
A2 is less than the area 1
2 (1 + 1

2 ) = 3
4 of the trapezoid having heights 1 and 1

2 . [The
line segment joining points (1, 1) and (2, 1

2 ) has equation y = − x
2 + 3

2 , and − x
2 +

3
2 > 1

x for x ∈ (1, 2).] Thus, 1
2 < A2 < 3

4 . Now (Figure 2) let A3 be the area under
the hyperbola y = 1

x between x = 1 and x = 3. If we divide the interval [1, 3] into
eight equal-sized subintervals, then the sum of the area of the “inner” rectangles is
1
4(

4
5 + 4

6 + · · · 4
12 ) ≈ 1.0199. Therefore A3 = 1.

It is intuitively obvious (without the benefit of the Fundamental Theorem of Cal-
culus) that the area under the hyperbola from x = 1 on increases continuously as the
value of the right-hand endpoint increases. Hence, somewhere strictly between 2 and 3,
there lies a unique number e for which the area under the hyperbola from x = 1 to
x = e is exactly 1. For x ∈ [1, 5

2 ], students can verify (Figure 3) that the sum of the
three trapezoidal areas is

1

2
× 1

2

[(
1 + 2

3

)
+

(
2

3
+ 1

2

)
+

(
1

2
+ 2

)]
= 56

60
< 1,

and so e > 2.5.
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◦

A Surface Useful for Illustrating the Implicit Function
Theorem
Jeffrey Nunemacher (jlnunema@owu.edu), Ohio Wesleyan University, Delaware, OH
43015

While teaching multi-variable calculus last year, I stumbled upon a surface that can
be used to make the content of the Implicit Function Theorem concrete and visual. The
folium of Descartes, defined by the equation x3 + y3 − 3xy = 0, is a classic curve
often used to illustrate various techniques in single variable calculus. We construct
our surface by setting z = h(x, y) = x3 + y3 − 3xy, so that the level set at z = 0 is
the folium. Most of the level sets of the defining function for this surface are smooth
curves, but there are two points where the hypotheses of this theorem break down,
and the level sets at these points display interesting singularities. The surface can also
be used to illustrate the complementarity of two and three dimensional graphs for
studying a function of two variables.

A curve is locally smooth at a point P if the curve does not intersect itself at P and
the direction of the tangent line varies continuously there. The Implicit Function Theo-
rem asserts that a level set of a function z = f (x, y) is locally a smooth curve at a point
P(a, b) if grad f (a, b) �= 0. Here grad f (a, b) denotes the vector ( fx(a, b), fy(a, b))

and 0 is the vector (0, 0). Many students have trouble appreciating the significance of
this theorem. A study of the surface z = h(x, y) sheds some light on this fundamental
result.
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Since grad h(x, y) = (3x2 − 3y, 3y2 − 3x), we see that grad h = 0 only at the
points (0, 0) and (1, 1). At all other points of h’s domain, the Implicit Function Theo-
rem guarantees that the level sets are smooth curves. The point (0, 0) lies on the level
set z = h(x, y) = 0 and is the place where the folium crosses itself (displays a nodal
singularity). Since h(1, 1) = −1, the level set of interest is h(x, y) = x3 + y3 − 3xy =
−1. The expression x3 + y3 − 3xy + 1 factors as (x + y + 1)(x2 + y2 − xy − x −
y + 1). Thus, the level set h(x, y) = −1 is the union of the line x + y + 1 = 0 with the
solution of x2 + y2 − xy − x − y + 1 = 0. The discriminant of this quadratic equation
in y is (x + 1)2 − 4(x2 − x + 1), which simplifies to −3(x − 1)2. Since the discrimi-
nant is nonnegative only when x = 1, the only solution (and corresponding part of the
level set) is the single point (1, 1). Thus, (1, 1) is an isolated point on this level set,
another sort of singularity of a real algebraic curve. We display graphs for six of the
level sets in Figure 1.
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Figure 1.

The nature of the surface can be understood by visualizing the two-dimensional
slices as z increases from, say, −10 to 10. The surface has a local low point at
(1, 1, −1). As z increases from −1, the corresponding level set has the two branches
shown in the third graph in Figure 1. With further increase in z, the oval branch first
touches the other branch at the singularity at the origin, and then the two branches
merge into a single branch with a bulge. The condition grad h = 0 has thus detected
the two most important points on this surface. Figure 2 displays a partial three dimen-
sional plot of the surface.
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z = x3 + y 3 - 3 x y
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Figure 2.

It is worth pointing out that level sets of a function need not always be (geometri-
cally) singular when the gradient vanishes. Although the function g(x, y) = x3 − y3

has grad g = 0 at the origin, the level set through (0, 0) is simply the line y = x . But
the vanishing gradient condition detects all candidate singularities and thus identifies
all possible points at which the level sets may not be smooth curves.

Are Mathematicians Weird?

Norton Starr (Amherst College, nstarr@amherst.edu) doesn’t think so, and sub-
mits as evidence a portion of a 1979 interview with Richard Feynman (which can
be found in The Pleasure of Finding Things Out, chapter 9) in which Feynman
says

You know, it’s not true that what is called “abstruse” math is so difficult.

and goes on

I don’t believe in the idea that there are a few peculiar people capable of
understanding math, and the rest of the world is normal. Math is a human
discovery, and it’s no more complicated than humans can understand. I had
a calculus book once that said, “What one fool can do, another can.” What
we’ve been able to work out about nature may look abstract and threatening
to someone who hasn’t studied it, but it was fools who did it, and in the next
generation, all the fools will understand it.
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