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The symmetric difference of two sets A and B is defined by A�B = (A \ B) ∪
(B \ A). It is easy to verify that � is commutative. However, associativity of � is
not as straightforward to establish, and usually it is given as a challenging exercise to
students learning set operations (see [1, p. 32, exercise 15], [3, p. 34, exercise 2(a)],
and [2, p. 18]).

In this note we provide a short proof of the associativity of �. This proof is not new.
A slightly different version appears in Yousefnia [4]. However, the proof is not readily
accessible to anyone unfamiliar with Persian.

Consider three sets A, B, and C . We define our universe to be X = A ∪ B ∪ C . For
any subset U of X , define the characteristic function of U by

χU (x) =
{

1, if x ∈ U ;
0, if x ∈ X \ U .

Two subsets U and V of X are equal if and only if χU = χV . The following lemma
is the key to our proof.

LEMMA. For any two subsets U and V of X and for any x ∈ X,

χU�V (x) = (χU (x) − χV (x))2 (1)

= χU (x) + χV (x) − 2χU (x)χV (x). (2)

Proof. Note that both sides of (1) are equal to 1 exactly when x belongs to one of
U or V , but not to both. The identity (2) follows immediately from (1) and the fact that
χ2

S = χS for any set S.

PROPOSITION. Let A, B, and C be three sets. Then

(A�B)�C = A�(B�C).

Proof. From the Lemma we see that

χ(A�B)�C = χA�B + χC − 2χA�BχC (3)

= (χA + χB − 2χAχB) + χC − 2 (χA + χB − 2χAχB) χC

= χA + χB + χC − 2χAχB − 2χAχC − 2χBχC + 4χAχBχC .
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Since the last line in (3) is symmetric with respect to A, B, and C , we conclude that

χ(A�B)�C = χ(B�C)�A. (4)

But � is commutative, and therefore (4) completes the proof of the Proposition.

By using modular arithmetic, we can make the above proof even shorter. Note that
U = V if and only if χU ≡ χV (mod 2). Thus, the Lemma becomes

χU�V ≡ χU + χV (mod 2).

The associativity of the symmetric difference now follows from the associativity of
addition in modular arithmetic.
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