You are here

Generalized Lie Theory in Mathematics, Physics and Beyond

Sergei Silvestrov, Eugen Paal, Victor Abramov, and Alexander Stolin, editors
Publication Date: 
Number of Pages: 
We do not plan to review this book.

1. Moufang transformations and Noether currents.- 2. Weakly Nonassociative Algebras, Riccati and KP Hierarchies.- 3. Applications of Transvectants.- 4. Automorphisms of Finite Orthoalgebras, Exceptional Root Systems and Quantum Mechanics.- 5. A Rewriting Approach to Graph Invariants.- 6. Graded q-Differential Algebra Approach to q-Connection.- 7. On generalized N-complexes coming from twisted derivations.- 8. Remarks on Quantizations, Words and R-matrices.- 9. Connections on Modules over Singularities of Finite and Tame CM Representation Type.- 10. Computing noncommutative global deformations of D-modules.- 11. Comparing Small Orthogonal Classes.- 12. How to Compose Lagrangian?- 13. Semidirect Products of Generalized Quaternion Groups by a Cyclic Group.- 14. A Characterization of a Class of 2-Groups by Their Endomorphism Semigroups.- 15. Adjoint Representations and Movements.- 16. Applications of Hypocontinuous Bilinear Maps in Infinite-Dimensional Differential Calculus.- 17. Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras.- 18. Bosonisation and Parastatistics.- 19. Deformations of the Witt, Virasoro, and Current Algebra.- 20. Conformal Algebras in The Context of Linear Algebraic Groups.- 21. Lie color and hom-Lie algebras of Witt type and their central extensions.- 22. A Note On Quasi-Lie and Hom-Lie Structures of . . .- 23. Algebraic Dependence of Commuting Elements in Algebras.- 24. Crossed Product-Like and Pre-Crystalline Graded Rings.- 25. Decomposition of The Enveloping Algebra so(5).