
Generalization. Suppose we have a game in which a player choosing k of n num-
bers purchases r tickets, selecting numbers at random. For i = 1 to r , let Ai be
the event “i th ticket matches j out of n numbers.” Let the approximate probability
P(A1 ∪ A2 ∪ · · · ∪ Ar ) ≈ ∑r

i=1 P(Ai ) be expressed as s : 1, and let the exact proba-
bility for P(A1 ∪ A2 ∪ · · · ∪ Ar ) using inclusion/exclusion be expressed as t : 1, where
s and t are rounded to the nearest integer. Then t − s = 0 or t − s = 1.

◦

The Chain Rule for Matrix Exponential Functions
Jay A. Wood (jay.wood@wmich.edu), Western Michigan University, Kalamazoo MI
49008

This short note serves as an extension of Liu’s note [4]. The problem is to determine
the extent to which the chain rule for scalar exponential functions (i.e., (exp( f (t)))′ =
exp( f (t)) f ′(t)) extends to the context of matrix exponential functions.

If A is an n × n matrix, it is well known ([2], [3]) that the series

I + A + A2

2! + A3

3! + · · ·

(I denoting the n × n identity matrix) converges to an n × n matrix denoted by exp(A).
One can then prove (see [3]) that

exp(t A)′ = A exp(t A) = exp(t A)A. (1)

(All derivatives will be with respect to a real parameter t .) The question is whether the
chain rule (1) extends to more general matrix exponential functions than just exp(t A).
That is, if B = B(t) is an n × n matrix of differentiable functions, is it true that

exp(B)′ = B ′ exp(B) = exp(B)B ′?

Equation (1) says that the answer is ‘yes’ if B has the form B = t A, where A is a
matrix of constants.

In general the answer is ‘no.’ Liu provided a counter-example in [4]. A more con-
ceptual explanation is that matrix exponential manipulations do not work as in the
scalar case unless the matrices involved commute. Such is the situation with the chain
rule problem here.

Exercise 1. For any fixed value of θ , set

A =
(

0 0 sin θ

0 0 − cos θ

− sin θ cos θ 0

)
.

Show that A3 = −A, and that, for any value of t , exp(t A) = I + (sin t)A + (1 −
cos t)A2.

Exercise 2. If A1 and A2 are n × n matrices, then (A1 + A2)
2 = A2

1 + 2A1 A2 + A2
2

if and only if A1 and A2 commute.
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Exercise 3. If A1 and A2 are n × n matrices that commute, then exp(A1 + A2) =
exp(A1) exp(A2) = exp(A2) exp(A1).

Exercise 4. Show that the converse of Exercise 3 does not hold, as follows. Let

A1 = 2π

(
0 0

√
3/2

0 0 −1/2
−√

3/2 1/2 0

)
, A2 = 2π

(
0 0 −√

3/2
0 0 −1/2√
3/2 1/2 0

)
.

Show that A1 and A2 do not commute, and use Exercise 1 to show that exp(A1) =
exp(A2) = exp(A1 + A2) = I .

I am grateful to Steve Mackey for the example in Exercise 4, and I refer the reader
to [1, §1.2, §1.4] for background details.

In general, under suitable hypotheses, exp(A1) exp(A2) = exp(Z), for some ma-
trix Z . The matrix Z can be expressed as a series Z = A1 + A2 + · · · , where the
additional terms involve iterated brackets (commutators) of A1 and A2, i.e., iterated
expressions of the form [A1, A2] = A1 A2 − A2 A1. See [1, § 1.6, § 1.7] for more de-
tails.

Exercise 5. If B1 = B1(t) and B2 = B2(t) are n × n matrices of differentiable
functions, then (B1 B2)

′ = B ′
1 B2 + B1 B ′

2. In particular, (B2)′ = B ′ B + BB′.

Theorem. If B = B(t) is an n × n matrix of differentiable functions, then

exp(B)′ = B ′ exp(B) = exp(B)B ′

if and only if B and B ′ commute.

Proof. The ‘if’ part is an exercise that makes use of Exercise 5. The ‘only if’ part
is also an exercise: observe that exp(B)B = B exp(B), and differentiate both sides.
Then notice that exp(B) is invertible, because its inverse is given by exp(−B) (using
Exercise 3) .

Liu’s counter-example in [4] has

B =
(

t2/2 t
0 0

)
, B ′ =

(
t 1
0 0

)
.

These matrices do not commute.
For an application to linear differential equations, suppose that A = A(t) is an n × n

matrix of integrable functions, and set

B = B(t) =
∫ t

t0

A(s) ds. (2)

Then B ′ = A.

Exercise 6. In the notation of (2), if A and B commute, show that

Y (t) = exp
(
B(t)

)
Y0

solves the initial value problem: Y ′ = AY, Y (t0) = Y0. In particular, show that this
situation holds if A is a constant matrix, in which case B = (t − t0)A.
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Exercise 7. Suppose that t0 = 0 and that

A(t) =
(

cos t − sin t
sin t cos t

)
.

Compute B(t) = ∫ t
0 A(s) ds, and show that A and B commute.

Exercise 8. Suppose A is the coefficient matrix of the companion equation Y ′ = AY
associated with the nth order differential equation

y(n) + p1(t)y(n−1) + p2(t)y(n−2) + · · · + pn−1(t)y′ + pn(t)y = 0.

That is,

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
−pn −pn−1 −pn−2 · · · −p1


 .

Compute B(t) = ∫ t
0 A(s) ds, and show that A and B commute if and only if all the

coefficient functions pi (t), i = 1, 2, . . . , n, are constants.
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◦

Extending Theon’s Ladder to Any Square Root
Shaun Giberson and Thomas J. Osler (osler@rowan.edu), Rowan University, Glass-
boro, NJ 08028

Introduction. Little is known of the life of Theon of Smyrna (circa 140 AD). At this
time in the history of mathematics, there was a tendency to de-emphasize demonstra-
tive and deductive methods in favor of practical mathematics. An excellent example of
this is known as Theon’s ladder, which describes a remarkably simple way to calculate
rational approximations to

√
2. (See [2], [3], and [5].)

1 1
2 3
5 7
12 17
29 41
...

...
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