You are here

Constrained Optimization with Implicit Differentiation

by Gary W. DeYoung (King's University College Canada)

This article originally appeared in:
College Mathematics Journal
March, 2003

Subject classification(s): Calculus
Applicable Course(s): 3.1 Mainstream Calculus I

Optimization of \(f(x,y)\), given the constraint \(g(x,y)=0\), can be done using implicit differentiation on both \(f(x,y)\) and \(g(x,y)=0\).

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Capsule Course Topic(s):
One-Variable Calculus | Differentiation: Calculation Rules
One-Variable Calculus | Differentiation: General Applications
Average: 2.6 (26 votes)