thomas Bannon, 46:1, 2015, 43-50, 2.2, 5.6
Groupoid Cardinality and Egyptian Fractions, Julia E. Bergner and Christopher D. Walker, 46:2, 2015, 122-129, 0.1, 9.3
Saints and Scoundrels and Two Theorems That Are Really the Same, Ezra Brown, 46:5, 2015, 326-334, 9.3, 9.6
A Sufficient Condition for Subgroups with Prime Indices to Be Normal, Cosmin Pohoata and Richard Stong, 46:5, 2015, 348-351
A Characterization of the Cyclic Groups by Subgroup Indices, Greg Oman and Victoria Slattum, 47:1, 2016, 29-33
Algebra From Geometry in the Card Game SET, Timothy E. Goldberg, 47:4, 2016, 265-273, 9.2, 9.7
The Fundamental Theorem on Symmetric Polynomials: History’s First Whiff of Galois Theory, Ben Blum-Smith and Samuel Coskey, 48:1, 2017, 18-29
Dihedoku Puzzle 1, David Nacin, 48:4, 2017, 248, C, 9.2
On a Complex KenKen Problem, David Nacin, 48:4, 2017, 274-282, 9.2
Solving Knights-and-Knaves with One Equation, Francesco Ciraulo and Samuele Maschio, 51:2, 2020, 82-89, 9.1, 9.2, 9.10
The Proportion of Comets in the Card Game SET, Dan May and Dan Swenson, 51:3, 2020, 162-172, 3.2, 4.3, 6.3, 7.2, 9.1, 9.2
Distances Between Factorizations of the Chicken McNugget Monoid, Scott Chapman, Pedro Garcia-Sanchez & Christopher O’Neill, 52:3, 2021, 158-176, 3.1, 3.2, 9.2
What’s in the Bag?, Aaron Montgomery, 52:3, 2021, 177-184, 9.1, 9.5, 9.8
Why Hamilton Couldn’t Multiply Triples, Adrian Rice & Ezra Brown, 52:3, 2021, 185-192, 4.3, 4.4, 5.5
Magic Card Tricks on Hamming Codes over Finite Fields, Hideo Nagahashi, 52:4, 2021, 281-288, 4.1, 9.2
Being Rational About Algebraic Numbers, Matt David, Adam E. Parker, and Daniel A. N. Vargas, 52:5, 2021, 327-337, 4.1, 4.5, 5.4.1, 6.3, 9.6

9.5 Analysis

On the Sum of Two Periodic Functions, John M. H. Olmsted and Carl G. Townsend, 3:1, 1972, 33-38
The Quadratic Polynomial and Its Zeroes, C. A. Long, 3:2, 1972, 23-29, 5.1.5
On the Use of Functions, William E. Hartnett, 3:2, 1972, 25-28, 9.8
A Geometric Approach to the Orders of Infinity, Harold L. Schoen, 3:2, 1972, 74-76, C, 0.2
A Construction of the Real Numbers, E. A. Maier and David Maier, 4:1, 1973, 31-35
Riemann Integration in Ordered Fields, John M. Olmsted, 4:2, 1973, 34-40
A Further Note on the Orders of Infinity, Harold L. Schoen, 5:1, 1974, 80-81, C, 0.2
A Linear Integral Transform with a Simple Kernel, Walter W. Bolton and Sterling C. Crim, 6:1, 1975, 5-7
The Countability of the Rationals Revisited, Keith Gant and Dean B. Priest, 6:3, 1975, 41-42, C
An Interesting Use of Generating Functions, Aron Pinker, 6:4, 1975, 39-45, 0.6, 5.4.2
Can the Complex Numbers Be Ordered?, Richard C. Weimer, 7:4, 1976, 10-12
Newton's Inequality and a Test for Imaginary Roots, Carl G. Wagner, 8:3, 1977, 145-147
Another Proof of the Arithmetic-Geometric Mean Inequality, Elmar Zemgalis, 10:2, 1979, 112-113, C
The Generalized Arithmetic-Geometric Mean Inequality, David H. Anderson, 10:2, 1979, 113-114, C
Testing a Graph's Symmetry, V. N. Murty, 10:2, 1979, 116-117, C
A Note on the Cauchy-Schwartz Inequality, Jack C. Slay and J. L. Solom, 10:4, 1979, 280-281, C
Extending Bernoulli's Inequality, Ervin Y. Rodin, 11:2, 1980, 124-125, C
A Note on the Ratio of Two Rationals, Carl P. McCarty, 11:2, 1980, 123-124, C
Another Proof of the Arithmetic-Geometric Mean Inequality, Norman Schaumberger, 13:2, 1982, 159-160, C
Power Series for Practical Purposes, Ralph Boas, 13:3, 1982, 191-195, 5.4.2
A First Course in Continuous Simulation, Richard Bronson, 13:5, 1982, 300-310, 1.2
Products of Sets of Complex Numbers, Byron L. McAllister, 14:5, 1983, 390-397
Mean Inequalities, Frank Burk, 14:5, 1983, 431-434, C
Convexity in Elementary Calculus: Some Geometric Equivalences, Victor A. Belfi, 15:1, 1984, 37-41
Income Tax Averaging and Convexity, Michael Henry and G. E. Trapp, Jr., 15:3, 1984, 253-255, 0.8, 5.1.5, 5.7.1
The Maximum and Minimum of Two Numbers Using the Quadratic Formula, Dan Kalman, 15:4, 1984, 329-330, C, 5.1.4
Income Averaging Can Increase Your Tax Liability, Gino T. Fala, 16:1, 1985, 53-55, C, 0.8
Picturing Functions of a Complex Variable, Bart Braden, 16:1, 1985, 63-73
Geometrically Asymptotic Curves, Dan Kalman, 16:3, 1985, 199-206, 5.1.5
Graphing the Complex Roots of a Quadratic Equation, Floyd Vest, 16:4, 1985, 257-261, 0.2, 0.7
On Hypocycloids and their Diameters, I. J. Schoenberg, 16:4, 1985, 262-267, 5.6.1
Relating Differentiability and Uniform Continuity, Irl C. Bivens and L. R. King, 16:4, 1985, 283, C
Why is a Restaurant's Business Worse in the Owner's Eyes Than in the Customers'?, Wong Ngoi Ying, 18:4, 1987, 315-316, C
Another Proof of the Inequality Between Power Means, Norman Schaumberger, 19:1, 1988, 56-58, C
A General Form of the Arithmetic-Geometric Mean Inequality via the Mean Value Theorem, Norman Schaumberger, 19:2, 1988, 172-173, C, 5.1.2
Parameter-generated Loci of Critical Points of Polynomials, F. Alexander Norman, 19:3, 1988, 223-229, 0.7, 5.1.5
A Discrete l'Hopital's Rule, Xun-Cheng Huang, 19:4, 1988, 321-329, 5.1.1
Equivalent Inequalities, Jim Howard and Joe Howard, 19:4, 1988, 350-352, C
Looking at the Mandelbrot Set, Mark Bridger, 19:4, 1988, 353-363, 9.8
Codes that Detect and Correct Errors, Chester J. Salwach, 19:5, 1988, 402-416, 9.4
The Fundamental Periods of Sums of Periodic Functions, James Caveny and Warren Page, 20:1, 1989, 32-41, 0.6
Another Proof of Jensen's Inequality, Norman Schaumberger and Bert Kabak, 20:1, 1989, 57-58, C
Graphing the Complex Zeros of Polynomials Using Modulus Surfaces, Clff Long and Thomas Hern, 20:2, 1989, 98-105, 0.7, 5.1.5
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 5.1.5, 8.3
Another Proof of Chebysheff's Inequality, Norman Schaumberger, 20:2, 1989, 141-142, C
Subharmonic Series, Arthul C. Sogal, 20:3, 1989, 194-200, 5.4.2
Two Elementary Proofs of an Inequality (and 1 1/2 Better Ones), William C. Waterhouse, 20:3, 1989, 201-205
The Root Mean Square—Arithmetic Mean—Geometric Mean—Harmonic Mean Inequality, Roger B. Nelsen, 20:3, 1989, 231, C, 0.4
The AM-GM Inequality via x^n(1/x), Norman Schaumberger, 20:4, 1989, 320, C
A Generalization of the limit of [(n!)^(1/n)]/n = e^(-1), Norman Schaumberger, 20:5, 1989, 416-418, C, 5.1.1
FFF #15. Another Proof that 1 = 0, Ed Barbeau, 21:1, 1990, 36, F (also 21:2, 1990, 128)
Ways of Looking at n!, Diane Johnson and Roy Dowling, 21:3, 1990, 219-220, C
Harmonic, Geometric, Arithmetic, Root Mean Inequality, Sidney Kung, 21:3, 1990, 227, C, 0.4
Tabular Integration by Parts, David Horowitz, 21:4, 1990, 307-313, C, 5.2.5, 5.4.2
A Chaotic Search for i, Gilbert Strang, 22:1, 1991, 3-12, 6.3, 5.1.3
Fractals Illustrate the Mathematical Way of Thinking, Yves Nievergelt, 22:1, 1991, 60-64, C
Another Proof of a Familiar Inequality, Norman Schaumberger, 22:3, 1991, 229-230, C
FFF #52. An Application of the Cauchy-Schwartz Inequality, Ed Barbeau, 23:2, 1992, 142, F, 0.2
FFF #53. Opening the Floodgates, Ed Barbeau, 23:2, 1992, 142-143, F
FFF. Surjective Functions, Ed Barbeau, 23:4, 1992, 305, F
Inverse Problems and Torricelli's Law, C. W. Groetsch, 24:3, 1993, 210-217, 9.10
Local Conditions for Convexity and Upward Concavity, Donald Francis Young, 24:3, 1993, 224-228
Six Ways to Sum a Series, Dan Kalman, 24:5, 1993, 402-421, 5.4.3
Strictly Increasing Differentiable Functions, Massimo Furi and Mario Martelli, 25:2, 1994, 125-127
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 4.5, 5.4.2, 9.3
The Chebyshev Inequality for Positive Monotone Sequences, Roger B. Nelsen, 25:3, 1994, 192, C
Extending Bernoulli's Inequality, Ronald L. Persky, 25:3, 1994, 230, C, 0.2
Cutting Corners: A Four-gon Conclusion, S. C. Althoen and K. E. Schilling and M. F. Wyneken, 25:4, 1994, 266-279, 0.4, 0.5
Leibniz and the Spell of the Continuous, Hardy Grant, 25:4, 1994, 291-294, 2.2
A New Look at an Old Function, e to the i theta, J. G. Simmonds, 26:1, 1995, 6-10
Continuity on a Set, R. Bruce Crofoot, 26:1, 1995, 29-30
Can We See the Mandelbrot Set?, John Ewing, 26:2, 1995, 90-99, 6.3
The Hyperbolic Number Plane, Garret Sobczyk, 26:4, 1995, 268-280, 0.7
The Mean of the Squares Exceeds the Square of the Means (Proof Without Words), Roger B. Nelsen, 26:5, 1995, 368, C
Recursive Formulas for zeta(2k) and the Dirichlet function L(2k-1), Xuming Chen, 26:5, 1995, 372-376
A Complex Approach to the Laws of Sines and Cosines, William V. Grounds, 27:2, 1996, 108, C, 0.6
Why Polynomials Have Roots, Javier Gomez-Calderon and David M. Wells, 27:2, 1996, 90-94, 5.1.2, 5.7.1
FFF #107. All Complex Numbers Are Real, Walter Reno, 27:4, 1996, 283, F
Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.1.5, 5.8
Countability via Bases Other Than 10, Pat Touhey, 27:5, 1996, 382-384, C
An Application of Elementary Geometry in Functional Analysis, Ji Gao, 28:1, 1997, 39-42, 0.4
A Proof that Polynomials Have Roots, Uwe F. Mayer, 28:1, 1997, 58, C
FFF #116. Life at Infinity and Beyond, Albert Eagle, 28:3, 1997, 198-199, F
The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.2.7, 5.3.4
Galileo’s Ratios (Proof Without Words), Alfinio Flores, 29:4, 1998, 300, C
Interval Arithmetic and Analysis, James Case, 30:2, 1999, 106-111, 0.1
From Euler to Fermat, Hidefumi Katsuura, 30:2, 1999, 118-119, 9.3
Continuous Versions of the (Dirichlet) Drawer Principle, Pawel Strzelecki, 30:3, 1999, 195-196
Computers and Advanced Mathematics in the Calculus Classroom, Kurt Cogswell, 30:3, 1999, 213-216, C, 5.2.9
FFF #154. How the factorial works, Norton Starr, 30:5, 1999, 385, F (see also Seymour Haber, 35:1, 2004, 42)
FFF #155. Floored by an Olympiad problem, the editor, 30:5, 1999, 386, F
Partially Differentiable, Yes; Continuous, No, David Calvis, 31:1, 2000, 42-47
AM ≥ GM (Mathematics Without Words), Norman Schaumberger, 31:1, 2000, 68, C
A Child's Garden of Fractional Derivatives, Thomas Osler and Marcia Kleinz, 31:2, 2000, 82-88
π is the Minimum Value for Pi, C. L. Adler and James Tanton, 31:2, 2000, 102-106
Linear Functions and Rounding, Jack E. Graver and Lawrence J. Lardy, 31:2, 2000, 132-136
FFF #157. Fourier Analysis is Trivial, Peter M. Jarvis, 31:3, 2000, 207, F
Sequences of Chords and of Parabolic Segments Enclosing Proportional Areas, Timothy Feeman and
Oswaldo Marrero, 31:5, 2000, 379-382, 5.2.6, 5.2.8
Tension in Generalized Geometric Sequences, Bill Goldbloom-Block, 32:1, 2001, 44-47
FFF #170. Strange dependence, Ollie Nanyes, 32:1, 2001, 49, F
The Cantor Set Contains 1/4? Really?, sarah-marie belcastro and Michael Green, 32:1, 2001, 55-56, C
A Proof That Proves, A Proof That Explains, and A Proof That Works, Seannie Dar, Shay Gueron, and
Oran Lang, 32:2, 2001, 115-117, F, 0.9
Algebraic Cantor Numbers?, Edwin Rosenberg, 32:3, 2001, 200, C
Rational Approximations to Power Expansions, Maria Cecilia K. Aguilera-Navarro, Valdir C. Aguilera-Navarro, Ricardo C. Ferreira and Neusa Teramon, 32:4, 2001, 276-278, 5.4.3
FFF #179. A Wrong Version of Stirling’s Formula, Keith Brandt, 32:5, 2001, 363-365, F, 5.1.1
Cantor, 1/4, and its Family and Friends, Ioana Mihaila, 33:1, 2002, 21-23
FFF #184. Spreading the continuity, Russ Euler, 33:1, 2002, 39, F
FFF #185. Integrating around a closed contour, Dale Buske, 33:1, 2002, 39-40, F
Mixed Partial Derivatives and Fubini’s Theorem, Asuman Aksoy and Mario Martelli, 33:2, 2002, 126-130
Moving a Couch Around a Corner, Christopher Moretti, 33:3, 2002, 196-200, 5.1.4
FFF #195. Infectious continuity, Russ Euler and Jawad Sadek, 33:3, 2002, 227, F
Applications of Differentials, Li Feng, 33:4, 2002, 295, C, 5.1.3
When is 1/(a-b) = 1/a + 1/b, Anyway?, Eugene Boman and Frank Uhlig, 33:4, 2002, 296-300, 4.1
Irrationals in the Cantor Set, Edwin Rosenberg, 33:5, 2002, 394, C
Investigating Possible Boundaries Between Convergence and Divergence, Frederick Hartmann and David Sprows, 33:5, 2002, 405-406, C, 5.4.2
Off on a Tangent, Russell A. Gordon and Brian C. Dietel, 34:1, 2003, 62-63, C, 5.1.3
Odd-like (Even-like) Functions on (a, b), Zhibo Chen, Peter Hammond and Lisa Hazinski, 34:1, 2003, 64-67, C, 5.2.9
Keyboard Inequalities, Monte Zerger, 34:1, 2003, 67, C, 0.2
FFF #204. An inequality, Ed Barbeau, 34:2, 2003, 134, F
FFF #205. Another inequality, Michel Bataille, 34:2, 2003, 134-135, F
On the Monotonicity of (1+1/n)^n and (1+1/n)^(n+1), Peter R. Mercer, 34:3, 2003, 236-238, C
Generalizations of the Arithmetic-Geometric Mean Inequality and a Three Dimensional Puzzle, Hidefumi Katsura, 34:4, 2003, 280-282
The Tangent Lines of a Conic Section, Daniel Wilkins, 34:4, 2003, 296-303, 0.5
For What Functions Is f^{-1}(x) = 1/f(x)?, Sharon MacKendrick, 34:4, 2003, 304-311, 0.2
FFF #217. A Riemann sum, Holly M. Hoover, 34:4, 2003, 314, F, 5.4.2
The Rationals are Countable – Euclid’s Proof, Jerzy Czyz and William Self, 35:1, 2004, 367-369
The HM-GM-AM-QM Inequalities, Philip Wagala Gwanyama, 35:1, 2004, 47-50, C, 5.7.1
Cauchy’s Mean Value Theorem Involving n Functions, Jingcheng Tong, 35:1, 2004, 50-51, C (see also
Richard Beck, 35:5, 2004, 384)
On the Values of Pi for Norms on R^2, J. Duncan, Daniel H. Luecking, and C. M. McGregor, 35:2, 2004, 84-92
A Generalized Magic Trick from Fibonacci: Designer Decimals, Mrjorie Bicknell-Johnson, 35:2, 2004, 125-126, C, 0.1
Periodic Points for the Tent Function, David Sprows, 35:2, 2004, 133-135, C
Almost Alternating Harmonic Series, Curtis Feist and Ramin Naimi, 35:3, 2004, 183-191, 5.4.2
The Rationals of the Cantor Set, Ioana Mihaila, 35:4, 2004, 251-255
Tangent Lines and the Inverse Function Differentiation Rule, Maurizio Trombeta, 35:4, 2004, 258-261, 5.1.3
The Taxicab distance is a metric (Proof Without Words), Angelo Segalla, 35:4, 2004, 261, C
Approaching ln x, James V. Peters, 36:2, 2005, 146-147, C, 5.3.2
An Elementary Proof of the Monotonicity of (1+1/n)^n and (1+1/n)^(n+1), Duane W. DeTemple, 36:2, 2005, 147-149, C, 5.3.2
Proofs Without Words: Galileo’s Ratios Revisited, Alfinio Flores, 36:3, 2005, 198, C, 5.4.1
If F(x) equals the integral from x to 2x of f(t) dt is Constant, Must f(t) = c/t?, Tian-Ziao He, Zachariah Sinkala, and Xiaoya Zha, 36:3, 2005, 199-204, 5.2.1
FFF #239. Big and little hyperplanes, Elliott Cohen, 36:4, 2005, 315, F
Self-Integrating Polynomials, Jeffrey A. Graham, 36:4, 2005, 318-320, C, 5.2.1
A Paradoxical Paint Pail, Mark Lynch, 36:5, 2005, 402-404, C, 5.2.6, 5.2.7
A Two-Parameter Trigonometry Series, Xiang-Qian Chang, 36:5, 2005, 408-412, C, 9.3
Pythagorean by the Cross Ratio, Rebecca M. Conley and John H. Jaroma, 37:1, 2006, 50-52, C
A Card Trick and the Mathematics Behind It, Gabriela R. Sanchis, 37:2, 2006, 103-109, 9.2
From Chebyshev to Bernstein: A Tour of Polynomials Small and Large, Matthew Boelkins, Jennifer Miller, and Benjamin Vugteveen, 37:3, 2006, 194-204, 5.1.5
FFF #258. Maximum distance between circumference points, Evangelos N. Panagiotou, 37:4, 2006, 291-292, F
Stirling’s formula via Riemann sums, R. B. Burckel, 37:4, 2006, 300-307, C
FFF #255. Maximum distance between circumference points, Evangelos N. Panagiotou, 37:4, 2006, 291-292, F
Stirling’s formula via Riemann sums, R. B. Burckel, 37:4, 2006, 300-307, C
FFF #256. Ptolemy’s inequality in space, Ed Barbeau, 37:5, 2006, 380-381, F
FFF #265. The kinematics of jogging, Ralph Boas and Hanxiang Chen, 38:2, 2007, 133-134, F
A Geometric View of Complex Trigonometric Functions, Richard Hammack, 38:3, 2007, 210-217, 0.6, 4.3
The Convergence Behavior of \(f'(x) = (1 + 1/x)^{1/x} \), Cong X. Kang and Eunjeong Yi, 38:5, 2007, 385-387, C, 5.1.1, 5.3.2
The Pearson and Cauchy-Schwarz Inequalities, David Rose, 39:1, 2008, 64, C, 5.5, 7.3
FFF #278. A plausible inequality, Ed Barbeau, 39:3, 2008, 228, F
FFF #283. A counterexample to Liouville’s Theorem, Mark Lynch, 39:4, 2008, 300, F
Report from the Ambassador to Cida-2, Clifton Cunningham, 39:5, 2008, 337-345, 9.3
Ways to Fill Space #76,142: Rabbits (cartoon), Courtney Gibbars, 40:2, 2009, 112, C
An Interesting Property of \(x/\pi(x) \), Robert T. Harger and William L. Hightower, 40:3, 2009, 213-214, 9.3
The Fresnel Integrals Revisited, Hongwei Chen, 40:4, 2009, 259-262, 5.2.9
Proof Without Words: An Inequality, Guanshen Ren, 40:4, 2009, 274, C
Dynamics of Exponential Functions, Jiu Ding and Zizhong Wang, 40:5, 2009, 361-368, 6.3
Dogs Don’t Need Calculus, Michael Bolt and Daniel C. Isaksen, 41:1, 2010, 10-16, 0.2, 5.1.4
The Hardest Straight-In Pool Shot, Rick Mabry, 41:1, 2010, 49-56, 0.6, 5.1.4
Proof Without Words: Harmonic Mean < Geometric Mean < Arithmetic Mean < Root Mean Square < Contraharmonic Mean, Sidney Kung, 41:2, 2010, 112, C, 0.3
What’s My Domain?, Dan Curtis, 41:2, 2010, 113-121, 6.1
Four Ways to Skin a Definite Integral, Joseph B. Dence and Thomas P. Dence, 41:2, 2010, 134-144, 5.2.3, 5.2.4
Taylor’s Theorem: The Elusive c is Not So Elusive, Rick Kreminski, 41:3, 2010, 186-192, 5.4.3
Cutting Cakes Carefully, Theodore P. Hill and Kent E. Morrison, 41:4, 2010, 281-288, 7.2
Gerrymandering and Convexity, Jonathan K. Hodge, Emily Marshall, and Geoff Patterson, 41:4, 2010, 312-324, 7.2
Sprinkler Bifurcations and Stability, Jody Sorensen and Elyn Rykken, 41:5, 2010, 383-391, 6.3
The Band Around a Convex Body, David Swanson, 42:1, 2011, 15-24, 5.7.3
Cantor Groups, Ben Mathes, 42:1, 2011, 60-61, C
An Arithmetic Metric, Diego Dominici, 42:3, 2011, 207-214
Using Continuity Induction, Dan Hathaway, 42:3, 2011, 229-231, C
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.1, 5.3.3, 5.4.2
Derivative Sign Patterns, Jeffrey Clark, 42:5, 2011, 379-381, C, 5.1.2, 5.4.3
The Cobb-Douglas Function and Holder’s Inequality, Thomas E. Goebeler, Jr., 42:5, 2011, 387-388, C, 5.2.9
Uncountably Generated Ideals of Functions, B. Sury, 42:5, 2011, 404-406, C, 9.4
Harmonic Series Meets Fibonacci Sequence, Hongwei Chen and Chris Kennedy, 43:3, 2012, 237-243, 5.4.2
Extending the Alternating Series Test, Hidefumi Katsuura, 43:4, 2012, 325-330, 5.4.2
Series that Converge Absolutely but Don’t Converge, Robert Kantrowitz and Michael Schramm, 43:4, 2012, 331-333, C, 5.4.2
Euler’s Identity, Leibniz Tables, and the Irrationality of Pi, Timothy W. Jones, 43:5, 2012, 361-364
Proof Without Words: An Algebraic Inequality, Madeubek Kungozhin and Sidney Kung, 44:1, 2013, 16, C, 0.2, 0.6
When Can One Expect a Stronger Triangle Inequality?, Valerii Faiziev, Robert Powers and Prasanna Sahoo, 44:1, 2013, 24-31, 0.4, 0.6, 9.7
Polynomial Graphs and Symmetry, Geoff Goehle and Mitsuo Kobayashi, 44:1, 2013, 37-42, 0.2, 0.7
Old Tails and New Trails in High Dimensions, Avner Halevy, 44:1, 2013, 48-52
Derivative Sign Patterns in Two Dimensions, Kenneth Schilling, 44:2, 2013, 102-108, 5.1.2, 5.7.1
Mathematical Minute: Rotating a Function Graph, Daniel Bravo and Joseph Fera, 44:2, 2013, 124-125, C, 5.1.2, 5.1.5
A New Ratio Test for Positive Monotone Series, Hongwei Chen, 44:2, 2013, 139-141, C, 5.4.2
The Basel Problem as a Rearrangement of Series, David Benko and John Molokach, 44:3, 2013, 171-176, 5.4.2
Series of Reciprocal Triangular Numbers, Paul Bruckman, Joseph B. Dence, Thomas P. Dence, and Justin Young, 44:3, 2013, 177-184, 5.4.2, 5.4.3
Proof Without Words: Monotonicity of (sin x)/x on (0, π/2), Xiaoxue Li, 44:5, 2013, 408, C, 0.4
Proof Without Words: Monotonicity of (tan x)/x on (0, π/2), Xiaoxue Li, 44:5, 2013, 420, C, 0.4
An Acute Case of Discontinuity, Sam Venderwelde, 45:1, 2014, 22-28
Continuously Differentiable Curves Detect Limits of Functions of Two Variables, Ollie Nanyes, 45:1, 2014, 54-56, C
The Fastest Way Not to Run a Four-Minute Mile, Michael Bolt, Anthony Meyer, and Nicholas Visser, 45:2, 2014, 101-107, 9.10
Locating Unimodular Roots, Michael A. Brilleslyper and Lisbeth E. Schaubroeck, 45:3, 2014, 162-168, 9.3
A Closer Look at Bobo’s Sequence, Daniel T. Clancy and Steven J. Kifowit, 45:3, 2014, 199-206, 5.4.1
What Distributes Over Exponentiation?, Sherman Stein, 46:1, 2015, 11-14, 0.2, 9.4
Secants, Tangents, Rotations, and Reflections, Michael Maltenfort, 46:1, 2015, 24-34, 5.1.3, 5.1.5
Weak Contractions and Fixed Points, Daniel Acosta and Terry Lawson, 46:1, 2015, 35-41
A Very Elementary Proof of Bernoulli’s Inequality, Cristinel Mortici, 46:2, 2015, 136-137, C, 0.2
Another Face of the Archimedean Property, Robert Kantrowitz and Michael Neumann, 46:2, 2015, 139-141, C
A Short Proof of Symmetric Inequalities, Kambiz Razminia, 46:5, 2015, 364-366, C
Weighted AM-GM Inequality via Elementary Multivariable Calculus, Heiko Hoffmann, 47:1, 2016, 56-58, C, 5.7.1
Waiter! One Classic Calculus Problem, Hold the Calculus, Ricardo E. Rojas, 47:1, 2016, 59-60, C, 0.2, 5.1.4
Proof Without Words: Arithmetic Mean of Two Means, Angel Plaza, 47:2, 2016, 125, C, 0.2, 0.3
Pedagogically Inconvenient Functions for Teaching Transformations, Todd Abel and Jeremy Brazas, 47:3, 2016, 200-206, 0.2, 5.1.5
The Sine of a Single Degree, Travis Kowalski, 47:5, 2016, 322-332, 0.4, 0.6, 2.2
When You Wander off on a Tangent, Where Do You End Up?, Melissa Mark and Michael Schramm, 47:5, 2016, 334-339, 5.1.3
Existence of Limits and Continuity, Julie Millett and Xingping Sun, 48:1, 2017, 31-34
On a Genocchi-Peano Example, Krzysztof Chris Ciesielski and David Miller, 48:3, 2017, 205-213, 5.1.1
Did Elvis Know Cauchy-Schwarz?, Li Zhou, 48:5, 2017, 335-338, 0.2, 5.1.4, 9.10
Basic Theorems in the Language of Maximal Intervals, Haryono Tandra, 49:1, 2018, 41-45, 9.1
Is a Taylor Series also a generalized Fourier Series?, Wojciech Kossek, 49:1, 2018, 54-56, C, 5.4.3
Euler’s Sine Product Formula: An Elementary Proof, David Salwinski, 49:2, 2018, 126-135, 5.2.5, 5.3.3, 5.4.2
An Unusual Proof of the Triangle Inequality, Mehtaab Sawhney, 49:3, 2018, 218, C
Proof Without Words: Riemann Meets Euler-Mascheroni, Gerald E. Bilodeau, 49:5, 2018, 341, C, 5.4.2
Proof of a Conjecture of Merca on an Average of Square Roots, John Zacharias, 49:5, 2018, 342-345, 5.4.1
When Fractions Make Cycles, Mark Dalthorp, 50:1, 2019, 3-8, 0.2, 6.3, 9.3
Adding and Subtracting in the Cantor Set, Mark Sand, 50:1, 2019, 41-45
Uniform Continuity: Another Way to Approach This Concept in the Classroom, Cesar Adolfo Hernandez Melo and Fernanda Diniz de Melo Hernandez, 50:1, 2019, 54-57, C
Functions Preserving Limit Superior, R. Basu, V. Kannan, K. Sannyasi, and N. Unnikrishnan, 50:1, 2019, 58-60, C
Visualization of the Riemann-Stieltjes Integral, Trienko Grobler, 50:3, 2019, 198-209, 5.2.1, 5.2.9
Calculus Limits Unified and Simplified, C. Bryan Dawson, 49:5, 2019, 331-342, 5.1.1

The AM-GM Inequality via Gradient, M. G. Mahmoudi, 51:2, 2020, 141-143, C

Unimodular Roots of Quadrinomials, Michael A. Brilleslyper, 51:3, 2020, 219-221, C, 9.3

Euler’s Limit and Stirling’s Estimate, Adam Hammett, 51:5, 2020, 330-336, 5.1.1, 5.3.2, 5.4.2

Discontinuous Functions as Limits of Compactly Supported Formulas, J. Marshall Ash, 51:5, 2020, 337-344, 5.4.1

Two Friends and a Bike, Phillip H. Schmidt, 52:1, 2021, 11-21, 5.1.4, 9.10

Atypical Series Representations of Riemann-Integrable Functions, Andrzej Piotrowski, 52:1, 2021, 31-38, 5.2.9, 5.4.2, 9.6

Chain Rule Note, Peter A. Loeb, 52:1, 2021, 57-58, C, 5.1.3

What’s in the Bag?, Aaron Montgomery, 52:3, 2021, 177-184, 9.1, 9.4, 9.8

On a Counterexample in Connection with the Picard-Lindelof Theorem, Georgios Passias & Sven-Ake Wegner, 52:3, 2021, 221-223, C, 6.1, 6.5

Applications of Squeeze Theorem to Limiting Processes Involving Riemann Integration, Brian Becsi, Solomon Huang, Verenali Schoenfeld, Bogdan D. Suceava & Ashley Thune-Aguayo, 52:3, 2021, 224-226, C, 5.2.9, 5.4.1

Proof Without Words: Convex Hulls and Jensen’s Inequality, Dennis L. Sun, 52:4, 2021, 298, C, 7.3

Is Doom the Inescapable Solution of Initial Value Problems?, Yves Nievergelt, 52:4, 2021, 302-305, C, 5.2.9, 5.7.3, 6.1

Report on the 12th Annual USA Junior Mathematical Olympiad, Bela Bajnok & Evan Chen, 53:1, 2022, 13-20, 0.3, 3.2, 5.4.1, 9.1, 9.2, 9.3

Constructing Continuous Functions, Judit Kardos, 53:1, 2022, 21-32

Elementary Functions, Angel S. Muleshkov & Kurt R. Sweat, 53:1, 2022, 54-63, 5.1.5, 5.3.1, 5.3.2

An Unorthodox Approach to Skinning a Definite Integral, Yusuf Z. Gurtas, 53:2, 2022, 134-139, 5.2.3, 5.2.4, 5.2.5, 5.2.10

Extending Bernoulli’s Inequality, Peter R. Mercer, 53:2, 2022, 149-150, C, 0.2

The Equivalence of Definitions of the Natural Logarithm Function, Henry Ricardo, 53:3, 2022, 190-196, 2.2, 5.1.1, 5.3.2, 5.4.1

Tetration: Iterative Enjoyment, Abe Edwards & Brielle Komosinski, 53:3, 2022, 209-219, 0.2, 5.3.2, 5.4.2

Less Mundane Applications of the Most Mundane Functions, Pisheng Ding, 53:3, 2022, 230-232, C, 5.5, 5.7.1

9.6 Numerical analysis

The Delta Method Approximates the Roots of Polynomial Equations, Joseph J. Ettl, 5:2, 1974, 19-20, 0.7

The Interpolating Polynomial, Roger G. Lindley, 5:2, 1974, 21-31, 0.7

Computer Computation of Integrals, Arne Broman, 5:4, 1974, 4-11

An Integral Approximation Exact for Fifth-Degree Polynomials, Burt M. Rosenbaum, 7:3, 1976, 10-14, 5.2.2

Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 52-54, 0.2

Interpolation and Square Roots, James E. McKenna, 7:4, 1976, 49-50, C

Salvaging a Broken Line, Glenn D. Allinger, 8:1, 1977, 47-50

A New Look at Some Old Problems in Light of the Hand Calculator, J. E. Schultz and B. K. Waits, 10:1, 1979, 20-27, 0.8

Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.1.1, 5.2.2, 5.4.2

Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7, 1.2, 5.1.1
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 5.4.1, 7.3
An Almost Correct Series, R. A. Mureika and R. D. Small, 15:4, 1984, 334-338, C, 5.4.2
The Bisection Algorithm is Not Linearly Convergent, Sui-Sun Cheng and Tzon-Tzer Lu, 16:1, 1985, 56-57, C, 0.7
Nested Polynomials and Efficient Exponential Algorithms for Calculators, Dan Kalman and Warren Page, 16:1, 1985, 57-60, C, 0.2
Rediscovering Taylor's Theorem, Dan Kalman, 16:2, 1985, 103-107
Computing Large Factorials, Gerard Kiernan, 16:5, 1985, 403-412, 9.3
An Interview with George B. Dantzig: The Father of Linear Programming, Donald J. Albers and Constance Reid, 17:4, 1986, 292-304, 2.3
Controlling Roundoff Errors in Sums, Harley Flanders, 18:2, 1987, 153-156, 8.1
A Clamped Simpson's Rule, James A. Uetrecht, 19:1, 1988, 43-52, 5.2.2
An Efficient Logarithm Algorithm for Calculators, James C. Kirby, 19:3, 1988, 257-260, C, 5.3.2
What's Significant about a Digit?, David A. Smith, 20:2, 1989, 136-139, C, 0.1
Connecting the Dots Parametrically: An Alternative to Cubic Splines, Wilbur J. Hildebrand, 21:3, 1990, 208-215, 4.6, 5.6.1
Some Examples Illustrating Richardson's Improvement, Stephen Schonefeld, 21:4, 1990, 314-322
Interpolating Polynomials and Their Coordinates Relative to a Basis, David R. Hill, 23:4, 1992, 329-333, C
Iterative Methods in Introductory Linear Algebra, Donald R. LaTorre, 24:1, 1993, 79-88, 4.1, 4.5
Complex Vectors and Image Identification, Lyndell Kerley and Jeff Knisley, 24:2, 1993, 166-174, 8.3
Fitting a Logistic Curve to Data, Fabio Cavallini, 24:3, 1993, 247-253, 9.10
Angle Trisection by Fixed Point Iteration, L. F. Martins and I. W. Rodrigues, 26:3, 1995, 205-208, 0.3
Numerical Methods for Improper Integrals, Gerald Flynn, 26:4, 1995, 284-291, 5.2.10
Cubic Splines from Simpson's Rule, Nishan Krikorian and Mark Ramras, 27:2, 1996, 124-126, C, 5.2.2
Gaussian Elimination and Dynamical Systems, Kathie Yerion, 28:2, 1997, 89-97, 4.6
Pictures Suggest How to Improve Elementary Numerical Integration, Keith Kendig, 30:1, 1999, 45-50, C
From Square Roots to n-th Roots: Newton’s Method in Disguise, W. M. Priestley, 30:5, 1999, 387-388, C, 5.1.2
Second Order Iterations, Joseph J. Roseman and Gideon Zwas, 30:5, 1999, 393-396, C
Well-Rounded Figures, Yves Nievergelt, 32:1, 2001, 30-32, 7.3
Speeding Up a Numerical Algorithm, Shay Gueron, 32:1, 2001, 33-38
Simpson’s Rule with Constant Weights, R. S. Pinkham, 32:2, 2001, 91-93, 5.2.2
Estimating Large Integrals: The Bigger They Are, The Harder They Fall, Ira Rosenholtz, 32:5, 2001, 322-329, 5.2.2
How (Not) to Solve Quadratic Equations, Yves Nievergelt, 34:2, 2003, 90-104, 0.2
Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:4, 2003, 264-269, 5.2.4, 5.4.2
An Improved Remainder Estimate for Use With the Integral Test, Roger B. Nelsen, 34:5, 2003, 397-399, C, 5.4.2
Phoebe Floats!, Ezra Brown, 36:2, 2005, 114-122, 2.2, 6.3
Integrals of Fitted Polynomials and an Application to Simpson’s Rule, Allen D. Rogers, 38:2, 2007, 124-130, 5.2.2
Fibonacci’s Forgotten Number, Ezra Brown and Jason C. Brunson, 39:2, 2008, 112-120, 0.7, 2.1
Squaring a Circular Segment, Russell A. Gordon, 39:3, 2008, 212-220, 0.4, 5.4.2
CORDIC: How Hand Calculators Calculate, Alan Sultan, 40:2, 2009, 87-92, 0.6
Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 2.1, 5.1.3
A Pi Curiosity, David W. Hoffman, 40:5, 2009, 399, C, 0.4
Understanding Singular Vectors, David James and Cynthia Botteron, 44:3, 2013, 220-226, 4.1, 4.5, 4.6, 4.7
Reinventing Heron, Karl-Dieter Crisman and Michael H. Veatch, 45:3, 2014, 191-197, 0.4, 5.4.3
Saints and Scoundrels and Two Theorems That Are Really the Same, Ezova Brown, 46:5, 2015, 326-334, 9.3, 9.4
How to Approximate the Volume of a Lake, Robert L. Foote and Han Nie, 47:3, 2016, 162-170, 5.7.2
Fitting a Cubic Bezier to a Parametric Function, Alvin Penner, 50:3, 2019, 185-196, 5.5, 5.6.1, 5.7.3, 5.8, 8.3
A Difference Equation Approach to Finite Differences of Polynomials, 51:5, 2020, Michael A. Jones, 375-377, C, 0.2, 6.3
Atypical Series Representations of Riemann-Integrable Functions, Andrzej Piotrowski, 52:1, 2021, 31-38, 5.2.9, 5.4.2, 9.5
The Sock Problem Revisited, William Paulsen, 52:3, 2021, 193-203, 3.1, 3.2, 5.4.1, 6.3, 7.2
Being Rational About Algebraic Numbers, Matt David, Adam E. Parker, and Daniel A. N. Vargas, 52:5, 2021, 327-337, 4.1, 4.5, 5.4.1, 6.3, 9.4
Chaos in Determinant Condensation Calculations, Hou-Biao Li, Hong Li, and Ting-Zhu Huang, 52:5, 2021, 345-354, 4.2
Machin’s Formula via a Proof Without Words, Roger Nelsen, 52:5, 2021, 355, C, 5.3.1
The Beautiful Chaotic Dynamics of i, Joseph Previte and Michelle Previte, 52:5, 2021, 364-372, 6.3
Visualizing the Complex Roots of Quadratic and Cubic Polynomial Functions in Three Dimensions, Aniket Sanghi, 52:5, 2021, 373-379, 0.7, 5.1.5, 8.3

9.7 Modern and non-Euclidean geometry

Finite Euclidean Geometries of Order p, Hilda Duncan and David Emery, 8:1, 1977, 4-10
On the Radial Packing of Circles in the Plane, P. D. Weidman and K. Pfendt, 21:2, 1990, 112-120, 0.4
Two Trisectrices for the Price of One Rolling Coin, Jack Eidswick, 24:5, 1993, 422-430, 0.3, 0.4
Kepler, the Taxicab Metric, and Beyond: An Isoperimetric Primer, Lawrence J. Wallen, 26:3, 1995, 178-190
The Moise Plane, James R. Boone, 27:3, 1996, 182-185, 0.3
Capturing the Origin with Random Points: Generalizations of a Putnam Problem, Raph Howard and Paul Sisson, 27:3, 1996, 186-192, 7.2
Polishing the Star, Cheng-Syong Lee, 29:2, 1998, 144-145, C
Prelude to Musical Geometry, Brian J. McCarlin, 29:5, 1998, 354-370, 0.3, 9.4
Relating Geometry and Algebra in the Pascal Triangle, Hexagon, and Cuboctahedron II, Peter Hilton and Jean Pedersen, 30:1, 1999, 18-22
Several Sets of n+1 Shapes, Each the Similitude Union of the Other n, Allen J. Schwenk, 30:2, 1999, 112-117
Folding Stars, Yuanqian Chen and Charles Waiveris, 30:5, 1999, 370-378, 0.4
Introducing Hyperbolicity via Piecewise Euclidean Complexes, Jessica Benashaski, John Meier, Kevin O’Brien, Paige Reinhheimer and Margaret Skarbek, 31:3, 2000, 213-217, C
The Asymmetric Propeller Revisited, Gillian Saenz and Chris Jackson and Ryan Crumley, 31:5, 2000, 347-349, 0.4
On Determining the Non-Circularity of a Plane Curve, Lane F. Burgette and Russell A. Gordon, 35:2, 2004, 74-83, 5.1.3, 5.2.8
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.2, 0.4
When Is Euler’s Line Parallel to a Side of a Triangle?, Wladimir G. Boskoff and Bogdan D. Suceava, 35:4, 2004, 292-296, 0.3
Revisiting Spherical Trigonometry with Orthogonal Projectors, Sudipto Banerjee, 35:5, 2004, 375-381, 9.8
How To View A Flatland Painting, Mark Schlatter, 37:2, 2006, 114-120, 0.4
The Perimeter of a Polyomino and the Surface Area of a Polycube, Wiley Williams and Charles Thompson, 39:3, 2008, 233-237, C, 0.3
Designing a Table Both Swinging and Stable, Greg N. Frederickson, 39:4, 2008, 258-266, 0.3
Sets That Contain Their Circle Centers, Greg Martin, 39:5, 2008, 357-366, 9.8
Proving that Three Lines Are Concurrent, Daniel Maxin, 40:2, 2009, 128-130, C, 0.3
L-Tromino Tiling of Mutilated Chessboards, Martin Gardner, 40:3, 2009, 162-168, 9.2
Polyomino Problems to Confuse Computers, Stewart Coffin, 40:3, 2009, 169-172, 9.2
Mechanical Circle-Squaring, Barry Cox and Stan Wagon, 40:4, 2009, 238-247, 0.4, 5.6.1, 9.10
Pompeiu’s Theorem Revisited, Arpad Benyi and Ioan Casu, 40:4, 2009, 252-258, 0.3
Biangular Coordinates Redux: Discovering a New Kind of Geometry, Michael Naylor and Brian Winkel, 41:1, 2010, 29-41, 2.2
When Are Two Figures Congruent?, John E. Wetzel, 41:3, 2010, 193-196, 0.3
Viviani’s Theorem and Its Extension, Elias Abboud, 41:3, 2010, 193-211, 0.3
The FedEx Problem, Kent E. Morrison, 41:3, 2010, 222-232, 9.5, 9.10
When Can One Expect a Stronger Triangle Inequality?, Valerii Faiziev, Robert Powers and Prasanna Sahoo, 44:1, 2013, 24-31, 0.4, 0.6, 9.5
Euclidean, Spherical, and Hyperbolic Shadows, Ryan Hoban, 44:2, 2013, 126-134
Proof Without Words: A Variation on Thebault’s First Problem, Purna Patel and Raymond Viglione, 44:2, 2013, 135, C, 0.3
Circular Inclusion, James Sandefur and John Mason, 44:3, 2013, 193-201, 0.3
Projective Geometry for All, Meighan Dillon, 45:3, 2014, 169-178, 2.2
Proof Without Words: Varignon’s Theorem, Alik Palatnik, 48:5, 2017, 354, C, 0.3
Variations on an Archimedean Ground: The Generalized Salinon, Oscar Ciaurri and Emilio Fernandez, 48:5, 2017, 355-365, 0.4
Designing Koch-Like Curves, Vincent J. Matsko, 49:1, 2018, 11-19, 6.3
MegaMenger Graphs, Allan Bickle, 49:1, 2018, 20-26, 4.5, 6.3
The Centroid as a Nontrivial Area Bisecting Center of a Triangle, Allan Berele and Stefan Catoiu, 49:1, 2018, 27-34, 0.3
Why the Centroid is the Centroid: Modern Variations on a Theme of Archimedes, William C. Mercier, 49:2, 2018, 93-102, 0.3, 5.4.2
A New Angle on the Fermat-Toricelli Point, David Benko and Dan Coroian, 49:3, 2018, 195-199, 0.3, 5.1.4
The Gini Index and Grayscale Images, Roberta La Haye and Petr Zizler, 49:3, 2018, 205-211, 5.2.9, 9.10
A Canonical Conical Function, D. N. Seppala-Holtzman, 49:5, 2018, 359-362, 0.5
Eclectic Illuminism: Applications of Affine Geometry, Adam Glesser, Matt Rathbun, Isabel M. Serrano, and Bogdan D. Suceava, 50:2, 2019, 82-92, 0.4
The Barycenter Theorem: Averaging Possible-Paths to Produce Optimal Discrete Straight-line Segments, Robert M. French and Patrick Gehant, 50:2, 2019, 103-114, 3.2, 8.3
Conics as Envelopes of Families of Plane Curves, Juan Carlos Ponce Campuzano, 50:2, 2019, 115-122, 0.4, 0.5, 5.6.1
The Many Sides of the Pythagorean Theorem, Vlastimil Dlab and Kenneth S. Williams, 50:3, 2019, 162-172, 0.3
Unfoldings of the Cube, Richard Goldstone and Robert Suzzi Valli, 50:3, 2019, 173-184, 0.3, 3.1, 3.2
Triangle Inscribed-Triangle Picking, Arman Maesumi, 49:5, 2018, 364-371, 0.4, 7.2, 9.10
Connected Subsets of an $n \times 2$ Rectangle, Samuel Durham and Tom Richmond, 51:1, 2020, 32-42, 3.2, 5.4.1, 8.3
A Closer Look at the Compensating Polar Planimeter, John Eggers, 51:2, 2020, 105-116, 5.2.6, 5.7.3, 6.6
Bisecting Horn Angles, Sergiy Koshkin, 51:2, 2020, 124-131, 0.3, 0.5
Counting Connected Sets of Squares, Stan Wagon, 51:3, 2020, 173, 3.2
Proof Without Words: Magic of Tangential Polygons, Francesco Laudano, 51:3, 2020, 218, C, 0.3
The Explicit Expression of Axis and Angle of a Rotation Matrix, Wenjie Wang, 52:1, 2021, 39-44, 4.4, 4.5, 5.5
Shortest Paths on Cubes, Richard Goldstone, Rachel Roca & Robert Suzzi Valli, 52:2, 2021, 121-132, 0.3, 0.4, 3.2, 9.8
Statistical Significance of the Median of a Set of Points on the Plane, Antonio J. Moreno Verdejo, Abraham Lopez Viveros & Rafael Ramirez Ucles, 52:3, 2021, 205-218, 0.3, 0.4, 7.3
Proof Without Words: Center of Mass, Xiaoyan Hu, 52:4, 2021, 297, C, 0.3
Using the Intermediate Value Theorem to Circumscribe Hyperbolic Triangles, Brian Johnson & Lorna Wenzel, 53:2, 2022, 116-121, 0.3
Proof Without Words: A Property of a Cyclic Polygon with an Even Number of Vertices, Alik Palatnik & Moshe Stupel, 53:2, 2022, 146, C, 0.3, 0.5
A Variant of the Eyeball Theorem, Emmanuel Antonio Jose Garcia, 53:2, 2022, 147-148, C, 0.3

9.8 Topology and differential geometry

One-Sided Surfaces and Orientability, John W. Woll, Jr., 2:1, 1971, 5-18
Approximations of Square Roots, Leon Wejnortob, 14:5, 1983, 427-430, 0.2, 0.7
The Fractal Geometry of Mandelbrot, Anthony Barcellos, 15:2, 1984, 98-114, 0.4
Antoine's Necklace or How to Keep a Necklace From Falling Apart, Beverly L. Brechner and John C. Mayer, 19:4, 1988, 306-320
Looking at the Mandelbrot Set, Mark Bridger, 19:4, 1988, 353-363, 9.5
Zorn's Llama (cartoon), David Egley, 22:3, 1991, 234, C
Zorn's Llama (cartoon), David Egley, 22:3, 1991, 234, C
FFF. The Continuum Hypothesis, Ed Barbeau, 24:4, 1993, 272-276, 5.7.3
Mobius or Almost Mobius, Cliff Long, 27:4, 1996, 277, C
Visualizing the Geometry of Lissajous Knots, John Meier and Jessica Wolfson, 28:3, 1997, 211-216, 5.6.1
Numerically Parametrizing Curves, Steven Wilkinson, 29:2, 1998, 104-119, 5.6.1, 5.6.2
Looking at Order of Integration and a Minimal Surface, Thomas Hern and Cliff Long and Andy Long, 29:2, 1998, 128-133, 5.7.2
Normal Lines and Curvature, Kirby C. Smith, 31:1, 2000, 54-56, C, 5.1.3
Conformality, the Exponential Function, and World Map Projections, Timothy G. Feeman, 32:5, 2001, 334-342, 9.7
Lissajous Figures and Chebyshev Polynomials, Julio Castineira Merino, 34:2, 2003, 122-127, 5.6.1
An Illuminating Example of the Gauss Map, David Richeson, 35:1, 2004, 14, C
The Growth of Trees (Student Research Projects), Philip K. Hotchkiss and John Meier, 35:2, 2004, 143-151, 1.1
A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfalahl, 37:4, 2006, 269-278, 5.1.1, 5.7.3
Pairs of Equal Surface Functions, Daniel Cass and Gerald Wildenberg, 30:1, 2008, 51-54, C, 5.2.6, 5.6.2
Topology Explains Why Automobile Sunshades Fold Oddly, Curtis Feist and Ramin Naimi, 40:2, 2009, 93-98
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.6.1, 5.7.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 3.2, 9.2, 9.4
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 3.2, 5.4.1, 9.2
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 3.1, 9.2, 9.4
About Iterated Trefoil Knot, R. Fathauer, 43:2, 2012, 134, C
When Abelian = Hausdorff, Timothy Kohl, 43:3, 2012, 213-215, 9.4
An Ellipse Morphs to a Cosine Graph!, L. R. King, 44:2, 2013, 117-123, 0.4, 0.5, 5.2.8
On Combining and Convolving Fractals, Nicholas Cotton, Cam McLeman, and Daneil Pinchock, 46:2, 2015, 99-108, 0.3, 9.7
Parametric Equations at the Circus: Trochoids and Poi Flowers, Eleanor Farrington, 46:3, 2015, 173-177, 5.6.1
Rational and Implicit Equations for Some Polar Curves, Dave Boyles, 46:3, 2015, 189-196, 0.3, 5.4.3, 5.6.1, 9.7
To Be (a Circle) or Not to Be?, Hassan Boualem and Robert Brouzet, 46:3, 2015, 197-206, 0.2, 0.5, 5.2.8, 5.6.1
On the Inverse Curvature Problem, Adam Glesser, James Shade, and Bogdan D. Suceava, 46:3, 2015, 207-214, 5.2.9, 5.5, 5.6.1, 6.4
An Inductive Proof of the Compactness of the Closed Unit Ball of an Arbitrary Dimension, Haryono Tandra, 46:3, 2015, 218-219, C
Discrete and Smooth Bicycle “Unicycle” Paths, Amy Nesky and Clara Redwood, 47:3, 2016, 180-189, 9.10
Rankings Over Time, Michael A. Jones, Alexander Webb, and Jennifer Wilson, 47:4, 2016, 242-248, 5.4.2, 9.2
Form (poem), Sarah Blake, 47:5, 2016, 333, C, 9.2
Can a Subset’s Topology Detect Continuous Extensions?, Mike Krebs, 49:2, 2018, 138-139, C, 9.1
Euler’s Insignia: Some Admirable Curves Having a Simple Trigonometric Equation in a Natural Form, Zarema Seidametova and Valerii Temnenko, 50:2, 2019, 134-139, 0.6, 5.6.1
Linking Numbers of Klein Links, Steven Beres, Vesta Coufal, Kate Kearney, Ryan Lattanzi & Hayley Olson, 52:2, 2021, 106-114, 3.1
Shortest Paths on Cubes, Richard Goldstone, Rachel Roca & Robert Suzzi Valli, 52:2, 2021, 121-132, 0.3, 0.4, 3.2, 9.7
What’s in the Bag?, Aaron Montgomery, 52:3, 2021, 177-184, 9.1, 9.4, 9.5

9.9 Operations research, including linear programming

A Strategy for a Class of Games, R. S. Pierce, 2:2, 1971, 55-62
A Coin Game, Thomas P. Dence, 8:4, 1977, 244-246, 5.4.2, 9.10
Three Person Winner-Take-All Games with McCarthy’s Revenge Rule, Philip D. Straffin, Jr., 16:5, 1985, 386-394
A Division Game: How Far Can You Stretch Mathematical Induction?, William H. Ruckle, 18:3, 1987, 212-218, 0.9, 3.2
The Simplex Method of Linear Programming on Microcomputer Spreadsheets, Frank S. T. Hsiao, 20:2, 1989, 153-160, 1.2
A Tool for Teaching Linear Programming within MATLAB, David R. Hill, 21:1, 1990, 55-56, C, 4.1
Optimal Locations, Bennett Eisenberg and Samir Khabbaz, 23:4, 1992, 282-289, 0.4, 3.1
How to Pump a Swing, Stephen Wirkus and Richard Rand and Andy Ruina, 29:4, 1998, 266-275, 6.6
The Bus Driver’s Sanity Problem, Todd G. Will, 30:3, 1999, 187-194
An Introduction to Simulated Annealing, Brian Albright, 38:1, 2007, 37-42, 5.1.4
Student Research Project: Making Change Efficiently, Jack E. Graver, 42:4, 2011, 317-322, 0.1, 3.2, 5.1.4
Lake Wobegon Dice, Jorge Moraleda and David G. Stork, 43:2, 2012, 152-159, 3.3, 7.2, 9.2
Asset Pricing, Financial Markets, and Linear Algebra, Marcio Diniz, 44:1, 2013, 2-8, 4.1, 4.3, 7.2
The Advantage of the Coin Toss for the New Overtime System in the National Football League, Jacqueline Leake and Nicholas Pritchard, 47:1, 2016, 2-9, 4.1, 7.2
Fold-over Regions in Nonlinear First Order PDEs, Milton F. Maritz and Marèt Cloete, 51:3, 2020, 204-215, 6.4, 6.6, 9.10
How to Win at Tenzi, Steve Bacinski and Timothy Pennings, 51:4, 2020, 242-253, 4.1, 7.1, 7.2, 9.2

9.10 Mathematical modelling and simulation

A Program for Keno, Karl J. Smith, 3:2, 1972, 16-20, 7.1
Dividing Inheritances, Howard E. Reinhardt, 4:2, 1973, 30-33
A Geometric Approach to Linear Programming in the Two-Year College, Pat Semmes, 5:1, 1974, 37-40, 0.2
Some Applications of Modeling in Mathematics for Two-Year Colleges, Robert S. Fisk, 6:4, 1975, 10-13
What is an Application of Mathematics?, Clifford Sloyer, 7:3, 1976, 19-26, 5.1.4
Some Effects of Rationing, James A. Burns, 8:4, 1977, 203-206
A Coin Game, Thomas P. Dence, 8:4, 1977, 244-246, 5.4.2, 9.9
An Environmental Problem, Roland H. Lamberson, 8:4, 1977, 252-253
Foresight-Insight-Hindsight, James C. Frauenthal and Thomas L. Saaty, 10:4, 1979, 245-254
Binomial Baseball, Eugene M. Levin, 12:4, 1981, 260-266, 7.2
Minimally Favorable Games, Michael W. Chamberlain, 14:2, 1983, 159-164, 7.2
A Monte Carlo Simulation Related to the St. Petersburg Paradox, Allan J. Cesare, 15:4, 1984, 339-342, 5.4.2, 7.2
Differential Equations and the Battle of Trafalgar, 16:2, 1985, 98-102, 6.1, 6.2
Harvesting a Grizzly Bear Population, Michael Caulfield and John Kent and Daniel McCaffery, 17:1, 1986, 34-46, 4.1, 6.1
The Problem of Managing a Strategic Reserve, David Cole and Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 5.1.4, 6.1
How to Balance a Yardstick on an Apple, Herbert R. Bailey, 17:3, 1986, 220-225, 6.5
Facility Location Problems, Fred Buckley, 18:1, 1987, 24-32, 3.1
Transitions, Jeanne L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.1.3, 5.6.1
The Probability that the "Sum of the Rounds" Equals the "Round of the Sum", Roger B. Nelsen and James E. Schultz, 18:5, 1987, 390-396, 7.2, 7.3
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 3.1, 4.5
Theory, Simulation and Reality, Peter Flusser, 19:3, 1988, 210-222, 7.2, 7.3
Ties at Rotation, Howard Lewis Penn, 19:3, 1988, 230-239, 3.2
Using Simulation to Study Linear Regression, LeRoy A. Franklin, 23:4, 1992, 290-295, 7.3
Inverse Problems and Torricelli's Law, C. W. Groetsch, 24:3, 1993, 210-217, 9.5
The Best Shape for a Tin Can, P. L. Roe, 24:3, 1993, 233-236, C, 5.1.4
Fitting a Logistic Curve to Data, Fabio Cavallini, 24:3, 1993, 247-253, 9.6
Determining Sample Sizes for Monte Carlo Integration, David Neal, 24:3, 1993, 254-262, C, 5.2.2, 7.3
Quenching a Thirst with Differential Equations, Martin Ehrismann, 25:5, 1994, 413-418, 6.4
A Balloon Experiment in the Classroom, Thomas Gruszka, 25:5, 1994, 442-444, C, 6.1, 6.4
Projectile Motion with Arbitrary Resistance, Tilak de Alwis, 26:5, 1995, 361-367, 6.2
The Meeting of the Plows: A Simulation, Jerome L. Lewis, 26:5, 1995, 395-400
The Average Distance Between Points in Geometric Figures, Steven R. Dunbar, 28:3, 1997, 187-197, 7.2
The Long Arm of Calculus, Ethan Berkove and Rich Marchand, 29:5, 1998, 376-386, 5.7.1
The Probability of Passing a Multiple-Choice Test, Milton P. Eissner, 29:5, 1998, 421-426, 7.2
Spirals and Conchospirals in the Flight of Insects, Khristo N. Boyadzhiev, 30:1, 1999, 23-31, 5.6.1
Minimizing Aroma Loss, Robert Barrington Leigh and Richard Travis Ng, 30:5, 1999, 356-358, 3.2
Modeling the Gaitpath of a Running Animal, John Lorch, 31:2, 2000, 93-97
Perfecting the Analog of a Deck of Cards or Why Evolution Can’t Be Left to Chance, J. G. Simmonds, 33:1, 2002, 17-20, 7.2
Why cars in the next lane seem to go faster, Sung Soo Kim, 33:3, 2002, 228-229, C
Can a Bicycle Create a Unicycle Track?, David L. Finn, 33:4, 2002, 283-292, 5.6.1
A Modified Discrete SIR Model, Jennifer M. Switkes, 34:5, 2003, 399-402, C
First Order Differential Equations and the Atmosphere, Gerhard Strohmer, 35:2, 2004, 93-96, 6.1
Algebra in Respiratory Care, David F. Snyder, 35:4, 2004, 300-302, C, 0.2
Breaking the Holiday Inn Priority Club CAPTCHA, Edward Aboufadel, Julia Olsen, and Jesse Windle, 36:2, 2005, 101-108, 4.7, 8.3
Another Broken Symmetry, C. W. Groetsch, 36:2, 2005, 109-113, 6.2
Taking a Whipper-The Fall-Factor Concept in Rock Climbing, Dan Curtis, 36:2, 2005, 135-140, 6.2
Spraying a Wall with a Garden Hose, James Alexander, 36:2, 2005, 149-152, C, 5.1.5
Snapshots of a Rotating Water Stream, Steven L. Siegel, 36:2, 2005, 152-154, C, 5.6.1
Do Dogs Know Related Rates Rather than Optimization?, Pierre Perruchet and Jorge Gallego, 37:1, 2006, 16-18, 5.1.4
Straw in a Box, Richard Jerrard, Joel Schneider, Ralph Smallberg, and John Wetzel, 37:2, 2006, 93-102, 0.4
The Tippy Trough, Donald Francis Young, 37:3, 2006, 205-213, 5.1.4
Playing Ball in a Space Station, Andrew Simoson, 37:5, 2006, 334-343, 5.6.1
Tennis (and Volleyball) Without Geometric Series, Bruce Jay Collings, 38:1, 2007, 55-57, C, 7.2
Follow-up on Disease Detection, Witold Jarnicki, Michael Schweitzer, and Stan Wagon, 38:2, 2007, 134
Epidemic Models for SARS and Measles, Edward Rozema, 38:4, 2007, 246-259, 5.3.4, 6.1
The Depletion Ratio, C. W. Groetsch, 39:1, 2008, 43-48, 5.1.1, 5.2.1
Variations of the Sliding Ladder Problem, Stelios Kapranidis and Reginald Koo, 39:5, 2008, 374-379
Evolutionary Stability in the Traveler’s Dilemma, Andrew T. Barker, 40:1, 2009, 33-38
Mechanical Circle-Squaring, Barry Cox and Stan Wagon, 40:4, 2009, 238-247, 0.4, 5.6.1, 9.7
Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.6, 5.2.7, 5.2.8
The Draining Cylinder, James Graham-Eagle, 40:5, 2009, 337-343, 6.1
Waiting to Turn Left?, Maureen T. Carroll, Elyn K. Rykken, and Jody M. Sorensen, 41:1, 2010, 60-63, C, 5.2.1
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 5.3.4, 6.3, 6.4
Newton’s Radii, Maupertuis’ Arc Length, and Voltaire’s Giant, Andrew J. Simoson, 42:3, 2011, 183-190, 5.2.8, 5.6.1
Random Breakage of a Rod into Unit Lengths, Joe Gani and Randall Swift, 42:3, 2011, 201-205, 7.2
An Empirical Approach to the St. Petersburg Paradox, Dominic Klyve and Anna Lauren, 42:4, 2011, 260-263, 5.4.2, 7.1, 7.2
Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 0.5, 5.1.4, 5.6.1
The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 42:5, 2011, 389-393, C, 5.2.5, 5.2.9
Just Take the Limit!, Jody Picoult, 42:5, 2011, 431, C, 0.1, 0.8
An Exactly Solvable Model for the Spread of Disease, Ronald E. Mickens, 43:2, 2012, 114-120, 6.4
Eradicating a Disease: Lessons from Mathematical Epidemiology, Matthew Glomski and Edward Ohanian, 43:2, 2012, 123-132, 2.2, 6.4
Retrolife and the Pawns Neighbors, Yossi Elran, 43:2, 2012, 147-151, 3.3, 9.2
Student Research Project: The optimal level of insulation in a home attic, Paul Martin and Kirthi Premadasa, 43:2, 2012, 165-168, 5.1.4

Designing Medical Tests: The Other Side of Bayes’ Theorem, Andrew M. Ross, 43:3, 2012, 251-253, C, 7.2

An Optimal Basketball Free Throw, D. N. Seppala-Holtzman, 43:5, 2012, 387-394

Winning a Racquetball Match, Tom Brown and Brian Pasko, 43:5, 2012, 395-400, 7.2

Suspense at the Ballot Box, Nat Kell and Matt Kretchmar, 44:1, 2013, 9-16, 7.2, 7.3

Modeling Terminal Velocity, Neal Brand and John A. Quintanilla, 44:1, 2013, 57-61, C, 6.2

Slouching in the Rain, Herb Bailey, 44:2, 2013, 136-138, C, 5.1.4

Sharing the Work, Walden Freedman, 44:3, 2013, 229-232, C, 5.2.9

Underground Mathematics, Charles Hadlock, 44:5, 2013, 364-375, 6.5

Collaborative Understanding of Cyanobacteria in Lake Ecosystems, Meredith L. Greer, Holly A. Ewing, Kathryn L. Cottingham and Kathleen C. Weathers, 44:5, 2013, 376-385, 6.2, 6.5

Seasonal Variation in Epidemiology, Osvaldo Marrero, 44:5, 2013, 386-398, 7.3

How Inge Lehmann Discovered the Inner Core of the Earth, Christiane Rousseau, 44:5, 2013, 399-408, 0.4, 2.2

Climate Modeling in the Calculus and Differential Equations Classroom, Emek Kose and Jennifer Kunze, 44:5, 2013, 424-427, C, 6.1, 6.5

Student Research Project: About the Pace of Climate Change: Write a Report to the President, Lily Khadjavi, 44:5, 2013, 428-432, C, 5.1.5, 7.3

Traveling Waves and Taylor Series: Do They Have Something in Common?, Adam Besenyei, 45:1, 2014, 29-32, 5.4.3

The Fastest Way Not to Run a Four-Minute Mile, Michael Bolt, Anthony Meyer, and Nicholas Visser, 45:2, 2014, 101-107, 9.5

Truck Versus Human: Mathematics Under Pressure, Elizabeth Field, Rachael Ivison, Amanda Reyher, and Steven Warner, 45:2, 2014, 116-120, 5.1.4

Elvis Lives: Mathematical Surprises Inspired by Elvis, the Welsh Corgi, Steve J. Bacinski, Mark J. Panaggio, and Timothy J. Pennings, 46:2, 2015, 82-91, 5.1.2, 5.1.4, 5.7.1

The Fastest Path Between Two Points, with a Symmetric Obstacle, Kathleen Bell, Shania Polson, and Tom Richmond, 46:2, 2015, 92-97, 5.1.2, 5.1.4

Predicting Wins and Losses: A Volleyball Case Study, Elizabeth Knapper and Hope McIlwain, 46:5, 2015, 352-358, 4.1, 7.3

Empirical Modeling: Choosing Models and Fitting Them to Data, Glenn Ledder, 47:2, 2016, 109-119, 7.3

Discrete and Smooth Bicycle “Unicycle” Paths, Amy Nesky and Clara Redwood, 47:3, 2016, 180-189, 9.8

Did Elvis Know Cauchy-Schwarz?, Li Zhou, 48:5, 2017, 335-338, 0.2, 5.1.4, 9.5

The Geometer Dog Who Did Not Know Calculus, Alda Carvalho, Carlos Pereira dos Santos, and Jorge Nuno Silva, 48:5, 2017, 339-345, 0.4, 5.1.4

The Gini Index and Grayscale Images, Roberta La Haye and Petr Zizler, 49:3, 2018, 205-211, 5.2.9, 9.7

Derivation of the Black-Scholes Equation from Basic Principles, Granville Sewell, 49:3, 2018, 212-215, 6.6, 7.2

It’s Puzzling, C. Douglas Howard, 49:4, 2018, 242-249, 4.7, 7.2, 9.2

Strange Spinners and Diversity of Dice in Chutes and Ladders, Erin Frasetto, Michael Gableman, McKenzie Lamb, Tyler Shimek, and Andrea Young, 49:4, 2018, 251-260, 3.2, 4.7, 7.2, 9.2
Probabilities of Qwirkle Hand Values, 49:4, 2018, 270-276, 3.2, 7.2, 9.2
Developing an Optimal Strategy for a Maximization Dice Game, Kevin L. T. Chan and Wai-Sum Chan, 49:4, 2019, 272-279, 7.1, 7.2, 9.2
A Two-Dimensional Perspective on Simpson's Paradox and Its Likelihood, Michael A. Jones, 49:4, 2019, 295-297, C, 0.4, 7.3, 9.2
Modeling Emergency Room Arrivals Using the Poisson Process, Lindsey Bell and Rachel Wagner, 49:5, 2019, 343-350, 7.2, 7.3
Pinpoint the Flitting Fly, Albert Natian, 49:5, 2019, 351-356, 5.4.1, 6.3
Triangle Inscribed-Triangle Picking, Arman Maesumi, 49:5, 2019, 364-371, 0.4, 7.2, 9.7
Solving Knights-and-Knaves with One Equation, Francesco Ciraulo and Samuele Maschio, 51:2, 2020, 82-89, 9.1, 9.2, 9.4
Sweeping Gestures: A Control Theory Model for Curling, Jeffrey Lawson and Matthew Rave, 51:2, 2020, 132-140, 0.4, 6.2
The Dynamics of the Greenhouse Effect, Claire Kiers, 51:3, 2020, 182-194, 6.3
Fold-over Regions in Nonlinear First Order PDEs, Milton F. Maritz and Marèt Cloete, 51:3, 2020, 204-215, 6.4, 6.6, 9.9
Flattening the Curve, Gary Kennedy, 51:4, 2020, 254-259, 4.1
Some Probability Calculations Concerning the Egyptian Game Senet, Joaquim Noqueira, Fatima Rodrigues, and Luis Trabuco, 51:4, 2020, 271-283, 5.2.6, 7.2
Analyzing Proportionality Coefficients in Differential Equation Models, Paul Laumakis, 51:5, 2020, 360-368, 6.1
The Natural Frequency: More Natural and More Frequent than Expected, William R. Green, 51:5, 2020, 372-374, C, 6.2
Two Friends and a Bike, Phillip H. Schmidt, 52:1, 2021, 11-21, 5.1.4, 9.5
Truck Versus Human 2.0: Mathematical Follow-Up Under Increasing Pressure, and How Kepler’s Laws Come to the Rescue, Miguel A. Lerma, 52:1, 2021, 22-30, 5.1.3, 6.1
Haste Makes Waste: An Optimization Problem, William Q. Erikson, 53:2, 2022, 122-133, 5.1.4, 5.1.5, 5.2.1, 5.2.2
A New Derivation of Snell’s Law Without Calculus, John A. Quintanilla, 53:2, 2022, 140-145, 0.5, 5.1.4
Are We Ever Our Best Possible Selves? An Application of Bezout’s Identity to Find Coincident Peaks of Multiple Sine Curves, James Blackburn-Lynch, 53:3, 2022, 183-189, 0.6, 9.3

9.11 Software for advanced topics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4
EXP, Version 3.02 for Windows, Jon Wilkin, 27:1, 1996, 68-73, 0.10
10 Book Reviews

The History of the Calculus, Carl Boyer, 1:1, 1970, 60-86, summarized by Carl Boyer
Intermediate Algebra, Joseph Newmyer and Gus Kletens, 5:1, 1974, 60-61, reviewed by Edward B. Wright
Elementary Linear Algebra, Paul C. Shields, 5:1, 1974, 61-62, reviewed by Frank Hacker
Elementary Functions with Coordinate Geometry, Earl Swokowski, 5:1, 1974, 62, reviewed by Harry L. Hancock
Programmed Mathematics for Nurses, George Sackheim and Lewis Robins, 5:1, 1974, 63-64, reviewed by Allen P. Angel
Business Mathematics—A Collegiate Approach, Nelda W. Rouche, 5:2, 1974, 55-56, reviewed by Lawrence Clar
Mathematical Ideas, 2nd ed., Charles D. Miller and Vern E. Heeren, 5:2, 1974, 57, reviewed by Peter A. Lindstrom
Elementary Statistics, Robert R. Johnson, 5:2, 1974, 59, reviewed by Philip F. Reichmeider
Basic Algebra Techniques: Concepts and Manipulations, W. Burril McWaters and Anita McWaters and Robert L. Drennen, 5:3, 1974, 41-42, reviewed by Eugene P. Cooper
Mathematics with Applications in the Management, Natural, and Social Sciences, Margaret L. Lial and Charles D. Miller, 5:3, 1974, 42, reviewed by H. Eugene Hall
Applied Mathematics for Technical Programs (Trigonometry), Robert G. Moon, 5:3, 1974, 42-43, reviewed by Amogene F. DeVaney
Mathematics and Liberal Arts, Jack C. Gill, 5:4, 1974, 31-32, reviewed by Cameron Douthitt
Analytic Geometry with Vectors, Douglas F. Riddle, 5:4, 1974, 32, reviewed by Don Gallagher
Linear Algebra, Paul J. Knopp, 5:4, 1974, 32-33, reviewed by Shelba Morman
Linear Mathematics, Philip Gillett, 5:4, 1974, 34, reviewed by Peter A. Lindstrom
Precalculus Mathematics: A Functional Approach, James Connelly and Robert Fratangelo, 6:1, 1975, 28-29, reviewed by Lawrence Gillagan
Elementary Algebra, 1st ed., Robert G. Moon and Robert D. Davis, 6:1, 1975, 29, reviewed by Thomas L. Alexander
Conceptions of Space, Beginning Geometries for College, William Hemmer, 6:3, 1975, 27-28, reviewed by Jean B. Smith
Basic Mathematics for Management and Economics, Lyman C. Peck, 6:3, 1975, 28, reviewed by Cherry Mauk
Fundamental Math—A Mixed Media Program, Units I-IV, 6:3, 1975, 28-29, reviewed by R. DeJean
Mathematics—A Human Endeavor, Harold R. Jacobs, 6:4, 1975, 19, reviewed by Gerald M. Smith
Introduction to Finite Mathematics, 3rd ed., John G. Kemeny and J. Laurie Snell and Gerald L. Thompson, 6:4, 1975, 19-20, reviewed by Bruce King
Plane Trigonometry, A New Approach, C. L. Johnson, 7:1, 1976, 24-25, reviewed by Nancy Holder
Contemporary Mathematics, Bruce E. Meserve and Max A. Sobel, 7:1, 1976, 25-26, reviewed by James G. Troutman
Elementary Algebra: A Worktext, Vivian Shai Groza, 7:1, 1976, 25, reviewed by Ken Seydel
Introductory Algebra, Alphonse Gobran, 7:2, 1976, 40-41, reviewed by John P. Pace
Developing Skills in Algebra: A Lecture Work-text, J. Louis Nanny and John L. Cable, 7:2, 1976, 41-42, reviewed by Wesley W. Tom
Elementary Functions and Analytic Geometry, Flanders and Price, 7:3, 1976, 39-40, reviewed by Mary Ann DeVincenzo
Carl Friedrich Gauss, A Biography, Tord Hall, 7:3, 1976, 40, reviewed by Ralph Mansfield
Ingenuity in Mathematics, Ross Honsberger, 7:4, 1976, 26-27, reviewed by Peter A. Lindstrom
Mathematical Gems, Ross Honsberger, 8:1, 1977, 35-36, reviewed by Peter A. Lindstrom
Fortran IV Programming and Applications, C. Joseph Sass, 8:1, 1977, 36-37, reviewed by Mary Ann DeVincenzo
Statistics, Norma Gilbert, 8:2, 1977, 88-89, reviewed by Leland D. Graber
Calculus, A Practical Approach, Kenneth Kalmanzon and Patricia C. Kenschaft, 8:2, 1977, 89, reviewed by Dennis M. Rodriguez
Fundamental Mathematics (filmstrips), James Streeter and Gerald Alexander, 8:3, 1977, 165-166, reviewed by John McGregor
Differential Equations and Their Applications: An Introduction to Applied Mathematics, Martin Braun, 8:4, 1977, 231-232, reviewed by David Farnsworth
The Mathematics of the Elementary School, Edward G. Begle, 8:5, 1977, 281-282, reviewed by David E. Moxness
The Power of Relevant Mathematics: Basic Concepts, Kenneth L. Whipkey and Mary Nell Whipkey and Joanne Jarocki, 8:5, 1977, 282, reviewed by Jean B. Smith
Essentials of Precalculus Mathematics, Dennis T. Christy, 9:3, 1978, 167-168, reviewed by Jean Lane
The Ages of Mathematics (4 volumes), Michael Moffatt and Charles Flinn and Cynthia Conwell Cook and Peter D. Cook, 9:4, 1978, 222-224, reviewed by Frank Swetz
Understanding and Programming Computers, Samiha Mourad, 9:5, 1978, 288-289, reviewed by Mary Ann DeVincenzo
The Psychology of Learning Mathematics, Richard R. Skemp, 10:1, 1979, 44-45, reviewed by Shelba Jean Morman
Analytic Trigonometry with Applications, Raymond A. Barnett, 10:1, 1979, 45-46, James C. Kropa
Analytic Geometry and the Calculus, 3rd ed., A. W. Goodman, 10:2, 1979, 123-124, reviewed by Donald C. Fuller
Why the Professor Can't Teach: Mathematics and the Dilemma of University Education, Morris Kline, 10:3, 1979, 205-206, reviewed by Elaine Johnson Tatham
Mathematical Recreations and Essays, W. W. Rouse Ball and H. S. M. Coxeter, 10:4, 1979, 283-286, reviewed by G. L. Alexanderson
Elementary Number Theory, David M. Burton, 10:4, 1979, 287-288, reviewed by Henry J. Ricardo
The Historical Roots of Elementary Mathematics, Lucas N. H. Bunt, 10:4, 1979, 288-289, reviewed by Barnabas Hughes
An Introduction to Mathematical Models in the Life and Social Sciences, Michael Olinick, 10:5, 1979, 355-356, reviewed by Kenneth E. Martin
What is the Name of This Book?, Raymond M. Smullyan, 11:1, 1980, 56-58, reviewed by Klaus Galda
Mathematical Morsels, Ross Honsberger, 11:2, 1980, 127-128, reviewed by Leon Bankoff
Mathematically Speaking, Morton Davis, 12:1, 1981, 58-59, reviewed by Marilyn Mays Gilchrist
Overcoming Math Anxiety, Sheila Tobias, 12:1, 1981, 59-61, reviewed by Henry Africk
Mind Over Math, Stanley Kogelman and Joseph Warren, 12:1, 5-61, reviewed by Henry Africk
Mathematics: The Loss of Certainty, Morris Kline, 12:2, 1981, 141-142, reviewed by R. P. Boas
The Mathematical Experience, Philip J. Davis and Reuben Hersh, 13:1, 1982, 72-73, reviewed by Henry S. Tropp
The Real World and Mathematics, Hugh Burkhardt, 14:1, 1983, 81-82, reviewed by H. O. Pollak
Great Moments in Mathematics (Before 1650 and After 1650), Howard Eves, 14:3, 1983, reviewed by R. P. Boas
Infinite Processes/Background to Analysis, A. Gardner, 14:4, 1983, 365-366, reviewed by G. L. Alexanderson
Maxima and Minima Without Calculus, Ivan Niven, 14:5, 1983, 415, reviewed by Lester H. Lange
Neyman—from life, Constance Reid, 15:1, 1984, 82-84, reviewed by Robert V. Hogg
The Fractal Geometry of Nature, Benoit B. Mandelbrot, 15:2, 1984, 175-177, reviewed by Don Chakerian
Mir Publishers' Series (Moscow), 15:3, 1984, 281-282, reviewed by Peter J. Hilton
Lectures in Geometry: Analytic Geometry, M. M. Postnikov, 15:3, 1984, 282-283, reviewed by Peter J. Hilton
The Future of College Mathematics, Anthony Ralston and Gail S. Young, eds., 15:5, 1984, 458-460, reviewed by Stephen B. Maurer
Geometry and Algebra in Ancient Civilizations, B. L. Van der Waerden, 16:2, 185, 169-170, reviewed by H. S. M. Coxeter
Selecta: Expository Writing, P. R. Halmos, 16:2, 1985, 171, reviewed by R. P. Boas
New Directions in Two-Year College Mathematics, Donald J. Albers, ed., 16:3, 1985, 242-247, reviewed by Philip Cheifetz
Superior Beings. If They Exist, How Would We Know?: Game-Theoretic Implications of Omniscience, Omnipotence, Immortality, and Incomprehensibility, Steven J. Brams, 16:5, 1985, 430-431, reviewed by Thomas P. Faase
Problem-Solving Through Problems, Loren C. Larson, 16:5, 1985, 432, reviewed by G. L. Alexanderson
Mathematics: People, Problems, Results, Douglas M. Campbell and John C. Higgins, eds., 17:1, 1986, 108-109, reviewed by Philip J. Davis
Mathematical People—Profiles and Interviews, Donald J. Albers and G. L. Alexanderson, eds., 17:3, 1986, 275, reviewed by Ivan Niven
Mathematics and Optimal Form, Stefan Hildebrandt and Anthony Tromba, 18:1, 1987, 84-85, reviewed by Ross Honsberger
Mathematical Applications of Electronic Spreadsheets, Dean E. Arganbright, 18:2, 1987, 175, reviewed by Edward Page
Cross-Cultural Studies in Cognition and Mathematics, David F. Lancy, 18:3, 1987, 259-261, reviewed by John W. Berry
The Mathematical Description of Shape and Form, E. A. Lord and C. B. Wilson, 19:2, 1988, 201, reviewed by Thomas F. Banchoff
The Shape of Space, Jeffrey R. Weeks, 19:2, 1988, 202, reviewed by Thomas Banchoff
A Budget of Trisections, Underwood Dudley, 20:2, 1989, 180-181, reviewed by Doris Schattschneider
For All Practical Purposes: Introduction to Contemporary Mathematics, COMAP, 21:1, 1990, 78-80, reviewed by Martin E. Flashman
For All Practical Purposes: Introduction to Contemporary Mathematics, Module 1: Management Science, COMAP, 21:2, 1990, 164-165, reviewed by Martin E. Flashman
For All Practical Purposes: Introduction to Contemporary Mathematics, Modules 4 and 5: On Size and Shape and Computer Science, COMAP, 21:5, 1990, 436-437, reviewed by Martin E. Flashman
Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics, Robert L. Devaney, 22:1, 1991, 82-84, reviewed by Thomas Scavo
Advanced Mathematical Thinking, Tommy Dreyfus, et al., 22:3, 1991, 268, reviewed by Annie Selden
Not Knot (video), Geometry Center of the University of Minnesota, 24:2, 1993, 197-198, reviewed by Mark Kidwell
Solid Shape, Jan J. Koenderink, 24:3, 1993, 282-284, reviewed by Les Lange
The Search for E. T. Bell, Constance Reid, 25:3, 1994, 253-254, reviewed by Underwood Dudley
Essays in Humanistic Mathematics, Alvin White, ed., 26:2, 1995, 170, reviewed by Keith Devlin
Visual Mathematics, Michele Emmer, guest editor, 26:4, 1995, 341-342, reviewed by Harry Bixler
The Mathematical Traveler: Exploring the Grand History of Numbers, Calvin C. Clawson, 26:5, 1995, 417-418, reviewed by Frank Swetz
Shadows of the Mind, Roger Penrose, 27:2, 1996, 162-163, reviewed by Peter Hilton
How to Teach Mathematics: A Personal Perspective, Sten G. Krantz, 27:4, 1996, 324, reviewed by John A. Dossey
Crossroads in Mathematics: Standards for Introductory College Mathematics before Calculus, American Mathematical Association of Two-Year Colleges, 27:5, 1996, 416-417, reviewed by Donald W. Bushaw
Learn from the Masters, Frank Swetz; et al; editors, 28:3, 1997, 245-246, reviewed by William Dunham
Mathematics and Politics, Alan D. Taylor, 28:4, 1997, 328-329, reviewed by Philip D. Straffin
Indiscrete Thoughts, Gian-Carlo Rota, 29:1, 1998, 80, reviewed by Reuben Hersh
Geometry Turned On, James King and Doris Schattschneider: Editors, 29:4, 1998, 343-344, reviewed by Jean Pedersen
The Queen of Mathematics, Jay R. Goldman, 29:5, 1998, 448, reviewed by Bruce Berndt
Women in Mathematics: The Addition of Difference, Claudia Henrion, 30:1, 1999, 77-80, reviewed by Anita E. Solow
Mathematics of the 19th Century, Edited by A. N. Kolmogorov and A. P. Yushkevich, 30:2, 1999, 159-161, reviewed by John Ewing
Keys to Infinity, Clifford A. Pickover, 30:3, 1999, 244-247, reviewed by Stan Kelly-Bootle
State Mathematics Standards, Ralph A. Raimi and Lawrence S. Braden, 30:5, 1999, 425-428, reviewed by Mark Saul
Calculus Made Easy, Silvanus P. Thompson and revised by Martin Gardner, 31:1, 2000, 77-79, reviewed by Carl Linderholm
Research in Collegiate Mathematics Education, Edited by Jim Kaput and Alan H. Schoenfeld and Ed Dubinsky, 31:2, 2000, 157-159, reviewed by Michael McDonald
A Beautiful Mind, Sylvia Nasar, 31:3, 2000, 240-244, reviewed by Peter Ross
Six books on numbers, Petr Beckmann, David Blatner, Robert Kaplan, Eli Maor, Paul Nahin, and Charles Seife, 32:2, 2001, 155-160, reviewed by Brian Blank
Two biographies of Erdos, Paul Hoffman and Bruce Schechter, 32:3, 2001, 232-237, reviewed by Steven G. Krantz
The Education of a Mathematician, Philip J. Davis, 32:4, 2001, 314-316, reviewed by Patricia C Kenschaft
The Shape of the Great Pyramid, Roger Herz-Fischler, 33:1, 2002, 69-70, reviewed by Frank Swetz
Stephen Smale: The Mathematician Who Broke the Dimension Barrier, Steve Batterson, 33:3, 2002, 256-259, reviewed by Peter Ross
Philolaus of Croton: Pythagorean and Presocratic, Carl A. Huffman, 34:4, 2003, 343-348, reviewed by Hardy Grant
Math Through the Ages: A Gentle History for Teachers and Others, William P. Berlinghoff and Fernando Q. Gouvea, 34:5, 2003, 423, reviewed by Frank Swetz
A Mathematician at the Ballpark, Ken Ross, 36:3, 2005, 241-242, reviewed by Martin Gardner
King of Infinite Space/Donald Coxeter, the Man Who Saved Geometry, Siobhan Roberts, 38:5, 2007, 405-408, reviewed by Gerald L. Alexanderson
Beyond Crossroads-Implementing Mathematics Standards in the First Two Years of College, Richelle Blair, Ed., 39:4, 2008, 324-326, reviewed by Gregory S. Goodhart
Lewis Carroll in Numberland, Robin Wilson, 39:5, 2008, 419-421, reviewed by Gerald L. Alexanderson
The Pythagorean Theorem: A 4,000-Year History, Eli Maor, 40:1, 2009, 65-66, reviewed by Cecil Rousseau
Pythagoras: His Life, Teaching, and Influence, Christoph Riedweg, 40:1, 2009, 66-67, reviewed by Brigitte Servatius
Random Curves, Neal Koblitz, 40:2, 2009, 142-143, reviewed by Reuben Hersh
Pythagorean Crimes, Tefcros Michaelides, 40:3, 2009, 222-223, reviewed by Susan Jane Colley
Professor Stewart’s Cabinet of Mathematical Curiosities, Ian Stewart, 40:3, 2009, 223-225, reviewed by Mark Bollman
Julia Robinson and Hilbert’s Tenth Problem, produced and directed by George Csicsery, 40:4, 2009, 306-310, reviewed by Margaret A. M. Murray
Poincare’s Prize, George G. Szpiro, 40:4, 2009, 310-312, reviewed by Reuben Hersh
Strange Attractors, Poems of Love and Mathematics, edited by Sarah Glaz and JoAnne Growney, 40:5, 2009, 384-386, reviewed by Deborah Bacharach
Emmy Noether: The Mother of Modern Algebra, M. B. W. Tent, 41:1, 2010, 72-73, reviewed by Bhama Srinivasan
The Calculus of Friendship, Steven Strogatz, 41:1, 2010, 74-76, reviewed by Jeffrey Nunemacher
Pythagoras’ Revenge, by Arturo Sangalli, and The Housekeeper and the Professor, by Yoko Ogawa, 41:2, 2010, 170-172, reviewed by Susan Jane Colley
Present at the Creation. Pioneering Women in American Mathematics: The Pre-1940 PhD’s, by Judy Green and Jeanne LaDuke, 41:3, 2010, 248-251, reviewed by Margaret A. M. Murray
Gaming the Vote: Why Elections Aren’t Fair (and What We Can Do About It), William Poundstone, 41:4, 2010, 339-340, reviewed by Samuel Goldberg
The Unimaginable Mathematics of Borges’ Library of Babel, William Goldbloom Bloch, 41:5, 2010, 416-418, reviewed by Dan King
The Monty Hall Problem: The Remarkable Story of Math’s Most Controversial Brain Teaser, Jason Rosenhouse, 42:1, 2011, 71-74, reviewed by Edward J. Barbeau
Logical Labyrinths, Raymond M. Smullyan, 42:2, 2011, 159-160, reviewed by Kenneth Schilling
Crossing the Equal Sign, Marion Deutsche Cohen, 42:3, 2011, 241-243, reviewed by Annalisa Crannell
The Shape of Inner Space, Shing-Tung Yau and Steve Nadis, 43:2, 2012, 181-183, reviewed by David A. Cox
The Lost Millennium: History’s Timetables under Siege, Florin Diacu, 44:1, 2013, 62-63, reviewed by Richard Olson
Probability Tales, Charles M. Grinstead, William P. Peterson, and J. Laurie Snell, 44:1, 2013, 64, reviewed by Samuel Goldberg
The Manga Guide to Linear Algebra, Shin Takahashi (illustrated by Iroha Inoue) and Math Girls, Hiroshi Yuki, 44:3, 2013, 244-247 (also 184, 201, 232), reviewed by Susan Jane Colley
Book Review: Mathematics for the Environment, Martin Walter, 44:5, 2013, 446-448, reviewed by Ben Fusaro
Codebreaker, an Alan Turing drama-documentary, directed by Clare Beavan, 45:1, 2014, 65-70, reviewed by Daniel King
Games and Mathematics: Subtle Connections, David Wells, 45:4, 2014, 308-312, reviewed by Michael Henle
Origins of Mathematical Words, Anthony Lo Bello, 45:5, 2014, 400-405, reviewed by Brian Hopkins
Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers, Joseph Mazur, 46:1, 2015, 67-72, reviewed by Dominic Klyve
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century</td>
<td>Victor Katz and Karen Hunger Parshall</td>
<td>46:2</td>
<td>2015</td>
<td>149-152</td>
<td>Jiang-Ping Jeff Chen</td>
</tr>
<tr>
<td>Catalan Numbers, Richard P. Stanley</td>
<td>Kristina C. Garrett</td>
<td>46:3</td>
<td>2015</td>
<td>228-232</td>
<td></td>
</tr>
<tr>
<td>Excerpts From MAA Interviews</td>
<td>Anne Quinne</td>
<td>47:1</td>
<td>2016</td>
<td>67-72</td>
<td></td>
</tr>
<tr>
<td>How Not To Be Wrong: The Power of Mathematical Thinking, Jordan Ellenberg</td>
<td>Peter Ross</td>
<td>47:2</td>
<td>2016</td>
<td>146-152</td>
<td></td>
</tr>
<tr>
<td>Creating Symmetry: The Artful Mathematics of Wallpaper Patterns, Frank A. Farris</td>
<td>Heidi Burgiel</td>
<td>47:3</td>
<td>2016</td>
<td>228-231</td>
<td></td>
</tr>
<tr>
<td>My Search for Ramanujan: How I Learned to Count, Ken Ono and Amir D. Aczel</td>
<td>Brian Hopkins</td>
<td>47:5</td>
<td>2016</td>
<td>375-380</td>
<td></td>
</tr>
<tr>
<td>The Man Who Knew Infinity (film), directed by Matthew Brown</td>
<td>Jennifer Wilson</td>
<td>48:1</td>
<td>2017</td>
<td>64-68</td>
<td>Jenna P. Carpenter</td>
</tr>
<tr>
<td>Visualizing Mathematics with 3D Printing, Henry Segerman</td>
<td>Craig S. Kaplan</td>
<td>48:1</td>
<td>2017</td>
<td>69-72</td>
<td></td>
</tr>
<tr>
<td>Some Applications of Geometric Thinking and Moving Things Around</td>
<td>Thomas Dick</td>
<td>48:2</td>
<td>2017</td>
<td>146-152</td>
<td></td>
</tr>
<tr>
<td>Mathematical Knowledge and the Interplay of Practices, Jose Ferreiros</td>
<td>Bonnie Gold</td>
<td>48:3</td>
<td>2017</td>
<td>226-232</td>
<td></td>
</tr>
<tr>
<td>The Works of Raymond Smullyan</td>
<td>Jason Rosenhouse</td>
<td>48:4</td>
<td>2017</td>
<td>302-312</td>
<td></td>
</tr>
<tr>
<td>A Treatise of Conic Sections (Reprint of sixth edition) by George Salmon</td>
<td>Brigitte Servatius</td>
<td>49:1</td>
<td>2018</td>
<td>68-72</td>
<td></td>
</tr>
<tr>
<td>The World of Maria Gaetana Agnesi, Mathematician of God, Massimo Mazzotti</td>
<td>Shirley B. Gray</td>
<td>49:3</td>
<td>2018</td>
<td>229-232</td>
<td></td>
</tr>
<tr>
<td>Roger Nelsen’s Books, So Far, Roger Nelsen</td>
<td>Tom Edgar</td>
<td>49:4</td>
<td>2018</td>
<td>302-312</td>
<td></td>
</tr>
<tr>
<td>A TExas-Style Introduction to Proof, Ron Taylor and Patrick X. Rault</td>
<td>Brian Hopkins</td>
<td>50:1</td>
<td>2019</td>
<td>68-72</td>
<td></td>
</tr>
<tr>
<td>Lost in Math: How Beauty Leads Physics Astray, Sabine Hossenfelder</td>
<td>Brian Hopkins</td>
<td>50:2</td>
<td>2019</td>
<td>150-152</td>
<td></td>
</tr>
<tr>
<td>The Art of Logic in an Illogical World, Eugenia Cheng</td>
<td>Jean Marie Linhart</td>
<td>52:1</td>
<td>2021</td>
<td>59-63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics for Human Flourishing</td>
<td>Francis Su</td>
<td>52:1</td>
<td>2021</td>
<td>59-63</td>
<td>Jean Marie Linhart</td>
</tr>
</tbody>
</table>