
C H A P T E R 8
Inversion

Out of nothing I have created a strange new universe. János Bolyai

In this chapter we discuss the method of inversion in the plane. This technique is useful for
turning circles into lines and for handling tangent figures.

8.1 Circles are Lines
A cline (or generalized circle) refers to either a circle or a line. Throughout the chapter, we
use “circle” and “line” to refer to the ordinary shapes, and “cline” when we wish to refer
to both.

The idea is to view every line as a circle with infinite radius. We add a special point P∞
to the plane, which every ordinary line passes through (and no circle passes through). This
is called the point at infinity. Therefore, every choice of three distinct points determines a
unique cline—three ordinary points determine a circle, while two ordinary points plus the
point at infinity determine a line.

With this said, we can now define an inversion. Let ω be a circle with center O and
radius R. We say an inversion about ω is a map (that is, a transformation) which does the
following.

ω

O A A∗

Figure 8.1A. A∗ is the image of the point A when we take an inversion about ω.

� The center O of the circle is sent to P∞.
� The point P∞ is sent to O.
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150 8. Inversion

� For any other point A, we send A to the point A∗ lying on ray OA such that OA · OA∗ =
r2.

Try to apply the third rule to A = O and A = P∞, and the motivation for the first two
rules becomes much clearer. The way to remember it is “ r2

0 = ∞” and “ r2

∞ = 0”.
At first, this rule seems arbitrary and contrived. What good could it do? First, we make

a few simple observations.

1. A point A lies on ω if and only if A = A∗. In other words, the points of ω are fixed.
2. Inversion swaps pairs of points. In other words, the inverse of A∗ is A itself. In still other

words, (A∗)∗ = A.

We can also find a geometric interpretation for this mapping, which provides an impor-
tant setting in which inverses arise naturally.

Lemma 8.1 (Inversion and Tangents). Let A be a point inside ω, other than O, and A∗

be its inverse. Then the tangents from A∗ to ω are collinear with A.

This configuration is shown in Figure 8.1A. It is a simple exercise in similar triangles:
just check that OA · OA∗ = r2.

This is all fine and well, but it does not provide any clue why we should care about
inversion. Inversion is not very interesting if we only look at one point at a time—how
about two points A and B?

O

A

B

A∗

B∗

Figure 8.1B. Inversion preserves angles, kind of.

This situation is shown in Figure 8.1B. Now we have some more structure. Because
OA · OA∗ = OB · OB∗ = r2, by power of a point we see that quadrilateral ABB∗A∗ is
cyclic. Hence we obtain the following theorem.

Theorem 8.2 (Inversion and Angles). If A∗ and B∗ are the inverses of A and B under
inversion centered at O, then �OAB = −�OB∗A∗.

Unfortunately, this does not generalize nicely∗ to arbitrary angles, as the theorem only
handles angles with one vertex at O.

It is worth remarking how unimportant the particular value of r has been so far. Indeed,
we see that often the radius is ignored altogether; in this case, we refer to this as inversion

∗ The correct generalization is to define an angle between two clines to be the angle formed by the tangents at
an intersection point. This happens to be preserved under inversion. However, this is in general not as useful.
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around P , meaning that we invert with respect to a circle centered at P with any positive
radius. (After all, scaling r is equivalent to just applying a homothety with ratio r2.)

Problem for this Section

Problem 8.3. If z is a nonzero complex number, show that the inverse of z with respect to
the unit circle is (z)−1.

8.2 Where Do Clines Go?
So far we have derived only a few very basic properties of inversion, nothing that would
suggest it could be a viable method of attack for a problem. The results of this section will
change that.

Rather than looking at just one or two points, we consider entire clines. The simplest
example is a just a line through O.

Proposition 8.4. A line passing through O inverts to itself.

By this we mean that if we take each point on a line 	 (including O and P∞) and invert
it, then look at the resulting locus of points, we get 	 back again. The proof is clear.

What about a line not passing through O? Surprisingly, it is a circle! See Figure 8.2A

O

A B C

A∗

B∗

C∗

γ

ω

�

Figure 8.2A. A line inverts to a circle through O, and vice versa.

Proposition 8.5. The inverse of a line 	 not passing through O is a circle γ passing
through O. Furthermore, the line through O perpendicular to 	 passes through the center
of γ .

Proof. Let 	∗ be the inverse of our line. Because P∞ lies on 	, we must have O on 	∗.
We show 	∗ is a circle.

Let A, B, C be any three points on 	. It suffices to show that O, A∗, B∗, C∗ are concyclic.
This is easy enough. Because they are collinear, �OAB = �OAC. Using Theorem 8.2,
�OB∗A∗ = �OC∗A∗, as desired. Since any four points on 	∗ are concyclic, that implies
	∗ is just a circle.

It remains to show that 	 is perpendicular to the line passing through the centers of ω

(the circle we are inverting about) and γ . This is not hard to see in the picture. For a proof,
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let X be the point on 	 closest to O (so OX ⊥ 	). Then X∗ is the point on γ farthest from
O, so that OX∗ is a diameter of γ . Since O, X, X∗ are collinear by definition, this implies
the result.

In a completely analogous fashion one can derive the converse—the image of a circle
passing through O is a line. Also, notice how the points on ω are fixed during the whole
transformation.

This begs the question—what happens to the other circles? It turns out that these circles
also invert to circles. Our proof here is of a different style than the previous one (although
the previous proof can be rewritten to look more like this one). Refer to Figure 8.2B.

O A B B∗ A∗

C

C∗

Figure 8.2B. A circle inverts to another circle.

Proposition 8.6. Let γ be a circle not passing through O. Then γ ∗ is also a circle and
does not contain O.

Proof. Because neither O nor P∞ is on γ , the inverse γ ∗ cannot contain these points
either. Now, let AB be a diameter of γ with O on line AB (and A,B �= O). It suffices to
prove that γ ∗ is a circle with diameter A∗B∗.

Consider any point C on γ . Observe that

90◦ = �BCA = −�OCB + �OCA.

By Theorem 8.2, we see that −�OCA = �OA∗C∗ and −�OCB = �OB∗C∗. Hence, a
quick angle chase gives

90◦ = �OB∗C∗ − �OA∗C∗ = �A∗B∗C∗ − �B∗A∗C∗ = −�B∗C∗A∗

and hence C∗ lies on the circle with diameter A∗B∗. By similar work, any point on γ ∗ has
inverse lying on γ , and we are done.

It is worth noting that the centers of these circles are also collinear. (However, keep in
mind that the centers of the circle do not map to each other!)

We can summarize our findings in the following lemma.

Theorem 8.7 (Images of Clines). A cline inverts to a cline. Specifically, in an inversion
through a circle with center O,
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(a) A line through O inverts to itself.
(b) A circle through O inverts to a line (not through O), and vice versa. The diameter of

this circle containing O is perpendicular to the line.
(c) A circle not through O inverts to another circle not through O. The centers of these

circles are collinear with O.

We promised that inversion gives the power to turn circles into lines. This is a result of
(b)—if we invert through a point with many circles, then all those circles become lines.

Finally, one important remark. Tangent clines (that is, clines which intersect exactly
once, including at P∞ in the case of two lines) remain tangent under inversion. This has the
power to send tangent circles to parallel lines—we simply invert around the point at which
they are internally or externally tangent.

Problems for this Section

Problem 8.8. In Figure 8.2C, sketch the inverse of the five solid clines (two lines and three
circles) about the dotted circle ω. Hint: 279

O

Figure 8.2C. Practice inverting.

Lemma 8.9 (Inverting an Orthocenter). Let ABC be a triangle with orthocenter H and
altitudes AD, BE, CF . Perform an inversion around C with radius

√
CH · CF . Where do

the six points each go? Hint: 257

Lemma 8.10 (Inverting a Circumcenter). Let ABC be a triangle with circumcenter O.
Invert around C with radius 1. What is the relation between O∗, C, A∗, and B∗? Hint: 252

Lemma 8.11 (Inverting the Incircle). Let ABC be a triangle with circumcircle � and
contact triangle DEF . Consider an inversion with respect to the incircle of triangle ABC.
Show that � is sent to the nine-point circle of triangle DEF . Hint: 560
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8.3 An Example from the USAMO
An example at this point would likely be illuminating. We revisit a problem first given in
Chapter 3.

Example 8.12 (USAMO 1993/2). Let ABCD be a quadrilateral whose diagonals AC

and BD are perpendicular and intersect at E. Prove that the reflections of E across AB,
BC, CD, DA are concyclic.

A

B

C

D
E

W

X
Y

Z

Figure 8.3A. Adding in some circles.

Let the reflections respectively be W , X, Y , Z.
At first, this problem seems a strange candidate for inversion. Indeed, there are no

circles. Nevertheless, upon thinking about the reflection condition one might notice

AW = AE = AZ

which motivates us to construct a circle ωA centered at A passing through all three points. If
we define ωB , ωC , and ωD similarly, suddenly we no longer have to worry about reflections.
W is the just the second intersection of ωA and ωB , and so on.

Let us rephrase this problem in steps now.

1. Let ABCD be a quadrilateral with perpendicular diagonals that meet at E.
2. Let ωA be a circle centered at A through E.
3. Define ωB , ωC , ωD similarly.
4. Let W be the intersection of ωA and ωB other than E.
5. Define X, Y , Z similarly.
6. Prove that WXYZ is concyclic.
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At this point, it may not be clear why we want to invert. Many students learning inversion
for the first time are tempted to invert about ωA. As far as I can tell, this leads nowhere,
because it misses out on one of the most compelling reasons to invert:

Inversion lets us turn circles into lines.

This is why inversion around ωA seems fruitless. There are few (read: zero) circles
passing through A, so all the circles in the figure stay as circles, while some former lines
become new circles. Hence inverting about ωA is counterproductive: the resulting problem
is more complicated than the original!

So what point has a lot of circles passing through it? Well, how about E? All four circles
pass through it. Hence, we invert around a circle centered at E with radius 1. (Just because
a point has no circle around it does not prevent us from using it as the center of inversion!)

What happens to each of the mapped points? Let us consider it step-by-step.

1. A∗B∗C∗D∗ is still some quadrilateral. As A∗, and C∗ stay on line AC, and B∗ and D∗

stay on line BD, we have that A∗B∗C∗D∗ also has perpendicular diagonals meeting at
E. Since ABCD is arbitrary, we likewise treat A∗B∗C∗D∗ as arbitrary.†

2. ωA passes through E, so it maps to some line perpendicular to line EA. This is not
enough information to determine ω∗

A yet—what is the point of intersection ω∗
A has with

line EA? Actually, it is the midpoint of A∗E. For let MA be the point diametrically
opposite E on ωA; this is the pre-image of the their intersection. Now A is the midpoint
of MAE, so M∗

A is the midpoint of A∗E.
In other words, ω∗

A is the perpendicular bisector of A∗E.
3. Define ω∗

B , ω∗
C , ω∗

D similarly.
4. W ∗ is the intersection of the two lines ω∗

A and ω∗
B , simply because W is the intersection

of ωA and ωB other than E. (Of course, ω∗
A and ω∗

B also meet at the point at infinity,
which is the image of E.)

5. X∗, Y ∗, Z∗ are also defined similarly.
6. We wish to show WXYZ is cyclic. By Theorem 8.7, this is equivalent to showing

W ∗X∗Y ∗Z∗ is cyclic.

This is the thought process for inverting a problem. We consider the steps used to construct
the original problem, and one by one find their inversive analogs. While perhaps not easy
at first, this requires no ingenuity and is a skill that can be picked up with enough practice,
since it is really just a mechanical calculation.

Figure 8.3B shows the completed diagram.
We are just moments from finishing. We wish to show that quadrilateral W ∗X∗Y ∗Z∗ is

cyclic. But it is a rectangle, so this is obvious!

Solution to Example 8.12. Define ωA, ωB , ωC , ωD to be circles centered at A, B, C, D

passing through E. Observe that W is the second intersection of ωA and ωB , et cetera.

† Degrees of freedom, anyone? When you are considering the inverted version of a problem, you want to
make sure the number of degrees of freedom does not change. See Section 5.3 for more discussion on degrees of
freedom.
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E

W ∗

X∗ Y ∗

Z∗

A∗
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C∗
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ω∗
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ω∗
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ω∗
D

Figure 8.3B. Inverting the USAMO.

Consider an inversion at E. It maps ωA, ωB , ωC , ωD to four lines which are the sides of
a rectangle. Hence the images of W , X, Y , Z under this inversion form a rectangle, which
in particular is cyclic. Inverting back, WXYZ is cyclic as desired.

Notice that we do not have to go through the full detail in explaining how to arrive at
the inverted image. In a contest, it is usually permissible to just state the inverted problem,
since deriving the inverted figure is a straightforward process.

Usually an inverted problem will not be this easy.‡ However, we often have good reason
to believe that the inverted problem is simpler than the original. In the above example, the
opportunity to get rid of all the circles motivated our inversion at E, and indeed we found
the resulting problem to be trivial.

8.4 Overlays and Orthogonal Circles
Consider two circles ω1 and ω2 with centers O1 and O2 intersecting at two points X and Y .
We say they are orthogonal if

∠O1XO2 = 90◦,

i.e., the lines O1X and O1Y are the tangents to the second circle. Of course, ω1 is orthogonal
to ω2 if and only if ω2 is orthogonal to ω1.

It is clear that if ω2 is a circle and O1 a point outside it, we can draw a unique circle
centered at O1 orthogonal to ω2: namely, the circle whose radius is equal to the length of
the tangent to ω2.

Orthogonal circles are nice because of the following lemma.

‡ But you can certainly find other examples. At the 2014 IMO, one of my teammates said that he was looking
for problems that were trivialized by inversion. Another friend responded that this was easy—just take a trivial
problem and invert it!
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O1

X

O2

Y

Figure 8.4A. Two orthogonal circles.

Lemma 8.13 (Inverting Orthogonal Circles). Let ω and γ be orthogonal circles. Then
γ inverts to itself under inversion with respect to ω.

Proof. This is a consequence of power of a point. Let ω and γ intersect at X and Y ,
and denote by O the center ω. Consider a line through O intersecting γ at A and B. Then

OX2 = OA · OB

but since OX is the radius ω, A inverts to B.

What’s the upshot? When a figure inverts to itself, we get to exploit what I call the
“inversion overlay principle”. Loosely, it goes as follows:

Problems that invert to themselves are usually really easy.

There are a few ways this can happen. Sometimes it is because we force a certain circle
to be orthogonal. Other times it is a good choice of radius that plays well with the problem.
In either case the point is that we gain information by overlaying the inverted diagram onto
the original.

Here is the most classical example of overlaying, called a Pappus chain embedded in
a shoemaker’s knife. See Figure 8.4B.

Example 8.14 (Shoemaker’s Knife). Let A, B, C be three collinear points (in that
order) and construct three semicircles �AC , �AB , ω0, on the same side of AC, with diameters
AC, AB, BC, respectively. For each positive integer k, let ωk be the circle tangent to �AC

and �AB as well as ωk−1.
Let n be a positive integer. Prove that the distance from the center of ωn to AC is n

times its diameter.

The point of inverting is to handle the abominable tangency conditions. Note that each
ωi is tangent to both �AB and �AC , so it makes sense to force both of these circles into lines.
This suggests inverting about A. As an added bonus, these two lines become parallel.

It is perhaps not clear yet what to use as the radius, or even if we need to pick a radius.
However, we want to ensure that the diameter of ωn remains a meaningful quantity after
the inversion. This suggests keeping ωn fixed.
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A B C

Figure 8.4B. The Shoemaker’s Knife.

This motivates us to invert around A with radius r in such a way that ωn is orthogonal
to our circle of inversion. What effect does this have?

� ωn stays put, by construction.
� The semicircles �AB and �AC pass through A, so their images �∗

AB and �∗
AC are lines

perpendicular to line AC.
� All the other ωi are now circles tangent to these two lines.

A B C

Γ∗
AC Γ∗

AB

Figure 8.4C. Inverting with ω3 fixed (so n = 3). We invert around the dashed circle centered at A,
orthogonal to ω3.

Figure 8.4C shows the inverted image, overlaid on the original image. The two semi-
circles have become convenient parallel lines, and the circles of the Pappus chain line up
obediently between them. Because the circles are all congruent, the conclusion is now
obvious.
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8.5 More Overlays
An example of the second type of overlay is the short inversive proof of Lemma 4.33 we
promised.

T

M

K
B C

Figure 8.5A. Revisiting Lemma 4.33.

Example 8.15. Let BC be a chord of a circle �. Let ω be a circle tangent to chord BC

at T and internally tangent to ω at T . Then ray T K passes through the midpoint M of the
arc B̂C not containing T . Moreover, MC2 is the power of M with respect to ω.

Proof. Let � be the circle centered at M passing through B and C. What happens when
we invert around �?

Firstly, � is a circle through M , so it gets sent to a line. Because B and C lie on � and
are fixed by this inversion, it must be precisely the line BC. In particular, this implies line
BC gets sent to �. In other words, the inversion simply swaps line BC and �.

Perhaps the ending is already obvious. We claim that ω just gets sent to itself. Because
BC and � trade places, ω∗ is also a circle tangent to both. Also, the centers of ω∗ and ω

are collinear with M . This is enough to force ω = ω∗. (Why?)
Now K is the tangency point of ω with BC, so K∗ is the tangency point of ω∗ = ω

with (MB∗C∗) = �. But this is T ; hence K and T are inverses.
In particular, M , K , T are collinear and MK · MT = MC2.

Here is a nice general trick that can force overlays when dealing with a triangle ABC.

Lemma 8.16 (Force-Overlaid Inversion). Let ABC be a triangle. Consider the transfor-
mation consisting of an inversion about A with radius

√
AB · AC, followed by a reflection

around the angle bisector of ∠BAC. This transformation fixes B and C.

The above demonstration applies the lemma with A = M . Because �BMC was isosce-
les, there was no need to use the additional reflection.

Fixing a triangle ABC is often very powerful since problems often build themselves
around ABC. In particular, tangency to (ABC) is involved (as it becomes tangency to line
BC). This led to the solution in the above example.
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Problem for this Section

Problem 8.17. Work out the details in the proof of Lemma 8.16.

8.6 The Inversion Distance Formula
The inversion distance formula gives us a way to handle lengths in inversion. It is completely
multiplicative, making it nice for use with ratios but more painful if addition is necessary.

Theorem 8.18 (Inversion Distance Formula). Let A and B be points other than O and
consider an inversion about O with radius r . Then

A∗B∗ = r2

OA · OB
· AB.

Equivalently,

AB = r2

OA∗ · OB∗ A∗B∗.

This first relation follows from the similar triangles we used in Figure 8.1B, and is left as
an exercise. The second is a direct consequence of the first (why?).

The inversion distance formula is useful when you need to deal with a bunch of lengths.
See Problem 8.20.

Problems for this Section

Problem 8.19. Prove the inversion distance formula.

Problem 8.20 (Ptolemy’s Inequality). For any four distinct points A, B, C, and D in a
plane, no three collinear, prove that

AB · CD + BC · DA ≥ AC · BD.

Moreover, show that equality holds if and only if A, B, C, D lie on a circle in that order.
Hints: 118 136 539 130

8.7 More Example Problems
The first problem is taken from the Chinese Western Mathematical Olympiad.

Example 8.21 (Chinese Olympiad 2006). Let ADBE be a quadrilateral inscribed in
a circle with diameter AB whose diagonals meet at C. Let γ be the circumcircle of �BOD,
where O is the midpoint of AB. Let F be on γ such that OF is a diameter of γ , and let
ray FC meet γ again at G. Prove that A, O, G, E are concyclic.

We are motivated to consider inversion by the two circles passing through O, as well
as the fact that O itself is a center of a circle through many points. Inversion through O

also preserves the diameter AB, which is of course important.
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OA B

D

E

C

F

G

Figure 8.7A. Show that OAEG is concyclic.

Before inverting, though, let us rewrite the problem with phantom point G1 as the
intersection of (OFB) and (OAE), and attempt to prove instead that F , C, G1 are collinear.
This lets us define G∗

1 as the intersection of two lines.

OA B

D

E

C∗

F ∗

G∗
1

Figure 8.7B. In the inverted image, we wish to show that points O, F ∗, C∗, G∗
1 are cyclic.

We now invert around the circle with diameter AB. We figure out where each point
goes.

1. Points D, B, A, E stay put, because they lie on the circle we are inverting around. So
D∗ = D, etc.
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2. C was the intersection of AB and DE. Hence C∗ is a point on line AB so that C∗DOE

is cyclic.
3. F is the point diametrically opposite O on (BOD). That means that ∠ODF = 90◦. So,

∠OF ∗D∗ = 90◦. Similarly, ∠OF ∗B∗ = 90◦. Hence, F ∗ is just the midpoint of DB!
4. G1 is defined as the intersection of (OFB) and (OAE), so G∗

1 is the intersection of lines
F ∗B and AE.

5. We wish to show that O, F ∗, C∗, and G1 are concyclic.

Okay. Well, OF ∗ ⊥ BD; thus to prove O, F ∗, C∗, G∗
1 are concyclic, it suffices to show

that G∗
1C

∗ ⊥ AC∗. Now look once more at circle (OEDC∗). Notice something?
Because AD ⊥ BG∗

1, BE ⊥ AG∗
1, and O is the midpoint of AB, we discover this is

the nine-point circle of �ABG∗
1. We are done.

Solution to Example 8.21. Let G1 be the intersection of (ODB) and (OAE) and invert
around the circle with diameter AB. In the inverted image, F ∗ is the midpoint of BD, C∗

lies on line AB and (DOE), and G∗ is the intersection of lines DB and AE. We wish to
show O, F ∗, C∗, G∗

1 are cyclic.
Because (OED) is the nine-point circle of �ABG∗

1, we see C∗ is the foot of G∗
1 onto

line AB. On the other hand, ∠OF ∗B = 90◦ as well so we are done.

Let us conclude by examining the fifth problem from the 2009 USA olympiad.

Example 8.22 (USAMO 2009/5). Trapezoid ABCD, with AB ‖ CD, is inscribed in
circle ω and point G lies inside triangle BCD. Rays AG and BG meet ω again at points P

and Q, respectively. Let the line through G parallel to AB intersect BD and BC at points
R and S, respectively. Prove that quadrilateral PQRS is cyclic if and only if BG bisects
∠CBD.

A B

CD

Q

G

R S

P

Figure 8.7C. USAMO 2009/5.



8.7. More Example Problems 163

The main reason we might want to attempt inversion is that there are not just four, or
even five, but six points all lying on one circle. It would be great if we could make that
circle into a line.

So if we are going to invert, we should do so around a point on the circle ω. Because we
have a bisector at ∠CBD, it makes sense to invert around B in order to keep this condition
nice. Also, the parallel lines become tangent circles at B. More plainly, there are just a lot
of lines passing through B.

Again we work out what happens in steps.

1. Cyclic quadrilateral ABCD becomes a point B and three points A∗, C∗, D∗ on a line in
that order. Because AB ‖ CD, we actually see that A∗B is tangent to (BC∗D∗).

2. G is an arbitrary point inside triangle BCD. That means G∗ is some point inside
∠C∗BD∗, but outside triangle BC∗D∗.

3. R and S are the intersections of a parallel line through G with BD and BC. Therefore
R∗ is the intersection of a circle tangent to (BC∗D∗) at B (this is the image of parallel
lines) with ray BD∗. S∗ is the intersection of this same circle with ray BS∗.

4. Q was the intersection of (ABCD) with ray BG, so now Q∗ is the intersection of BG∗

with the line through A∗, C∗, and D∗.
5. P was the intersection of (ABCD) with line AG. Hence P ∗ is the point on line A∗C∗

such that BA∗G∗P ∗ is cyclic.
6. We wish to show that P ∗Q∗R∗S∗ is cyclic if and only if BG∗ bisects ∠R∗BS∗.

The inverted diagram is shown in Figure 8.7D.

B

R∗ S∗

G∗

C∗ D∗
Q∗

A∗
P ∗

Figure 8.7D. Inverting the USAMO. . . again!

Now it appears that P ∗Q∗ is parallel to S∗R∗. Actually, this is obvious, because there
is a homothety at B taking C∗D∗ to S∗R∗. This is good for us, because now P ∗Q∗R∗S∗ is
cyclic if and only if it is isosceles.

We can also basically ignore (BC∗D∗) now; it is just there to give us these parallel lines.
For that matter, we can more or less ignore C∗ and D∗ now too.

Let us eliminate the point A∗. We have

�Q∗P ∗G∗ = �A∗P ∗G∗ = �A∗BG∗ = �BS∗G∗.
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Seeing this, we extend line G∗P ∗ to meet (BS∗R∗) at X, as in Figure 8.7E. This way,

�Q∗P ∗G∗ = �BS∗G∗ = �BX∗G∗.

Therefore, P ∗Q∗ ‖ BX holds unconditionally. This lets us get rid of P ∗ in the sense that
it is just a simple intersection of G∗X and the parallel line; we can anchor the problem
around (BXR∗S∗).

B

R∗S∗

G∗

Q∗

X

P ∗

Figure 8.7E. Cleaning up the inverted diagram.

Thus, we have reduced the problem to the following.

Let BXS∗R∗ be an isosceles trapezoid and 	 a fixed line parallel to its bases. Let G∗

be a point on its circumcircle and denote the intersections of 	 with BG∗ and XG∗ by
Q∗ and P ∗. Prove that P ∗S∗ = Q∗R∗ if and only if G∗ is the midpoint of arc R∗S∗.

This is actually straightforward symmetry. See the solution below.

Solution to Example 8.22. Perform an inversion around B with arbitrary radius, and
denote the inverse of a point Z with Z∗.

After inversion, we obtain a cyclic quadrilateral BS∗G∗R∗ and points C∗, D∗ on BS∗,
BR∗, such that (BC∗D∗) is tangent to (BS∗G∗R∗)—in other words, so that C∗D∗ is parallel
to S∗R∗. Point A∗ lies on line C∗D∗ so that A∗B is tangent to (BS∗G∗R∗). Points P ∗ and
Q∗ are the intersections of (A∗BG∗) and BG∗ with line C∗D∗.

Observe that P ∗Q∗R∗S∗ is a trapezoid, so it is cyclic if and only if it isosceles.
Let X be the second intersection of line G∗P ∗ with (BS∗R∗). Because �Q∗P ∗G∗ =

�A∗BG∗ = �BXG∗, we find that BXS∗R∗ is an isosceles trapezoid.
If G∗ is indeed the midpoint of the arc then everything is clear by symmetry now.

Conversely, if P ∗R∗ = Q∗S∗ then that means P ∗Q∗R∗S∗ is a cyclic trapezoid, and hence
that the perpendicular bisectors of P ∗Q∗ and R∗S∗ are the same. Hence B, X, P ∗, Q∗ are
symmetric around this line. This forces G∗ to be the midpoint of arc R∗S∗ as desired.

These two examples demonstrate inversion as a means of transforming one problem
into another (as opposed to some of the overlaying examples, which used both at once). It is
almost like you are given a choice—which of these two problems looks easier, the inverted
one or the original one? Which would you like to solve?
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8.8 When to Invert
As a reminder, here are things inversion with a center O handles well. Hopefully these were
clear from the examples.

� Clines tangent to each other. In particular, we can take a tangent pair of circles to two
parallel lines.

� Several circles pass through O. Inverting around O eliminates the circles.
� Diagrams that invert to themselves! Overlaying an inverted diagram is frequently fruitful.

Here are things that inversion does not handle well.

� Scattered angles. Theorem 8.2 gives us control over angles that have a ray passing through
a center O, but we do not have much control over general angles.

� Problems that mostly involve lines and not circles.

Finally, here is a reminder of what inversion through a circle ω with center O preserves
(and what it does not).

� Points on ω are fixed.
� Clines are sent to clines. Moreover,

� If a circle γ is mapped to a line 	, then 	 is perpendicular to the line joining O to the
center of γ .

� If a circle γ is mapped to γ ∗, the center of γ is not in general the center of γ ∗. It is
true, however, that the centers of γ and γ ∗ are collinear with the center of inversion.

� Tangency and intersections are preserved.

8.9 Problems
Problem 8.23. Let ABC be a right triangle with ∠C = 90◦ and let X and Y be points in the
interiors of CA and CB, respectively. Construct four circles passing through C, centered
at A, B, X, Y . Prove that the four points lying on at exactly two of these four circles are
concyclic. (See Figure 8.9A.) Hints: 198 626 178 577

C

Figure 8.9A. The four intersections are concyclic (dashed circle).
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Problem 8.24. Let ω1, ω2, ω3, ω4 be circles with consecutive pairs tangent at A, B, C, D,
as shown in Figure 8.9B. Prove that quadrilateral ABCD is cyclic. Hints: 294 677 172 Sol:

p.272

A

B

C

D

Figure 8.9B. Is there a connection between this and Theorem 2.25?

Problem 8.25. Let A, B, C be three collinear points and P be a point not on this line. Prove
that the circumcenters of �PAB, �PBC, and �PCA lie on a circle passing through P .
Hints: 465 536 496

Problem 8.26 (BAMO 2008/6). A point D lies inside triangle ABC. Let A1, B1, C1 be the
second intersection points of the lines AD, BD, and CD with the circumcircles of BDC,
CDA, and ADB, respectively. Prove that

AD

AA1
+ BD

BB1
+ CD

CC1
= 1.

Hints: 439 170 256

Problem 8.27 (Iran Olympiad 1996). Consider a semicircle with center O and diameter
AB. A line intersects line AB at M and the semicircle at C and D such that MC > MD

and MB < MA. Suppose (AOC) and (BOD) meet at a point K other than O. Prove that
∠MKO = 90◦. Hints: 403 27 Sol: p.272

Problem 8.28 (Shortlist 2003/G4). Let �1, �2, �3, �4 be distinct circles such that �1, �3

are externally tangent at P , and �2, �4 are externally tangent at the same point P . Suppose
that �1 and �2, �2 and �3, �3 and �4, �4 and �1 meet at A, B, C, D, respectively, and that
all these points are different from P . Prove that

AB · BC

AD · DC
= PB2

PD2
.

Hints: 120 247 22

Problem 8.29. Let ABC be a triangle with incenter I and circumcenter O. Prove that line
IO passes through the centroid G1 of the contact triangle. Hints: 532 323 579

Problem 8.30 (NIMO 2014). Let ABC be a triangle and let Q be a point such that
AB ⊥ QB and AC ⊥ QC. A circle with center I is inscribed in �ABC, and is tangent to
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BC, CA, and AB at points D, E, and F , respectively. If ray QI intersects EF at P , prove
that DP ⊥ EF . Hints: 362 125 578 663 Sol: p.273

Problem 8.31 (EGMO 2013/5). Let � be the circumcircle of the triangle ABC. The circle
ω is tangent to the sides AC and BC, and it is internally tangent to the circle � at the point
P . A line parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q.
Prove that ∠ACP = ∠QCB. Hints: 282 449 255 143 Sol: p.273

Problem 8.32 (Russian Olympiad 2009). In triangle ABC with circumcircle �, the
internal angle bisector of ∠A intersects BC at D and � again at E. The circle with
diameter DE meets � again at F . Prove that AF is a symmedian of triangle ABC. Hints:

594 648 321

Problem 8.33 (Shortlist 1997). Let A1A2A3 be a non-isosceles triangle with incenter I .
Let Ci , i = 1, 2, 3, be the smaller circle through I tangent to AiAi+1 and AiAi+2 (indices
taken mod 3). Let Bi , i = 1, 2, 3, be the second point of intersection of Ci+1 and Ci+2.
Prove that the circumcenters of the triangles A1B1I , A2B2I , A3B3I are collinear. Hints: 76

242 620 561

Problem 8.34 (IMO 1993/2). Let A, B, C, D be four points in the plane, with C and D on
the same side of the line AB, such that AC · BD = AD · BC and ∠ADB = 90◦ + ∠ACB.
Find the ratio AB·CD

AC·BD
, and prove that the circumcircles of the triangles ACD and BCD are

orthogonal. Hints: 7 384 322 3

Problem 8.35 (IMO 1996/2). Let P be a point inside a triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP ,
BD, CE concur. Hints: 581 638 338 341

Problem 8.36 (IMO 2015/3). Let ABC be an acute triangle with AB > AC. Let � be its
cirumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint
of BC. Let Q be the point on � such that ∠HQA = 90◦ and let K be the point on � such
that ∠HKQ = 90◦. Assume that the points A, B, C, K , and Q are all different and lie on
� in this order. Prove that the circumcircles of triangles KQH and FKM are tangent to
each other. Hints: 402 673 324 400 155 Sol: p.274

Problem 8.37 (ELMO Shortlist 2013). Let ω1 and ω2 be two orthogonal circles, and let
the center of ω1 be O. Diameter AB of ω1 is selected so that B lies strictly inside ω2.
The two circles tangent to ω2 through both O and A touch ω2 at F and G. Prove that
quadrilateral FOGB is cyclic. Hints: 96 353 112 Sol: p.274


