
2022 Session A

A1. Determine all ordered pairs of real numbers (a, b) such that the line y = ax+b intersects
the curve y = ln(1 + x2) in exactly one point.

Answer: Those (a, b) for which

• |a| ≥ 1, or

• a = b = 0, or

• 0 < |a| < 1 and b < ln[2(1−
√
1− a2)/a2] +

√
1− a2 − 1, or

• 0 < |a| < 1 and b > ln[2(1 +
√
1− a2)/a2]−

√
1− a2 − 1.

Solution: Notice that upon reflection about the y-axis, the curve y = ln(1+x2) is unchanged,
and the line y = ax+ b becomes the line y = −ax+ b. Thus, (a, b) is a solution if and only
if (−a, b) is a solution, so we need only verify the claim for a ≥ 0.

Define h(x) = ln(1 + x2) − ax − b, with derivative h′(x) = 2x/(1 + x2) − a; we must
determine the pairs (a, b) for which h(x) = 0 for exactly one x.

By L’Hôpital’s rule, limx→±∞[ln(1+ x2)− b]/x = 0, so it follows that limx→±∞ h(x)/x =
−a. Thus, if a > 0, then limx→−∞ h(x) = ∞ and limx→∞ h(x) = −∞. Also, x2 − 2x + 1 =
(x− 1)2 ≥ 0 implies that h′(x) ≤ 1− a, with equality only when x = 1.

If a ≥ 1, then h′(x) ≤ 0, with equality only if a = 1 and x = 1. It follows that h is strictly
decreasing, and from this, the limits we proved, and the continuity of h, we conclude that h
takes on every value (including 0) exactly once. Thus, (a, b) is a solution for all a ≥ 1 and
all b.

If 0 < a < 1, then h′(x) = 0 for two values of x, which from the quadratic formula
are x± = (1 ±

√
1− a2)/a. Notice that h′(x) < 0 for x < x− and x > x+, and h′(x) > 0

for x− < x < x+. Thus, h takes on every value between h(x−) and h(x+) three times,
takes on the values h(x−) and h(x+) twice each, and takes on all other values once. Since
h(x−) < h(x+), the solutions are those (a, b) for which h(x−) > 0 or h(x+) < 0; equivalently,
b < ln(1 + x2−) − ax− or b > ln(1 + x2+) − ax+, which upon substitution yield the formulas
claimed above.

If a = 0, then h′(x) < 0 for x < 0 and h′(x) > 0 for x > 0; also, limx→±∞ h(x) = ∞. It
follows that h(x) takes on every value greater than h(0) twice, takes on the value h(0) once,
and does not take on values less than h(0). Since h(0) = −b, we conclude that (0, 0) is the
only solution with a = 0.
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A2. Let n be an integer with n ≥ 2. Over all real polynomials p(x) of degree n, what is the
largest possible number of negative coefficients of p(x)2?

Answer: 2n− 2.

Solution: Let R be a large real number and define

p(x) = Rxn − xn−1 − xn−2 − · · · − x2 − x+R = R(xn + 1)− xn − x

x− 1
.

Then

p(x)2 = R2(x2n + 2xn + 1)− 2R(xn + 1)
xn − x

x− 1
+

(xn − x)2

(x− 1)2
.

Thus we see that the coefficients of x2n, xn and x0 will be quadratic polynomials in R with
positive leading coefficient, and hence will be positive for all sufficiently large R. Since

(xn + 1)
xn − x

x− 1
=

x2n − x

x− 1
− xn = x2n−1 + x2n−2 + xn+1 + xn−1 + · · ·+ x,

we see that the coefficients of all powers of x other than 0, n, and 2n take the form −2R+ c,
where c depends on the power but not on R. Thus for large enough R (in fact 2R > n − 2
suffices), these coefficients will all be negative. Thus, p(x) has 2n− 2 negative coefficients for
large R.

Let p(x) = anx
n+an−1x

n−1+ · · ·+a0, where without loss of generality we assume an > 0,
and suppose p(x)2 has 2n− 1 negative coefficients. Since

p(x)2 = a2nx
2n + 2anan−1x

2n−1 + · · ·+ 2a0a1x+ a20,

the coefficients of x2n and x0 must both be nonnegative. Thus all other coefficients must be
negative. In particular a0 and a1 must have opposite signs (and be nonzero). Thus, since
n ≥ 2, there is a largest integer k with k < n such that ak > 0. Then the coefficient of xn+k

is

2akan +

n−1∑
m=k+1

aman+k−m.

The first term is positive since ak and an are both positive, and all the terms in the sum are
nonnegative since maximality of k implies am and an+k−m are both nonpositive. Thus, the
coefficient of xn+k is also positive, a contradiction.

Thus, the maximum is 2n− 2.
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A3. Let p be a prime number greater than 5. Let f(p) denote the number of infinite sequences
a1, a2, a3, . . . such that an ∈ {1, 2, . . . , p − 1} and anan+2 ≡ 1 + an+1 (mod p) for all n ≥ 1.
Prove that f(p) is congruent to 0 or 2 (mod 5).

Solution 1: For n ≥ 1, we must have an+1 ̸≡ −1 (mod p), since an and an+2 are not divisible
by p. Therefore, we can cancel factors of an and (for n ≥ 2) an + 1 to derive the following
(mod p) congruences:

a3 ≡
1 + a2
a1

,

a4 ≡
1 + a3
a2

≡ 1 + a1 + a2
a1a2

,

a5 ≡
1 + a4
a3

≡ 1 + a1
a2

,

a6 ≡
1 + a5
a4

≡ a1,

a7 ≡
1 + a6
a5

≡ a2.

Since an and an+1 determine an+2, by induction the sequence is periodic modulo p with
period 5, and hence periodic with period 5; in other words, an+5 = an for all n ≥ 1.

Next, we assert that since 5 is prime, the period-5 infinite sequences (a1, a2, a3, . . .),
(a2, a3, a4, . . .), (a3, a4, a5, . . .), (a4, a5, a1, . . .), and (a5, a1, a2, . . .) are all distinct unless a1 =
a2 = a3 = a4 = a5. For example, if the third and fifth sequences are identical, then a3 = a5 =
a2 = a4 = a1. Therefore, each non-constant period-5 cycle that meets the conditions of the
problem corresponds to 5 infinite sequences that meet the conditions, so the total number of
allowed sequences that are non-constant is a multiple of 5.

It remains only to show that the number of allowed constant sequences – those with
an = c for some c ∈ {1, 2, . . . , p − 1} and all n ≥ 1 – is congruent to 0 or 2 modulo 5. The
number of such sequences is the number of such c for which c2 ≡ 1+ c (mod p). Multiplying
by 4 and then adding 1− 4c to each side yields (2c− 1)2 ≡ 5 (mod p). Since p > 5 is prime,
we can divide by 4 modulo p, so every solution of the latter congruence is a solution of the
former congruence. And by the same properties of p, there are either 0 or 2 square roots of
5 modulo p, and if there are 2, each yields a corresponding value of c. (Each of these values
of c is nonzero because (−1)2 ̸≡ 5 (mod p).)

Solution 2: We say that an ordered pair of integers (a, b) has property P if a, b ∈ {1, 2, . . . , p−
2} and a + b ̸= p − 1. We claim that if (a1, a2) has property P , then it is part of a unique
infinite sequence a1, a2, a3, . . . that satisfies the conditions of the problem. The justification
uses the following lemma.

Lemma. The conditions in the problem statement on an, an+1, and an+2 imply that

an+2 ≡ −1 (mod p) ⇐⇒ an + an+1 ≡ −1 (mod p) and

an ≡ −1 (mod p) ⇐⇒ an+1 + an+2 ≡ −1 (mod p).

Proof. The first equivalence follows from an(an+2+1) ≡ 1+an+1+an (mod p), and the fact
that we can divide by an modulo p since an is not a multiple of p. The second equivalence is
proved similarly.
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If (an, an+1) has property P , then an + an+1 ̸≡ −1 (mod p). Since an and 1 + an+1 are
not multiples of p, there is a unique an+2 ∈ {1, . . . , p − 1} such that anan+2 ≡ 1 + an+1

(mod p), and an+2 ̸= p− 1 by the first part of the lemma. Further, by the second part of the
lemma, an+1 + an+2 ̸= p− 1. Thus, (an+1, an+2) has property P , and is uniquely determined
by (an, an+1) and the conditions in the problem statement. Our claim follows by induction
on n.

Next, suppose that the sequence a1, a2, a3, . . . that satisfies the conditions of the problem.
For n ≥ 1, since an and an+2 are not multiples of the prime number p, neither is anan+2,
so an+1 ̸≡ −1 (mod p). In particular, a2, a3, and a4 are not congruent to −1 modulo p.
Then by the first part of the lemma, a1 + a2 and a2 + a3 are not congruent to −1 modulo p.
Then by the second part of the lemma, a1 ̸≡ −1 (mod p). In particular, (a1, a2) must have
property P .

Therefore, f(p) is the number of ordered pairs (a1, a2) that have property P . There are
p − 2 possible values of a1, and for each such value, there are p − 3 values of a2 consistent
with property P . Then f(p) = (p−2)(p−3) = p2−5p+6, and f(p) ≡ p2+1 (mod 5). Since
p ̸= 5 and p is prime, p is congruent to 1, 2, 3, or 4 modulo 5. In all cases, p2 ≡ ±1 (mod 5),
and the conclusion of the problem follows.
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A4. Suppose thatX1, X2, . . . are real numbers between 0 and 1 that are chosen independently
and uniformly at random. Let S =

∑k
i=1Xi/2

i, where k is the least positive integer such
that Xk < Xk+1, or k = ∞ if there is no such integer. Find the expected value of S.

Answer: 2
√
e− 3.

Solution 1: The approach is a “first-step analysis” that expresses the expected value for
the sum starting with X1 in terms of the expected value for the sum starting with X2. Let
F (x) denote the expected value of the quantity that is S if X1 ≤ x, and 0 if X1 > x. The
problem statement asks for F (1). Since 0 ≤ S ≤ 1, it follows that |F (y) − F (x)| ≤ |y − x|,
and in particular F is continuous.

Conditioning on X1 = u,

F (x) = (1− x) · 0 +
∫ x

0
(u/2 + F (u)/2) du =

x2

4
+

1

2

∫ x

0
F (u) du.

Since F is continuous, the right side is differentiable, and then so is F . This implies the
differential equation

F ′(x)− F (x)/2 = x/2, F (0) = 0.

The simplest particular solution for the nonhomogeneous component is Fp(x) = −x − 2
(which is found by substituting ax + b and solving). The general homogeneous solution to
F ′ − F/2 = 0 is Fh(x) = cex/2, so in all the solution has the form

F (x) = −x− 2 + cex/2.

Plugging in the initial condition gives c = 2, so finally, F (1) = −3 + 2
√
e.

Solution 2: This approach calculates the expected value by summing an explicit series
conditioned on the position of the first increase in the sequence (note that such a position
exists with probability 1). We will also need the order statistics for uniform random variables:
the expected value of the j-th largest among X1, . . . , Xn is n+1−j

n+1 .
Now suppose that the first increase occurs at position k, so X1 ≥ X2 ≥ · · · ≥ Xk and

Xk < Xk+1. Denote this event by Ik. The probability of this occurring is P (Ik) =
1
k! ·

k
k+1 due

to symmetry and independence; the first factor imposes the monotonic order on X1, . . . , Xk,
and the second factor comes from the fact that Xk+1 can lie in any of the k+1 possible order
positions (relative to X1, . . . , Xk) except for the smallest (i.e. the (k + 1)-st largest).

We next calculate the expected value of each Xj for 1 ≤ j ≤ k, conditional on the event
Ik. The claim is that

E[Xj | Ik] = 1− j(k + 1)

k(k + 2)
.

This is shown by conditioning on the k possible order positions for Xk+1. In particular, if
it is in one of the j largest positions, then the expected value of Xj is shifted down to the

(j + 1)-st largest position, namely k+2−j−1
k+2 , but if it is in a smaller position, the expected

value of Xj is k+2−j
k+2 . Overall,

E [Xj | Ik] =
j

k
· k + 1− j

k + 2
+

k − j

k
· k + 2− j

k + 2
,
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which simplifies to the claimed expression.
We can now evaluate the expected value of the sum in the case of Ik. Using the geometric

series, and its relative
k∑

j=1

jxj =
x
(
kxk+1 − (k + 1)xk + 1

)
(x− 1)2

,

we find that

E[S | Ik] =
k∑

j=1

1

2j
E [Xj | Ik] =

k∑
j=1

1

2j

(
1− j(k + 1)

k(k + 2)

)

= 1− 1

2k
− k + 1

k(k + 2)
·
1
2

(
k

2k+1 − k+1
2k

+ 1
)

1
4

= 1 +
1

k2k
− 2(k + 1)

k(k + 2)
.

Finally, summing over k gives

E[S] =
∑
k≥1

P (Ik)E[S | Ik]

=
∑
k≥1

1

k!

k

k + 1

(
1 +

1

k2k
− 2(k + 1)

k(k + 2)

)

=
∑
k≥1

1

(k + 1)!

(
k +

1

2k
− 2(k + 1)

k + 2

)

=
∑
k≥1

(
(k + 1)(k + 2)− 3(k + 2) + 2

(k + 2)!
+

1

2k(k + 1)!

)

= (e− 1)− 3(e− 2) + 2

(
e− 5

2

)
+ 2

(√
e− 1− 1

2

)
= 2

√
e− 3.

Solution 3: Let cj = 2−j if X1 ≥ · · · ≥ Xj , and let cj = 0 otherwise. Then S =
∑∞

j=1 cjXj .
The probability that cj > 0 is 1/j!, and the expected value of Xj conditioned on cj > 0 is the
(unconditioned) expected value of the minimum of X1, . . . , Xj , which is 1/(j + 1) [because
the cumulative distribution function of the minimum is 1 − (1 − x)j ]. By Tonelli’s theorem
(which applies because cjXj is nonnegative), the expected value of the sum is the sum of the
expected values:

E[S] =
∞∑
j=1

E[cjXj ] =
∞∑
j=1

2−j

(j + 1)!
= 2

∞∑
n=2

(1/2)n

n!
= 2(e1/2 − 1− 1/2) = 2

√
e− 3.
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A5. Alice and Bob play a game on a board consisting of one row of 2022 consecutive squares.
They take turns placing tiles that cover two adjacent squares, with Alice going first. By rule,
a tile must not cover a square that is already covered by another tile. The game ends when no
tile can be placed according to this rule. Alice’s goal is to maximize the number of uncovered
squares when the game ends; Bob’s goal is to minimize it. What is the greatest number of
uncovered squares that Alice can ensure at the end of the game, no matter how Bob plays?

Answer: 290.

Solution: After k tiles have been placed, 2k squares will be covered by tiles. The uncovered
squares will form at most k+1 blocks of one or more consecutive squares, whose total length
will therefore be 2022− 2k squares.

Claim 1. Alice can always ensure that there are at least 290 uncovered squares at the end.

Proof. Alice can use the following strategy when there is at least one uncovered block of
length L ≥ 3 squares: Alice picks such a block, and covers the second and third squares of
that block, breaking it into a block of length 1 and (if L > 3) a block of length L− 3.

Suppose Alice is able to place m tiles according to this strategy, but not m + 1. Then
after 2m−1 (if Bob is unable to place an mth tile) or 2m tiles have been placed, all remaining
uncovered blocks have length 1 or 2. At this point, Alice has created at least m blocks of
length 1, and there are at most 2m+1 uncovered blocks. Thus, the total number of uncovered
squares is at most 2(2m + 1) −m = 3m + 2. Since at most 4m squares are covered at this
point, 7m+2 ≥ 2022, and hence m ≥ 2020/7 > 288. Thus, the game reaches a point with at
least 289 uncovered blocks of length 1, none of which can be covered subsequently. Since the
number of uncovered squares is always even, at the end of the game there are at least 290
uncovered squares.

Claim 2. Bob can always ensure that there are at most 290 uncovered squares at the end.

Proof. Bob can use the following strategy when there is at least one uncovered block of length
L ≥ 4 squares: Bob picks such a block, and covers the third and fourth squares of that block,
breaking it into a block of length 2 and (if L > 4) a block of length L− 4

Let D be the difference between the number of uncovered blocks with length other than 2
and the number of uncovered blocks with length 2. At the start of the game, D = 1. Placing
a tile can increase the number of uncovered blocks by 1, or it can cover a block of length
2, but not both. Thus, neither player can increase D by more than 1 by placing a tile. If
Bob is able to place a tile according to the strategy above, then D decreases by at least 1.
Therefore, D ≤ 2 for as long as Bob is able to follow the strategy.

Suppose Bob is able to place m tiles according to this strategy, but not m + 1. Then
after 2m (if Alice is unable to place an (m + 1)st tile) or 2m + 1 tiles have been placed, all
remaining uncovered blocks have length at most 3. At this point, let n1, n2, and n3 be the
number of uncovered blocks with lengths 1, 2, and 3, respectively. Then the total number of
uncovered blocks is n1+n2+n3 ≤ 2m+2, and since either 4m or 4m+2 squares are covered
by tiles, n1 + 2n2 + 3n3 + 4m ≤ 2022. Double the first inequality in the previous sentence,
add it to the second inequality, and eliminate m to get 3n1 + 4n2 + 5n3 ≤ 2026. Also, at
this point n1 + n3 − n2 = D ≤ 2. Multiply this inequality by 4 and add it to the previous
inequality to get 7n1 + 9n3 ≤ 2034. Since uncovered blocks of length 2 or 3 will have a tile
placed in them before the game ends, the number of uncovered squares at the end will be
n1 + n3 ≤ (7n1 + 9n3)/7 ≤ 2034/7 < 291.
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A6. Let n be a positive integer. Determine, in terms of n, the largest integer m with the
following property: There exist real numbers x1, . . . , x2n with −1 < x1 < x2 < · · · < x2n < 1
such that the sum of the lengths of the n intervals

[x 2k−1
1 , x 2k−1

2 ], [x 2k−1
3 , x 2k−1

4 ], ..., [x 2k−1
2n−1 , x

2k−1
2n ]

is equal to 1 for all integers k with 1 ≤ k ≤ m.

Answer: m = n.

Solution: Note that the given condition can be rewritten as

2n∑
j=1

(−1)jx2k−1
j = 1.

We will show that xj = − cos(jπ/(2n + 1)) works for k up to m = n. To see this, let
ω = e2iπ/(2n+1). Then ω is a primitive (2n+ 1)-st root of unity, so for all integers a that are
not multiples of 2n+ 1,

2n∑
j=0

ωaj = 0.

It follows that for k = 1, . . . , n,

2n∑
j=0

(
ωj + ω−j

2

)2k−1

= 0,

since the binomial expansion of the (2k − 1)-st power is a linear combination of ωaj for odd
integers j from −2k+1 to 2k−1, none of which are multiples of 2n+1. Since (ωj+ω−j)/2 =
cos (2jπ/(2n+ 1)), we compute

1 = 1−
2n∑
j=0

cos2k−1

(
2jπ

2n+ 1

)

= −
n∑

j=1

cos2k−1

(
2jπ

2n+ 1

)
−

2n∑
j=n+1

cos2k−1

(
2jπ

2n+ 1

)

= −
n∑

j=1

cos2k−1

(
2jπ

2n+ 1

)
+

2n∑
j=n+1

cos2k−1

(
(2n+ 1− 2j)π

2n+ 1

)

= −
n∑

j=1

cos2k−1

(
2jπ

2n+ 1

)
+

n∑
j=1

cos2k−1

(
(2j − 1))π

2n+ 1

)

=

2n∑
ℓ=1

(−1)ℓ−1 cos2k−1

(
ℓπ

2n+ 1

)

=

2n∑
ℓ=1

(−1)ℓx2k−1
ℓ ,
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for k = 1, . . . , n.
We will give two proofs that n is the maximum possible value of m.

Proof 1. Define x0 = −1 and x2n+1 = 1. Let f(x) be the {−1, 1}-valued function that
equals 1 on the intervals [x0, x1], [x2, x3], . . . , [x2n, x2n+1] and−1 on the intervals (x1, x2), (x3, x4), . . . ,
(x2n−1, x2n). Write f(x) = fe(x)+fo(x), where fe and fo are the even and odd parts: fe(x) =
(f(x)+f(−x))/2 and fo(x) = (f(x)−f(−x))/2. Both of these are therefore {−1, 0, 1}-valued
functions. Note that fe(x) = 1 for x ∈ [x0,min(x1,−x2n)] and x ∈ [max(−x1, x2n), x2n+1].
The hypothesis implies that ∫ 1

−1
xℓf(x) dx = 0

for even ℓ up to 2m− 2. Since the contribution of fo cancels by symmetry, we see that∫ 1

−1
xℓfe(x) dx = 0

for even ℓ up to 2m − 2, and by symmetry this also holds for all odd ℓ. Thus, it holds for
ℓ = 0, 1, . . . , 2m− 1. By a sign change of fe, we will mean a transition as we increase x from
an interval where fe = ±1 to one where fe = ∓1, possibly with an interval where fe = 0
between them. For any sign change, say it occurs at the upper endpoint of the first interval.
We claim that the integral condition above implies that the function fe(x) has at least 2m
sign changes. (Since fe(±1) = 1, it has an even number of sign changes. If it has fewer then
2m sign changes, let P (x) be the monic polynomial with simple roots exactly where the sign
changes occur. Then P (x)fe(x) ≥ 0 for all x, and it is strictly positive near x = ±1, but
we compute

∫ 1
−1 P (x)fe(x) dx = 0, a contradiction.) But since fe is −1, 0, 1-valued, each sign

change requires at least 2 “jumps” of size 1 in fe, and fe can jump by 1 only at the points
±xk for k = 1, . . . , 2n. Thus, the number of jumps of size 1 is at least 4m and at most 4n,
and hence m ≤ n.

Proof 2. Look at the polynomial p(x) = (x+ 1)
∏2n

j=1[x− (−1)jxj ]. The condition in the
problem statement is that the sum of the (2k−1)-st powers of the roots of this polynomial is
zero for k = 1, 2, . . . ,m. By induction on Newton’s identities, it follows that the (2k − 1)-st
elementary symmetric function of the 2n+ 1 roots is zero for k = 1, 2, . . . ,min(m,n+ 1). If
m > n, this would imply that p(x) = xq(x2) for some polynomial q. Then since −1 is a root
of p, so would be 1, which would violate the hypothesis that x1, . . . , x2n are strictly between
−1 and 1.
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2022 Session B

B1. Suppose that P (x) = a1x+ a2x
2 + · · ·+ anx

n is a polynomial with integer coefficients,
with a1 odd. Suppose that eP (x) = b0 + b1x + b2x

2 + · · · for all x. Prove that bk is nonzero
for all k ≥ 0.

Solution: Call a power series
∑∞

k=0
ck
k!x

k even-ish if c0 = 1 and all other ck are even integers,
and odd-ish if c0 = 1 and all other ck are odd integers. (If the series converges for x near 0,
these definitions say that the associated function f(x) has f(0) = 1 and for k > 0 all f (k)(0)
even, respectively odd, integers.) Note that we have

∞∑
k=0

ck
k!
xk ·

∞∑
k=0

dk
k!

xk =
∞∑
k=0

1

k!

k∑
r=0

(
k

r

)
crdk−rx

k.

Therefore a product of even-ish series is again even-ish (for any k ≥ 1 and any r at least one
of cr and dk−r is even) and a product of an even-ish series and an odd-ish series is odd-ish
(the only term contributing to the coefficient of xk that is not even is

(
k
0

)
c0dk, which is odd).

Since

ea1x =
∞∑
k=0

ak1
k!

xk

is odd-ish, and for j > 1

eajx
j
=

∞∑
k=0

akj (jk)!/k!

(jk)!
xjk

is even-ish (since for k ≥ 1, (jk)!/k! is an even integer). Thus, by the remarks above,
eP (x) = ea1x · ea2x2 · · · · · eanxn

is odd-ish, and in particular its coefficients cannot be zero.
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B2. Let × represent the cross product in R3. For what positive integers n does there exist
a set S ⊂ R3 with exactly n elements such that

S = {v × w : v, w ∈ S}?

Answer: n = 1 or n = 7.

Solution: Since we only care about positive n, we can assume S is nonempty. For any v ∈ S,
we must have v × v = 0 ∈ S. If S = {0}, then we have a solution with n = 1. Otherwise, let
v1 be a nonzero vector in S. Since v1 must be in {v × w: v, w ∈ S}, there must be vectors
v2, v3 ∈ S with v1 = v2 × v3. For n ≥ 3, define vn+1 = v1 × vn ∈ S. Since v1 ⊥ vn for all
n ≥ 3, by induction on these n, we have |vn| = |v1|n−3|v3|. Since S is finite, this implies
|v1| = 1. Thus, all nonzero vectors in S have unit length.

Now choose a particular nonzero v1 ∈ S, and as before, choose v2, v3 ∈ S with v1 = v2×v3.
Then since |v2| = |v3| = |v2 × v3| = 1, we know that v2 and v3 are orthogonal to each other
as well as to v1. Thus, {v1, v2, v3} forms an orthonormal basis of R3, and S contains all the
cross products of two of them in either order, which means {0,±v1,±v2,±v3} ⊂ S. Finally,
if w is a nonzero vector in S, it has length 1, and its cross product with each vi is either 0 or
of length 1. It follows that w = ±vi for some i. Hence the only possibilities are n = 1 and
n = 7.
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B3. Assign to each positive real number a color, either red or blue. Define a recoloring
process as follows. First, let D be the set of all distances d > 0 such that there are two points
of the same color at distance d apart. Second, recolor the positive reals so that the numbers
in D are red and the numbers not in D are blue. If we iterate this recoloring process, will we
always end up with all the numbers red after a finite number of steps?

Answer: Yes.

Solution 1: We first prove the following lemma.

Lemma. After a recoloring d and 2d cannot both be blue.

Proof. If d is blue after the recoloring, then in the original coloring any two points at distance
d are opposite colors. But then for any x the sequence x, x + d, x + 2d, . . . must alternate
between red and blue. Hence there are pairs of points 2d apart of the same color and after
the recoloring 2d will be red.

Now suppose that d is blue after two recolorings. Then after one recoloring the sequence
d, 2d, 3d, 4d had to alternate between red and blue. Since 2d and 4d cannot both be blue
after one recoloring, they must both be red after one recoloring. Thus after one recoloring d
and 3d must both be blue and 2d, 4d must both be red.

Hence in the original coloring d, 2d, 3d, 4d also alternate between red and blue. Thus the
point 5d/2 must have been the same color as one of (2d, 3d) and as one of (d, 4d). Thus both
d/2 and 3d/2 must be red after the first recoloring, and hence d must be red after the second
recoloring. This is a contradiction. Thus all the numbers are red after two recolorings.

Solution 2:
We claim that all numbers are colored red after two recolorings.

Lemma. After a recoloring, if d > 0 is blue, then d/2 and 3d/2 are both red.

Proof. By hypothesis, in the previous coloring, d and 2d must have had different colors. Also,
2d and 3d must have had different colors, and likewise for 3d and 4d. Then d and 4d must
have had different colors, so 5d/2 must have had the same color as either d or 4d, and since
it is 3d/2 away from each, 3d/2 must be red after the recoloring. Similarly, 5d/2 must have
had the same color as either 2d or 3d, and since it is d/2 away from each, d/2 must be red
after the recoloring.

One consequence of the lemma is that d cannot be blue in two consecutive recolorings,
since d/2 and 3d/2 are distance d apart. Thus, if d is blue after two recolorings, is must have
been red after one recoloring. Then by the reasoning in the proof of the lemma, 2d must
have been blue after one recoloring, so 3d must have been red, so 4d must have been blue.
But by the lemma, since 4d was blue after one recoloring, 2d = 4d/2 must have been red, a
contradiction. Therefore, no d can be blue after two recolorings.
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B4. Find all integers n with n ≥ 4 for which there exists a sequence of distinct real numbers
x1, . . . , xn such that each of the sets

{x1, x2, x3}, {x2, x3, x4}, . . . , {xn−2, xn−1, xn}, {xn−1, xn, x1}, and {xn, x1, x2}

forms a 3-term arithmetic progression when arranged in increasing order.

Answer: n = 9, 12, 15, 18, . . .; more precisely, all multiples of 3 that are strictly greater than
6.

Solution: Since {xj , xj+1, xj+2} forms an arithmetic progression after reordering, we must
have xj+1 + xj+2 = 2xj , or xj + xj+2 = 2xj+1, or xj + xj+1 = 2xj+2. Thus, xj+2 must be
equal to one of 2xj −xj+1, 2xj+1−xj , or (xj +xj+1)/2. Hence xj+2−xj+1 must be equal to
one of −2(xj+1 − xj), xj+1 − xj , or −(xj+1 − xj)/2. Thus, by an easy induction, there will
be a sequence of integers kj such that xj+1 − xj = (−2)kj (x2 − x1) for 1 ≤ j ≤ n− 1.

The statements in the previous paragraph are also true for the triples {xn−1, xn, x1} and
{xn, x1, x2}, and in particular, x1 − xn = (−2)kn(x2 − x1) for some integer kn. Notice also
that |kj+1 − kj | ≤ 1 for 1 ≤ j ≤ n − 1, that |k1 − kn| ≤ 1, and that k1 = 0. Cyclically
rotating the sequence, and rescaling (possibly by a negative number), we may assume that
x2 − x1 = 1 and that all the kj are nonnegative. Then

0 = (x2 − x1) + (x3 − x2) + · · ·+ (xn − xn−1) + (x1 − xn) =
n∑

j=1

(−2)kj ≡
n∑

j=1

1 = n (mod 3).

Hence n must be a multiple of 3.
For m ≥ 2 and n = 3m+ 3, an example of such a sequence is

(1, 3, 5, . . . , 4m− 3, 4m− 1, 4m− 2, 4m, 4m− 4, . . . , 8, 4, 0, 2).

Notice that this sequence consists, aside from 4m − 2 and 2, of an increasing subsequence
of odd numbers and a decreasing subsequence of multiples of 4. Thus, the elements of the
sequence are distinct unless 4m− 2 = 2, which happens only for m = 1. In fact, there is no
example for n = 6. (If, as above, we arrange that x2−x1 = 1 and all the differences xj+1−xj
and x1 − xn are in {1,−2, 4, . . . }, then by parity we must have an even number equal to 1.
We cannot have three consecutive differences be 1, 1,−2 or 1,−2, 1, since either would give
two equal terms three apart. Since a 1 can only be adjacent to another 1 or a −2, it follows
that we cannot have differences of 1 that are adjacent or two apart. Then we must have
exactly two differences of 1, three apart, and the only remaining possible difference sequence
is 1,−2,−2, 1,−2,−2, which does not sum to 0.) Therefore, the answer is that n can be any
multiple of 3 that is strictly greater than 6.
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B5. For 0 ≤ p ≤ 1/2, let X1, X2, . . . be independent random variables such that

Xi =


1 with probability p,

−1 with probability p,

0 with probability 1− 2p,

for all i ≥ 1. Given a positive integer n and integers b, a1, . . . , an, let P (b, a1, . . . , an) denote
the probability that a1X1 + · · · + anXn = b. For which values of p is it the case that
P (0, a1, . . . , an) ≥ P (b, a1, . . . , an) for all positive integers n and all integers b, a1, . . . , an?

Answer: 0 ≤ p ≤ 1/4.

Solution: For each 0 ≤ p ≤ 1/4, there is a q between 0 and 1/2 (inclusive) for which
q(1 − q) = p. For 1 ≤ k ≤ n, let Yk and Zk be independent random variables such that
Yk = 1/2 with probability q and Yk = −1/2 with probability 1 − q, and Zk has the same
distribution as Yk. Then Xk can be expressed as Yk −Zk. Let Y = a1Y1+ · · ·+anYn, and let
Z = a1Z1+· · · anZn; then a1X1+· · ·+anXn = Y −Z, and Y and Z have the same distribution.
This distribution has probabilities p−m, p−m+1, . . . , pm where m = (|a1|+ · · ·+ |an|)/2; notice
that the indices are half-integers if m is a half-integer. Define pj = 0 for every index j with
|j| > m. Then for every integer b, the Cauchy-Schwarz inequality implies that

P (b, a1, . . . , an) =
m∑

j=−m

pj+bpj ≤
m∑

j=−m

p2j = P (0, a1, . . . , an).

To show that the inequality need not be true for p > 1/4, let ak = 2k−1 for k ≥ 1.
Then a1X1 + · · · + anXn = 0 only when X1 = · · · = Xn = 0, which occurs with probability
P (0, a1, a2, . . . , an) = (1 − 2p)n. For a particular choice of X1, . . . , Xn that are not all zero,
let m be the largest index for which Xm ̸= 0. Then if a1X1 + · · ·+ anXn = 1, we must have
Xm = 1 and Xk = −1 for 1 ≤ k < m. The probability of this event (including the fact that
Xm+1 = · · · = Xn = 0) is pm(1− 2p)n−m. Thus, P (1, a1, a2, . . . , an) = p(1− 2p)n−1 + p2(1−
2p)n−2 + · · ·+ pn.

If p > 1/4, we claim that P (1, a1, a2, . . . , an) > P (0, a1, a2, . . . , an) for some n. Indeed this
is true for n = 1 if p > 1/3 and for n = 2 if p = 1/3, so henceforth we assume 1/4 < p < 1/3.
Then

P (1, a1, a2, . . . , an) = p(1− 2p)n−1
n−1∑
k=0

[p/(1− 2p)]k

= p(1− 2p)n−1 1− [p/(1− 2p)]n

1− p/(1− 2p)

= (1− 2p)n
p

1− 3p
(1− [p/(1− 2p)]n).

Since p > 1/4, we have p/(1−3p) > 1, and since p < 1/3, we have p/(1−2p) < 1. Thus, for n
sufficiently large, 1− [p/(1− 2p)]n > (1− 3p)/p, and hence P (1, a1, a2, . . . , an) > (1− 2p)n =
P (0, a1, a2, . . . , an) as claimed.
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B6. Find all continuous functions f : R+ → R+ such that

f(xf(y)) + f(yf(x)) = 1 + f(x+ y)

for all x, y > 0.

Answer: f(x) = 1/(1 + cx) where c is a nonnegative real number.

Solution 1: Suppose we have f(a) = f(a′) = 1, then plugging (x, y) = (a, a′) into the
functional equation, we find f(a+ a′) = 1. In particular, if there is any a with f(a) = 1, we
find that f(na) = 1 for all a ∈ N.

Suppose there is some closed interval [a, a′] with f(x) = 1 for all a ≤ x ≤ a′. Using
the remark above we see that f(x) = 1 for all na ≤ x ≤ na′ and any positive integer n.
Choosing n large enough that n(a′ − a) > a, we find that successive intervals [na, na′] and
[(n+ 1)a, (n+ 1)a′] overlap. Hence there is some b > 0 such that f(x) = 1 for all x > b. For
any x choose y large enough that yf(x) > b and x + y > b. Then the functional equation
gives f(x) = 1. Thus f is identically equal to 1.

Now suppose that there is some c > 0 with f(c) > 1. Define u = c
f(c)−1 , so that

uf(c) = u+ c. Then the functional equation for (x, y) = (u, c) gives f
(
cf

(
c

f(c)−1

))
= 1. In

particular, setting a = cf
(

c
f(c)−1

)
we have f(a) = 1 and hence f(na) = 1 for all n. Since

we can choose na > c, there is a least d > c such that f(d) = 1. On the interval [c, d)
the expression x

f(x)−1 goes from u (at x = c) to infinity (as x → d−). Thus we can choose

xm ∈ [c, d) with xm
f(xm)−1 = ma for all m with ma > u. Hence at x = xm, xf

(
x

f(x)−1

)
takes

on the value xm. But this says that xf
(

x
f(x)−1

)
is a non-constant continuous function on

[c, d), hence it takes on every value in some open interval I. Since f > 1 on [c, d), using the
argument at the beginning of this paragraph with c replaced by x shows that f(a) = 1 for all
a ∈ I. Hence by the previous paragraph, we have f identically 1, and a contradiction. Thus
f(x) ≤ 1 for all x.

Suppose f(a) = 1 for some a. Then for any x ∈ (0, na) (with n ≥ 3) we have f(xf(na−
x)) + f((na − x)f(x)) = 1 + f(na) = 2 and hence f(xf(na − x)) = 1 for all x. However,
taking x = a, 2a we find that xf(na− x) takes on the values a and 2a and hence again this
gives an interval on which f equals 1. Hence if f(a) = 1 for any a, then f is identically equal
to 1.

Thus we may suppose f(x) < 1 for all x ∈ (0,∞). Note that this implies f(x + y) <
f(yf(x)) for all x, y > 0. For any x0 ∈ (0,∞) define a sequence by xn+1 = xn

2 f
(
xn
2

)
for

n ≥ 1. Then xn+1 < xn
2 , so this sequence decreases to 0, and the functional equation gives

f(xn+1) =
1+f(xn)

2 , so f(xn) converges to 1.
Now we will show that f is strictly decreasing. Suppose c < d. The expression (d−x)f(x)

tends to d if we take x = xn and n → ∞ and tends to 0 as x → d. Thus there is some x ∈ (0, d)
with (d − x)f(x) = c. Taking y = d − x in the functional equation, we get x + y = d and
yf(x) = c, and hence f(c) > f(d). Thus f is strictly decreasing. Note that this argument
shows that for any c < d, we can choose x, y such that x+ y = d and yf(x) = c, and hence
we will get f(xf(y)) + f(c) = 1 + f(d).

Now fix any x0 and look at the sequence defined by xn+1 = xn
2 f

(
xn
2

)
. Then we have

f(xn+1) = 1+f(xn)
2 and hence f(xn) = 1 − 2−n(1 − f(x0)). Since f is decreasing it follows
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that limx→0+ f(x) = 1, and hence we can (and will) extend f continuously to [0,∞). Further
since f < 1 is decreasing, we have

xn
2

> xn+1 >
xn
2
f(xn) =

xn
2

(
1− 2−n(1− f(x0))

)
,

and hence

2−nx0 > xn > 2−nx0

n−1∏
k=0

(
1− 2−k(1− f(x0))

)
> 2−nx0

∞∏
k=0

(
1− 2−k(1− f(x0))

)
.

Since the product converges, we get a positive constant C with 2−nx0 > xn > C2−nx0. Since
the graph of y = f(x) lies in the union of the rectangles [xn+1, xn]× [f(xn), f(xn+1)], we have
that for any x ∈ [xn+1, xn]

1− f(x)

x
≤ 1− f(xn)

xn+1
≤ 2−n(1− f(x0))

2−n−1Cx0
=

2(1− f(x0))

Cx0
.

Hence the (negated) slopes of secant lines to y = f(x) through (0, 1) are bounded and we
can write

0 ≤ α = lim inf
x→0+

1− f(x)

x
≤ lim sup

x→0+

1− f(x)

x
= β < ∞.

Suppose the derivative at 0 does not exist, so that α < β. Choose an x0 small enough
that f(x0) > 2/3 and 1−f(x0)

x0
= β − ϵ for some small ϵ, and consider the sequence above.

Then we have xn+1 > xn
2 f(x0) > xn

3 and since the slopes 1−f(xn)
xn

are increasing, we have
1−f(xn)

xn
≥ β − ϵ. Now for any sequence cn tending to 0 with 1−f(cn)

cn
< γ = β+α

2 , we can
choose dn to be the next larger term in the sequence (xk) and have dn/3 < cn < dn. By the
above we can choose x′n, y

′
n (which will tend to 0 since x′n, y

′
n < dn < 3cn) with x′n + y′n = dn

and y′nf(x
′
n) = cn and hence, we get

1− f(x′nf(y
′
n))

x′nf(y
′
n)

=
(1− f(dn))− (1− f(cn))(

dn − cn
f(x′

n)

)
f(y′n)

≥ (β − ϵ)dn − γcn(
dn − cn

f(x′
n)

)
f(y′n)

=
β − ϵ

f(y′n)
+

(
β−ϵ
f(x′

n)
− γ

)
cn(

dn − cn
f(x′

n)

)
f(y′n)

≥ β − ϵ

f(y′n)
+

β−ϵ
f(x′

n)
− γ(

3− 1
f(x′

n)

)
f(y′n)

.

As n tends to infinity, this lower bound tends to β − ϵ + β−γ−ϵ
2 . But for sufficiently small ϵ

this exceeds β, contradicting the definition of β. Thus f ′(0) = −β exists.
Now for any c < d with d− c small, we again choose x, y with x+ y = d and yf(x) = c.

Hence x = d− y < d− yf(x) = d− c is small. Then

f(c)− f(d)

d− c
=

1− f(xf(y))

d− c
=

1− f(xf(y))

xf(y)
· f(y)

1 + y 1−f(x)
x

.

Taking the limit as c, d both converge to some fixed t, we see that y also converges to t and
x converges to 0. We conclude that f is differentiable at t and

f ′(t) = − βf(t)

1 + βt
.
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Thus f is continuously differentiable and satisfies the differential equation above with f(0) =
1. Thus f(x) = 1

1+βx for some β ≥ 0 and these are indeed solutions.

Solution 2: The only solutions are f(x) = 1/(1+cx) for all x ∈ R+, where c is a nonnegative
real number. Checking that these functions are solutions is straightforward. To prove that
these are the only solutions, we start with some notation and a technical lemma. Let D−
and D+ denote the derivatives of a function from the left and right, respectively.

Lemma 1. If g : R+ → R is a continuous function for which D−g(z) = limw→z− [g(z) −
g(w)]/(z − w) exists and equals 0 for all z ∈ R+, then g is a constant function.

Proof. If g is not constant, choose a, b ∈ R+ such that g(a) ̸= g(b), and without loss of
generality assume that a < b and g(a) < g(b). Let s = [g(b)− g(a)]/(b− a). The continuous
function g(x)−sx has a maximum value on [a, b], and since g(a)−sa = g(b)−sb, this maximum
value is attained at at least one point in [a, b] other than a; thus, there exists z ∈ (a, b] such
that g(w) − sw ≤ g(z) − sz for all w ∈ [a, b]. Then [g(z) − g(w)]/(z − w) ≥ s > 0 for all
w ∈ [a, z), contradicting the hypothesis.

The next lemma moves the goalposts closer. This and all lemmas below assume the
hypotheses of the problem in addition to the hypotheses stated in the lemma.

Lemma 2. If both of the following limits exist, limx→0+ f(x) = 1, and limx→0+ [1−f(x)]/x =
c ≥ 0, then f(x) = 1/(1 + cx) for all x ∈ R+.

Proof. Choose x, z ∈ R+ with x < z, and let y = z − x and w = yf(x). Then

lim
x→0+

z − w

x
= lim

x→0+

z − (z − x)f(x)

x
= lim

x→0+

z[1− f(x)] + xf(x)

x
= cz + 1.

In particular, z −w is positive and a one-to-one function of x for x > 0 sufficiently small, so
taking a limit as x → 0+ is equivalent to taking a limit as w → z−.

Next, from the identity in the problem statement, f(z)− f(w) = f(x+ y)− f(yf(x)) =
f(xf(y))− 1 = f(xf(z− x))− 1. Then, using the fact that f(z− x) is a continuous function
of (sufficiently small) x,

D−f(z) = lim
w→z−

f(z)− f(w)

z − w
= lim

x→0+

f(xf(z − x))− 1

xf(z − x)
· xf(z − x)

z − w
= −c

f(z)

1 + cz
,

Let g(x) = log f(x)+log(1+cx) for all x ∈ R+. The chain rule applies to derivatives from the
left when the outer function is two-sided differentiable, so D−g(z) exists for all z ∈ R+, and
D−g(z) = −c/(1+cz)+c/(1+cz) = 0. By Lemma 1, g is constant, and since limx→0+ g(x) =
0, we have g(x) = 0 for all x ∈ R+. If follow that f(x) = exp[g(x)− log(1+ cx)] = 1/(1+ cx)
as claimed.

The remainder of the proof establishes the two limits in the hypothesis of Lemma 2.

Lemma 3. Given the hypotheses of the problem, lim supx→0+ f(x) ≥ 1.

Proof. If lim supx→0+ f(x) < 1, then for some x0 > 0 and some r < 1, we have f(x) ≤ r for
0 < x ≤ x0. Let xn+1 = xnf(xn/2)/2 for n ≥ 0. Then, by induction, x0 > x1 > · · · and
f(xn) ≤ r for all n ≥ 0. But with x = y = xn/2, the identity in the problem statement yields
2f(xn+1) = 1 + f(xn), which implies that f(xn) → 1 as n → ∞, a contradiction.
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Lemma 4. For all a, b ∈ R+ with a < b, there exists z(a, b) ∈ R such that f(z(a, b)) =
1 + f(b)− f(a).

Proof. By Lemma 3, lim supx→0+(b − x)f(x) ≥ b, and (b − x)f(x) is a continuous function
of f with value 0 at x = b. Since 0 < a < b, it follows from the intermediate value theorem
that (b − x)f(x) = a for some x ∈ (0, b). Let y = b − x and apply the identity in the
problem statement to get f(xf(b − x)) + f(a) = 1 + f(b). Thus, the lemma is proved with
z(a, b) = xf(b− x).

Lemma 5. If f(z) = 1 for some z ∈ R+, then f(x) = 1 for all x ∈ (0, z).

Proof. If f(x) ̸= 1 for some x ∈ (0, z), then let z0 = z and z1 = x, and define zn+1 for
n ≥ 1 in terms of z0, z1, . . . , zn as follows. Let Mn = max0≤n f(zk) and mn = min0≤n f(zk).
Choose integers i and j with 0 ≤ i, j < n such that f(zi) = mn and f(zj) = Mn, and
let an = min(zi, zj) and bn = max(zi, zj). Then |f(bn) − f(an)| = Mn − mn. Notice that
f(z0) ̸= f(z1) implies that f(zi) < f(zj), which implies that zi ̸= zj , which implies that
an < bn. Let zn+1 = z(an, bn).

We will prove by induction that Mn −mn ≥ n|f(x) − 1|. Notice that M0 −m0 = 0 and
that M1−m1 = |f(z1)− f(z0)| = |f(x)− f(z)| = |f(x)− 1|. Next, since z1 = x < z = z0, we
have a1 = x and b1 = z, so by Lemma 4, f(z2) = f(z(a1, b1)) = 1 + f(z)− f(x) = 2− f(x).
Thus, |f(z2)− 1| = |f(x)− 1|; also, f(z2) and f(z1) = f(x) lie on opposite sides of 1. Then
M2 − 1 = 1 −m2 = |f(x) − 1|, from which it follows immediately that Mn − 1 ≥ |f(x) − 1|
and 1−mn ≥ |f(x)− 1| for n ≥ 2. Also, M2 −m2 = 2|f(x)− 1|.

Assume now for some n ≥ 2 that Mn−mn ≥ n|f(x)−1|. Recall that f(bn) is either Mn or
mn. If f(bn) = Mn then by Lemma 4, f(zn+1)− f(bn) = f(z(an, bn))− f(bn) = 1− f(an) =
1 − mn. Then mn+1 = mn and Mn+1 = f(zn+1) = Mn + 1 − mn ≥ Mn + |f(x) − 1|, so
Mn+1 − mn+1 ≥ Mn − mn + |f(x) − 1| ≥ (n + 1)|f(x) − 1|, as desired. If f(bn) = mn, a
similar argument completes the induction.

We have now proved that Mn − mn becomes arbitrarily large as n increases, and since
mn > 0, in fact Mn becomes arbitrarily large. In particular, Mn ≥ 2 for some n; then
since Mn is a value of f and f(z) = 1, by the intermediate value theorem there exists
w ∈ R+ such that f(w) = 2. Then letting x = y = w in the identity in the problem
statement, we have 2f(2w) = 1 + f(2w), so f(2w) = 1. Then applying Lemma 4, we have
that f(z(w, 2w)) = 1 + 1− 2 = 0. But this contradicts the hypotheses of the problem.

Next, suppose that f(x) > 1 for some x ∈ R+. Let y = x/(f(x) − 1), so that x + y =
yf(x). Then by the identity in the problem statement, f(xf(y)) = 1, so Lemma 5 applies.
Furthermore, if Lemma 5 applies, then the hypotheses of Lemma 2 apply with c = 0. Since
it suffices to verify the hypotheses of Lemma 2, we can assume for the rest of the proof that
f(x) < 1 for all x ∈ R+.

Lemma 6. In the case that f(x) < 1 for all x ∈ R+, we have limx→0+ f(x) = 1, and f is
strictly decreasing on R+.

Proof. The first statement follows immediately from the hypothesis and Lemma 3. Next, if
f(a) = f(b) for some a < b, then by Lemma 4, f(z(a, b)) = 1, contradicting the hypothesis.
Thus, f is strictly monotonic, and because of the limit at 0, it cannot be increasing, so it is
decreasing.
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Lemma 6 verifies the first limit in the hypotheses for Lemma 2. Let f(0) = 1, so that f
is continuous for x ≥ 0. It remains to show that D+f(0) exists; then it must be nonpositive
since f is decreasing, making c in Lemma 2 nonnegative.

Lemma 6 and f(0) = 1 imply that h(u) = f−1(1−u) is well defined and strictly increasing
for u ≥ 0 sufficiently small, with h(0) = 0. It suffices to show that D+h(0) exists and is
positive, whereupon D+f(0) = −1/D+h(0).

Lemma 7. For v ≥ u ≥ 0 with v in the domain of h,

(1− v)h(v) ≤ h(u) + h(v − u) ≤ h(v).

Proof. The inequalities follow directly from h(0) = 0 in the cases u = 0 and u = v, so assume
henceforth that 0 < u < v. Let b = h(v). As in the proof of Lemma 4, consider (b− x)f(x)
as a function of x ∈ [0, b]. By Lemma 6, this is a strictly decreasing continuous function with
values b at x = 0 and 0 at x = b. Then f((b−x)f(x)) is strictly increasing and continuous in
x, with values f(b) = 1−v at x = 0 and f(0) = 1 at x = b. Thus, there is a (unique) x ∈ (0, b)
such that f((b − x)f(x)) = 1 − u. Then h(u) = (b − x)f(x). Applying the identity in the
problem statement with y = b−x, we have f(xf(b−x)) = 1+f(b)−f((b−x)f(x)) = 1−v+u,
so h(v−u) = xf(b−x). Then h(u)+h(v−u) = (b−x)f(x)+xf(b−x) < b−x+x = b = h(v),
as desired, and since f(x) and f(b − x) exceed f(b) = 1 − v, we have h(u) + h(v − u) >
(b− x+ x)(1− v) = (1− v)h(v), finishing the proof.

We claim that for all w > 0 in the domain of h and all u ∈ (0, w],

(1− 13w)h(w)/w = h(w)/w − 13h(w) < h(u)/u < h(w)/w + 13h(w) = (1 + 13w)h(w)/w.

This implies that ℓ = lim infu→0+ h(u)/u ≥ (1− 13w)h(w)/w and L = lim supu→0+ h(u)/u ≤
(1+13w)h(w)/w. For w < 1/13, the lower bound on ℓ is positive, and L/ℓ ≤ (1+13w)/(1−
13w). Letting w → 0, we conclude that 0 < ℓ = L = limu→0+ h(u)/u = D+h(0), as desired.
It remains only to prove our claim.

For k ≥ 0, applying Lemma 7 with v = w/2k and u = w/2k+1 = v/2, we have
(1 − w/2k)h(w/2k) ≤ 2h(w/2k+1) ≤ h(w/2k). By induction, [h(w)/2k]

∏k−1
j=0(1 − w/2j) ≤

h(w/2k) ≤ h(w)/2k for k ≥ 0. Using concavity of the logarithm,

k−1∏
j=0

(1− w/2j) = exp

k−1∑
j=0

log(1− w/2j)

 ≥ exp

k−1∑
j=0

log(1− w)/2j


> exp (2 log(1− w)) > exp (log(1− 2w)) = 1− 2w.

Thus,
(1− 2w)h(w)/2k ≤ h(w/2k) ≤ h(w)/2k.

If our claim is false, we can choose u0 ∈ (0, w] such that |h(u0)/u0 − h(w)/w| ≥ 13h(w).
We will construct a sequence {uj} and prove by induction that for j ≥ 0,

|h(uj)− ujh(w)/w| ≥ (1 + 3 · 22−j)h(w)u0.

For j = 0, this inequality is equivalent to the assumption for u0. Notice that the right side
is bounded below by h(w)u0 for all j, while the left side approaches 0 as uj → 0. We will
obtain a contradiction by showing as part of the induction that uj becomes arbitrarily small.
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To proceed inductively, assume for some n ≥ 0 that real numbers u0 > u1 > · · · > un > 0
and integers 0 ≤ k0 < k1 < . . . < kn have been chosen so that for j = 0, 1, . . . , n, the
inequality displayed above holds and w/2kj ≥ uj > w/2kj+1. We can choose such a kj for
each uj ∈ (0, w], and choosing k0 finishes the base case; the monotonicity of the sequences
will be established as part of the induction. Let un+1 = w/2kn − un. Then 0 ≤ un+1 <
w/2kn − w/2kn+1 = w/2kn+1 < un. Applying Lemma 7 with u = un and v = w/2kn yields
(1 − w/2kn)h(w/2kn) ≤ h(un) + h(un+1) ≤ h(w/2kn). Then using the inequalities displayed
above,

|h(un+1)− un+1h(w)/w| = |h(un+1)− (w/2kn − un)h(w)/w|
= |h(un+1) + h(un)− h(w)/2kn − [h(un)− unh(w)/w]|
≥ |h(un)− unh(w)/w| − |h(un+1) + h(un)− h(w)/2kn |
≥ (1 + 3 · 22−n)h(w)u0 − |h(un+1) + h(un)− h(w/2kn)|

− |h(w/2kn)− h(w)/2kn |
≥ (1 + 3 · 22−n)h(w)u0 − wh(w/2kn)/2kn − 2wh(w)/2kn

≥ (1 + 3 · 22−n)h(w)u0 − 3wh(w)/2kn .

Notice that kn ≥ k0 + n and w/2k0 < 2u0, so that w/2kn < 21−nu0. Thus, |h(un+1) −
un+1h(w)/w| > (1 + 3 · 22−n − 3 · 21−n)h(w)u0 = (1 + 3 · 22−(n+1))h(w)u0, as desired. Next,
we observe that un+1 = 0 would contradict the inequality we just proved, so un+1 > 0,
whence kn+1 is well-defined. Finally, we have already shown that un+1 < w/2kn+1 < un, so
kn+1 ≥ kn +1, and monotonicity of both sequences continues. With the induction complete,
observe that uj ≤ w/2kj ≤ 21−ju0, which approaches 0 as j → ∞, which contradicts the
inequality the induction just established. Thus, our claim is true, and our solution is complete.

Solution 3: For positive numbers x and z, let y = z/f(x). Then

f

(
xf

(
z

f(x)

))
+ f(z) = 1 + f

(
x+

z

f(x)

)
. (*)

Since f is continuous, the right side approaches 1 + f(x) as z → 0+, and in particular is
bounded for (positive) z in a neighborhood of 0. Then since f is positive-valued, both terms
on the left side are bounded, and in particular f(z) is bounded, for z near 0.

Let g(z) = zf(z/2)/2 for z > 0; boundedness of f near 0 implies that g(z) → 0+ as
z → 0+. Then since g is continuous, f(g(z)) and f(z) have the same lim inf L− and the
same lim sup L+ as z → 0+, both of which are finite according to the preceding paragraph.
Letting x = y = z/2 in the original functional equation and dividing by 2 yields

f(g(z)) =
1 + f(z)

2
.

Taking the lim inf and lim sup of this equation as z → 0+, it follows that L− = L+ = 1, so
f(z) → 1 as z → 0+. Define f(0) = 1, so that f is now continuous at 0.

Claim. Further, f is differentiable from the right at 0.

Proof. Choose z0 sufficiently small that |f(z)− 1| ≤ 1/3 for z ∈ (0, z0]. For such z, we have
2/3 ≤ f(z/2) ≤ 4/3, and hence

z/3 ≤ g(z) ≤ 2z/3.
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Let zn = g(zn−1) for n ≥ 1; then z0 > z1 > z2 > · · · , and zn → 0+ as n → ∞. By continuity,
g(z) takes on every value between zn+1 and zn as z goes from zn to zn−1. Let wn be a number
in [zn+1, zn]; by induction on n, there is an associated sequence (not necessarily unique) of
numbers wk ∈ [zk+1, zk] with wk+1 = g(wk) for 0 ≤ k < n. Since |f(g(z))− 1| = |f(z)− 1|/2,
it follows also by induction that |f(wn) − 1| ≤ 2−n/3 for all wn ∈ [zn+1, zn]. Here and for
the rest of the proof, we regard zn as fixed for all n ≥ 0, but we regard wn as an arbitrary
number in [zn+1, zn], with a corresponding sequence of predecessors wk as described above.

Next, let h(z) = (f(z)− 1)/z for z > 0. Then

h(g(z)) =
f(g(z))− 1

g(z)
=

(f(z)− 1)/2

zf(z/2)/2
=

h(z)

f(z/2)
.

So for n ≥ m ≥ 0,

h(wm) = h(wn)
n−1∏
k=m

f(wk/2).

Since wk/2 ∈ [zj+1, zj ] for some j ≥ k, we have |f(wk/2)− 1| ≤ 2−k/3, so

∞∏
k=m

(1− 2−k/3) ≤
n−1∏
k=m

f(wk/2) ≤
∞∏

k=m

(1 + 2−k/3).

Then since the infinite sum of 2−k/3 converges, the infinite products above converge, and
both products approach 1 as m → ∞. Thus, we can write |h(wm)/h(wn) − 1| ≤ δm where
δm → 0 as m → ∞. Choose m such that δm < 1. Since h is continuous, h(wm) is bounded
for wm ∈ [zm+1, zm]. It follows that h(wn) can be bounded independently of both n and wm.
Thus, h(z) is bounded for z ∈ (0, zm], since every such z is equal to a wn that satisfies the
inequalities above. Also,

|h(wm)− h(wn)| ≤ δm|h(wn)|.

Let a and a + b be respectively the lim inf and the lim sup of h(z) as z → 0+, both of
which are finite according to the preceding paragraph. To complete the proof of the Claim,
we must show that b = 0; if not, then b > 0. In that case, there exist arbitrarily small values
of z > 0 such that h(z) ≥ a + 19b/20. For such a z that is less than z1, choose m ≥ 0 such
that z ∈ [zm+2, zm+1). Choose w ∈ (0, zm] such that a − b/20 ≤ h(w) ≤ a + b/20, choose
n ≥ m such that w ∈ [zn+1, zn], and write w = wn, where wk has the properties described
above for 0 ≤ k < n. In particular, wm ≥ zm+1 > z, and

h(wm) ≤ h(w) + δm|h(w)| ≤ a+ b/20 + δm(|a|+ |b/20|).

Returning to the identity (*) at the beginning of this solution, we subtract 2 from both
sides and rewrite, for example, f(z)− 1 = zh(z) to get

xf

(
z

f(x)

)
h

(
xf

(
z

f(x)

))
+ zh(z) =

(
x+

z

f(x)

)
h

(
x+

z

f(x)

)
.

Notice that x+ z/f(x) goes from z to ∞ as x goes from 0 to ∞; since wm > z, by continuity
we can choose x > 0 so that x+ z/f(x) = wm. Then x < wm ≤ zm, so |f(x)− 1| ≤ 2−m/3.
Thus, ∣∣∣∣ z

f(x)
− z

∣∣∣∣ = |z(1− f(x))|
f(x)

≤ z2−m/3

1− 2−m/3
≤ z2−m/2.
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In particular, z/f(x) ≤ z + z2−m/2 ≤ 3z/2. Since z ≤ zm+1 = g(zm) ≤ 2zm/3, we have
z/f(x) ≤ zm, so |f(z/f(x))− 1| ≤ 2−m/3. Next, we calculate

h

(
xf

(
z

f(x)

))
=

(x+ z/f(x))h(x+ z/f(x))− zh(z)

xf(z/f(x))

≤ (x+ z + z2−m/2)(a+ b/20 + δm(|a|+ |b/20|))− z(a+ 19b/20)

x(1− 2−m/3)
.

As m → ∞, the right side approaches

(x+ z)(a+ b/20)− z(a+ 19b/20)

x
= a+ b/20− z

x
(9b/10).

Since z ≥ zm+2 = g(zm+1) ≥ zm+1/3 = g(zm)/3 ≥ zm/9 ≥ x/9, we have a + b/20 −
(z/x)(9b/10) ≤ a + b/20 − b/10 = a − b/20. Also, as z becomes arbitrarily small, so
does xf(z/f(x)), because x ≤ 9z, and m becomes arbitrarily large. We have shown that
h(xf(z/f(x))) can be bounded above by a quantity that approaches a−b/20 < a as m → ∞.
This contradicts the definition of a if b > 0, so we conclude that b = 0 and that a is the limit
of h(z) as z → 0+.

We can now write f ′(0) = a, where f ′(0) represents the derivative from the right. Then
x+ z/f(x) is right-differentiable at x = 0, with derivative 1− zf ′(0)/f(0)2 = 1−az. Assume
that 1 − az > 0; then x + z/f(x) is continuous and strictly increasing for x ≥ 0 sufficiently
small, with value z at x = 0. We next show that f is (two-sided) differentiable at z for all
z > 0 with 1 − az > 0. First, we subtract f(z) + 1 from each side of (*) and divide by
x+ z/f(x)− z to get, for x > 0 sufficiently small,

f(x+ z/f(x))− f(z)

x+ z/f(x)− z
=

f(xf(z/f(x)))− 1

x+ z/f(x)− z
=

f(xf(z/f(x)))− 1

xf(z/f(x))

xf(z/f(x))

x+ z/f(x)− z

=
f(xf(z/f(x)))− 1

xf(z/f(x))

f(x)f(z/f(x))

f(x) + z(1− f(x))/x

The right side has limit af(z)/(1− az) as x → 0+, so the left side has the same limit, which
is then the derivative of f from the right at z.

Next, we substitute x = z − y into the functional equation from the problem statement
to get

f((z − y)f(y)) + f(yf(z − y)) = 1 + f(z).

Now (z − y)f(y) is right-differentiable at y = 0, with derivative zf ′(0) − f(0) = az − 1.
Thus, (z − y)f(y) is strictly decreasing for y ≥ 0 sufficiently small, with value z at y = 0.
We rearrange terms in the identity above and divide by z − (z − y)f(y) to get, for y > 0
sufficiently small,

f(z)− f((z − y)f(y))

z − (z − y)f(y)
=

f(yf(z − y))− 1

z − (z − y)f(y)
=

f(yf(z − y))− 1

yf(z − y)

yf(z − y)

z − (z − y)f(y)

=
f(yf(z − y))− 1

yf(z − y)

f(z − y)

z(1− f(y))/y + f(y)

The right side has limit af(z)/(1− az) as y → 0+, so the left side has the same limit, which
is then the derivative of f from the left at z.
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We conclude that

f ′(z) =
af(z)

1− az

for all z > 0 such that 1− az > 0. This linear differential equation, together with the initial
condition f(0) = 1, has a unique solution on its domain of definition; this solution can be
verified to be f(z) = 1/(1−az). Then if a > 0, it is impossible for f to be continuous at 1/a.
Thus, we must have a ≤ 0, in which case 1− az > 0 for all z > 0. Therefore, every solution
must have the form f(z) = 1/(1− az) for all z > 0, for some constant a ≤ 0. One can check
that this function is in fact a solution of the functional equation in the problem statement,
for each a ≤ 0.

23


