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Abstract

We show that the set of block permutations of [n], denoted BPn, is
closed under multiplication, and is therefore a monoid. We study the
structure of BPn as an algebra and the subalgebra of planar diagrams,
Pn, give presentations for both, and investigate their representation
theory.

Background

IA set partition of [n] = {1, 2, . . . , n} is a collection of non-empty disjoint
subsets of [n], called blocks, whose union is [n].

IA block permutation of [n] is a bijection f : A ! B between two set
partitions A,B ` [n] both having k blocks, and can be represented as a
diagram as follows.
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g is planar if g’s diagram can be drawn without edges crossing inside of
the rectangle formed by its vertices. In Example 2, s
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where S(n, k) is the Stirling
number of the second kind.
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IThis is also the dimension of the
planar rook algebra.

Presentation of P
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as in Example 1.
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relations. They are defined for 1  i  n unless otherwise noted.
I

b

j

t

i

= t

i

b

j

if j < i or
j � i > 1

I
t

i

t

j

= t

j

t

i

for |i � j | > 1
I

t

2
i

= b

i

t

i

= t

i

b

i+1 =
b

i

b

i+1

I
t̃

i

t

i+1 = b

i+2t̃

i

= t̃

i

b

i+2

I
t

i+1t̃

i

= b

i

t

i+1 = t

i+1b

i

I
t

i+1t

i

t

i+1 = t

i

t

i+1t

i

= t

i

t

i+1

I
t̃

i

t

i

= b

2
i

= b

i

I
t

i

t̃

i

= b

i+1
I

b

i+1t

i

= t

i

b

i

=
t

i

The Planar Rook Algebra PR

n

We show that the planar rook algebra PRn, which is the set of n ⇥ n matrices with
entries from {0, 1} having at most one 1 in each row and column, of Halverson et al. is
isomorphic to the planar subalgebra P

n+1. Consequently, we can classify the irreducible
representations of P

n

using the results of [3].
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IWe have the following Bratteli Diagram. Lines represent the restriction of irreducible

representations of RP
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IThe dimensions of each module is given by
�
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k

�
. If we replace each module with its

corresponding dimension, we obtain Pascal’s triangle.
IProposition: For 0  k  n and f 2 P
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where i is the number of vertical edges in d 2 RP
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.
IThe character table for �n
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, the irreducible character of V
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, is given by Pascal’s triangle.

Presentation of BP
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IExample: t1s2s1t1 = s1s2b1.

Representation Theory of BP
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IWe use the above propositions to show that the irreducible representations of BP

n

can
be indexed by Young Diagrams.

Shuffle Product and Breaking Points

IA (p,q)-shuffle is a permutation ⇠ 2 S

p+q

such that
⇠(1) < · · · < ⇠(p)

and
⇠(p + 1) < · · · < ⇠(p + q).

IExample 3: The following are S1+2 shuffles.
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ILet f 2 BP

p

and g 2 BP

q

. We obtain the
concatenation of f and g, f ⇥ g 2 BP

p+q

, by
adding p to every vertex in g and placing g

to the right of f .

IExample 4: If b1 2 BP2 and t̃1 2 BP3, then
b1 ⇥ t̃1 2 BP5

b1 ⇥ t̃1 =
.

I
i 2 [n] is a breaking point of f 2 BP

n

if one can place a vertical line between the vertices i

and i + 1, and if the sum of the sizes of blocks of A mapping to blocks of B up to i equals i .
We denote the set of breaking points of f by B(f ).

I In Example 4, the red line at i = 2 is a breaking point, but the green one at i = 4 is not.

Hopf Algebra Structure of BP

n

ITheorem: The graded vector space
BP =

M

n�0
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]

with the product ⇤, coproduct �, unit ;, and counit ✏ is a graded connected Hopf algebra.
IThe unit is ;, the empty diagram, and the counit is the map ✏ : BP ! K given by ✏(f ) = �;,f .
IWe define the product ⇤ on BP to be
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8 f 2 BP

p

, g 2 BP
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and all (p, q)-shuffles ⇠.
I If we take ⇠1, ⇠2, ⇠3 as in Example 3, then the shuffle product of two diagrams f 2 BP1 and

g 2 BP2 is just the diagram multiplication of f ⇥ g distributed over ⇠1 + ⇠2 + ⇠3.
IWe define the coproduct on BP to be

�(f ) =
X

i2B(f )

f(i) ⌦ f

0
(n�i).

ILet f = b1 ⇥ t̃1 as in Example 4. Then �(f ) is given by

⌦ +f ⌦ ;.�(f ) = ; ⌦ f+
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