Design and FPGA Implementation of a Perimeter Estimator

K Benkrid and D Crookes
School of Computer Science, The Queen’s University of Belfast, Belfast BT7 1NN, UK

(K.Benkrid, D.Crookes)@qub.ac.uk

Abstract

The measurement of perimeters, areas, centroids and other shape related parameters of planar objects from their digitised images is an important task in computer vision systems. In this paper, we present a formulation of a simple and relatively accurate algorithm for estimating an object’s perimeters which is particularly suited to hardware implementation. Details of the algorithm’s implementation on a Xilinx XC4000 FPGA are also given. The resulting circuit is very compact and achieves a throughput of 85 Million pixels per second, which corresponds to 324 frames per second for 512 x 512 images.

1. Introduction

Measurement of perimeters, areas, centroids and other shape related parameters of planar objects is an important task in industrial computerised visions systems [1]. Such systems perform shape analysis on digitised images, which result from the projection of the object on a square grid of sensor array [2]. The resulting images’ pixels (see Figure 1.b) are binary depending on whether the pixel centre belongs to the object or not [3].

[image: image1.wmf]Stepwise boundary

(

b)

(

a)

(

c)

Figure 1. (a) Original object shape (b) Object shape after digitisation (discrete form)

(c) object contour with its stepwise boundary

We define the contour of a digitised object as a sequence of boundary pixels of the object (see Figure 1.c). This contour is often represented by a chain code [4]. Another view of the object contour is the line between the object pixels and the background (the ‘crack’). Encoding this line (a sequence of horizontal and vertical pixel edges) yields what is usually called the crack code of the digitised object boundary [1] (identified as the bold line in Figure 1.c). Clearly the length of the latter contour is greater than the perimeter of the original object, especially for shapes with many corners: hence the problem of finding an efficient and accurate perimeter estimator.

One way of estimating the perimeter of a digitised object [5] [6] is to measure the number of vertical and horizontal cracks, and perform subsequent adjustments (e.g. take the number of corners into consideration). This solution is not attractive for hardware implementation.

Another approach is to approximate the real object boundary more accurately, and perform subsequent measurements on this approximated contour [7]. In particular, it is common to represent the contour as a line passing through the centre of boundary pixels – i.e. as a sequence of horizontal, vertical and diagonal links[8]. Area measurements must of course take this into account, as this approach effectively shaves off a little of each boundary pixel of the object. Assuming square pixels, the perimeter is then estimated by:

Perimeter = No. of horizontal & vertical links + (No. of diagonal links *
[image: image2.wmf]2

)

In the following, we will present an alternative formulation of this algorithm which is particularly suited to FPGA implementation.

2. The formulation of the algorithm

Consider a binary image ‘Im1’ containing only one object. Before measuring its perimeter, we need first to find the perimeter. A simple method for identifying the boundary pixels is to perform an ‘Erode’ operation on the image. The boundary pixels are those which were eroded, and can be found by subtracting the result from the original image, as shown in Figure 2.

As stated earlier, a count of the number of pixel edges (the cracks) does not give an accurate measure of the perimeter (because of corners and diagonal edges). Instead, we will take the contour as a sequence of links between the centres of adjacent boundary pixels (see Im2 in Figure 2). However, rather than focus on the links (each of which straddles two boundary pixels), we will consider the individual contribution of each boundary pixel. This contribution depends on the path which the contour follows through the pixel. Assuming a one-pixel wide perimeter, and an aspect ratio of 1.0 (i.e. square pixels), we can classify each edge pixel’s contribution to the perimeter into one of the following categories (or any of their rotations) [9]:

(a) and in which case the contribution of the pixel is C = 1.

(b) and in which case the contribution of the pixel is C =
[image: image3.wmf]2

.

(c) and in which case the contribution of the pixel is C = (1+
[image: image4.wmf]2

)/2.

[image: image5.wmf]Im2 = Im1-

Erode

(Im1)

Minimum

Erode

(Im1)

~

0

~

0

0

0

~

0

~

Erode

Input image Im1

Neighbourhood

operation

Image-Image

subtraction

Im1

Im2 = Im1-

Erode

(Im1)

Erode

(Im1)

Approximated

boundary

Im1

Figure 2. An edge finding algorithm for binary images

The perimeter is then given by:

Perimeter =
No. of (a) pixels * 1

 +
No. of (b) pixels*
[image: image6.wmf]2

 +
No. of (c) pixels * (1+
[image: image7.wmf]2

)/2

(Equation 1)

One way of classifying the contribution of edge pixels (assumed to be ‘1’ against a background of ‘0’s) is to convolve the whole binary image ‘Im2’ with the following window:

[image: image8.wmf]10

2

10

2

1

2

10

2

10

T = Im2 <convolve>

The result of this convolution at each pixel position enables the category of the corresponding edge pixel to be deduced:

Result (T[i,j])
category

5 or 15 or 7 or 25 or 27 or 17
(a)

13 or 23
(c)

21 or 33
(b)

anything else
no contribution

Table 1. Classification of different convolution pixel results
The make up of these result pixels is shown in Figure 3.

[image: image9.wmf](a)

(

b)

(

c)

T = 5

T = 5

T = 15

T = 13

T = 13

T = 21

T = 21

T = 23

T = 33

T = 7

T = 25

T = 27

T = 17

T = 5

Figure 3. Different possibilities for edge segments

The perimeter will then be given by:

Perimeter =
count(T=5,15,7,25,27 or 17) * 1

 +
count(T=21 or 33) Pixels*
[image: image10.wmf]2

 +
count(T=13 or 23) * (1+
[image: image11.wmf]2

)/2

For hardware implementation purposes, the coefficients will be approximated in binary to eight binary places as follows:

1 = 1.000000002, (1+
[image: image12.wmf]2

)/2 (1.001101012 and
[image: image13.wmf]2

(1.011010102.

A block structure of the whole operation is given by Figure 4.

[image: image14.wmf]Additive -Minimum

Erode

(Im1)

~

0

~

0

0

0

~

0

~

Erode

Input image Im1

Neighbourhood

operation

Image-Image

subtraction

Im1

Im2 = Im1-

Erode

(Im1)

10

2

10

2

1

2

10

2

10

Mult-Accumulate

(convolution)

Neighbourhood

operation

T = 13 or 23?

T = 21 or 33?

T = 5, 15, 7, 25,

17 or 27?

T

Binary image

Bin2

Binary image

Bin1

Binary image

Bin3

O = A1 * 1 + A2 *

2

 + A3 * (1+

2

)/2

Im3 = Bin1 * 1 + Bin2 *

2

 + Bin3 * (1+

2

)/2

Global

accumulation

Perimeter =

å

j

i

j

i

,

]

,

[

3

Im

A1

A2

A3

O

 Figure 4. A block diagram of the proposed perimeter estimator

3. FPGA implementation

The above algorithm has been implemented on Xilinx XC4036EX-2 series [10] which consists of a grid of 36x36 CLBs. Both ‘Erode’ and convolution 3x3 neighbourhood operations store two lines of data on chip in order to supply each image pixel only once to the FPGA. Line buffers are implemented efficiently using the distributed synchronous RAMs and a simple address counter. Each CLB can hold up to 34 bits (i.e. pixels). Since the input of both operations is a binary image, large line buffers can be readily stored on the chip.

The maximum possible result pixel value from the convolution operation is theoretically 49, which occurs when all the image pixel values within the 3x3 neighbourhood are 1. Hence, the output pixel word length is 6 (49 = 1100012).

Each of the three ‘=’ units will output ‘1’ whenever its input (the convolution result) is one of a set of particular constants (e.g. {13, 23}). Since the output of the convolution is 6 bits wide, this implements a 6-input boolean function which can be implemented easily using the XC4000 CLB’s look up tables. The corresponding area is hence independent of the number of constants in any of the sets. The unit that implements Equation 1 receives 3 binary inputs and will output the proper approximated coefficient values (for 1,
[image: image15.wmf]2

 or (1+
[image: image16.wmf]2

)/2) in bit parallel. This can be seen as a multi-output boolean function that can again be easily implemented using the XC4000 CLB’s look up tables. Finally, these pixel contributions are serially accumulated. The accumulation is in bit parallel and is implemented using dedicated fast carry logic.

The whole circuit has been generated from a high level Hardware Description Notation developed at Queen’s University called HIDE [11, 12]. A floorplan of the resulting architecture for 512x512 input binary image on XC4036EX-2 is presented in Figure 5. The whole circuit occupies 199 CLBs. This is 15% of the whole chip area. The remaining 85% is available to implement other operations on the digitised input image (e.g. initial threshing if necessary, or area centroid, or compactness estimation). Timing simulation shows that the circuit can run at 85MHz which gives 85 Million pixel per second throughput.

[image: image17.wmf]Line buffers

Erode

Convolution

Accumulator

Input

Output

Figure 5. Physical configuration of ‘Perimeter estimator’ operation on XC4036EX-2
4. Conclusion

In this paper, we have presented a hardware implementation of an algorithm for perimeter estimation. The standard algorithm has been reformulated to suit hardware implementation, and offers a simple and relatively accurate way of estimating object perimeters. The resulting FPGA implementation on a Xilinx XC4000 is very compact and achieves a maximum throughput of 85 Million pixels per second. This makes a suitable component for applications such as real time object recognition. As it stands, there are several limitations on its application (e.g. only one object in the image, the object must not have any holes). In practice, full application of the presented unit for object recognition – perhaps based on measuring compactness – would need surrounding components, e.g. to remove noise, and to calculate area. These can be incorporated into a hardware solution without significant difficulty.

5. References

[1]
Rosenfeld A, and Kak A C, Digital Picture Processing. New York: Academic, pp. 310-314, 1976.

[2]
Rink M, “A computerized quatitative image analysis procedure for invistigating features and an adapted image process”, J. Microscopy, vol. 107, pp. 267-286, 1976.

[3]
Kulpa Z, “Area and perimeter measurement of bolbs in discrete binary pictures”, Computer Graphics Image Processing, vol. 6, pp. 434-451, 1977.

[4]
Freeman H, “Computer processing of line drawing images”, Comput. Surveys, vol. 6, pp. 57-97, 1974.

[5]
Profitt D and Rosen D, “Metrication errors and coding efficiency of chain coding schemes for the representation of lines and edges”, Computer Graphics Image Processing, vol. 10, pp. 318-332, 1979.

[6]
Koplowitz J and Bruckstein A M, “Design of Perimeter Estimators for Digitized Planar Shapes”, IEEE transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI(11), pp. 611-622, 1989.

[7]
Montanari U, “A note on minimal length polygonal approximation to a digitized contour”, Communications ACM, vol. 13, pp. 41-46, 1970.

[8]
Castleman K R, ‘Digital Image Processing’, Prentice Hall, 1996.

[9]
Crookes D, “Image Processing”, Course Notes, School of Computer Science, The Queen’s University of Belfast.

[10]
http://www.xilinx.com/partinfo/4kconf.pdf

[11]
Crookes D, Alotaibi K, Bouridane A, Donachy P and Benkrid A, ‘An Environment for Generating FPGA Architectures for Image Algebra-based Algorithms’, ICIP98, Vol.3, pp 990-994. 1998.

[12]
K Benkrid, D Crookes, A Bouridane, P Corr and KAlotaibi, ‘A High Level Software Environment for FPGA Based Image Processing’, Proceedings IPA 99’, Manchester, pp.112-116, 1999.

_1017440685.unknown

_1017440725.unknown

_1018874106.doc

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a)

(b)

(c)

T = 5

T = 5

T = 15

T = 13

T = 13

T = 21

T = 21

�

�

�

�

�

�

�

�

�

�

�

�

T = 23

T = 33

�

�

�

�

�

�

�

�

�

�

�

�

T = 7

�

�

�

�

�

�

�

�

�

�

�

�

T = 25

�

�

�

�

�

�

�

�

�

�

�

�

T = 27

�

�

�

�

�

�

�

�

�

�

�

�

T = 17

�

�

�

�

�

�

�

�

�

�

�

�

T = 5

�

�

�

�

�

�

�

�

�

�

�

�

_1018968884.doc
[image: image1.png]

[image: image2.png]

[image: image3.wmf]~

0

~

0

0

0

~

0

~

[image: image4.png]

[image: image5.png]

[image: image6.png]

� EMBED PaintShopPro ���

�

� EMBED Word.Picture.8 ���

Im1

Image-Image subtraction

Erode(Im1)

Im2 = Im1-Erode(Im1)

Minimum

Erode

Input image Im1

Erode(Im1)

Neighbourhood operation

Im1

Im2 = Im1-Erode(Im1)

� EMBED PaintShopPro ���

Approximated boundary

_1017360842

_1017360889

_1011304965.doc

~�

0�

~�

�

0�

0�

0�

�

~�

0�

~�

�

_1019139380.doc
[image: image1.wmf]~

0

~

0

0

0

~

0

~

[image: image2.wmf]10

2

10

2

1

2

10

2

10

[image: image3.wmf]2

[image: image4.wmf]2

[image: image5.wmf]2

[image: image6.wmf]2

[image: image7.wmf]å

j

i

j

i

,

]

,

[

3

Im

Im2 = Im1-Erode(Im1)

Im1

Image-Image subtraction

Neighbourhood operation

Input image Im1

Erode

� EMBED Word.Picture.8 ���

Erode(Im1)

O

Additive -Minimum

� EMBED Word.Picture.8 ���

Neighbourhood operation

Mult-Accumulate

(convolution)

T = 5, 15, 7, 25, 17 or 27?

T = 21 or 33?

T = 13 or 23?

T

A3

A1

A2

Binary image Bin2

Binary image Bin1

Binary image Bin3

O = A1 * 1 + A2 * � EMBED Equation.3 ��� + A3 * (1+� EMBED Equation.3 ���)/2

Im3 = Bin1 * 1 + Bin2 * � EMBED Equation.3 ��� + Bin3 * (1+� EMBED Equation.3 ���)/2

Global accumulation

Perimeter = � EMBED Equation.3 ���

_1011304965.doc

~�

0�

~�

�

0�

0�

0�

�

~�

0�

~�

�

_1013138547.unknown

_1013138792.unknown

_1013138964.unknown

_1013138504.unknown

_1005273986.doc

10 �

2�

10�

�

2�

1�

2�

�

10�

2�

10�

�

_1017440729.unknown

_1017442421.doc
[image: image1.png]

�

Line buffers

Erode

Convolution

Accumulator

Input

Output

_1017440691.unknown

_1017440722.unknown

_1017440688.unknown

_1017440340.doc
[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

� EMBED PaintShopPro ���

� EMBED PaintShopPro ���

� EMBED PaintShopPro ���

Stepwise boundary

(b)

(a)

(c)

_1017360805

_1017360842

_1017360889

_1017360517

_1017440680.unknown

_1017439977.unknown

_1017440032.unknown

_1017440035.unknown

_1011307129.doc

10 �

2�

10�

�

2�

1�

2�

�

10�

2�

10�

�

T = Im2 <convolve>

