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Introduction. Imagine a string of beads, but without the string, forming a neck-
lace that cannot fall apart. “Impossible!” you say. Perhaps, if you are being
practical. But theoretically speaking, if each of the beads were just a point, and if
there were uncountably many of them, it would indeed be possible. This is just one
of the many very surprising (and, therefore, very interesting) results in geometric
topology.

We present below a construction, due to Louis Antoine [1] and called Antoine’s
Necklace, that does precisely what is described above. We will also discuss some
well-known applications and generalizations of Antoine’s Necklace, including the
fact that there are infinitely (in fact, uncountably) many different Antoine’s Neck-
laces. All our examples will be subsets of Euclidean spaces. The three familiar
Euclidean spaces are the line (E'), the plane (E?), and three-space (E?>).
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Cantor sets. The standard Cantor set C is constructed by deleting the middle
third of the unit interval C,=I=[0,1], and then successively deleting the middle
third of each resulting subinterval (Figure 1a).
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Figure 1a. The deleted middle-third Cantor set.
Figure 1b. A nonendpoint of the Cantor set: the intersection of checked subintervals.

Each C, is the union of 2" closed intervals of length 37". Since the nested
intersection of compact (closed and bounded) sets is nonempty, the Cantor set C
may be (and is) defined as the intersection of these unions; that is, C =NY_, C, is
the set of points remaining after deleting the open middle thirds, ad infinitum. Since
we have deleted open middle-third intervals, C contains all the endpoints of these
deleted intervals. Since there are only countably many of these deleted intervals,
there are only countably many of these endpoints. It is also well known that C
consists of uncountably many points! An example of a point p € C that is not an
endpoint of a deleted interval may be found by taking p to be the intersection of
the subintervals of C; in Figure 1b, where we alternately choose left and right
subintervals of the previously chosen interval. This is necessary since a point g € C
is an endpoint of some deleted interval if and only if it is a left (or right) endpoint
of a remaining interval at some stage, and it always remains a left (or always
remains a right) endpoint of a remaining interval at each subsequent stage. Thus, to
find a point of C that is not an endpoint, we must alternately choose left and right
subintervals infinitely often.

There are other subsets of Euclidean space that have the same properties as C. A
subset F of a Euclidean space E is called a Cantor set if and only if F is

1. totally disconnected (the only connected set containing a given point of F
is that point itself)

2. compact (closed and bounded)

3. perfect (every point of F is a limit point of F; that is, x € F if and only if
x=lim,_ x, for {x,} CF—{x}).

It can be shown [2, p. 175] that a subset F of E has all three properties if and only
if it is homeomorphic (see below) to the standard Cantor set C.
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Embeddings and equivalence. For us, all spaces will be subsets of the real line
E', the Euclidean plane E2, or Euclidean three-space E>. A homeomorphism of a
space X onto a space Y is a one-to-one continuous function A: X — Y whose
inverse A~ Y —> X is also continuous. If such a homeomorphism exists, then X
and Y are said to be homeomorphic. For example, a rubber band, whose natural
shape is oval, can be stretched into a triangle, or a square, or even quite irregular
shapes, and each such deformation is a homeomorphism. One can even cut the
rubber band and glue the ends back together again after knotting it, and the result
will still be homeomorphic to the original. For more concrete examples, one can
readily verify that A(x)=x/(1+|x|) is a homeomorphism of X=E! onto Y=
(—1,1), whereas the one-to-one continuous function g(t¢)=(cos2xt,sin2xt) of
X=[0,1) onto Y = {(x, y): x>+ y*=1} is not a homeomorphism because g~ ' fails
to be continuous at (1,0). Note, however, that g is a homeomorphism of the open
interval (0,1) onto the punctured circle Y — {(1,0)}.

If h: X - Y is a homeomorphism of X onto Y, and Y C E, we say that 4 is an
embedding of X in E. For example, there is a homeomorphism from the unit circle
onto the square having corners (0,0), (0,1), (1,1), and (1,0) in the plane. This
homeomorphism can then be considered as an embedding of the unit circle into E2.
We shall also refer to Y = h(X), the image of X under A, as an embedding of X in
E. Thus, embedding may refer to a function or to its image, depending on context.
The last remark of the preceding section asserts that every Cantor setin E2 or E3 is
an embedding of the standard Cantor set C.

In Figure 2a below, A4 is a circle with a sticker glued to its exterior, and B is a
circle with a sticker glued to its interior. The figures 4 and B are homeomorphic.
Any homeomorphism of 4 onto B must carry the circle to the circle and the sticker
to the sticker. However, for a homeomorphism of the plane onto itself, more is
required. If one were to draw 4 on a rubber sheet, one could not deform it into B by
any amount of stretching and pulling. That is, there is no homeomorphism of E?
(or, analogously, the rubber sheet) onto itself taking A onto B. This “rubber sheet
geometry” captures intuitively the essence of the Jordan-Schoenflies Theorem: any
homeomorphism of the plane onto itself that takes the circle in A to the circle in B must
also take the interior of the circle in A to the interior of the circle in B, and the exterior
of the circle in A to the exterior of the circle in B. Therefore, such a homeomorphism
cannot take the sticker to the sticker.
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Figure 2a. Inequivalent embeddings. Figure 2b. Equivalent embeddings.

In view of the preceding remarks, we shall say that two subsets 4 and B of a
Euclidean space E are equivalent if and only if there is a homeomorphism h: E - E
of the space E onto itself, that takes 4 onto B. (This also establishes that 4 and
B = h(A) are homeomorphic.)
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Similarly (Figure 2b), two embeddings g, #: X — E are called equivalent (and the
sets g( X) and h(X) are said to be equivalently embedded) if and only if there is an
onto homeomorphism ¢: E — E such that ¢(g(X))=h(X). (Note, therefore, that
g(X) and A(X) are equivalent subsets of E.) For example, a square and a triangle
are equivalently embedded images in E? of the unit circle. (Imagining the plane as a
rubber sheet, one can stretch the plane so that the triangle becomes the square.)
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Figure 3. Embeddings of the Cantor set, interval, and circle.

In Figure 3(a), we illustrate the standard embeddings in E? of the Cantor set C,
the unit interval I = [0,1], and the circle S! (the graph of x2 + y%=1). Since E? is a
subspace of E> (the xy-plane in xyz-space, if you like), we can also view these
illustrations as embeddings in E3. Figure 3(b) shows different-looking, equivalent
embeddings in E? (or E?, if you prefer) of C, I, and S, respectively.

The embeddings in 3(b) are called tame embeddings. That the figures in 3(b) are
equivalent to those in 3(a) is a consequence of Theorem 1 below. For the unit
interval and circle, Figure 3(c) shows embeddings in E3 that are not equivalent to
the standard embeddings. The proof of this fact requires some knowledge of
algebraic topology—specifically homotopy theory and the fundamental group [3),
[4]. Intuitively, it is the “crossovers” that do not allow equivalent embeddings in E°>.
The embedding of the interval I in Figure 3(c) is called a Fox-Artin arc [3], and is
an example of a wild embedding of I into E°. The embedding of the circle S! in
Figure33(c) is called a trefoil knot, and is an example of a knotted embedding of S!
into E°.

Figure 4 illustrates three constructions of Cantor sets. Figure 4(a) depicts the
construction of a Cantor set as the intersection of intervals in the real line. Figure
4(b) shows the construction of a Cantor set as the intersection of a sequence of sets,
each of which is a collection of square-plus-interiors in the plane E2. Figure 4(c)
shows the construction of a Cantor set as the intersection of cubes in E>. Note that
the size or diameter of each individual square or cube goes to zero as the number of
stages increases to infinity. These sets can be recognized as Cantor sets because each
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Figure 4.

is compact, perfect, and totally disconnected. Moreover, as we shall show, the
Cantor set in Figure 4(b) is equivalent in E? to the Cantor set in Figure 4(a). Since
E' and E? are subsets of E?, each of these Cantor sets can be regarded as a subset
of E3. In fact, the three Cantor sets in Figure 4 are equivalent subsets of E3, since
there is a standard method for constructing homeomorphisms of E> onto itself
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carrying any one of these Cantor sets onto any one of the others. We do not know a
reference, but we indicate a proof in Figure 5.

Dy = Dy,

FE)=F6.1

kn =9 "' Fs=9 " “Es=d s DD||
R

Figure 5.

We describe briefly how to construct a homeomorphism of E? onto E2? which
carries the Cantor set in Figure 4(a) onto the Cantor set in Figure 4(b). Note first
(Figure 5) that the Cantor set in Figure 4(b) may be described as the intersection of
a sequence of sets { D;: i=0,1,2,...}, where

D,=D,;UD,,U - UD, ,

is the union of 4’ (square-plus-interior)s. Since N 2 C;= N 2 C,;, the Cantor set in

Figure 4(a) may be described as the intersection of a sequence of sets {F;:
i=0,2,...}, where

F=F,UF,U - UF ,

is the union of 4’ (rectangle-plus-interior)s. To see this, let F, be C, thickened
slightly to form a rectangle, and let the thickness of the intervals in C,,; be less
than the thickness of the intervals in C,. Then for each stage C,; of the intervals, we
have the stage F; consisting of 4' rectangles. Each rectangle of F,_; contains 4
rectangles of F,. Note that the intersection of the sets of intervals is the same as the
intersection of the sets of rectangles, provided that the thickness of the intervals
(heights of the rectangles) decreases to zero. Thus, the standard Cantor set C may
be constructed as the intersection of sets of rectangles in the plane.

Let D, and F, be as labelled in Figure 5. Then the homeomorphism 4#: E* — E?
that carries the Cantor set in Figure 4(b) onto the Cantor set in Figure 4(a) is
obtained as the limit of a sequence of homeomorphisms {h;: E?— E?(i=
0,1,2,...)}, where h carries the square-plus-interior D, to the rectangle-plus-inter-
ior F,, and in general where A, is a modification of %, on the interiors of the 4'
rectangles of h,(D,), essentially making the 4'*! rectangles of 4,(F;, ) “horizontal,”
within the preceding rectangles.
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The equivalence of the Cantor sets in Figures 4(a) and 4(b) is a special case of
Part (1) of the following Theorem (see [1], [2]):

Theorem 1. (1) Every two embeddings in E* of a Cantor set are equivalent;

(2) Every two embeddings in E* of an arc (that is, a homeomorphic image of
[0,1]) are equivalent;

(3) Every two embeddings in E? of the unit circle S* are equivalent.

One might wonder whether E? can be replaced by E? in the theorem. The answer
is “no” for each of the three statements of the theorem. Antoine’s Theorem (below)
shows that there exist Cantor sets that are inequivalently embedded in E>. There are
also inequivalently embedded arcs and inequivalently embedded circles in E3.
Classical proofs use algebraic topology. Our Theorem 3 shows how to obtain
inequivalently embedded arcs and circles in E3 as a consequence of the existence of
inequivalently embedded Cantor sets.

Antoine’s Necklace. Antoine’s Necklace is a Cantor set 4 in E> that is not
equivalent to the standard Cantor set C. This necklace is obtained as the intersec-
tion of an infinite sequence of collections of solid tori (doughnuts), whose diameters
decrease to zero.

Figure 6. Stage-by-stage construction of Antoine’s Necklace.
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Figure 6 illustrates how the tori of each stage sit inside, or refine, the tori of the
preceding stage. We begin with a single torus T, =T, in the Oth stage. At each
subsequent stage, four smaller tori inside each torus of the preceding stage are
linked together to form a circular chain around the hole of the torus that the circular
chain refines.

At the ith stage, we have a collection

=T VT,V - UT 4

of 4’ tori. Note that the diameters of the T, ’s(j=12,... ,4") decrease to zero as i
increases to infinity. (While it is clear that we can make the diameters of the tori in
the refining collections tend to zero, it is not clear that this can be done with the
same number of tori refining each torus. This, however, can be done, and a proof

may be found in [1].) Antoine’s Necklace A is defined as
A=T,NT,NT,NTN -,

the infinite intersection of these unions of tori.

Since the construction process is continued ad infinitum, the Cantor set lies in the
interior of each union 7, of doughnuts—in fact, every complete cross-sectional
chunk or “bite” of any doughnut will contain certain points of A. Figure 7 details
the first four stages of construction.

Figure 7. First four stages in the construction of Antoine’s Necklace.
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By analogy with C, where intervals are used to construct C but no interval is
contained in C (the set C consists only of the points of intersection of these
intervals), the tori are used to construct Antoine’s Necklace, but no torus is actually
contained in Antoine’s Necklace. Only the “beads,” the points that are intersections
of (infinitely many) solid tori, are left. Antoine’s Necklace is totally disconnected,
compact, and perfect. It is totally disconnected because for any two different points,
there is some stage of the construction such that the two points will lie in different
tori (since the diameter of individual tori goes to zero as i goes to infinity).
Antoine’s Necklace is compact because it is the intersection of the closed and
bounded collections of tori. It is perfect because every torus contains at least two
tori at the following stage. This allows us to choose, for any point x € 4, a sequence
from A — {x} converging to x, so that each point of 4 is a limit point of 4. Thus,
by the characterization of the Cantor set given earlier, 4 is a Cantor set homeomor-
phic to C.

Antone’s Necklace 4 looks like the beads of a necklace; there is no string (since
A is totally disconnected), but it cannot fall apart!

To explain what we mean by “cannot fall apart,” we use the following terminol-
ogy. A sphere in E*® is a homeomorphic image of the unit sphere {(x, y,z):
x%+y?+z2=1) in 3-space. We say that a set 4 cannot be separated by a sphere if
for every sphere S that contains some point of A4 inside S and some point of A4
outside S, then some point of 4 must lie on S.

Antoine’s Lemma. Antoine’s Necklace cannot be separated by a sphere.

The details of the proof of this Lemma are beyond the scope of this paper.
However, the heart of the proof involves showing that any sphere which contains a
point of A in its interior must intersect a torus of every stage. For the interested
reader, a geometric proof may be found in Antoine’s paper [1] (in French), whereas
a proof using homotopy theory may be found in [4]. Note that the standard Cantor
set C in E? can be so separated, as illustrated in Figure 8.

Parts of
Cantor set C

" Sphere S

Figure 8. A sphere separating the Cantor set C in E>.

Although C and A are homeomorphic, they are not equivalently embedded in
E3. To see why, assume that C and A are equivalently embedded in E°>. Then there
would be a homeomorphism 4 of E* onto itself such that h(C)=A. Let S be a
sphere separating C, as illustrated in Figure 8. Then A(S) is also a sphere (by
definition). To see that h(S) separates A4, let C = C,U Cg, where C; and C denote
the parts of C interior and exterior to S, respectively. Then, since a homeomorphism
maps open sets to open sets (and also closed sets to closed sets), h(C)=h(C;) U
h(Cy) is a disjoint union of two open subsets of #(C) such that #(C;) is interior to
h(S) and h(Cy) is exterior to h(S). Thus, 4 =h(C) is separated in E> by the
sphere A(S). Since this conclusion contradicts Antoine’s Lemma, we have the
following:
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Antoine’s Theorem. The standard Cantor set C and Antoine’s Necklace A are not
equivalently embedded in E>.

Uncountably many Antoine’s Necklaces. Now that we have two different (that
is, inequivalent) embeddings in E> of the Cantor set—the standard one C and
Antoine’s Necklace 4—one might wonder whether there are others. Instead of
using four tori within each torus to construct Antoine’s Necklace, could we use five
tori? Would the necklace obtained be different—that is, would the resulting embed-
ding in E? of the Cantor set be inequivalent to the previous two embeddings?

The answer is affirmative. In fact, the following theorem [5], which we state
without proof, is the basis for creating uncountably many inequivalent Antoine’s
Necklaces (embeddings of the Cantor set) in E3.

Sher’s Theorem. Two Antoine’s Necklaces

0 o]
A= (T, and B= (R,
i=0 i=0
are equivalently embedded in E> if and only if at corresponding stages of their
constructions, they always have the same number of refining tori and they link in the

same way. That is, there is a homeomorphism h of E? onto itself such that h(T,) = R,
for alli=0,1,2,....

In order to obtain an uncountable collection {4, a €%/} of inequivalent
Antoine’s Necklaces, it suffices to produce uncountably many sequences {S,:
a €7} of positive integers that differ pairwise in at least one entry. For any such
sequence S,, the nth entry will denote the number of tori that will refine each torus
of the preceding (n — 1)th stage in the construction of A4, The tree diagram in
Figure 9 shows how we can get infinitely (in fact, uncountably) many distinct
sequences of integers, using only the integers 4 and 5. Each path through the tree
represents such a sequence, and any two such sequences clearly differ in at least one
entry. Figure 10 illustrates the first four stages in the construction of the necklace
that results from the sequence 1-4-5-4... . Compare this to Figure 7.

/\/\/\/\

4 5

/\/\/\/\/\/\/\/\

Figure 9. An infinite tree of positive integers.
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Figure 10. First four stages in the construction of a necklace, using 1-4-5-4 refining tori.

Our goal. In the preceding sections, we have shown that there are uncountably
many inequivalent Artoine’s Necklaces in E3, The goal of the remaining sections is
to extend this result to sets other than the Cantor set. Specifically, we will sketch a
proof of the following:

Theorem 2. Let X be any nondegenerate planar continuum (that is, a closed,
bounded, and connected subset of the plane). Then there exist uncountably many
inequivalent embeddings of X into E>.

Outline of proof. There are three main steps:

(1) Show that there are uncountably many inequivalent Antoine’s Necklaces { 4,:
a€s/) in E3.

(2) Construct uncountably many inequivalent disks { D,: « €&/} in E3 (Antoine’s
Horned Disks), where D, 2 A, for each a €.&/.

(3) Embed X as X, in E, in such a way that

A, X, CD,
and the points of 4, are the only points of D, at which D, is not locally planar
(defined in the next section).

Based on (1)-(3), we shall conclude that { X,: a €7} is the desired collection of
inequivalent embeddings of the planar continuum X in E°>,

Step (1) has already been accomplished. The next section accomplishes steps (2)
and (3).
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Construction of Antoine’s Horned Disks: Reach out and touch it. Consider
A, already embedded in E* as the intersection of stages consisting of collections of
tori. Start with a unit disk D = {(x, y): x>+ y?><1)} c E?C E>. Think of this unit
disk as made of rubber, and stage-by-stage pull out “feelers,” making a “feeler
disk” reaching out to all the tori at that stage. Figures 11 and 12 illustrate some of
the first stages in the development of D,. (See pages 76-79 of [4] for other
illustrations and related theorems.)

Leneosesesee g L

PRTie °

Figure 11. Hollow “feelers” of disk reaching out to touch tori. First two stages in the construction of
the limit disk D,.

Continue stage-by-stage until the multiply-branching feelers (or horns) reach all
the points of 4, in the limit. The resulting set D,, which contains 4, is called an
Antoine’s Horned Disk. This limit disk D, is, in fact, a homeomorphic copy of the
unit disk D (since it is, in essence, a continuous deformation of D). Therefore, D, is
an embedding of the unit disk into E3. However, D, and D are not equivalently
embedded in E3. The difference is that D is locally planar at each of its points,
while Antoine’s Horned Disk D, is locally planar only at those of its points rot in
A,. (A disk T is locally planar at a point y € I when a neighborhood in I of y can
be mapped into the xy-plane by a homeomorphism of E* onto itself.) That D, is
locally planar at any point p € D, — A4, essentially follows from the fact that, in the
construction of D,, one reaches the point p after only a finite number of stages.
Thus, a neighborhood of p can be “pushed back” into D, which is planar, after a
finite number of reverse deformations. One needs to use the fundamental group, and
homotopy theory, to actually prove that D, is not locally planar at the points of A4,.
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Figure 12. First four stages of “feelers” shown in the development of D,.

Since the property of a set being, or not being, locally planar at a point is
preserved by a homeomorphism of E?® onto E°, we see that if A4, and A, are
inequivalent Antoine’s Necklaces, then D, and D, are inequivalent Antoine’s
Horned Disks. (If D, and D, were equlvalent then D, = h(D ) for some homeo-
morphism 4 of E* onto E>. Smce A, = {points where D is not locally planar}, it
follows that h(A,)= {points where D is not locally planar} Ap, and therefore
that A4, is equivalent to A4,.) Thus, there are uncountably many 1nequ1valent
Antoine’s Horned Disks in E°. ThlS completes our verification of step (2) in
Theorem 2.

Theorem 3. Let X be a nondegenerate planar continuum. Then there are uncount-
ably many inequivalent embeddings { X,: a €/} of X into E such that

A,c X,cD,CE?

and D, is locally planar at every point not in A,,.
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D, = ho(8.(U)

8.(X)

8a(B) = Co=h3'(4,)

Figure 13. Embedding X in E® as X, D 4,.

Proof. 'The proof is illustrated by Figure 13, and follows the steps outlined below:

)
()

(€)

@

Let D = {(x, y): x*+y*<r?} beadiskin E? such that X is contained in the
interior of D, and let U= {(x, y): x?+ y? <1} be the unit disk in E2.

For each a € #, take U as the base of Antoine’s Horned Disk D, before D, is
formed, and let ,: U— D, C E3 be the embedding of U in E* determined by
the construction of D,.

Since A !: D, — U is an onto homeomorphism, and ‘since homeomorphisms
preserve the properties of being totally disconnected, compact, and perfect (the
three characterizing properties of a Cantor set), it follows that C, = h;(4,) is
a Cantor set in U that maps onto 4, under #,,.

Let B, be any Cantor set in X. Every nondegenerate continuum in E2 has a
Cantor set. (In fact, a Cantor set can be constructed by a process similar to the
construction of the standard Cantor set C.)
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(5) In Theorem 1, we noted that any two Cantor sets C;, C, in E? are equivalent.
Moreover, we know that any two disks D, and D, are homeomorphic. It can
be further proved that if the interior of D, contains C; and the interior of D,
contains C,, there is a homeomorphism of D, onto D, which takes C, onto C,.
A complete proof of this requires the Schoenflies Theorem and its corollary
(Exercise 5.E.3, page 157 of [2]). Given this information, suppose we let g,:
D — U be a homeomorphism of D onto U such that g, (B,) = C,. Then

UDg(X)2g.(B,)=h,"(A4,).
and so
D,Dh,(g,(X))24,.

(6) Nowlet X, =h,(g,(X)). Then the only points of X, at which D, is not locally
planar are in A, Thus, it follows that { X, a €%/} is an uncountable
collection of inequivalent embeddings of X in E3. For suppose that 4 is a
homeomorphism of E? onto itself taking X, onto Xs. Then h must map 4,
(the nonlocally planar points of X,) onto A, (the nonlocally planar points of
Xg), and this contradicts the fact that A, and Ap are not equivalently
embedded in E°*.

Remark. Theorems 2 and 3 remain true, if “continuum” is replaced by “com-
pactum (closed and bounded subset of the plane) that contains a Cantor set.” The
proofs are identical to the above proofs.

Acknowledgements. Our work on this problem was motivated by a question asked (independently) of
the first author by James Kister in 1978, and of the second author by John Martin in 1981. The second
author was supported in part by a University of Alabama at Birmingham Graduate School Faculty
Research grant number 212 728. We also express our thanks to Warren Page, the Editor, for his many
constructive comments.

REFERENCES

1. Louis Antoine, “Sur L’homeomorphisme de Deux Figures et de leurs Voisinages,” J. Math. Pures et
Appl. 4 (1921) 221-325.

2. C. O. Christenson and W. L. Voxman, Aspects of Topology, Marcel Dekker, New York, 1977.

3. R. H. Fox and E. Artin, “Some Wild Cells and Spheres in 3-dimensional Space,” Ann. of Math. 49
(1948) 979-990.

4. Dale Rolfsen, Knots and Links, Mathematics Lecture Series, Vol. 7, Publish or Perish Press, Berkeley,
CA, 1976.

5. R. B. Sher, “Concerning Wild Cantor Sets in E*” Proc. of the AMS 19 (1968) 1195-1200.

I believe that mathematical reality lies outside of us, and that our
function is to discover, or observe it, and that the theorems which we
prove, and which we describe grandiloquently as our ‘creations’ are

simply notes on our observations.
G.H. Hardy
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