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Some mathematical ideas are just so nifty that people can’t resist finding a physical
realization for them. One example is a hinged dissection that transforms an equilateral
triangle to a square, used by the geometer and math historian Howard Eves to make a
reconfigurable table. However, difficulties can arise when we step from the mathemat-
ical world into the physical world. In this article we propose a surprising new solution
to handle those difficulties.
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Figure 1. Hingeable dissection of a triangle to a square.

A geometric dissection is a cutting of a geometric figure into pieces that can be rear-
ranged to form another figure [8], [12]. Such visual demonstrations of the equivalence
of area span recorded history from the geometric explorations of the ancient Greeks
(see [1] and [3]) to recent listings on the World Wide Web [13]. One of the most re-
markable geometric dissections is the 4-piece dissection of an equilateral triangle to
a square shown in Figure 1, first discovered in 1902 by either Henry E. Dudeney or
Charles W. McElroy [4]. Dudeney introduced an intriguing variation in his book The
Canterbury Puzzles [5]. After presenting the remarkable 4-piece solution, he wrote,

I add an illustration showing the puzzle in a rather curious practical form, as it
was made in polished mahogany with brass hinges for use by certain audiences.
It will be seen that the four pieces form a sort of chain, and that when they are
closed up in one direction they form the triangle, and when closed in the other
direction they form the square.
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This hinged model (shown in Figure 2) has captivated readers ever since. It is just
too nifty not to have been described in at least a dozen other books in the intervening
years. Even with the recent publication of a book wholly devoted to the subject of
hinged dissections [9], this model remains the ultimate crowd-pleaser.
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Figure 2. Hinged dissection of a triangle to a square.

It should not be a surprise that this dissection has served as a source for mathemati-
cally motivated design. Howard Eves [7, pp. 37–38] described a set of four connected
tables that he had built that would swing around to form either a square or a triangular
top. As Eves recounted [6],

I made a table; it’s the size of a card table. It’s meant for playing games upon.
And it’s in the form of, say, a square, like most card tables are, and you might be
playing cards and somebody decides to withdraw so you only need three players.
So just unhooking a few little hooks, you swing the thing around, and behold, it
goes into an equilateral triangular table. It makes a conversation piece, if nothing
else. You might think that it needs a great proliferation of legs, but it doesn’t.
Four legs suffice, and they should be placed not at the corners but roughly at the
centroids of the four pieces, so that the legs are inside but they are still far enough
apart to give stability to the table.

Eves was not the only one to have built a table based on this dissection. Two other
attempts have different schemes for placing legs on the pieces. A coffee table designed
by the Israeli artist Maty Grünberg and produced by London art gallery owner Zeev
Aram had a leg at each corner of each piece, for a total of 15 legs [2]. A full-height
table built by the craftsman Jan de Koning for Joop Van Der Vaart had a leg at each
corner of the equilateral triangle and at each corner of the square, for a total of 7 legs
[10].

Eves’s scheme has the fewest legs of the three schemes. Yet with one leg positioned
at the centroid of each piece, the legs are fairly close to the center of both the triangle
and the square, and this contributes to instability. If the table is left in an open position
(with the four individual tables strung out), then having so few legs also causes prob-
lems, since the three hinges will be subjected to various torques. On the other hand, the
more legs that are used, the harder it is to get them all to touch the floor simultaneously
when the table is closed up in either configuration. If the floor is at all uneven, then
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the chances of getting all the legs to touch the floor decreases quickly as the number
of legs increases.

Thus each of the schemes seems to have problems with stability. Is there some
hinged dissection of an equilateral triangle to a square that is free of such difficulties?
This paper addresses that question by using a familiar technique to create an unex-
pected new solution.

Crossposing strips
Before examining the new solution, let’s review how the strip technique produces the
triangle-to-square dissection in Figure 1 [8], [12]. We begin with a pair of infinite
strips, one of equilateral triangles and the other of squares of the same area as the
triangles. Then, as shown in Figure 3, we crosspose the strip of squares over the strip
of equilateral triangles, so that the common area (in the overlap) is precisely twice
the area of each polygon. We perform the crossposition so that each point of two-fold
rotational symmetry in the overlap is either crossed by a boundary of the other strip or
covered by a point of two-fold rotational symmetry in the other strip. The line segments
in one strip induce cuts in the other strip, giving the dissection in Figure 1. The angle
between the two strips in Figure 3 turns out to be arcsin(

4
√

3/2), or about 41.1503◦.
Once we know this angle, we can readily determine the angles of every piece.

A

B C

Figure 3. Crossposition of triangles and squares.

The crossposition leads to a hinged dissection because it induces an associated tes-
sellation of triangles and another tessellation of squares. Every crossing of a line seg-
ment in one tessellation with a line segment in the other turns out to be a point of ro-
tational symmetry. These points of symmetry originate from three points of rotational
symmetry within each strip (the small dots in Figure 3) and from points where the
boundaries of the two strips intersect. Any two pieces that share a point of rotational
symmetry can then be hinged together at that point.
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Analysis of the original solution
Rather than support each piece with legs, we could place a leg at each corner of the
largest piece in the dissection, P2. However, this leaves much of the table top supported
only through the hinges, thus exerting considerable torque on those hinges.

To quantify this problem, we calculate the area of each piece. Assume that the
square has sides of length 1, and the triangle has sides of length s. By equating the two
areas, we find that s = 2/

4
√

3. We first compute the area of piece P4, a right triangle

with legs of length .5 and (s/4)
√

4 − √
3.

Area(P4) = 1

24

√
−9 + 12

√
3 ≈ .1430

To compute the area of P2, we view it as a copy of P4 attached to a small equilateral
triangle of area one quarter of the full equilateral triangle.

Area(P2) = 1

24

(
6 +

√
−9 + 12

√
3

)
≈ .3930

To compute the area of P3, we apply the law of cosines to analyze triangle ABC.

Length(BC) = 1

6

(
−

√
3
√

3 + 3

√
4 − √

3

)
≈ .3731

Area(ABC) = 1

8

(√
4
√

3 − 3 − 1

)
≈ .1227

The combined area of P2 and P3 is the area of triangle ABC plus one half the area of
the square. Subtraction gives us first P3 and then P1.

Area(P3) = 1

24

(
3 +

√
−108 + 66

√
3

)
≈ .2297

Area(P1) = 1

24

(
15 −

√
36 + 30

√
3

)
≈ .2342

From our analysis, we see that P2, with area about .3930, is the largest piece. How-
ever, with less than half the total area, P2 is a poor choice to support the other three
pieces.

A more stable table
Like many lovely things, the improved solution to the table problem was discovered
by accident. I was playing around with the elements of Figure 3 and wondered what
would happen if I crossposed the two strips in the way shown in Figure 4. The good
news is that this crossposition produces a very large piece. The bad news is that there
are now six pieces, not four. We shall use Ni to refer to the i th piece in the new
dissection.

Actually, there is more bad news. The resulting dissection, shown in Figure 5, is not
hingeable. There is no way to put a hinge on N5 so that it can swing from the top of the
equilateral triangle to the bottom of the square. This is a near-miss, as all of the other
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Figure 4. New crossposition for a triangle to a square.
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Figure 5. New not-completely-hingeable triangle to a square.

pieces can be hinged together. Yet there is a curious fact: If we cut a piece congruent
to N5 out of N2, as indicated by the dotted lines, we can swing N5 from the top of the
equilateral triangle into the resulting cavity. We can also swing N5 from the bottom of
the square into that cavity.

This suggests our solution: Cut out a seventh piece N7 and hinge it to N6 in the
equilateral triangle, as we hinge N5 to N4 in the equilateral triangle. We can then use
N4 to swing N5, and N6 to swing N7, into the right positions. We see the new hingeable
dissection in Figure 6 and the appropriate hinging in Figure 7. Since N2 in Figure 6
contains well over half of the area, this design begs for just one leg, positioned near
the center of that piece. The table would then be a pedestal table.

Note that the intermediate configurations in Figure 7 are meant to be descriptive
rather than to convey a specific sequence of movements. To avoid pieces binding
against one another, keep N7 flush against N6 as you initially rotate N6 from its posi-
tion in the square. Also keep N5 flush against N4 as you rotate N4 from its position in
the square.
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Figure 6. New hingeable triangle to a square.
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Figure 7. New hinged triangle to a square.

Analysis of our new solution
In terms of stability, how good is our new solution? We determine the area of N2 as
follows. Consider N3, N4, and N5 that form a “cap” in the equilateral triangle. Note
that the cap extends down to the midpoints of the two sides of the equilateral triangle.
Also consider N1, N6, and N7 that form the bottom corner of the square. The bottom
corner of the square can nestle exactly into the cap, forming an equilateral triangle
whose side length is precisely one half that of the full equilateral triangle. Thus the
combined areas of N1, N3, N4, N5, N6, and N7 is .25, leaving the rest for N2.

Area(N2) = .75

To determine the sizes of the remaining pieces, we refer to Figure 4. We already know
the lengths of DF, EF, and DE. Let GH be the altitude to side DI of triangle DGI.
We can then determine lengths of line segments DG, GH, DH, HI, EI, and EJ, using
simple techniques such as similar triangles. Each of the above lengths can be derived
in closed form, using a system such as Mathematica. We then compute the areas of the
other pieces.

Area(N4) = 1

48

(
−51 − 57

√
3 +

√
10908 + 6906

√
3

)
≈ .0312

Area(N6) = 1

16

(
−15 − 19

√
3 + 9

√
12 + 10

√
3

)
≈ .0515

VOL. 39, NO. 4, SEPTEMBER 2008 THE COLLEGE MATHEMATICS JOURNAL 263



Area(N1) = 1

16

(
−7 − √

3 +
√

36 + 30
√

3

)
≈ .0404

Area(N5) = 1

24

(
33 + 30

√
3 − 2

√
828 + 534

√
3

)
≈ .0511

Area(N3) = 1

48

(
−3 − 3

√
3 +

√
36 + 30

√
3

)
≈ .0246

We now return to Figure 5, before N7 was cut out of what was initially N2. Adding the
areas of N7 and the resulting N2 gives

1

24

(
51 + 30

√
3 − 2

√
828 + 534

√
3

)
≈ .8011

as the area of the largest piece of that partially-hingeable dissection.
It can be argued that the size of the largest possible piece for any dissection is

approximately .8254, corresponding to the common overlap when a side of the square
rests in the center of a side of the equilateral triangle. Thus N2 in the intermediate
Figure 5 is very close to the largest possible size for a piece in any triangle-to-square
dissection, hinged or not. We conclude that our table will have great stability even if
N2 is the only piece supported either by several legs or by a single pedestal leg.

Positioning the pedestal
Where should we position the pedestal? For a table that is not reconfigurable, we would
obviously position it under the center of gravity of the top. With two different configu-
rations, one solution is to position the pedestal midway between the centers of gravity
of the square and the equilateral triangle. Serendipitously, these two centers of gravity
are relatively close to each other in our new table, as we now show.

FG

I center of triangle

center of square

Figure 8. Centers of gravity and pedestal struts.

In Figure 8 we see the equilateral triangle and the square superimposed on N2. The
center of gravity of the equilateral triangle is directly above the midpoint of the base,
one third of the way from that midpoint to the apex. That makes its elevation above
the base one third of the height of the triangle.
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As for the square, its center of gravity is halfway between vertex F and the midpoint
of the opposite side, which is also the midpoint of the right side of the equilateral
triangle. Thus the center of gravity of the square is above the base of the equilateral
triangle by a distance that is a quarter of the height of that triangle.

The center of gravity of the triangle is

s

4
− BC = 1

6

(
2

√
3
√

3 − 3

√
4 − √

3

)
≈ .00685

to the right and (s/24)
√

3 = 4
√

3/12 ≈ .1097 above the center of gravity of the square.
Thus they are approximately .1099 apart, which means that any reasonably broad
pedestal positioned midway between the two centers of gravity will do just fine.

The point midway between the two centers of gravity is marked by the small black
dot. If we position a pedestal leg at this point, and use the six struts indicated by thick-
ened line segments, there should be good support for the top, whether it is configured
as the equilateral triangle or the square.

Finishing touches
Howard Eves mentioned “little hooks,” which he undoubtedly used for locking the
pieces together when his table was in either form. Although he didn’t say where the
hooks should be positioned, it is clear that one hook would fasten P1 and P4 together at
the straight angles formed by their shared corners. To control warping of the top and to
increase rigidity, Eves might also have used additional hooks to lock the corners of the
triangle together in the square, and similarly to lock the corners of the square together
in the triangle. Of course, good craftsmanship dictates that the hooks be fastened on
the underside of the table.
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Figure 9. Position of hooks for the new hinged table.

Hooks would also help our new table as well, as we can see in Figure 9. Let’s use
three hooks, indicated by the half-circles. For easy reference, dots mark the positions
of the six hinges. Place one hook on N3 so that it locks with N5 in the triangle and with
N2 in the square. Place a second hook on N1 so that it locks with N2 in the triangle
and with N7 in the square. Place the third hook on N2 so that it locks with N7 in the
triangle and with N5 in the square. Since six of the pieces are relatively small, there
should be a much smaller risk of warping or lack of rigidity, so we probably do not
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need more than the three hooks. Readers can enjoy animations of Figures 2, 7, and 9
that are posted on a webpage [11].

Besides hingeability, we should note one other neat feature of the dissections in this
article. Both dissections have a lovely “grain-preserving” property [9]. If the pieces
are cut from wood with a nice parallel grain that is aligned in one direction in the
equilateral triangle, then the grain will be nicely aligned in the square too. This follows
immediately from the fact that each piece rotates precisely 180◦ on its hinge, relative
to the other piece on the hinge. If we use wood with a straight, clear grain for our table
top, then both the natural and the mathematical beauty of our hinged table can only
be enhanced by lining up the grain in both configurations. What a wonderful bonus to
complement the increased stability of our new table!

Acknowledgments. I am pleased to acknowledge the assistance of Cindy Eves-Thomas, Clay-
ton Dodge, Maty Grünberg, and Jacqueline Pruskin in helping me track down information
about previous hinged tables that swing from triangular to square form.
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