

CONSTANT VECTOR CURVATURE IN THREE-DIMENSIONS

INTRODUCTION

This research examines a the property of constant vector curvature ($cvc(\epsilon)$) on three-dimensional model spaces with a positive definite inner product. It has been proven that constant vector curvature is well defined in three-dimensions [2]. The main result of this research is that all threedimensional model spaces with positive definite inner products have $cvc(\epsilon)$ for some ϵ .

BACKGROUND

Definition: $M = (V, \langle \cdot, \cdot \rangle, R)$ is called a model space if V is a vector space, $\langle \cdot, \cdot \rangle$ is an inner product, and *R* is a 4-tensor with the same symmetries as the Riemann curvature tensor.

Let $M = (V, \langle \cdot, \cdot \rangle, R)$ be a model space. M is said to have:

- Constant Sectional Curvature ϵ ($csc(\epsilon)$) if all non-degenerate 2-planes have section curvature ϵ .
- Constant Vector Curvature ϵ ($cvc(\epsilon)$) if for all $v \neq 0 \in V$ there exists $w \in V$ such that the section curvature of the 2-plane spanned by v and w is ϵ .
- Extremal constant vector curvature ϵ if M has $cvc(\epsilon)$ and ϵ is a bound on all sectional curvatures.

If ϕ is a symmetric bilinear form, then define the algebraic curvature tensor

 $R_{\phi}(x, y, z, w) = \phi(x, w)\phi(y, z) - \phi(x, z)\phi(y, w).$

Let $v, w \in V$ and $\{e_1, ..., e_n\}$ be an orthonormal basis for V. The Ricci tensor is a symmetric bilinear form (ρ) defined in the following way:

$$\rho(v,w) = \sum_{i=1}^{n} \langle e_i, e_i \rangle R(v, e_i, e_i, w).$$

It is always possible to find a basis for V such that the eigenvalues of the Ricci tensor are diagonalized and that $R_{1221} \geq R_{1331} \geq R_{2332}$. In this event all other curvature tensor entries are 0. For every curvature tensor in three-dimensions there is either exactly one symmetric form such that $R = R_{\phi}$ or two symmetric forms such that $R = R_{\phi} + R_{\psi}.$ [1]

ALBANY THOMPSON CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO REU PROGRAM

CLASSIFICATION OF CURVATURE TENSORS IN 3-D

$cvc(\epsilon)$ **EXAMPLE**

Consider a curvature tensor with R_{1221} $7, R_{1331} = 4$, and $R_{2332} = 3$. The values of this model space's Ricci tensor can be found below: $\rho_{11} = R_{1221} + R_{1331} = 11$

 $\rho_{22} = R_{1221} + R_{2332} = 10$

 $\rho_{33} = R_{1331} + R_{2332} = 7$

In this case $R = \pm R_{\phi}$. Also, since $Rank(\phi) =$ 3 and $||R_{ijji}|| = 3$ this model space has $cvc(\epsilon)$ where $\epsilon = 4$.

Figure 3: Coloration of the unit sphere according to the curvature value of the plane normal to the vector that begins at the origin and ends at a point on the sphere with the given curvature tensor values.

REFERENCES

- 1. Diaz-Ramos, Jose Carlos and Garica-Rio, Eduardo, A Note on the Structure of Algebraic Curvature *Tensor*, Linear Algebra and its Applications 382, 271-277 (2004).
- 2. Mumford, Kelci, The Study of the Constant Vector Curvature Condition for Model Spaces in Dimension *Three with Positive Definite Inner Product,* CSUSB REU, (2013).
- 3. Schmidt, Ben and Wolfson, Jon, Three-Manifolds with Constant Vector Curvature, (2011).

This flowchart can be used to classify all of the types of constant curvature in three-dimensions based on the properties of a model space's curvature tensor for model spaces with positive definite inner products.

• $||R_{ijji}||$ refers to the number of distinct values of the three nonzero curvature entries.

• In the $R = \pm R_{\phi}$ case $\epsilon = R_{1331}$ and thus refers to the only possible *cvc* value for a particular model space.

• In the $R = R_{\phi} + R_{\psi}$ case $-\lambda_1 = R_{1331}$.

cvc(0) **EXAMPLE**

Consider a curvature tensor with R_{1221} = $1, R_{1331} = 0$, and $R_{2332} = -1$. The Ricci tensor values of this model space are as follows: $\rho_{11} = -1, \rho_{22} = 0, \rho_{33} = 1$ Since $\rho_{22} = \rho_{11} + \rho_{33}$

the $R = R_{\phi} + R_{\psi}$. Also, because ρ_{11} and ρ_{33} have different signs this model space has cvc(0).

> In these images the light blue area shows the distribution of the planes with sectional curvature 0. The second image illustrates two great circles of planes with sectional curvature 0.

> Figure 2: Views of the unit sphere colored for the cvc(0) condition.

Consider a curvature tensor with R_{1221} = $9, R_{1331} = 1$, and $R_{2332} = 1$. No single value of this model space's Ricci tensor is equal to the sum of the other two, thus this curvature tensor falls into the $\pm R_{\phi}$ category. Since $||R_{ijji}|| = 2$ this model space has ecvc(1).

Every model space with a positive definite inner product in three-dimensions has consent vector curvature(ϵ) for some ϵ . If the values of the curvature tensor are known then it is possible to find the value of ϵ and in some cases the even stronger results of extermal vector curvature or constant sectional curvature. For every ϵ there exists a model space in 3-dimensions with $cvc(\epsilon)$ and $ecvc(\epsilon)$ where ϵ is either bound.

• Is constant vector curvature well defined in dimensions greater than 3 or when the inner product of the model space is nondegenerate?

• To what extent to the eigenvalues of the Ricci tensor effect the cvc condition in higher dimensions or other situations?

I would like to thank Dr. Corey Dunn for inspiring, guiding, and encouraging me throughout this research experience. His presence is what has made this work come together. Additionally, I would like to thank Dr. Rolland Trapp for inspiring much of this work through his inquisitions and technical expertise. I would also like to thank the NSF and CSUSB for funding this research through their DMS-1156608 grant.

CONTACT INFORMATION CENTRAL WASHINGTON UNIVERSITY THOMPSONALBANY@GMAIL.COM

$ecvc(\epsilon)$ **EXAMPLE**

Figure 1: Coloration of the unit sphere for the ecvc(1) condition.

CONCLUSION

OPEN QUESTIONS

ACKNOWLEDGMENTS