
The Geometric Series in Calculus 

George E. Andrews 

1. INTRODUCTION. One of the fairly easily established facts from high school 
algebra is the Finite Geometric Series: 

n 1 - ,,n+l 

1 + r + r 2 + ... +rl' = C = (1 .1)l - r  ' J = O  

This fact is made convincingly clear to all concerned by direct multiplication 

rn +rn- l  + ... + r 2  +Y + 1 
X -r + 1 

Unfortunately this elementary result is often skipped in algebra and is often first 
mentioned when infinite series arise in the second semester of calculus. 

The object here is to show that the Geometric Series can play a very useful role 
in simplifying some important but complex topics in calculus. Most of the ideas in 
this note can be found in only slightly different guise sprinkled throughout Otto 
Toeplitz's charming book [6], which, unfortunately, is out of print. 

2. THE DERIVATIVE OF kn.Showing students that 

usually poses a dilemma. From the standard definition of a derivative, we see that 

d ( X + h ) n  - xn  
- X n  -- lim
dx h-0  h 

How should we proceed? 
One approach [2, p. 1621 is to use the Binomial Theorem without saying much 

save for a few examples. Not exactly convincing! 
Or should we prove the Binomial Theorem at this point? Probably not! 
Perhaps we could prove a Weak Binomial Theorem: 

Again, we have a distraction, at best. 
Let us bring the Finite Geometric Series to the rescue. The standard definition 

of the derivative, viz. 

f ' ( x )  = lim 
f ( x  + h )  - f ( x )  

,
h-0  h 
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is easily seen (both algebraically and geometrically) to be equivalent to 

f ' ( x )  = lirn 
f ( ~ )- f ( x )  

> 
Y - x  Y - x  

and if x # 0 and we look at the ratio of y to x, we find a third equivalent 
formulation (y = qx): 

f(4x) f ( " )  , # o<f ' ( x )  = lirn 
q + 1  qx - X  

We may now use this third definition of f '(x) to determine the derivative of xn: 

(xq)" - xn  qn  - 1 

lim -- X n - l  lim ---

q-1 qx - x q-1 q - 1 


- x t t - ~  ... +qn- l )  (by (1.1)) (2.4)- lim (1 + q + q2  + 
q-1 

-- m n - l  

While this is valid only if x # 0, the original definition (2.1) easily treats x = 0. 
The derivative of x"'" can be handled in the same manner by a simple change of 
the variable q. 

3. INTEGRALS AND THE FUNDAMENTAL THEOREM OF CALCULUS. We 
often hope to say compelling things about Riemann sums when we define 

However, when we try to compute examples of simple integrals with a uniform 
partition P of [a, b], we can wind up with expressions such as 

= lirn -
1 C i2. 

n - x  n3 i = l  

The problem is now analogous to our problem for taking the derivative of xn. 
We must either pull 

out of a hat, or else spend a substantial amount of time motivating and proving it. 
Again the Finite Geometric Series can come to our rescue. As an alternative to 

the Riemann sum, we can examine a geometric dissection of our interval (see 
Figure 1). 

The area of the rectangles indicated is 

= Cf(xq')(xqi- X q i + l ) .  
i = O  

As q -, I - ,  it is visually convincing that A , ( X )  converges to the area under the 
curve, and (probably in an appendix) an actual proof that this definition is 
equivalent to the standard Riemann sum definition is no more difficult than any 
other portion of the rigorous treatment of Riemann sums. 
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-- 

qx X 

Figure 1. A , ( X )  = area of rectangles 

In any event, now it is possible to integrate not just x2, but, indeed, any positive 
integral power of x. First we note that the Finite Geometric Series directly leads to 
the Infinite Geometric Series. If Irl < 1, then 

cc 11 1 - ,.n+l 

C r i  = lim C r i  = lim 
1 

=-

i = O  n-cc r = O  n-rn 1 - Y l - r  

The subtleties of infinite series in general need not be introduced here because we 
have the explicit formula for the partial sums. 

Hence 

-- x n  + 1 lim ( 1  - q )  C qr(",+') 
q - 1 - i = O  

-- x n  + 1 lim 
( 1  - q )  

q - 1 - 1 - qn+l  (by ( 3 . 3 ) )  

1 
- x n  + l lim-

q - 1 - 1 + q + q 2  + ..' + q n  (by ( 1 . 1 ) )  

xi1 + 1 
-

n + l '  
Again a simple change of the variable q allows the integration of x"'"'. 

In addition to performing this integration of x n , the shape of the Fundamental 
Theorem of Calculus is now much more transparent. From (3.2) (or Figure I ) , we 
see that 

A q ( X )  = f ( X ) ( X- q X )  + A q ( X q ) .  
Hence 
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and by recalling (2.3) we see that (3.5) clearly and convincingly suggests the 
Fundamental Theorem of Calculus. 

Although a fully rigorous proof of the Fundamental Theorem can be effected 
from (3.5), one probably does not really want to do so in a first calculus course. 

4. POWER SERIES. I won't dwell on the use of the Infinite Geometric Series in 
proving the Root Test and Ratio Test. This is well-known and practised in almost 
all calculus books. 

I remark only that when one finally arrives at infinite series, the Infinite 
Geometric Series is an old and trusted friend rather than something that first 
arises as the case p = -1of the binomial series [4, p. 6051: 

5. EXERCISES ON THE GEOMETRIC SERIES. Given the great utility of the 
Geometric Series, any exercise that makes it more familiar will be useful. There 
are countless "plug and chug" type exercises. We close with three more "modern" 
exercises. 

1. ([I, p. 41, Don Cohen): Observe the following dissection of a unit square 

Show how this illustrates an instance of the Infinite Geometric Series. 

2. The following is from W. Edwards Deming's The New Economics [3, p. 1361. 

The secret for reduction in time of development is to put more effort into the 
early stages, and to study the interaction between stages. Each stage should 
have the benefit of more effort than the next stage. 

We content ourselves here to adopt a constant ratio of cost from one stage 
to the next. Specifically, let the cost of any stage be 1- x times the cost of 
the preceding stage. Then if K be the cost of the opening stage (the 0-th 
stage, concepts and proposals), then the cost of the n-th stage would be 

K,, = K ( l  -x)". 


The total cost through the n-th stage would be 


q, = + (1  - x) + ( 1  - x)' + ( 1  - x)' + ... + ( 1  - x)"]~ [ l  
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We note that the series in the brackets is merely l / x  expanded in powers of 
1 - x. This is easily seen by writing x = 1 - ( 1  - x ) .  This series will con- 
verge if 0 < x I1,  which satisfies our requirements. Further, 

[ I  + ( 1  - x )  + ( 1  - x)' + ( 1  - x)' + ... to infinity] -
( 1  - X y + l  iX 

Assignment. Rewrite Deming's argument so that the role of the Finite Geometric 
Series is clear. Why did Deming use the Infinite Geometric Series? 

3. A problem attributed by R. Raimi to a Professor Sleator at the University of 
Michigan in 1941: Two trees are one mile apart. A drib (it is not necessary that you 
know what a drib is) flies from one tree to the other and back, making the first trip 
at 10 miles per hour, the return at 20 miles per hour, the next at 40 and so on, each 
trip at twice the speed of the preceding. When will the drib be in both trees at the 
same time? Do not spend time wondering or arguing about the drib, but solve the 
problem. 
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