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Abstract

The measurement of perimeters, areas, centroids and other shape related parameters of planar objects from their digitised images is an important task in computer vision systems. In this paper, we present a formulation of a simple and relatively accurate algorithm for estimating an object’s perimeters which is particularly suited to hardware implementation. Details of the algorithm’s implementation on a Xilinx XC4000 FPGA are also given. The resulting circuit is very compact and achieves a throughput of 85 Million pixels per second, which corresponds to 324 frames per second for 512 x 512 images.

1. Introduction

Measurement of perimeters, areas, centroids and other shape related parameters of planar objects is an important task in industrial computerised visions systems [1]. Such systems perform shape analysis on digitised images, which result from the projection of the object on a square grid of sensor array [2]. The resulting images’ pixels (see Figure 1.b) are binary depending on whether the pixel centre belongs to the object or not [3].
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Figure 1. (a) Original object shape (b) Object shape after digitisation (discrete form) 

(c) object contour with its stepwise boundary

We define the contour of a digitised object as a sequence of boundary pixels of the object (see Figure 1.c).  This contour is often represented by a chain code [4].  Another view of the object contour is the line between the object pixels and the background (the ‘crack’).  Encoding this line (a sequence of horizontal and vertical pixel edges) yields what is usually called the crack code of the digitised object boundary [1] (identified as the bold line in Figure 1.c). Clearly the length of the latter contour is greater than the perimeter of the original object, especially for shapes with many corners: hence the problem of finding an efficient and accurate perimeter estimator.


One way of estimating the perimeter of a digitised object [5] [6] is to measure the number of vertical and horizontal cracks, and perform subsequent adjustments (e.g. take the number of corners into consideration). This solution is not attractive for hardware implementation.

Another approach is to approximate the real object boundary more accurately, and perform subsequent measurements on this approximated contour [7].  In particular, it is common to represent the contour as a line passing through the centre of boundary pixels – i.e. as a sequence of horizontal, vertical and diagonal links[8].  Area measurements must of course take this into account, as this approach effectively shaves off a little of each boundary pixel of the object.  Assuming square pixels, the perimeter is then estimated by:

Perimeter = No. of horizontal & vertical links + (No. of diagonal links * 
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In the following, we will present an alternative formulation of this algorithm which is particularly suited to FPGA implementation.

2. The formulation of the algorithm

Consider a binary image ‘Im1’ containing only one object. Before measuring its perimeter, we need first to find the perimeter. A simple method for identifying the boundary pixels is to perform an ‘Erode’ operation on the image. The boundary pixels are those which were eroded, and can be found by subtracting the result from the original image, as shown in Figure 2.  

As stated earlier, a count of the number of pixel edges (the cracks) does not give an accurate measure of the perimeter (because of corners and diagonal edges). Instead, we will take the contour as a sequence of links between the centres of adjacent boundary pixels (see Im2 in Figure 2).  However, rather than focus on the links (each of which straddles two boundary pixels), we will consider the individual contribution of each boundary pixel. This contribution depends on the path which the contour follows through the pixel. Assuming a one-pixel wide perimeter, and an aspect ratio of 1.0 (i.e. square pixels), we can classify each edge pixel’s contribution to the perimeter into one of the following categories (or any of their rotations) [9]:

(a)              and                in which case the contribution of the pixel is C = 1.

(b)              and              in which case the contribution of the pixel is C = 
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.

(c)  and            in which case the contribution of the pixel is C = (1+
[image: image4.wmf]2

)/2.
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Figure 2. An edge finding algorithm for binary images

The perimeter is then given by:


Perimeter    = 
No. of (a) pixels * 1 



       + 
No. of (b) pixels*
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       + 
No. of (c) pixels * (1+ 
[image: image7.wmf]2

)/2 



(Equation 1)

One way of classifying the contribution of edge pixels (assumed to be ‘1’ against a background of ‘0’s) is to convolve the whole binary image ‘Im2’ with the following window:
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T = Im2 <convolve>


The result of this convolution at each pixel position enables the category of the corresponding edge pixel to be deduced:

Result (T[i,j])
category

5 or 15 or 7 or 25 or 27 or 17 
(a)

13 or 23
(c)

21 or 33
(b)

anything else
no contribution

Table 1. Classification of different convolution pixel results
The make up of these result pixels is shown in Figure 3.
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Figure 3. Different possibilities for edge segments

The perimeter will then be given by:


Perimeter    = 
count(T=5,15,7,25,27 or 17) * 1 



      + 
count(T=21 or 33) Pixels*
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      + 
count(T=13 or 23) * (1+
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)/2 

For hardware implementation purposes, the coefficients will be approximated in binary to eight binary places as follows:

1 = 1.000000002, (1+ 
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)/2 ( 1.001101012  and  
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( 1.011010102.

A block structure of the whole operation is given by Figure 4.
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 Figure 4. A block diagram of the proposed perimeter estimator

3. FPGA implementation

The above algorithm has been implemented on Xilinx XC4036EX-2 series [10] which consists of a grid of 36x36 CLBs. Both ‘Erode’ and convolution 3x3 neighbourhood operations store two lines of data on chip in order to supply each image pixel only once to the FPGA. Line buffers are implemented efficiently using the distributed synchronous RAMs and a simple address counter. Each CLB can hold up to 34 bits (i.e. pixels).  Since the input of both operations is a binary image, large line buffers can be readily stored on the chip. 

The maximum possible result pixel value from the convolution operation is theoretically 49, which occurs when all the image pixel values within the 3x3 neighbourhood are 1. Hence, the output pixel word length is 6 (49 = 1100012).

Each of the three ‘=’ units will output ‘1’ whenever its input (the convolution result) is one of a set of particular constants (e.g. {13, 23}). Since the output of the convolution is 6 bits wide, this implements a 6-input boolean function which can be implemented easily using the XC4000 CLB’s look up tables. The corresponding area is hence independent of the number of constants in any of the sets. The unit that implements Equation 1 receives 3 binary inputs and will output the proper approximated coefficient values (for 1, 
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  or (1+
[image: image16.wmf]2

)/2) in bit parallel. This can be seen as a multi-output boolean function that can again be easily implemented using the XC4000 CLB’s look up tables. Finally, these pixel contributions are serially accumulated. The accumulation is in bit parallel and is implemented using dedicated fast carry logic.

The whole circuit has been generated from a high level Hardware Description Notation developed at Queen’s University called HIDE [11, 12]. A floorplan of the resulting architecture for 512x512 input binary image on XC4036EX-2 is presented in Figure 5. The whole circuit occupies 199 CLBs. This is 15% of the whole chip area. The remaining 85% is available to implement other operations on the digitised input image (e.g. initial threshing if necessary, or area centroid, or compactness estimation).  Timing simulation shows that the circuit can run at 85MHz which gives 85 Million pixel per second throughput.
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Figure 5. Physical configuration of ‘Perimeter estimator’ operation on XC4036EX-2
4. Conclusion

In this paper, we have presented a hardware implementation of an algorithm for perimeter estimation. The standard algorithm has been reformulated to suit hardware implementation, and offers a simple and relatively accurate way of estimating object perimeters. The resulting FPGA implementation on a Xilinx XC4000 is very compact and achieves a maximum throughput of 85 Million pixels per second.  This makes a suitable component for applications such as real time object recognition.  As it stands, there are several limitations on its application (e.g. only one object in the image, the object must not have any holes).  In practice, full application of the presented unit for object recognition – perhaps based on measuring compactness – would need surrounding components, e.g. to remove noise, and to calculate area.  These can be incorporated into a hardware solution without significant difficulty.
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