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1. Background

Sections of oriented knots can be represented as diagrammatic tensors in the following
manner:
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where a, b, c, d ∈ I. These along with analogous representations for different orientations can
give a tensor representation for any knot diagram by evaluating each crossing as a tensor.

2. States and the Invariant T (K)

Definition 1. A state of a knot, K, is a mapping σ : E(K) −→ I where E is the edge set of a
diagram of K.
Definition 2. We define

T (K) =
∑
σ

〈K|σ〉 .

Here σ runs over all the states of K, and 〈K|σ〉 denotes the product of the vertex weights Rabcd,

R
ab
cd assigned to the crossings in K in the given state.

We wish for T (K) to be a invariant under the Reidemeister moves and thus Rabcd, R
ab
cd when

summed over the index set I must satisfy:
Channel Unitarity-

R
ab
ijR

ij
cd =

a b

c d

∼

a b

c d

= δac δ
b
d

Cross-Channel Unitarity-
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Given channel and cross-channel unitarity it suffices to impose only the Reidemeister III con-
dition with all positive crossings-
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This last relation gives the Yang-Baxter Equation:∑
i,j,k∈I
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A similar relation is imposed on R.
Theorem 1. If the matrices R and R satisfy channel and cross-chanel unitarity and the Yang-
Baxter equation, then T(K) is a regular isotopy invariant for oriented knot diagrams.

3. A Solution to the Yang-Baxter Equation

We define the following diagrams as
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Here a, b, c, and d belong to the index set I = {1− n, 3− n, . . . , n− 3, n− 1}.
Using q as an indeterminate, we define the relation at a single crossing in a knot as
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Notationally this becomes

Rabcd = (q − q−1)[a < b]δac δ
b
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Similarly we define
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Proposition 1.Rabcd and Rabcd defined in this way satisfy channel and cross-channel unitarity and
the Yang-Baxter equation. Thus R and R can be used to construct a Yang-Baxter type regular
isotopy invariant for singular links and knotted graphs.

4. Extending the Solution to Singular Knots

Definition 3. A singular link is an immersion of a disjoint union of circles in R3 which admits
only finitely many singularities that are all transverse double points.

To begin our research we wanted our evaluation, 〈K〉, to be an invariant for singular links. It
must be invariant under additional Reidemeister moves involving flat crossings:
-Reidemeister 4:

∼

-Reidemeister 6:

∼

In attempt to resolve vertices in such a way that these two equations are satisfied we see that,
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is invariant under Reidemeister 4 and Reidemeister 6 moves for any α and β. By choosing
α = q
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and thus a regular isotopy polynomial invariant < G > for singular links G.

5. Reidemeister 5

In order to have an invariant for cross-like oriented topological 4-valent knotted graphs we must
have an evaluation of flat crossings such that the following is satisfied.
-Reidemeister 5:

∼

Using the resolution obtained in section 4 we obtain,〈 〉
= q

〈 〉
Similarly, 〈 〉

= q−1
〈 〉

By defining the writhe, ω(K), to be the number of positive crossings, R, minus the number of
negative crossings, R, we can define an invarience under this Reidemeister 5 move.

Theorem 2. Let P (K) = q−ω(K) 〈K〉. Then P (K) is an ambient isotopy invariant for cross-like
oriented topological 4-valent knotted graphs.

6. Additional Results and Future Research

• In the previous section we only considered cross-like oriented vertices, but it is possible
to generalize 〈K〉 to include alternating oriented vertices. Is it possible to extend P (K) to
topological knotted graphs?

• The polynomial < G > satisfies similar graphical relations involving planar graphs as those
for the sl(n) polynomial for knots. What relations can be drawn between the two construc-
tions?

• Finally, is there another unique construction of such an invariant?
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