You are here

Kurt Gödel Collected Works, Volume III: Unpublished Essays and Lectures

Solomon Feferman, John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay, and Jean van Heijenoort, editors
Oxford University Press
Publication Date: 
Number of Pages: 
There is no review yet. Please check back later.

1. The Nachlass of Kurt Gödel: an overview, John W. Dawson, Jr.
2. Gödel's Gabelsberger shorthand, Cheryl A. Dawson
3. Gödel *1930c: Introductory note to *1930c, Warren Goldfarb
4. Lecture on completeness of the functional calculus
5. Gödel *1931?: Introductory note to *1931?, Stephen C. Kleene
6. On undecidable sentences
7. Godel *1933c: Introductory note to *1933c, Solomon Feferman
8. The present situation in the foundations of mathematics
9. Godel *1933?: Introductory note to *1933?, Israel Halperin
10. Simplified proof of a theorem of Steinitz
11. Godel *1938a: Introductory note to *1938a, Wilfried Sieg and Charles Parsons
12. Lecture at Zilsel's
13. Godel *1939b: Introductory note to *1939b and *1940a, Robert M. Solovay
14. Lecture at Göttingen
15. Godel *193?: Introductory note to *193?, Martin Davis
16. Undecidable diophantine propositions
17. Godel *1940a
18. Lecture on the consistency of the continuum hypothesis
19. Godel *1941: Introductory note to *1941, A.S. Troelstra
20. In what sense is intuitionistic logic constructive?
21. Godel *1946/9: Introductory note to *1946/9, Howard Stein
22. Some observations about the relationship between theory of relativity and Kantian philosophy
23. Godel *1949b: Introductory note to *1949b, David B. Malament
24. Lecture on rotating universes
25. Godel *1951: Introductory note to *1951, George Boolos
26. Some basic theorems on the foundations of mathematics and their implications
27. Godel *1953/9: Introductory note to *1953/9, Warren Goldfarb
28. Is mathematics syntax of language? Version III
29. Is mathematics syntax of language? Version V
30. Godel *1961/?: Introductory note to *1961/?, Dagfinn Føllesdal
31. The modern development of the foundations of mathematics in the light of philosophy
32. Godel *1970: Introductory note to *1970, Robert M. Adams
32. Ontological proof
33. Godel *1970a: Introductory note to *1970a, *1970b and *1970c, Robert M. Solovay
34. Some considerations leading to the probable conclusion that the true power of the continuum is N2
35. Godel *1970b
36. A proof of Cantor's continuum hypothesis from a highly plausible axiom about orders of growth
37. Godel *1970c
38. Unsent letter to Alfred Tarski
Appendix A: Excerpt from *1946/9-A
Appendix B: Texts relating to the ontological proof