You are here

Maximizing the Arclength in the Cannonball Problem

by Ze-Li Dou (Texas Christian University) and Susan G. Staples (Texas Christian University)

This article originally appeared in:
College Mathematics Journal
January, 1999

Subject classification(s): Calculus | Single Variable Calculus
Applicable Course(s): 3.2 Mainstream Calculus II

The article shows how to maximize the arclength of the trajectory of a cannonball.

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Capsule Course Topic(s):
One-Variable Calculus | Integration: Applications
One-Variable Calculus | Differentiation: General Applications
Average: 2.8 (84 votes)