REFERENCES

- 1. R. Laatsch, Measuring the abundance of integers, this MAGAZINE 59 (1986), 84–92.
- K. H. Rosen, Elementary Number Theory and its Applications, 5th ed., Pearson Addison Wesley, Boston, 2005.
- 3. R. F. Ryan, A simpler dense proof regarding the abundancy index, this MAGAZINE 76 (2003), 299-301.
- 4. P. A. Weiner, The abundancy index, a measure of perfection, this MAGAZINE 73 (2000), 307–310.

The Associativity of the Symmetric Difference

MAJID HOSSEINI

State University of New York at New Paltz New Paltz, NY 12561–2443 hosseinm@newpaltz.edu

The symmetric difference of two sets A and B is defined by $A \Delta B = (A \setminus B) \cup (B \setminus A)$. It is easy to verify that Δ is commutative. However, associativity of Δ is not as straightforward to establish, and usually it is given as a challenging exercise to students learning set operations (see [1, p. 32, exercise 15], [3, p. 34, exercise 2(a)], and [2, p. 18]).

In this note we provide a short proof of the associativity of Δ . This proof is not new. A slightly different version appears in Yousefnia [4]. However, the proof is not readily accessible to anyone unfamiliar with Persian.

Consider three sets A, B, and C. We define our universe to be $X = A \cup B \cup C$. For any subset U of X, define the characteristic function of U by

$$\chi_U(x) = \begin{cases} 1, & \text{if } x \in U; \\ 0, & \text{if } x \in X \setminus U. \end{cases}$$

Two subsets U and V of X are equal if and only if $\chi_U = \chi_V$. The following lemma is the key to our proof.

LEMMA. For any two subsets U and V of X and for any $x \in X$,

$$\chi_{U\Delta V}(x) = (\chi_U(x) - \chi_V(x))^2 \tag{1}$$

$$= \chi_U(x) + \chi_V(x) - 2\chi_U(x)\chi_V(x). \tag{2}$$

Proof. Note that both sides of (1) are equal to 1 exactly when x belongs to one of U or V, but not to both. The identity (2) follows immediately from (1) and the fact that $\chi_S^2 = \chi_S$ for any set S.

PROPOSITION. Let A, B, and C be three sets. Then

$$(A\Delta B)\Delta C = A\Delta (B\Delta C).$$

Proof. From the Lemma we see that

$$\chi_{(A\Delta B)\Delta C} = \chi_{A\Delta B} + \chi_C - 2\chi_{A\Delta B}\chi_C$$

$$= (\chi_A + \chi_B - 2\chi_A\chi_B) + \chi_C - 2(\chi_A + \chi_B - 2\chi_A\chi_B)\chi_C$$

$$= \chi_A + \chi_B + \chi_C - 2\chi_A\chi_B - 2\chi_A\chi_C - 2\chi_B\chi_C + 4\chi_A\chi_B\chi_C.$$
(3)

Since the last line in (3) is symmetric with respect to A, B, and C, we conclude that

$$\chi_{(A\Delta B)\Delta C} = \chi_{(B\Delta C)\Delta A}.\tag{4}$$

But Δ is commutative, and therefore (4) completes the proof of the Proposition.

By using modular arithmetic, we can make the above proof even shorter. Note that U = V if and only if $\chi_U \equiv \chi_V \pmod{2}$. Thus, the Lemma becomes

$$\chi_{U\Delta V} \equiv \chi_U + \chi_V \pmod{2}$$
.

The associativity of the symmetric difference now follows from the associativity of addition in modular arithmetic.

REFERENCES

- 1. H.B. Enderton, *Elements of set theory* (Academic Press, New York, 1977).
- 2. P.R. Halmos, Naive set theory (D. Van Nostrand, Princeton, 1960)
- 3. K. Kuratowski, Introduction to Set Theory and Topology (Pergamon Press, Oxford, 1961)
- M. Yousefnia, A proof of associativity of symmetric difference of sets, Roshd-e-Amuzesh-e-Riyaazi 3 (1986), 25–26.

To appear in The College Mathematics Journal January 2007

Articles

John Todd—Numerical Mathematics Pioneer by Don Albers

As the Planimeter's Wheel Turns: Planimeter Proofs for Calculus Class by Tanya Leise

Maximizing the Probability of a Big Sweepstakes Win by Michael W. Ecker An Introduction to Simulated Annealing by Brian Albright

Classroom Capsules

Descartes Tangent Lines by William Barnier and James Jantosciak
Fibonacci-Like Sequences and Pell Equations by Ayoub B. Ayoub
Tennis with Markov by Roman Wong and Megan Zigarovich
Tennis (and Volleyball) Without Geometric Series by Bruce Jay Collings

Proof Without Words

The Taylor Polynomials of $\sin \theta$ by John Quintanilla