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Introduction 

Isaac Newton created his version of the calculus during the years from about 1665 to 
1670. One of Newton's central ideas was that of a power series, an idea he believed 
he had invented out of the analogy with the infinite decimal expansions of arithmetic 
[9, Vol. 111, p. 331. Newton, of course, was aware of earlier work done in solving the 
area problem, one of the central ideas of what was to be the calculus, and he knew 
well that the area under the curve y = x n  between x = 0 and x = b was given by 
bfl+l/ ( n  + 1). (This rule had been developed by several mathematicians in the 
1630s, including Bonaventura Cavalieri, Gilles Persone de Roberval, and Pierre de 
Fermat.) By developing power series to represent various functions, Newton was able 
to use this basic rule to find the areas under a wide variety of curves. Conversely, the 
use of the area formula enabled him to develop power series. For example, Newton 
developed the power series for y = arcsin x, in effect by defining it in terms of an 
area and using the area formula. He then produced the power series for the sine by 
solving the equation y = arcsin x for r = sin y by inversion of the series. What 
Newton did not know, however, was that both the area formula-which he believed 
had been developed some 35 years earlier-and the power series for the sine had 
been known for hundreds of years elsewhere in the world. In particular, the area 
formula had been developed in Egypt around the year A.D. 1000 and the power 
series for the sine, as well as for the cosine and the arctangent, had been developed in 
India, probably in the fourteenth century. It is the development of these two ideas 
that will be discussed in this article. 

Before going back to eleventh-century Egypt, however, we will first review the 
argument used both by Fermat and Roberval in working out their version of the area 
formula in 1636. In a letter to Fermat in October of that year, Roberval wrote that he 
had been able to find the area under curves of the form y = r-y using a 
formula-whose history in the Islamic world we will trace-for the sums of powers 
of the natural numbers: "The sum of the square numbers is always greater than the 
third part of the cube which has for its root the root of the greatest square, and the 
same sum of the squares with the greatest square removed is less than the third part 
of the same cube; the sum of the cubes is greater than the fourth part of the fourth 
power and with the greatest cube removed, less than the fourth part, etc." [5,p. 2211. 
In other words, finding the area of the desired region depends on the formula 

n - l  . k + l  n

C i k < r n <C i k  
i = l  i = l  
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Fennat wrote back that he already knew this result and, like Roberval, had used it 
to determine the area under the graph of y = x k  over the interval [0,x,]. Both men 
saw that if the base interval was divided into n equal subintervals, each of length 
xo/ n,  and if over each subinterval a rectangle whose height is the y-coordinate of the 
right endpoint was erected (see FIGURE11, then the sum of the areas of these N 
circumscribed rectangles is 

Similarly, they could calculate the sum of the areas of the inscribed rectangles, 
those whose height is the y-coordinate of the left endpoint of the corresponding 
subinterval. In fact, if A is the area under the curve between 0 and x,, then 

The difference between the outer expressions of this inequality is simply the area of 
the rightmost circumscribed rectangle. Because x, and yo = x,k are fixed, Fermat 
knew that the difference could be made less than any assigned value simply by taking 
12 sufficiently large. It follows from the inequality cited by Roberval that both the area 
A and the value xi+'/ (k + 1) = x O y O /  (k + 1) are squeezed between two values 
whose difference approaches 0. Thus Ferrnat and Roberval found that the desired 
area was xo;jo/ (k + 1). 

FIGURE 1 

The obvious question is how either of these two men discovered formulas for the 
sums of powers. But at present, there is no answer to this question. There is nothing 
extant on this formula in the works of Roberval other than the letter cited, and all we 
have from Ferrnat on this topic, in letters to Marin Mersenne and Roberval, is a 
general statement in terms of triangular numbers, pyramidal numbers, and the other 
numbers that occur as columns of Pascal's triangle. (We note that Fermat's work was 
done some twenty years before Pascal published his material on the arithmetical 
triangle; the triangle had, however, been published in many versions in China, the 
Middle East, North Africa, and Europe over the previous 600 years. See [4],pp. 
191-192; 241-242; 324-325.) Here is what Fermat says: "The last side multiplied by 



165 VOL. 6 8 ,  NO. 3 ,  JUNE 1995 

the next greater inakes twice the triangle. The last side multiplied by the triangle of 
the next greater side makes three times the pyramid. The last side multiplied by the 
pyramid of the next greater side makes four times the triangulotriangle. And so on by 
the same progression in infinitum" [5, p. 2301. Fennat's statement can be written 
using the modem notation for binomial coefficients as 

We can derive from this formula for each k in turn, beginning with k = 1,an explicit 
formula for the sum of the k th powers by using the properties of the Pascal triangle. 
For example, if k = 2, we have 

Therefore, 

and 

In general, the sum formula is of the form 

where p(n)  is a polynomial in n of degree less than k ,  and Roberval's inequality can 
be proved for each k .  We do not know if Fermat's derivation was like that above, 
however, because he only states a sum formula explicitly for the case k = 4 and gives 
no other indication of his procedure. 

Sums of Integer Powers in Eleventh-Century Egypt 

The formulas for the sums of the k th powers, however, at least through k = 4, as well 
as a version of Roberval's inequality, were developed some 650 years before the 
mid-seventeenth century by Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham 
(965-1039), known in Europe as Alhazen. The formulas for the sums of the squares 
and cubes were stated even earlier. The one for squares was stated by Archimedes 
around 250 B.C. in connection with his quadrature of the parabola, while the one for 
cubes, although it was pobably known to the Greeks, was first explicitly written 
down by Aryabhata in India around 500 [2, pp. 37-38]. The formula for the squares is 
not difficult to discover, and the one for cubes is virtually obvious, given some 
experimentation. By contrast, the formula for the sum of the fourth powers is not 
obvious. If one can discover a method for determining this formula, one can discover 
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a method for determining the fonnula for the sum of any integral powers. Ibn 
al-Haytham showed in fact how to develop the formula for the k th powers from k = 1 
to k = 4; all his proofs were similar in nature and easily generalizable to the discovery 
and proof of forlnulas for the sum of any given powers of the integers. That he did not 
state any such generalization is probably due to his needing only the formulas for the 
second and fourth powers to solve the problem in which he was interested: comput- 
ing the volume of a certain paraboloid. 

Before discussing ibn al-Haytham's work, it is good to briefly describe the world of 
Islamic science. (See [I] for more details.) During the ninth century, the Caliph 
al-Ma'mun established a research institute, the House of Wisdom, in Baghdad and 
invited scholars from all parts of the caliphate to participate in the development of a 
scientific tradition in Islam. These scientists included not only Moslem Arabs, but also 
Christians, Jews, and Zoroastrians, among others. Their goals were, first, to translate 
into Arabic the best mathematical and scientific works from Greece and India, and, 
second, by building on this base, to create new mathematical and scientific ideas. 
Although the House of Wisdom disappeared after about two centuries, many of the 
rulers of the Islamic states continued to support scientists in their quest for knowl- 
edge, because they felt that the research would be of value in practical applications. 

Thus it was that ibn al-Haytham, born in Basra, now in Iraq, was called to Egypt by 
the Caliph al-Hakim to work on a Nile control project. Although the project never 
came to fruition, ibn al-Haytham did produce in Egypt his most important scientific 
work, the Optics in seven books. The Optics was translated into Latin in the early 
thirteenth century and was studied and colnmented on in Europe for several 
centuries thereafter. Ibn al-Haytham's fame as a mathe~natician from the medieval 
period to the present chiefly rests on his treatment of "Alhazen's problem," the 
problem of finding the point or points on sonle reflecting surface at which the light 
from one of two points outside that surface is reflected to the other. In the fifth book 
of the Optics he set out his solutions to this problem for a variety of surfaces, 
spherical, cylindrical, and conical, concave and convex. His results, based on six 
separately proved lemmas on geometrical constructions, show that he was in f d l  
command of both the elementary and advanced geometry of the Greeks. 

The central idea in ihn al-Haytharn's proof of the sum formulas was the derivation 
of the equation 

Naturally, he did not state this result in general form. He only stated it for particular 
integers, namely n = 4 and k = 1,2,3,  but his proof for each of those k is by 
induction on n and is immediately generalizable to any value of k .  (See [7] for 
details.) \Ve consider his proof for k = 3 and n = 4: 

Because equation ( * ) is assumed true for n = 3, 

Equation ( * )  is therefore proved for n = 4. One can easily formulate ibn al-Haytham's 
argument in modern tenninology to give a proof for any k by induction on n. 
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Ibn al-Haytham now uses his result to derive formulas for the sums of integral 
powers. First, he proves the sum formulas for squares and cubes: 

We will not deal with these proofs here, but only with the derivation of the analogous 
result for the fourth powers. Although ibn al-Haytharn himself derives this result only 
for n = 4, he asserts it for arbitrary n. We will therefore use modem techniques 
modeled on ibn al-Haytham's method to derive it for that case. We begin by using the 
formulas for the sums of squares and cubes to rewrite equation ( * )  in the form 

It then follows that 

Ibn al-Haytham stated his result verbally in a form we translate into modern notation 
as 

The result can also be written as a polynomial: 

It is clear that this formula can be used as Fermat and Roberval used Roberval's 
inequality to show that = i4 

lim -2 = 1  -- -1 
n - m  n5 5 
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Ibn al-Haytham used his result on sums of integral powers to perform what we 
would call an integration. In particular, he applied his result to determine the volume 
of the solid formed by rotating the parabola x = k y 2  around the line x = kb2, 
perpendicular to the axis of the parabola, and showed that this volume is 8 /  15 of the 
volume of the cylinder of radius kb' and height b. (See FIGURE 2.) His fonnal 
argument was a typical Greek-style exhaustion argument using a double reductio ad  
absurdurn, but in essence his method involved slicing the cylinder and parab- 
oloid into n disks, each of thickness h = b/ n, and then adding up the disks. The 
ith disk in the paraboloid has radius kb2-  k(ih)' and therefore has volume 
.rrh(kh%' - ki2h"' = .rrk2h"n" ii")! The total volume of the paraboloid is there- 
fore approximated by 

x = kb" 
FIGURE 2 

But since ibn al-Haytham knew the formulas for the sums of integral squares and 
fourth powers, he could calculate that 

and therefore that 

But the volume of a typical slice of the circumscribing cylinder is ,rrh(kb)')' = 

.rrk21a5n{ and therefore the total volume of the cylinder is .rrk21a5n. n4, while the 
volume of the cylinder less its "top slice" is rrk21x"n - l)n4. The inequality then 
shows that the volume of the paraboloid is bounded between 8/ 15 of the cylinder 
less its top slice and 8 /  15 of the entire cylinder. Because the top slice can be made 
as small as desired by taking 11 sufficiently large, it follows that the volume of the 
paraboloid is exactly 8/ 15 of the volume of the cylinder as asserted. 

Ibn al-Haytham's formula for the sum of fourth powers shows up in other places in 
the Islamic world over the next few centuries. It appears in the work of Abu-1-Hasan 
ibn Haydur (d. 1413), who lived in what is now Morocco, and in the work of Abu 
Abdallah ibn Ghazi (1437-15141, who also lived in Morocco. (See [3] for details.) 
Furthermore, one also finds the formula in The Calculator's Key of Ghiyath al-Din 
Jdmshid al-Kashi (d. 1429), a mathematician and astronomer whose most productive 
years were spent in Samarkand, now in Uzbekistan, in the court of Ulugh Beg. We do 
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not know, however, how these mathematicians learned of the formula or for what 
purpose they used it. 

Trigonometric Series in Sixteenth-Century India 

The sum for~nulas for integral powers surface in sixteenth-century India and they are 
used to develop the power series for the sine, cosine, and arctangent. These power 
series appear in Sanskrit verse in the Tantrasangralaa-vyakhya (of about 15301, a 
commentary on a work by Kerala Gargya Nilakantha (1445-1545) of some 30 years 
earlier. Unlike the situation for many results of Indian mathematics, however, a 
detailed derivation of these power series exists, in the Yuktibhasa, a work in 
Malayalam, the language of Kerala, the southwestern region of India. This latter work 
was written by Jyesthadeva (1500-1610), who credits these series to Madhava, an 
Indian mathematician of the fourteenth century. 

Even though we do not know for sure whether Madhava was the first discoverer of 
the series, it is clear that the series were known in India long before the time of 
Newton. But why were the Indians interested in these matters? India had a long 
tradition of astronomical research, dating back to at least the middle of the first 
millennium B.C. The Indians had also absorbed Greek astronomical work and its 
associated mathematics during and after the conquest of northern India by Alexander 
the Great in 327 B.C. Hence the Indians became familiar with Greek trigonometry, 
based on the chord function, and then gradually improved it by introducing our sine, 
cosine, and tangent. Islamic mathematicians learned trigonometry from India, intro- 
duced their own improvements, and, after the conquest of northern India by a 
Moslem army in the twelfth century, brought the improved version back to India. 
(See [4] for more details.) 

The interaction of astronomy with trigonometry brings an increasing demand for 
accuracy. Thus Indian astronomers wanted an accurate value for .rr (which comes 
from knowing the arctangent power series) and also accurate values for the sine and 
cosine (which comes from their power series) so they could use these values in 
determining planetary positions. Because a recent article [8] in this MAGAZINE 
discussed the arctangent power series, we will here consider only the sine and cosine 
series. 

The statement of the Indian rule for determining these series is as follows: "Obtain 
the results of repeatedly multiplying the arc [s]  by itself and then dividing by 
2 ,3 ,4 , .. . multiplied by the radius [p]. Write down, below the radius (in a column) 
the even results [i.e. results corresponding to n = 2,4,6  in s n /  n!pn-'1, and below 
the radius (in another column) the odd results [corresponding to n = 3,5,7 , . . . in 
s n /  n!pn-I]. After writing down a number of terms in each column, subtract the last 
term of either column from the one next above it, the remainder from the term next 
above, and so on, until the last subtraction is made from the radius in the first column 
and from the arc in the second. The two final remainders are respectively the cosine 
and the sine, to a certain degree of approximation." 16, p. 31 These words can easily be 
translated into the formulas: 

(These formulas reduce to the standard power series when p is taken to be 1.) 
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The Indian derivations of these results begin with the obvious approximations to 
the cosine and sine for small arcs and then use a "pull yourself up by our own 
bootstraps" approach to improve the approximation step by step. The derivations also 
make use of the notion of differences, a notion used in other aspects of Indian 
mathematics as well. In our discussion of the Indian method, we will use modem 
notation to enable the reader to follow these sixteenth-century Indian ideas. 

We first consider the circle of FIGURE 3 with a small arc (Y =E=AC. From the 
similarity of triangles AGC and OEB, we get 

"1-"2  Y Y 2 - Y 1  " - - and ----- -
(Y P (Y P 

In modem terms, if L BOF = B and LBOC = LAOB = dB, these equations amount 
to 

Y z - Y l  - 2 ~ d o  -sin(8 + dB) - sin(8 - dB) = ------ - cosB =2cosBdB 
P P P 

and 

Now, suppose we have a small arc s divided into n equal subarcs, with a = s/  n. 
For simplicity we take p = 1, although the Indian mathematicians did not. By 
applying the previous results repeatedly, we get the following sets of differences for 
the y's (FIGURE 4) (where y,, = y = sin s): 

X 
X l  

FIGURE 3 FIGURE 4 
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Similarly, the differences for the x ' s  can he written 

We next consider the second differences on the y's: 

A 2 y  - A l y  = y2 - y1 - y1 + y o  = a(s2- x l )  = - a 2 y l .  

In other words, the second difference of the sines is proportional to the negative of 
the sine. But since Ally = y l ,  we can write this result as 

A 2 y  = y1 - a 2 y,  

Similarly, since 

A:3y - A2jj = y 3  - y2 - y2 + y, = a ( ~ , ~s2)= - a 2 y 2 ,-

it follows that 

A 3 y  = A 2 y  - a2 yn = y, - a 2 y 1- a  2 
?j2, 

and, in general, that 

A l l y= y, - aPIjl- a2W2- . . . -a 2 y , , - ,  

But the sine equals the suin of its differences: 

Also, s/ n = y, = a ,  or n y ,  = s. Naturally, the larger the value of 1 2 ,  the hetter each of 
these approximations is. Therefore, 

Next we add the differences of the x's. We get 

x , , -N ,  = - a ( ? / ,  + y 2 +  . . .  + y , ) - , ) .  

But s,,= s = cos s and N ,  = 1. It then follows that 

To continue the calculation, the Indian mathematicians needed to approximate 
eacll y, and use these approximations to get approximations for s = cos s and 
y = sin s. Each new approximation in turn is placed back in the expressions for s and 
y and leads to a hetter approximation. Note first that if y is small, y, can be 
approximated by is/ n .  It follows that 
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Similarly, 

s 
= s - lim , [ 1 + ( 1 + 2 ) + ( 1 + 2 + 3 )  + . . .  + ( 1 + 2 +  . . .  + ( n - 1 ) ) ]  

11+m ta 

s 
= s lim - [ a ( l + 2 +  . . .  + ( r r - 1 ) ) - ( 1 2 + 2 ' +  . + + ( T I - I ) ' ) ]  

rl +ca t l  

and there is a new approxiinatioil for y and therefore for each y,. Note that in the 
transition from the secoild to the third lines of this calculatioil the Indians used ibn 
al-Haytham's equation ( * ) for the case k = 1. Although the Indian mathematicians 
did not refer to ibn al-Haytham or ally other predecessor, they did explicitly sketch a 
proof of this result in the geileral case and used it to show that, for ally k ,  the suin of 
the k th powers of the first n integers is approxiinately equal to n" '/ ( k  + 1). This 
result was used in the penultilllate line of the above calculation in the cases k = 1 and 
k = 2 and in the derivation of the power series for the arctangent as discussed in 181. 

To improve the approxiination for sine and cosine, we now assume that y, = 
( i s /  12) - ( i s ) '3 /  ( 6 n 3 )  ill the expression for r = cos s and use the suin formula in the 
case k = 3 to get 
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Similarly, ibn al-Haytham's formula for the case j = 3 and the sum formula for the 
cases j = 3 and j = 4 lead to a new approximation for y = sin s :  

= s -
s + lim . . .  + ( n - ~ ) ~ ) ]+ ( 1 ~ + 2 ~ +  

n-ca 6nJ 

Because Jyesthadeva coilsiders each new term in these polynomials as a correction 
to the previous value, he understood that the more tenns taken, the more closely the 
polynomials approach the true values for the sine and cosine. The polynomial 
approximations can thus be continued as far as necessary to achieve any desired 
approximation. The Indian authors had therefore discovered the sine and cosine 
power series! 

Conclusion 

How close did Islamic and Indian scholars come to inventing the calculus? Islamic 
scholars nearly developed a general formula for finding integrals of polynomials by 
A.D. 1000-and evidently could find such a formula for any polynoinial in which they 
were interested. But, it appears, they were not interested in any polynomial of degree 
higher than four, at least in any of the material which has so far come down to us. 
Indiail scholars, on the other hand, were by 1600 able to use ibn al-Haytham's sum 
formula for arbitrary integral powers in calculating power series for the functions in 
which they were interested. By the same time, they also knew how to calculate the 
differentials of these functions. So some of the basic ideas of calculus were known in 
Egypt and India many centuries before Newton. It does not appear, however, that 
either Islamic or Indiail mathematicians saw the necessity of connecting some of the 
disparate ideas that we include under the name calculus. There were apparently only 
specific cases in which these ideas were needed. 

There is no danger, therefore, that we will have to rewrite the history texts to 
remove the statement that Newtoil and Leibniz invented the calculus. They were 
certainly the ones who were able to combine many differing ideas under the two 
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unifying themes of the derivative and the integral, show the connection between 
them, and turn the calculus into the great problem-solving tool we have today. But 
what we do not know is whether the immediate predecessors of Newton and Leibniz, 
including in particular Fermat and Roberval, learned of some of the ideas of the 
Islamic or Indian mathematicians through sources of which we are not now aware. 

The entire question of the transmission of mathematical knowledge from one 
culture to another is a matter of current research and debate. In particular, with more 
medieval Arabic manuscripts being discovered and translated into European lan- 
guages, the route of some mathematical ideas can be better traced from Iraq and Iran 
into Egypt, then to Morocco and on into Spain. (See [3] for more details.) Medieval 
Spain was one of the meeting points between the older Islamic and Jewish cultures 
and the emerging Latin-Christian culture of Europe. Many Arabic works were 
translated there into Latin in the twelfth century, sometimes by Jewish scholars who 
also wrote works in Hebrew. But although there is no record, for example, of ibn 
al-Haytham's work on sums of integral powers being translated at that time, certain 
ideas he used do appear in both Hebrew and Latin works of the thirteenth century. 
And since the central ideas of his work occur in the Indian material, there seems a 
good chance that transmission to India did occur. Answers to the questions of 
transmission will require much more work in manuscript collections in Spain and the 
Maghreb, work that is currently being done by scholars at the Centre National de 
Recherche Scientifique in Paris. Perhaps in a decade or two, we will have evidence 
that some of the central ideas of calculus did reach Europe from Africa or Asia. 
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