You are here

Ultrametric Functional Analysis

B. Diarra, A. Escassut, A. K. Katsaras, L. Narici, editors
American Mathematical Society
Publication Date: 
Number of Pages: 
Contemporary Mathematics 384
We do not plan to review this book.

  • J. Aguayo -- Vector measures and integral operators in the nonarchimedean setting
  • J. Aguayo, A. K. Katsaras, and S. Navarro -- On the dual space for the strict topology $\beta_1$ and the space $M(X)$ in function space
  • J. Aguayo, J. Goméz, M. Saavedra, and M. Wallace -- Perturbation of a $p$-adic dynamical system in two variables
  • J. Araujo -- Isomorphisms with small bound between spaces of $p$-adic continuous functions II
  • B. Diarra -- Ultrametric $q$-calculus
  • N. De Grande-De Kimpe and C. Perez-Garcia -- Strictness and closedness in $p$-adic inductive limits
  • P.-C. Hu and C.-C. Yang -- A note on Browkin-Brzezinski conjecture
  • A. K. Katsaras -- Non-Archimedean integration and strict topologies
  • H. A. Keller and H. O. A. -- Non-Archimedean orthomodular spaces and their residual spaces
  • A. N. Kochubei -- Polylogarithms and a zeta function for finite places of a function field
  • A. Kubzdela -- On finite-dimensional normed spaces over $C_p$
  • L. Narici and E. Beckenstein -- A non-Archimedean inner product
  • H. Ochsenius and W. H. Schikhof -- Lipschitz operators on Banach spaces over Krull valued fields
  • S. Priess-Crampe -- Remarks on some theorems of functional analysis
  • A. Pulita -- Frobenius structure for rank one $p$-adic differential equations
  • A. Salinier -- The ultrametric spectrum as an ordered set
  • M.-C. Sarmant -- Analytic roots of rational functions whose poles are on the unit circle
  • W. H. Schikhof -- $p$-adic Choquet theory
  • E. Schörner -- The spherical completion of normed vector spaces over fields with valuations of arbitrary rank
  • W. Sliwa -- On Köthe quotients of non-Archimedean Fréchet spaces
  • T. H. H. An and J. T.-Y. Wang -- Unique range sets for non-Archimedean entire functions in positive characteristic fields
  • F. Tangara -- Some continuous linear operators and orthogonal $q$-bases on the space of $p$-adic continuous functions defined on $\mathbb{Z}_p$
  • J. T.-Y. Wang -- Uniqueness polynomials, unique range sets and other uniqueness theorems