Of Memories, Neurons,
and Rank-One Corrections
Kevin G. Kirby

Kevin Kirby’s Ph.D. is from Wayne State University (1988);
in 1994 he joined the Mathematics and Computer Science
Department at Northern Kentucky University. He has taught
graduate courses on neural networks, but his main research
interests are natural computability theory and the physics of
information. His hobbies include piano, tackwondo, and
symplectic geometry. One day in 1986 his advisor let him
give a crazy guest lecture on neural networks in the Dirac
notation; that lecture was the ancestor of this paper.

On this nonlinear tour of one part of the concept of linearity we begin with the clas-
sical art of memory, cast in a formalism that turns out to be the Dirac notation from
quantum mechanics. From this we move to an investigation of how early associa-
tionist models of mind found their natural home in a very simple neurophysiological
model. This leads us to the hopeful (and hype-ful) contemporary field of artificial
neural networks, of which we provide a glimpse. A recurrent event on this tour is the
construction of linear transformations by the accumulation of many small rank-one
adjustments. This places some of the ideas in undergraduate linear algebra in an
unusual light.

Places

In classical Greece and Rome the art of memory was an important part of the art
of rhetoric. Orators were expected to memorize—sometimes verbatim, sometimes
approximately—very long speeches. Distinguishing “natural” from “artificial” mem-
ory, numerous Ars Memorativa treatises up to the Renaissance elaborated a variety
of memorization techniques. Cultivating artificial memory is less prized today, but
the mnemonic tricks in popular books on memory improvement for fun and profit
are not so far in spirit from those found in these early treatises. In her 1966 study
of this tradition, Frances Yates describes the mnemonic place system as set forth by
the Roman orator Quintilian around A.D. 90. The idea was to memorize a sequence
of images by associating them with an easily recoverable sequence of places:
In order to form a series of places in memory, he [Quintilian] says, a building is to be
remembered, as spacious and varied a one as possible, the forecourt, the living room,
bedrooms, and parlours, not omitting statues and other ornaments with which the rooms
are decorated. The images by which the speech is to be remembered . .. are then placed
in imagination on the places which have been memorised in the building. This done, as
soon as the memory of the facts requires to be revived, all these places are visited in turn
and the various deposits demanded of their custodians. We have to think of the ancient

orator as moving in imagination through his memory building whilst he is making his
speech, drawing from the memorised places the images he has placed on them. [13]

Note that the term image is interpreted broadly as something to be evoked by the
appropriate mnemonic trigger. This technique is quite effective; often drivers who
listen to audio recordings of novels find that specific places continue to evoke the
passages previously heard there.

2 THE COLLEGE MATHEMATICS JOURNAL

Let’s try a medieval exercise in symbolization. It calls for some odd notation which
will be explicated later (readers familiar with this notation are requested to forget
any prior interpretation).

Quintilian’s orator is wandering through a building while working through his
speech, and every few steps he notices an item to use as a locus for some image.
Here is an urn in the atrium, which we shall denote in this way: |urn). The image
from his speech at this point is a joke about the Senate: |joke). Now we can write a
kind of “product,”

|joke) (urn|,

to denote this association, which the orator somehow adds to the store of associa-
tions already in his brain. Walking on, he adds |insult)(pool| and |apology){porch]|.
Gradually these associations accumulate into the totality of his memory.

Let M denote the memory of the orator, viewed as an accumulating store of image
and place associations:

M = |joke)(urn| + |insult){pool| + |apology) (porch| + - - -.

Is the “+” commutative? No; more recent associations might somehow be stronger
than older ones. For our purposes, however, we will consider all of these associations
to have equal weight, so the addition operator is truly commutative. Figure 1 sketches

the procedure: As the orator first walks past places |Py), k= 1,2,..., he associates
to them the images |I;) and accumulates all these associations:
M = > [T} (Pl
k

To deliver his speech, the orator imagines himself walking through the building,
evoking the places in sequence. Now his memory M functions as a kind of transfor-
mation that assigns to each place |Py) the corresponding image |Ij). For example,
M|urn) = |joke).

B o

|B)

olp)

Figure 1. Left: A building with three places. Right: A tour to
associate the places with images.

There is one more detail to take into account. Quintilian called for a building as
“spacious and varied” as possible. Why “varied”? Because if two places were highly
similar, like |urn) and |vase), the orator could confuse their associated images upon

VOL. 28, NO. 1, JANUARY 1997 3

recall. Suppose we can get a real number to indicate the degree of similarity. We
might then write the similarity of |urn) and |vase) as a product

(urn|vase)

that is equal to zero if the two places are “completely different.” A good orator would
pick a building with a set of places {P;} such that (P;|P;) ~ 0 for all ¢ # j. Since
these places are mental pictures rather than real physical locations, this product
could be described as the shadow cast by one idea on another. This is an appealing
metaphor, one to which we shall return.

Bras and Kets

In 1939 Paul Adrien Maurice Dirac [4] introduced a clever variant of vector notation
for use in quantum mechanics. It turns out to be quite useful for our purposes here,
so we take a little time to explore it.

Consider a finite-dimensional real inner product space X. We denote the vectors
in X by symbols called kets: |x), |z'), and so on. Dual vectors in X* are denoted by
symbols called bras: (x|, (x'|. Remember that dual vectors are linear functions from
X to the real numbers R. Applying a dual vector to a vector gives the inner product,
which in Dirac’s bra-ket notation is

(x|: X = R: |2') — (z|z).

Now, the Dirac notation is particularly valuable because it works to defer matters
involving components of vectors. The term vector can refer to an element of a set
with a vector space structure on it, or it can refer to an n-tuple that is subject to
addition and scaling. These two notions are easily conflated when we use a notation
like x, which seems to abbreviate “the vector (z1,z3,...,z,).” The Dirac notation
brings home the idea of a vector as an intrinsic object that bas components only with
regard to a particular basis. For instance, let {|1),]2),3), ..., |n)} be an orthonormal
basis for X. (In quantum mechanics one honors an important basis by naming it
with integers.) Instead of using subscript notation, as in z; = 3, Dirac used the less
compact but mathematically more precise notation (1]|z) = 3, which spells out what
“component” means: (1|z) is the orthogonal projection of |z) onto the first basis
vector.

When we turn to linear transformations, the standard terminology is not ambigu-
ous. Instead of using a single term for both the object and its representation, we
use two: the linear transformation and the matrix that represents it in the bases
chosen for its domain and range. To see this, let X and Y be two (finite-dimensional
real inner product) spaces, possibly of different dimension. The entries in a matrix
representing a linear transformation M : X — Y are usually referred to by using
subscripts: m;;. In the Dirac notation, however, this matrix entry is (¢{M]|j). This
exposes the real meaning: You take a basis vector |j) in X and apply the transfor-
mation M to it to get M|j); then you find the magnitude of the component of this
vector in the |¢) direction in Y, which is (i|M]|35).

There is another kind of product we can define, which is central to the theme
of this paper. The outer product of |y) with |z), denoted |y)(z| is defined as the
following function from X to Y-

) (zl: X =Y 1 o) — Jy) ((z]2).

4 THE COLLEGE MATHEMATICS JOURNAL

We can drop the parentheses and write |y)(z|z’) or (z|z'}|y) without any ambiguity;
it is the vector |y) scaled by the real number (z|z'). It is easy to show that |y) (x| is a
linear transformation. It is a very special linear transformation, however, since every
vector |z') in the space X is mapped onto the |y) direction. All vectors orthogonal
to |x) are mapped to 0. This means

im |y)(z| = span {|y)}
ker |y)(z| = span {|z)}*.

Since the range im |y){z| is one-dimensional, the outer product yields a linear trans-
formation of rank one. Moreover, any rank-one linear transformation can be written
as an outer product.

The definition of outer product does not use any kind of basis. Nevertheless,
the matrix of an outer product in orthonormal bases for X and Y is simple. If
M = |y)(z|, the ijth entry is (i]M|j) = (i|y)(x|j) = (i|y){j|z), using the fact that the
inner product on real vector spaces is commutative; in subscript notation, m;; = y;x;.
Fixing these bases reveals how we can use the familiar matrix multiplication rule if
we place the components of |y) in a column vector and the components of (z| in a
row vector. For example,

2 20 200
3| [10 100] = {30 300
4 40 400

is a matrix that represents a rank-one transformation from X = R? to Y = R3,
Starting with M = 0 (which has zero rank, of course), we can build up a higher-
rank linear transformation by adding outer products to it. Take the two-term sum

M = [y)(z] + |y')(z’].
If {|y), |¢")} and {|z), |2’)} are both linearly independent sets, then we are now at
rank two: M maps all vectors in X to the two-dimensional subspace of Y spanned
by |y) and |y'). In fact, using the singular value decomposition,! any rank-r linear
transformation M : X — Y can be written as a weighted sum of outer products of
vectors in Y and X,

M =" olye)(zk]

k=1
where the o}’s are nonnegative numbers and {|yx) } and {|zx)} are both orthonormal
sets. Computing such a decomposition can be very involved. Fortunately, our goal
is not to decompose but to compose, which is easy.

The following expansion of the identity operator in an orthonormal basis is often
used in calculations:

1=3 il (1)

!Dan Kalman [5] has a good introduction to this decomposition and its applications.

VOL. 28, NO. 1, JANUARY 1997 5

What does this mean? Applying both sides to an arbitrary vector |z), we get
n n
o) = i le) = 1),
j=1 j=1

which echoes our definition of z; as the component of |z) in direction |j).

To see how the Dirac notation is used in contemporary quantum mechanics, I
recommend Albert’s informal, elementary exposition [1] or Sudbery’s intermediate-
level survey [10]. With this notation in hand, we return to our formalization of the
mnemonic place system.

Associations

Our orator memorized his speech by walking through a building while associating
places (a specific urn, pool, porch) with parts (“images”) of his speech (a specific
joke, insult, apology). Suppose the place memories are represented by vectors |urn),
|[pool), |porch) in some vector space X. (Yes, this is still quite abstract—since we
cannot yet imagine how to represent these vectors in terms of components—but it’s
in the nature of linear algebra that we can defer this.) Even better, we can represent
the places by directions, since cJurn) should represent the same memory as |urn)
for any real ¢ # 0. We therefore may pick representatives that are normalized:

(urn|urn) = (porch|porch) = (pool|pool) = 1,

and, following Quintilian’s recommendation of variety, we pick them so that they
are orthogonal to each other:

(urn|porch) = (porch|pool) = (pool|urn) = 0.

Likewise, the images from the speech can be represented by vectors: |joke), |insult),
|apology), this time in a different vector space, Y. To consider them distinct, we
require that they be linearly independent.

Now, as described earlier, each new association is a “rank-one” update to the
orator’'s memory,

M = |joke) (urn| + |insult){pool| + |apology) (porch|.

Thus we can verify that the memory transformation evokes the right images in re-
sponse to the right places. When the speaker recalls the urn, for example, his memory
is applied to |urn) to yield:

M]|urn) = |joke) (urn|urn) + |insult) (pool|urn) + |apology) (porch|urn)
= |joke)

using the orthonormality requirements from above.

It works, but unfortunately over time our orator’s memory begins to fade, so he
remembers the shape of the urn’s belly, but not how its handles look. Is it enough
to remember only the container? Will just part of the urn suffice to evoke the joke?

Let’s break the urn into two independent components, the “container” portion and
the handles:

|urn) = |container) + |handles)

6 THE COLLEGE MATHEMATICS JOURNAL

where (container|handles) = 0. This “+” can also be written as @, meaning orthog-
onal sum. The container and handles must be sufficiently dissimilar from the other
places (porch, pool) that their respective inner products are also zero. If |urn) is
normalized to have unit length, then its part |container) must have some positive
length ¢ < 1. As our orator now mentally revisits the place |container), let’s see what
is evoked:

M| container) = (|joke)(urn| + |insult)(pool| + |apology)(porch|)|container)
= |joke) (urn|container) + |insult)(pool|container)
+ |apology) (porch|container)
= |joke)(urn|container) + 0 + 0
= |joke) ({container| + (handles|)|container)
= |joke) ((container|container) + (handles|container))
= |joke) (c* + 0)

= c?|joke).

Since the scale factor ¢? does not change the vector’s direction, this fragmentary
recall works too. Memory is so associative that images can be correctly evoked even
when prompted with only partial information. On the other hand, because ¢? < 1,
the image has indeed grown fainter.

All the orthogonality conditions constrain the memory capacity of this system—a
finite-dimensional space has only so many orthogonal vectors! Suppose the vector
space X of places has dimension n, and we keep adding associations. Beyond n
associations, we can no longer keep the places distinct; our overloaded memory starts
getting confused. This problem deserves attention, but we need not explore it in the
abstract setting of vector spaces. Let’s turn to a concrete model: neurophysiology.

Neurons

Association seems a reasonable basis for the art of memory. Memories are “sticky”
things; a scent or a song attached to an event can evoke memories of the event for a
lifetime. Is this association a sophisticated, high-level cognitive process? Hardly; rats
learn to press bars for biscuits. Such a simple phenomenon seems basic, a building
block for more complicated cognitive processes.

Associationist theories of thinking and behavior were advocated by the eighteenth-
century philosophers Berkeley and Hume. For Hume, in fact, the “self” was no more
than a bundle of associations. His view was reified when the field of neurophysiology
began to advance in the nineteenth century. In Herbert Spencer’s 1850 book Prin-
ciples of Psychology we read about networks of connections in the nervous system.
The key move here is the interpretation of the vague and abstract notion of associ-
ation of ideas as a physical connection between neural configurations. An “idea” is
somehow a pattern of activity in part of a neural net. If it is associated with another
idea, its activity pattern propagates and triggers the activity corresponding to that
other idea. The construction of an association becomes a physical process, broadly
construed. For many psychologists in the nineteenth and twentieth centuries, this
reification seemed natural.

VOL. 28, NO. 1, JANUARY 1997 7

In the following sections we will interpret our formalism for associative memory
in “neural connectionist” terms, just as the early neuropsychologists did. The pictures
we draw (Figures 2 and 3, for example) are very nearly the pictures they drew (see
[11D. We will think of neurons as little hardware elements that process input signals
and produce output signals. Note carefully: The word “neuron” here is used in the
same fashion as “virus” is used in the world of computers. A computer virus is not
a model of a real virus; rather, a real virus serves as a vivid metaphor that helps us
describe the nature of a complex fragment of software. So, too, by using the colorful
term “neuron” we do not mean to imply that we are doing any kind of physiological
modeling.

Figure 2a shows a linear neuron. It has n input lines carrying real numbers x;,
and it produces a single real-valued output y;, which is computed as a weighted
sum of the inputs:

Yi = M1 T1 + My2Z2 + -+ + MinTn.

The synaptic weights, m;;, are also real numbers. Their name comes from the synapse,
which is the subcellular structure that mediates signal transmission between nerve
cells. A synaptic weight m;; = 0 means that the neuron ignores the jth input z;
completely. As m;; increases, the input has a stronger excitatory effect, producing a
larger output y;. A negative m;; means the input has an inhibitory effect.

n n

Y= > m;T. y, = tanh Zlmijx,

=1 73 Jj= J

Figure 2. A linear (2) and a nonlinear (b) neuron.

One extension of this simple definition of a neuron is worth mentioning. In many
neural network architectures, it is convenient if a neuron’s output signal is bounded—
commonly being “clipped” to the interval (—1,1). In many algorithms the linear
neurons acquire this nonlinear property via a hyperbolic tangent function applied
to their output, as shown in Figure 2b. We have tanhu ~ u for u near 0, and
tanhu ~ sgn u for large |u|. An engineer or statistician who “uses neural nets”
nowadays is almost certainly employing the latter kind of neurons. We, however,
shall stick to linear neurons (or, equivalently, tanh neurons operating near 0).

8 THE COLLEGE MATHEMATICS JOURNAL

Figure 3. One-layer network of linear
neurons; i.e., a matrix-vector multiplier.

Neural associations occur within a layered network of neurons, where each of the
n inputs is distributed to p linear neurons, with input j to neuron ¢ being weighted
by the real number m;;. Figure 3 depicts this synaptic weight as attached to an arc
from input j to neuron 4. (The value m;; = 0 would be the special case of no
connection.)

Figure 3 reveals a striking underlying simplicity: This device just computes a matrix-
vector product. When we pile the inputs into a column vector x = [21,...,2,]7,
pile the outputs into a column vector y = [y1, ..., ¥p)”, and make m;; an entry in a
p X n matrix M, our neural net implements y = Mx.

What can we do with neural nets? That’s about like asking, “What can we do with
matrix multiplication?”—a yawningly broad question. Applied mathematicians, elec-
trical and optical engineers, statisticians, physicists, computer scientists, and psychol-
ogists have all found uses in their fields. The variety of applications is exemplified by
the astounding scope of the recent Handbook of Brain Theory and Neural Networks
[2]. We will concentrate only on some key ideas behind /inear neural associative
memory, the precursor of today’s most famous neural algorithms.

Holographic Memory

One early idea about the neural mechanisms of memory came from the observa-
tion that repetition strengthens an association. William James in the late nineteenth
century and, more explicitly, Donald Hebb in the 1940s suggested a physical basis:
One strengthens associations by strengthening neural connections. How does this
scheme fit the layered neural network of Figure 3?

Assume for the moment that inputs and outputs are both binary: z;, y; € {0, 1} for
all 4, 7. This all-or-nothing setup means either an input signal is there or it isn’t, and
either the neuron “fires” in response or it is silent. When an input x is presented to
the net, it elicits the output y = Mx. Now, if a nonzero input signal z; contributes
to a nonzero output signal y;, we imagine that the weight connecting them increases
by some fixed amount—say weight m;; becomes m;; + 1. Otherwise (for zero input,
zero output, or both), m;; is unchanged. In short, if input signal z; contributes to
output y;, then the neural network modifies itself this way:

My5 — My + YiLj. (2)

In the binary case, the rightmost term is 0 unless z; = y; = 1. This rule captures
the intuition that a frequently used connection is reinforced. By extension, we can

VOL. 28, NO. 1, JANUARY 1997 9

suppose that connections strengthen in this way for all real-valued inputs and out-
puts. Our neural net could become a kind of forced dynamical system, with a weight
matrix M(t) that evolves over time as inputs x(t) arrive and outputs y(¢) are emitted.
We will use this update rule to get a formula for storing associations in the network.

First, let’s ask what kinds of things can be associated. Patterns, obviously—but
what are patterns? In the neural computation game we are playing, one assumes that
patterns are vectors. To associate a sign of the zodiac, 95, with a face, ®, we would
want the neural network to produce the output vector |95) when presented with the
input vector |®). In other words, the system should implement a transformation M
such that |25) = M|©).

To realize this transformation concretely (albeit crudely), suppose we digitize a
photograph of the face into a 30 x 30 gray-level image, representing this digital im-
age as a 900-tuple of real numbers. The value of the jth entry (= 1,2,...,900)
holds the gray-level of the jth pixel in the image (e.g., —1 for black, +1 for white,
with a continuum of grays in between). We can view this 900-tuple of real num-
bers as the components of the vector |®) in some basis. If the basis is labeled
{I11),12),...,]1900)}, the pixels are (1|®), (2|®),...,(900|®). In this representation,
a scaled version of the image (e.g., 1.5|®)) is merely the image with its contrast
adjusted, and —|®) is its photographic negative. Accordingly, it is safe to identify
the pattern with any nonzero vector lying along the |®) direction. How do we
present this face as input to a neural network? Simply put these values on input lines
z1 = (11©), 2o = (2|®), and so on. See Figure 4.

The output of the neural net will be a linear transformation of the input:

n
Yi = E Mij Ty
J=1

Figure 4. Making a vector out of a black-and-white photo of a face. A grid is overlaid
and digitizes the face into a 30 x 30 gray-level image. The vector is fed into a neural
network and evokes an output pattern.

10 THE COLLEGE MATHEMATICS JOURNAL

Translating into the Dirac notation and using equation (1), we have

n

(ily) = ({IM5)(jlz) = (iIM Z 7)1) 1z) = ([M]z)

Jj=1

fori=1,2,...,n. In short, |y) = M|z) in any basis.

We interrupt this exercise in linear algebra to point out a conceptual limitation:
Patterns are not really vectors. Some features of patterns, such as their complexity,
cannot be captured by vectors. For example, a solid black image is not recognizably
more “complicated” than a high-resolution photo of a face if we consider them merely
as vectors. In some sense, any nonzero vector in a vector space is just as complex
as any other nonzero vector! Some measures that might distinguish between simple
and complex patterns, such as the entropy

n

= - (il ©)log(j| ©),

Jj=1

depend on the basis chosen, and thus fall outside the domain of linear algebra. But
within these constraints, it is surprising what we can do.

We now return to linearity. To get the neural network of Figure 3 to “store” the
association of |@) with |<5) we rewrite the James/Hebb update rule (2) for adjusting
connection weights:

({{M7) — ({[Mlj) + (i|29)(Ol5)
for all 4, j, or simply
M — M+ |25)(O). (3)

In a nutshell: To store an association in a linear neural network, make a rank-one
correction to its linear transformation by adding the outer product of the patterns to
be associated. This amounts to strengthening or weakening each synaptic weight in
the network in proportion to the product of the corresponding components of the
two patterns.

Now, back to our orator memorizing his speech. Starting with M = 0, we store
two associations:

M = |joke) (urn| + |insult)(pool].
An arbitrary input pattern |z) would evoke the output pattern

lyy = M|z) = |joke) (urn|z) + |insult) (pool|x).

Geometrically, this means that the output |y) lies in the space spanned by the two
memories. If |z) = urn) and the triggers of the associations are orthogonal, then our
earlier calculations show that the output is just the pattern |joke).

VOL. 28, NO. 1, JANUARY 1997 11

We now have a recipe for making a neural associative memory, and it is the same
one we informally sketched at the outset. Take a table of patterns to be associated:

Input pattern Output pattern
ling) |outy)
|in2 > I Outz >
] in N> I outy >

To build a one-layer linear neural network (Figure 3), use the weight transformation
M given by the formula

N

M = [outy)(ing|. (4)

k=1

If the input patterns are orthogonal, then the input |ing) produces the output |outy).
Furthermore, as we saw earlier with our “lurn) = |container) + |handles)” example,
even if part of the input is corrupted, it can still be reliably associated with the desired
output. And indeed that is the point. If we didn’t need our associative memory to
function with incomplete inputs (and weren't interested in neural network hardware
for engineering reasons), we could just use a simple look-up table.

There is another reason why this architecture is interesting. What is fascinating
about the “accumulation of rank-one transformations” approach is the nature of the
neural net that it builds. After storing the associations, suppose we inflict some “brain
damage” on the network. That is, we cut some connections: set mgs = mgg = 0, say.
What happens? Not too much. The network’s accuracy degrades only slightly. Did
we corrupt any one particular stored association? No. Instead of having one memory
affected, all memories deteriorate very slightly. This property is called a holographic
property. If you break off a small piece of an optical holographic plate, you do not
lose a specific piece of the image; instead, the entire hologram becomes a little bit
fuzzier. The same thing happens in our neural network. A specific memory is stored
in a distributed fashion, spread throughout the network. It is not stored at a specific
locus. In this way our algorithm is even more reminiscent of natural neural systems.
And this holographic property is a direct consequence of our accumulation of outer
products.

Beyond Orthogonality

Our associative memory algorithm is appealing, but requiring orthogonality for the
input patterns seems unrealistic. Here is a standard way of getting around this prob-
lem: Make the dimension n of the input space X much larger than the number
N of patterns stored, and encode the inputs so they appear arbitrary or random.
This dodge presupposes that N randomly chosen vectors in a space of dimension
n >> N will be approximately orthogonal. For example, we could represent the
pattern |dog) as the word “dog” represented as a 21-component vector correspond-
ing to the 3 x 7 = 21 bits in the ASCII representation of the 3-character string “dog.”
(ASCII is a 7-bit character encoding used by older computer operating systems.)
Represent the one bits by 1.0 and the zero bits by —1.0, and then normalize the

12 THE COLLEGE MATHEMATICS JOURNAL

vector. Our “dog” would be represented by

1
= [+ 13 _1, _17 _17+17 —17 —1, +1a _17 —1, +1a+1, +1, +17
V21

+1,-1,-1,-1,41,+1,+1]%.

If this is not arbitrary, what is?

Still, this representation has problems. While the inner product (dog|cat) in this
representation is 0.14, the inner product (rat|cat) is 0.80. Consequently, if we use
rule (4) to store the associations

|cat) — |felix) |rat) — [templeton) |dog) — |fido),

presenting the input pattern |cat) will evoke the output

Micat) = 1.0felix) + 0.80|templeton) + 0.14|fido).

So we see that the response of the neural net is somewhat muddled, with pieces of
the wrong answer superimposed on the right answer. The output patterns overlap
to same the extent as the input patterns. Now, some superposition of memories may
be a good idea in real brains (one can envision its role in creativity, for example),
but in an associative memory architecture it needs to be controlled. We present some
techniques to control this superposition, techniques that remain in the realm of the
linear. More sophisticated nonlinear methods are beyond the scope of this article.

First, piling our input and output vectors into “vectors of vectors” gives us a new
way to display rule (4) for building a neural network weight transformation from a
sum of outer products:

If we treat the two factors on the right side as matrices Y and X7, our memory
recipe (4) amounts to

M =YX, (5)

We require M to transform each input pattern into its corresponding output pattern,
a requirement we can now write as MX = Y. Does recipe (5) meet this requirement?
Yes; MX = YXTX = Y as desired, since the condition that the input patterns be
orthonormal amounts to the condition X7X = L.

Now, what if we assume the inputs |ing) are linearly independent but not nec-
essarily orthonormal? We wish to map an input |ing) as nearly as possible to the

VOL. 28, NO. 1, JANUARY 1997 13

output |outy), for each k. In matrix form this says MX ~ Y. Although XTX =1 is
no longer true, the columns of X are linearly independent so it still has full rank;
thus XX is invertible. Accordingly, it is possible to define X+ = (XTX)~1XT,
This X+ is actually a left inverse, since multiplying this definition by X on the right
reveals that XTX = I. This X is a special case of the pseudoinverse [5] of a matrix
X. Therefore, changing the associative memory storage rule (5) to

M=YX*t (6)

gives our neural net perfect recall: MX = YX+X =Y, despite the nonorthogonality
of the input vectors.

Where does this leave us? Apparently with a less confused neural net. This network
is less likely to get muddled when learning a set of associations many of whose inputs
are similar. Our dog/cat/rat example would have perfect recall, despite the patterns’
lack of orthogonality. Unfortunately, however, the rule for modifying the synaptic
weights is no longer local. The advantage of the James/Hebb rule for strengthening a
connection was that the weight on a “wire” increased in proportion to its activity (real
or expected) at both ends. This localization of the modification algorithm seemed
plausible biologically, whereas the pseudoinverse approach appears less natural—
less easy for either nature or engineers to implement.

Descent

Can we learn nonorthogonal associations in a more local, more natural way? Yes.
To do so, we turn to one of the most basic search algorithms in all of applied
mathematics: stegpest descent. Suppose we want to store N associations indexed by
k =1...N.This requires constructing a linear transformation M such that M|in) ~
|outy) for each k. We start by examining the following real-valued function E on
the set of all linear transformations from R™ to RP:

N
1 .
EM) =5 > IMling) — |out)(®
k=1

(the factor of 1/2 simplifies some later calculations). Note that this function does not
depend on any basis. The value E(M) is a nonnegative number that measures the
error made by the neural net when tested on all NV associations. We have E(M) = 0
if and only if the net has stored all the associations perfectly. The domain of E is
sometimes called “weight space,” since each point M represents one assignment of
weights to the synaptic connections.

To start our search for such a perfect M, we begin with no connections at all:
M = 0. At this point E(M) is certainly nonzero. Now we execute an iterative
algorithm that modifies M in such a way as to minimize F(M). Imagine walking
around weight space searching for the point M that has the lowest error possible.
To help us with our search, we compute the gradient VE(M):

[VEM)],. = 0

tj Bmz j

E(M).

We regard this gradient as a vector in RP?, which we identify with RP*™ the set of
all p x n matrices (which in turn represents all linear transformations from R" to RP).

The gradient vector points “straight uphill,” in the direction of the most rapid
increase in E(M). Since E is smooth, it decreases most rapidly in the opposite

14 THE COLLEGE MATHEMATICS JOURNAL

E(M) = constant

Figure 5. A walk in weight space, using steepest descent in the
function E. The arrows, perpendicular to the contours, are —eVE(M)
evaluated at various points M.

direction—which is where we need to go: straight downhill, along —VE(M). The
steepest descent algorithm requires us to take a small step downhill:

M — M — ¢VE(M) (7)

where 0 < € < 1. The € ensures a small step size, which is essential. As Figure 5
shows, each discrete step starts out perpendicular to the constant-E contours. Big
steps would leave us zigzagging forever, never approaching the minimum. Alterna-
tively, were € infinitesimal our path would always be perpendicular to the contours:
rolling smoothly and precisely downhill to the minimum—but taking an infinite
number of steps.

As we apply the update (7) over and over to refine the synaptic connection matrix
M, the neural net comes closer and closer to perfectly storing the associations. To
get the algorithm explicitly, we must evaluate the gradient. Write the error as a sum,

N
E(M) =Y Ex(M),
k=1
where E(M) = Z||[Mling) — [out)||%. Since the V operator is linear,
N
VEM) =Y VE(M).
k=1

To streamline the calculation, we temporarily write equations in the neuron basis,
where x represents |in) and y represents |outg):

01 2_ 0
IVE,(M)];; = By, §||Mx —ylI* = oms, [

= (; Mir Xy — yz) T = [(MX — y)xT] i

1 1
§xTMTMx —yTMx — EyTy

VOL. 28, NO. 1, JANUARY 1997 15

Since the basis was arbitrary, we have

VEk(M) = [M|ink> - |0utk>] <ink|,

so that the explicit form of the steepest descent modification step (7) is
N
M—-M- Z e [Mling) — |outy)] (ing/. (8)
k=1

It is natural to call the vector M|ing) — |outy) the error vector for pattern k, denoted
by |errory). Then our algorithm for storing the associations {|ing) — |outy)} can be
summarized as follows:
M:=0
repeat
for k:=1 to N do begin
|errory) := M |ing) — | outg)
M := M — €] errorg) (ing|
end

until (M stops changing)

Try experimenting with this simple algorithm on a small set of low-dimensional
patterns. For example, use Mathematica on the pattern matrices

3 0 1 o -l

-1 2 0 T

X = Y=| 1 -1 0
2 1 5

0 5 _3 0 1 -1

1 0 1

When will the iteration converge? Will it converge to the matrix that we would have
obtained by the pseudoinverse technique (6)?

What is amazing in (8) is how the outer product has reappeared: As in the
James/Hebb rule (4), we are making rank-one corrections to the neural network.
Whereas before we implemented an association by adding |outg)(ing| in one fell
swoop, now we subtract a small part of the correction |errory)(ing| over many little
steps. It is as if we were training the neural network to associate inputs with (neg-
ative) error! The steepest descent algorithm serves as an iterative alternative to the
pseudoinverse recipe (6). As with James/Hebb, the iterative accumulation of outer
products gives us a local algorithm, so it has the advantage of being easily imple-
mented in hardware. Since this is the main reason artificial neural networks are worth
studying, we shall spell this out in agonizing detail.

For convenience, refer again to Figure 3. The weight m;; = (i|M|j) connects input
line j to output line i. When we apply |ing) to the neural net, the jth input line carries
the real number z; = (j|ing). In response, the neural net emits an output pattern
Miing). Let yf = (i|M]ing); this is the real number that is the ith neuron’s response
to input |ing). Now, had the net responded correctly, it would have emitted |outy),
giving the ith output line the value y; = (i|outy) instead of y}. The two assignment

16 THE COLLEGE MATHEMATICS JOURNAL

statements in the steepest descent algorithm above can be written in this basis as:

(ilerrorg) := (i|Mling) — (iJouty)
(iMj) := (i|]Mj) — e(i|errory)(ing|7)

Substituting the second into the first and using m;;, x;, y;, and y;, we have

Mg = mij — €Y — ¥i);.

This means that when the neural net adjusts itself on the association |ing) — |outg),
each connection modifies itself concurrently, based on the value of the signals (actual
and desired) at both of its ends. It is precisely this feature that allows efficient hard-
ware implementations: each connection can be given its own modification circuitry,
operating independently of the other connections.

Since the net modifies itself by accumulating many small corrections, we could
say that neurons in the neural network are learning from experience. Each time the
net errs on an association, it revises its connection weights slightly to do better next
time. In short, rank-one transformations embody the lessons of experience.

De Umbris Idearum

Here is the story so far. Based on intuitions gained from a simple vector-space for-
mulation of associative memory, we constructed a hardware device that implements
an associative memory. Although this hardware device is nothing but a matrix-vector
multiplier, an irresistible analogy to neurophysiology compels us to call it a neural
network (specifically, a single-layer, linear neural network). We can store associa-
tions whose input vectors are linearly independent, but not necessarily orthogonal,
using an iterative algorithm. Iterative algorithms are not uncommon in numerical
linear algebra, but here they invite another irresistible analogy: The net gradually
learns from its experience, which consists of being corrected when it has not got an
association quite right. Finally, each step of this algorithm involves local changes to
connections, suggesting literal hardware implementations.

The number of researchers using association in neural networks as technology
has exploded in recent years. The most popular algorithms nowadays work in mul-
tilayer networks of nonlinear neurons like the tanh neuron of Figure 2b; they are
used to perform nonparametric regression in high dimensions [2]. Nevertheless, the
key update steps in these algorithms are still the familiar rank-one corrections. For
example, the backpropagation algoritbm pushes an input pattern forward through
a multilayered net, computes the output error, pushes the error signal backward
through the network (multiplying errors by the transposes of the weight matrices),
and adds small rank-one updates to each layer’s weight matrix. This turns out to be
just another version of steepest descent in error.

Programmed on traditional computers, these algorithms are computationally ex-
pensive. However, their simple architecture allows them to be implemented in a lit-
eral way with silicon or optical devices. On special-purpose hardware, hundreds of
millions of weights can be updated in one second with the rank-one correction rule.
Even in software simulations, neural networks enjoy the advantage of simplicity. Un-
like artificial intelligence applications based on symbolic logic, which use an arcane
repertoire of programming techniques—constraint logic, Horn clause logic, resolu-
tion/unification, and message-passing, to name a few—a neural network program
can be written in any programming language by anyone with a semester of program-

VOL. 28, NO. 1, JANUARY 1997 17

ming training. The most complicated data structures required are two-dimensional
arrays.

Neural network algorithms have been employed in systems that learn to read
handwriting, steer trucks, recognize the gender of human faces, pronounce English,
diagnose heart attacks, and so on. Despite the ease with which a neural network
program can be written, actually getting a neural network to “learn” something can
be exasperating. It requires an engineer’s knack for clever encoding of the input and
output patterns, as well as the patience to experiment with different network param-
eters. References [2], [3], and [8] give an overview of the field of neural networks.
The book by Kohonen [6] addresses neural associative memory more specifically.

One final topic deserves mention. Much recent research in artificial intelligence
addresses using the low-level abilities of neural networks to represent higher-level
hierarchical structures. Associations of associations, for instance, can be created by
using pairings that are similar to tensor products. For example, the tensor product
of two n-dimensional vectors |house) and |dog), written

|house)|dog)

is a vector in n2-dimensional space. Suppose {|1),]2),...,|n)} is a basis for the
n-dimensional space. Then {|1)|1), [1)|2),...,|1}|n),...,|n)[1),|n)|2),..., |n)|n)} is
a basis for the tensor product space. We can view the tensor product as a kind of
concatenation. This allows us to make associations of associations, using terms of
the form

|dog) (fido|(pet|

in which the pattern |pet) is associated with the association |fido) — |dog). These
associations of associations can continue, building a hierarchy of concepts. The su-
perposition property that arises from linearity can be used constructively, to trigger
similar associations. Our use of the Dirac notation gives us a syntax for these su-
perpositional representations. (The tensor product idea comes from Smolensky [9].
Plate [7] provides a clear summary and some extension of this idea.)

As noted earlier, the classical art of memory was elaborated throughout the Mid-
dle Ages and into the Renaissance. The repertoire of tricks for getting humans to
memorize things remained small, however; there was scant progress in mnemonic
technology (indeed, current self-help books on memory say little that was not known
two thousand years ago). The art of memory became increasingly associated with
religion and, later, the occult. By the sixteenth century, we find Giordano Bruno’s
book on memory, De Umbris Idearum (“On the Shadows of Ideas”) situated at the
cusp of magic and science. For Bruno, the places in the memorization algorithm are
celestial, such as places on the zodiac, and they function as magical images to be
imprinted on memory:

By using magical or talismanic images as memory-images, the Magus hoped to acquire
universal knowledge, and also powers, obtaining through the magical organisation of
the imagination a magically powerful personality, tuned in, as it were, to the powers of
the cosmos. [12]

In the past decade artificial neural networks themselves have been said to have
near-magical powers. They are systems that “learn from experience.” They are com-
puters that “program themselves.” They have been marketed as the answer to the
prayers of frustrated workers in artificial intelligence who were overwhelmed by

18 THE COLLEGE MATHEMATICS JOURNAL

having to handcraft vast databases of everyday knowledge in order to build intelli-
gent machines. The celerity with which the field has grown is astounding. But if we
take Occam’s Chainsaw to the wild growth of artificial neural network technology,
we find one key concept at its core: association as rank-one correction. This humble
notion sits today at the confluence of major streams of thought in psychology and
technology—powerful, simple, and, above all, linear.

References

BN N

10.

11

12.

13.

. David Z. Albert, Quantum Mechanics and Experience, Harvard University Press, 1992.

. James Anderson, ed., Neurocomputing: Foundations of Research, MIT Press, 1988.

. Michael A. Arbib, ed., The Handbook of Brain Theory and Neural Networks, MIT Press, 1995.

. Paul A. M. Dirac, A new notation for quantum mechanics, Proceedings of the Cambridge Philosophical

Society 35 (1939) 416-418.

. Dan Kalman, A singularly valuable decomposition, College Mathematics Journal 27:1 (January 1996)

2-23.

. Teuvo Kohonen, Self-Organization and Associative Memory, Springer-Verlag, New York, 1984.
. Tony Plate, Holographic reduced representations, Proceedings of the 12th International Joint Confer-

ence on Artificial Intelligence, Morgan-Kaufmann, 1991, 30-35.

. David Rumelhart, Bernard Widrow, and Michael Lehr, The basic ideas in neural networks, Comimnu-

nications of the ACM 37:3 (1994) 87-92.

. Paul Smolensky, Tensor product variable binding and the representation of symbolic structures in

connectionist systems, Artificial Intelligence 46:1/2 (1990) 159-216.

Anthony Sudbery, Quantum Mechawics and the Particles of Nature: An Outline for Mathematicians,
Cambridge University Press, 1986.

Stephen F. Walker, A brief history of connectionism and its psychological implications, in A. Clark
and R. Lutz, eds., Connectionism in Context, Springer-Verlag, New York, 1992.

Frances A. Yates, Giordano Bruno and the Hermetic Tradition, University of Chicago Press, 1964; p.
192.

, The Art of Memory, University of Chicago Press, 1966; p. 3.

A Postprandial Epiphany

I had a feeling once about Mathematics—that I saw it all. Depth beyond
Depth was revealed to me—the Byss and the Abyss. I saw—as one might
see the transit of Venus or even the Lord Mayor’s Show—a quantity passing
through infinity and changing its sign from plus to minus. I saw exactly
how it happened and why the tergiversation was inevitable—but it was
after dinner and I let it go.

Winston Churchill, My Early Life.
Contributed by Lynne Houston and Steve Rodi, Austin Community College.

VOL. 28, NO. 1, JANUARY 1997 19

