You are here

Galois-Teichmüller Theory and Arithmetic Geometry

Hiroaki Nakamura, Florian Pop, Leila Schneps, and Akio Tamagawa, editors
Mathematical Society of Japan
Publication Date: 
Number of Pages: 
Advanced Studies in Pure Mathematics 63
We do not plan to review this book.
  • A. Auel -- Remarks on the Milnor conjecture over schemes
  • F. C. S. Brown -- On the decomposition of motivic multiple zeta values
  • S. Carr and L. Schneps -- Combinatorics of the double shuffle Lie algebra
  • P. Cartier -- On the double zeta values
  • S. Corry -- Harmonic Galois theory for finite graphs
  • P. Dèbes and F. Legrand -- Twisted covers and specializations
  • H. Furusho -- Geometric interpretation of double shuffle relation for multiple L-values
  • K. Hashimoto and H. Tsunogai -- Noether's problem for transitive permutation groups of degree 6
  • Y. Ihara -- Comparison of some quotients of fundamental groups of algebraic curves over p-adic fields
  • N. Imai -- Dimensions of moduli spaces of finite flat models
  • P. Lochak -- Results and conjectures in profinite Teichmüller theory
  • I. Marin -- Galois actions on complex braid groups
  • A. Obus -- The (local) lifting problem for curves
  • G. Quick -- Some remarks on profinite completion of spaces
  • C. Rasmussen -- An abelian surface with constrained 3-power torsion
  • M. Saïdi -- Fake liftings of Galois covers between smooth curves
  • A. Schmidt -- Motivic aspects of anabelian geometry
  • J. Stix -- On cuspidal sections of algebraic fundamental groups
  • H. Tokunaga -- A note on quadratic residue curves on rational ruled surfaces
  • K. Wickelgren -- n-nilpotent obstructions to π1 sections of P1{0,1,} and Massey products
  • Z. Wojtkowiak -- Lie algebras of Galois representations on fundamental groups
  • G. Yamashita -- p-adic multiple zeta values, p-adic multiple L-values, and motivic Galois groups
  • Y. Hoshi and S. Mochizuki -- Topics surrounding the combinatorial anabelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn twists
  • H. Nakamura -- Some congruence properties of Eisenstein invariants associated to elliptic curves