ON THE EVOLUTION OF NONCOMMUTATIVE HARMONIC ANALYSIS
KENNETH 1. GROSS

Dedicated to my dear friend Ernst Snapper, with admiration and respect

Introduction. This paper is an outgrowth of my preparation for an invited address delivered on
January 31, 1977, to the Mathematical Association of America at its annual meeting in St. Louis,
Missouri. It is a short, elementary exposition of the main themes that lead to the current frontier in
noncommutative harmonic analysis. As such, it represents a written elaboration of what I felt could
reasonably be presented in one hour to a general mathematical audience.

Quite briefly, noncommutative harmonic analysis is the meeting ground of group theory, analysis,
and geometry. It is an area of mathematics that has been flourishing for fifty years. For those who
practice the art, its hybrid nature is a source of uncommon beauty, depth, and difficulty. Most
significantly, noncommutative harmonic analysis has been inspirational for new points of view in a
wide range of applications that includes not only group theory, analysis, and geometry, but number
theory, probability, ergodic theory, and modern physics.

My goals here are to give the general reader a feeling for the historical flow of ideas and to display
some of the more readily accessible connections with classical mathematics and nonclassical physics.
Although one principally writes for the reader, this has been a marvelous personal experience. For it
is not the typical task of a research mathematician to attempt a nontechnical commentary on a
subject which seems foreordained by nature as intrinsically technical.

Finally, it is not possible to enumerate by name all the people who have contributed to my point of
view. However, special thanks are extended to my colleague Jonathan Brezin for stimulating and
enjoyable conversations that helped organize my thoughts at crucial stages of the exposition.

Occasionally, a comment came to mind that seemed worthy of mention, but was either parenthetical to

the main theme or else a slightly more technical supplement to the main theme. To help preserve the
continuity of discourse, such remarks are set aside in smaller print.

1. Classical harmonic analysis: Fourier series. By reason of its importance in almost all aspects of
harmonic analysis, as well as its primary historical position, we begin with an account of Fourier
series. The fundamental ideas originate in differential equations, in particular with solutions of the
classical partial differential equations of mathematical physics. Illustrative is the one-dimensional wave
equation
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first derived by d’Alembert in 1747 as the law governing the motion of a vibrating string. In this
equation, u=u(x,t) represents the displacement from equilibrium at time ¢ of the point x on the
string, and the constant ¢ is determined from the physical characteristics of tension T and mass
density p, according to the formula a®= T/p. The general solution of (1.1), again due to d’Alembert at
that early date, is given by the expression

u(x,t)=fi(x+at)+f,(x—at) (1.2)
where f; and f, are arbitrary twice differentiable functions of a real variable. This solution can be
viewed as the superposition of two “waves” f; and f, propagating with speed a in opposite directions
along the string.
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If, for example, one imposes upon a solution to (1.1) the boundary conditions
u(0,)=u(L,1)=0 (1.3)
for all ¢ (with L fixed), as well as the initial conditions

9
u(x,0)=¢(x) and T(x,00=y(x)
for all x (with ¢ and y fixed), it is not difficult to see that the solution (1.2) then takes the form
u(x,t)=f(at+ x)—f(at— x) (1.4)

where the function f is periodic with period 2L and is uniquely determined, up to an arbitrary
constant, as

F=5(600+ 5 [¥(0)ds). (1.5)

Of course, the initial data ¢ and y should be periodic with period 2L. Physically, (1.4) and (1.5)
describe the motion of a string of length L that is clamped at the end points and which at time =0 is
given initial displacement ¢(x) and initial velocity y(x).

The notion of harmonic analysis originates with the possibility of superimposing certain of the
solutions (1.4); namely, the nth fundamental modes, or nth harmonics,

sin(nwx/L)cos(nmat /L) and sin(nwx/L)sin(nmat/ L)
which correspond in (1.5) to f(x) of the form sin(nmx /L) and cos(nmx / L), respectively. As expressed
most colorfully by Daniel Bernoulli in 1753, “all sonorous bodies contain potentially an infinity of

corresponding ways of making their regular vibrations.” Rephrased more mathematically, f(x) should
be of the form

f(x)=ap+ S {aycos(nmx/ L)+ b,sin(nmx/L)). (16)
n=1

The study of such series representations and related generalizations is referred to as Fourier
analysis. It would appear that this reference to Fourier is well deserved, for not only does Fourier’s
1807 investigation of heat flow give the first broad examination of the series (1.6), including the
determination of the coefficients in terms of f, but it marks the beginning of modern real analysis. In
particular, many of our most decisive mathematical concepts—for example, the modern notion of
Jfunction, contemporary set theory, both the Riemann and Lebesgue integrals, and, in more recent years,
distribution theory—were generated by problems in Fourier analysis.

A modern treatment of Fourier series would recast (1.6) in complex notation (with L=1) as

]
f0)= 23 ce™ (1.7)
n=—o

where

¢, =f(n)= % fo SO (18)
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Here, 0 <6 <27 parametrizes the unit circle T of complex numbers e of absolute value 1. The right
side of (1.7) is called the Fourier series of f, and { f(n)} is the sequence of Fourier coefficients of f.

There are many techniques or, in the technical jargon, methods of summability, for obtaining
convergence in (1.7). The most common and elementary procedure involves the introduction of the
inner product

Sil>= 55 [THO @) b, (19)

and applies to functions f on T which are square-integrable; that is, the norm

" 1/2
=<1 = {5 [ @ (110)

is finite. Thus, the functions e, on T given by e,(#)=e™ form a complete orthonormal system; (1.7)
is quite simply the expansion of f in terms of this orthonormal basis (i.e., f(n) = f|e,> for all n); and
equality in (1.7) is interpreted in the mean-square sense as

N
lim ”f_ 2 c,,e,,|| =0.
N—>oo n=—N

In other words,

1= 3 17 eop. (L.

Equation (1.11) is an example of a so-called Parseval or Plancherel Formula, the extension of which to
more broad, general contexts will be a central theme of the sequel.

The previous paragraph describes what is known as the L2-theory of Fourier series. In contrast to
convergence in the mean-square sense, the general problem of pointwise convergence of Fourier Series is
extraordinarily difficult. Thus, by an argument of Dirichlet (1837), it is not too hard to show that the
Fourier series of a continuously differentiable function on the circle is absolutely convergent. Yet, it was
not proved until 1966 that the Fourier series of a continuous function (more generally, square-integrable
function) converges almost everywhere. The proof of this fact, due to L. Carleson, is very complicated (cf.
[38]). A general heuristic principle can be stated: The smoother the function, the more rapidly its Fourier
series converges, and vice-versa.

We shall give two interpretations of the Fourier series (1.7). The first illustrates the fundamental
and intrinsic connection between Fourier series and differential equations on the circle. Let D denote
differentiation with respect to 8. It is appropriate (although it may seem somewhat premature in this
one-dimensional context) to call the operator A= D? the Laplacian on T. Upon the observation that
Ae,= — n’, for all n, the Fourier series (1.7) takes on an entirely new appearance. For we see that
—A is a positive (and self-adjoint) differential operator on T, and (1.7) is the expansion of f in
eigenfunctions of the Laplacian.

Moreover, from two integrations by parts,

(8y)"(n)= —n%(n) (1.12)
for any twice differentiable function y on T and for all n. Now consider the differential equation on T
Ay=—f+a, (1.13)

where f is any fixed continuous (more generally, square-integrable) function on T and « is the
constant

7 _ L 27
a=f (0)= 277[0 £(8)db. (1.14)
By (1.12), the solution y is uniquely determined up to an additive constant by the equations

y(n)= %f (n), n#0, (1.15)



528 KENNETH I. GROSS [Aug.—Sept.

for its Fourier coefficients.

The constant a appears in (1.13) for the following technical reason. By (1.12) with n=0, the left side of
(1.13) is a function with mean value zero over T. Thus, (1.14) gives precisely the value of a for which the
right side of (1.13) also has mean zero. Put another way, by integration of (1.13) one sees that this is the
value of a such that dy/df is continuous on T.

Of course, one really wants the function y, not its Fourier coefficients. Posed in more generality,
given functions f; and f,, we want that function, denoted f,+f,, for which the Fourier coefficients are

(fi2£2)"(m) =fi(m)fa(n). (1.16)

By means of formula (1.8) for f,(n) and fy(n), it is easy to verify that the desired function is given by
the convolution i

A O RACTIC (1.17)
of f, and f,.

From the algebraic point of view, a vector space V of functions on T, which is closed under
convolution, has the structure of a commutative ring relative to convolution as multiplication. As examples
of such spaces which arise in a variety of both abstract and concrete problems in analysis, we list the spaces
C(T) of continuous functions, C'(T) of continuously differentiable functions, S (T) of infinitely differentia-
ble functions, L'(T) of Lebesgue integrable functions, and LXT) of Lebesgue square-integrable functions,
all of which are closed under convolution.

Thus, let g be that function on T such that

0 if n=0

g(”)={ 1/n?  if n0. (1.18)

Then the complete solution of the differential equation (1.13) (nonhomogeneous Laplace’s equation on
T, if you like) is given by

y=g+f+c (1.19)
where ¢ is an arbitrary constant. An elementary calculation shows that g is the function defined by
2(0)=(1/2)8%*— 70+ (1/3)7?* for 0< < 2.

The second interpretation of Fourier series makes explicit its group theoretic nature. In the usual
way—that is, by means of addition modulo 2« in the parameter §—the circle T is an abelian group.
Moreover, the functions e, are group homomorphisms, and these are all the continuous homomor-
phisms of the circle into the multiplicative group of nonzero complex numbers. Under pointwise
multiplication as the law of composition, these homomorphisms themselves form a group, isomorphic
to the additive group Z of integers, which is called the dual group of T. From this perspective, the
Fourier series (1.7) is the expansion of f in terms of the dual group.

Although there will be many variations, the theme throughout the sequel is as follows: Try fo
analyze, or decompose, spaces of functions on a group, or a set on which a group acts, in terms of the most
“elementary” functions which mirror the group operation; that is to say, the fundamental harmonics. As
we shall see, these functions are constructed from suitable homomorphisms, called irreducible
representations, of the group in question.

2. Algebraic harmonic analysis: representations of finite groups. The concept of an abstract group,
progenitive of the modern axiomatic point of view in algebra, developed in the latter third of the past
century out of concrete manifestations—such as permutation groups, Galois groups, and Lie
groups—that had arisen in the theory of equations, number theory, and geometry. In particular, the
study of finite groups (in the modern sense) was already well under way, when in the 1890’s
Frobenius invented the notion of a representation of an abstract group by matrices, thereby
introducing into the subject the techniques of linear algebra.
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In modern terms, a representation T of a finite group G is a function which associates to each
element x of G a linear transformation 7'(x) on a nonzero finite-dimensional complex vector space
V=V, such that two properties hold: (1) T (xy)= T (x)T(y) for all x,y €G; and (2) T(e)=1, where
e is the identity in G and I is the identity transformation on V. Clearly, T(xx~)=T(x)T(x~")=1,
or T(x)~'=T(x"") for all xE€ G; so a representation of G is simply a homomorphism of G into the
general linear group GL(V) of invertible linear transformations on V.

More in line with the original development by Frobenius (more accurately, the simplified
treatment by Schur), it is often useful to think concretely of a representation as having matrix values.
For if we fix a basis e,, e,,...,e, of ¥ where d=dim ¥ then the equations T(x)e;=24_,#;(x)e; define
the matrix #(x)= #;(x) of T(x), and the mapping x—#(x) is the matrix-valued realization of T relative
to the indicated basis. In short, the group GL(V') is isomorphic to the general linear group GL(d,C) of
nonsingular d X d complex matrices. The number d= dy- is called the degree of T, and the d 2 functions
t; on G are the matrix entries of T in the given basis.

Within a decade, most notably through the work of Frobenius, Schur, and Burnside, the major
framework was all in place, and representation theory had already been shown to be among the most
powerful devices for penetrating the structure of a finite group.

More than amusing, it is in many ways instructive to contrast the change over a short period of time in
Burnside’s perception of the power of representation theory. The first edition of his famous book [5],
written in 1897, completely omits any discussion of representation theory, for, in Burnside’s words, “it
would be difficult to find a result [in the pure theory of abstract groups] that could be most directly
obtained by the consideration of groups of linear transformations.” However, the 1911 second edition relies
heavily upon the methods of representation theory; and in disavowing his previous opinion, Burnside
comments that “it is now more true to say that for further advances in the abstract theory one must look
largely to the representation of a group as a group of linear substitutions [i.e., transformations].” Indeed,
seven years earlier, Burnside had successfully employed representation theory to obtain his celebrated result
that a group of order pq? (p,q prime) is solvable. Thus, one may safely conclude that, whatever the
gastronomical discomfort, rich mathematical rewards accompanied the eating of his words.

Here, our look into the representation theory of a finite group will be necessarily brief, for limited
space and the topic at hand preclude both a detailed treatment and a level of generality appropriate
from the standpoint of algebra. What we are looking for is a glimpse of noncommutative harmonic
analysis in its algebraic essence, shorn of complicating analytic considerations. For, as we will
indicate in the next section, the role played by representation theory of a finite group is far more
substantive in the genesis of modern harmonic analysis than in that of Fourier series, the group
theoretic aspect of which is a relatively recent observation.

To be more precise concerning the degree of generality in which the results of this section are valid, we
could replace the complex field of scalars by any field the characteristic of which is relatively prime to the
order of the finite group in question. This yields the classical “ordinary theory” of representations of a finite
group. There is a “modular theory,” due largely to R. Brauer, in which there is no such restriction on the
characteristic of the field. However, this theory is much too technical to be included here.

As a highly illustrative example, consider the symmetric group § on three objects, defined to be
the group of all permutations of the set S={1,2,3}. For g€§ and s€ S, let sg denote the image of s
under the permutation g. To proceed to a richer structure, form the three-dimensional vector space
C(S) of all complex-valued functions on S. Then the set-theoretic action of 8 on S lifts to a linear
action R of 8 on C(S), called the standard representation of § on C(S). Specifically, to each g€9 is
associated the linear transformation of C(S) given by

(R(f)()=1(s3)- @n
Clearly, R is a representation of §. The fundamental problem in harmonic analysis on S can now be

formulated: Decompose C(S), or equivalently R, in terms of those functions f on S whose translates R(g)f
under S span as small a subspace of C(S) as possible.
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Some notation is needed. Given a representation T of a finite group G on a space V= Vr, we say
that a subspace W of V is invariant under T if T (g)W C W for all g€ G. For a non-zero invariant
subspace W, restriction of the transformations T(g) to W defines a representation Ty of G on the
space W, called the subrepresentation of T on W. A non-zero invariant subspace is said to be
irreducible if it has no proper invariant subspace. If the representation space V itself is irreducible,
then T is termed irreducible. Evidently, either a representation is irreducible, or else it has an
irreducible subrepresentation.

Returning to the example, we shall say that a function f on S, not identically zero, is a fundamental
harmonic—or more simply, an S-harmonic—if its translates R(g)f under § span an irreducible
subspace of C(S). With the help of the natural inner product

3 —
ilfo=Z fi(s) £(5) 22

s=1
on C(S), it is a simple matter to find the spaces of S-harmonics. For it is clear that the constant
functions form a one-dimensional space, say W), of S-harmonics. On the other hand, its orthogonal
complement W,, consisting of functions of mean zero (i.e., {f|1>=f(1)+f(2)+f(3)=0), is a two-
dimensional invariant subspace, and it is not difficult to see that W, is irreducible. Thus,

is the decomposition of C(S) into spaces Wy and W, of S-harmonics, and for all g €8 the transformation
R (g) decomposes as the direct sum

R(g)=10\(g) 24

where 1 denotes the 1-dimensional subrepresentation (1(g)=1 for all g) on W, and A is the two-dimen-
sional subrepresentation on W,.
The standard representation R, the two-dimensional representation A, and the decomposition (2.4) all
have geometric interpretations. To see this, let e;,e;,e; be the usual orthonormal basis for 3-dimensional
space. Viewed as functions in C(S), ¢;(k)=1 when j=k and ¢;(k)=0 otherwise (j,k= 1,2,3). Relative to

this basis
01 0 010
R()=|{1 0 0} and R(0)=|0 0 1
0 0 1 1 0 0

where 7 is the transposition (12) and o is the cyclic permutation (123). To obtain the matrix version of (2.4)
change to a new orthonormal basis; namely, the basis E), E,, E; where E; =(e;— e)/ V2 ,E,=(e,+e,—2e3)
/V6, and Ey=(e, +e,+e3)/ V3 . Then E; spans the 1-dimensional
subspace of C(S) of constant functions, and E, E; span a 2-dimen-

E, sional invariant subspace. Hence, with respect to this new basis of
S-harmonics,
1 0
R(g)=|A (® ] 0| forallgin§.
0 0.1

Moreover, A is the familiar representation of § as symmetries of an
equilateral triangle. For example, the matrices

A(T)=(—(1) ‘l’) and A(o)=§(__\/l§ ‘f)

correspond geometrically to reflection about the direction E, and
rotation through the angle 2«7 /3, respectively.

FiG. 2.

As was indicated in its construction, R can be thought of as the linear version of the definition of
8. However, not all irreducible representations appear in R, and there is a larger representation ® of
8 which more fully captures the structure of §. Thus, let C(§) be the six-dimensional space of all
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complex-valued functions F on §, and for g€§ define

(R(g)F)(g)=F(818) (25)

for F € C(8). The representation @, is called the right regular representation of § on C(§). Of course,
it would be equivalent to work with the /eft regular representation £ defined on C(§) by

(E(&)F)(g)=F(g7'g1)- (2.6)
We remark that the term “equivalent” has a technical meaning in the subject of group representa-
tions that is quite analogous to the notion of “similarity” in linear algebra. Two representations T
and T of a finite group G are said to be equivalent, written T, == T, if there exists an invertible linear
transformation 4 : V7, — Vr, such that AT,(g)4 ~ 1= T,(g) for all g€ G. Alternatively, T, =T, if and
only if there are bases of V7, and V7, relative to which the matrix-valued realizations of T, and T are
identical. For all intents and purposes, the abstract theory of group representations does not
distinguish equivalent representations, and the basic concepts (e.g., invariant subspace, irreducibility,
direct sum, etc.) apply to the equivalence classes as well as the representations themselves.
The harmonic analysis of C(9) is easily accomplished with the help of the inner product
(FIFp= 23 Fi(g) F(g) (PX))
geg
on C(9), our knowledge of C(S), and the following elementary but extremely powerful result known
as SCHUR’S LEMMA. Suppose T and T, are irreducible representations of a group G and that A is a linear
transformation from Vr, to Vr, such that AT,(g)=Tx(g)A for all gEG. If Ty and T, are inequivalent,
then A=0. If T)=T,, then either A=0 or A is invertible and unique up to a constant factor. In
particular, if T\=T,, then A= cl for some complex number c. It follows from Schur’s Lemma that the
matrix entries of inequivalent representations are orthogonal relative to (2.7).

The proof of Schur’s Lemma follows immediately from the fact that the null space and range of 4 are
invariant under T, and T}, respectively.

To begin, note that the signature function, defined by sgn(g)= * 1 according to g even or odd, and
the constant function 1 are both homomorphisms of § into the group {*1}. Each spans a

one-dimensional invariant subspace of C(§). It remains to find four other orthogonal functions.
Thus, bring A into the picture in terms of the subspace C\(§) of C(§) spanned by the matrix

entries A;1,A12, A1, A, Telative to a choice of basis in W, (e.g., E; and E, in Fig. 2). It is not difficult to
show (either by brute verification or a general argument based upon Schur’s Lemma) that A;;, A5, Az,
and Ay, are mutually orthogonal, and C,(8) is a four-dimensional invariant subspace. Moreover,
although C,(8) is not irreducible, the next best situation occurs. Namely, the subrepresentation of &
on C,(8) is equivalent to A®A. For if C{P(8) and C{?(§) are the two-dimensional subspaces of Cy(§)
having bases {A;;,A12} and {A;,A), respectively, then these subspaces are invariant under R,
C\(8)=C(8)D CA(8), and by a straightforward calculation in the indicated bases, both subrepre-
sentations on C{’(8) and C{#(8) are equivalent to A.

Finally, we observe (again, either directly or from Schur’s Lemma) that both 1 and sgn are
orthogonal to C,(§), and by a dimension count

C(8)=Cl1®Csgn ® C)(9) 2.8)
and
R, =1Dsgn D2A 2.9

where we have set ADA=2A.

In summary, fo within equivalence 1, sgn, and \ are the only irreducible representations of S, and
each appears in the right (or left) regular representation with multiplicity equal to its degree. In terms of
C(8), the matrix entries 1, sgn, Aj1,A12,A21, Az, Of the irreducible representations are an orthogonal basis

Jor C(8).
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We have here the fundamental harmonic analysis—or, if you like, Fourier analysis—for the
symmetric group §. These results are specific examples from a general structure theory valid for any
finite group G. The most prominent features are listed below.

1. Unitarizability. Given a representation T of G, there exists an inner product <-|-» on V= V. which
is invariant under T; i.e., <T(g)v|T(g)w)=<v|w) for all g€ G and v,wE V. To wit, if (-|-) is any
inner product on ¥, then the desired inner product is given by {v|w)=Z,cs (T(g)v|T(g)w). In
short, T can be assumed unitary; i.e., T(g) is a unitary operator for each g€ G. In particular,
T(g)*=T(g™") for all g € G. It follows that the orthogonal complement W * of an invariant subspace
W is also invariant; and hence we have:

2. Complete reducibility. A representation T decomposes as an (orthogonal) direct sum of irreduc-
ible representations. Moreover, the irreducible representations that appear are unique to within
equivalence.

3. Uniqueness of decomposition. Denote by G the collection of all equivalence classes [A] of
irreducible representations A of G. One calls G the dual or dual object of G. A class [\]€ G is said to
occur in T if T has a subrepresentation equivalent to A, and the multiplicity ny of [\] in T is the number
of times the class [A] appears in a complete reduction of T. Let A},A,,...,A; be representatives for the
distinct classes in G that appear in T Then for eachj=1,...,k there is a unique invariant subspace Vy
of V'=Vr, on which T is equivalent to n, copies of A;; the spaces V), are mutually orthogonal; and

V=0 ® - OV,. (2.10)
Equation (2.10) gives the primary decomposition of V, and the representation-theoretic version
Tznl?“@'- . @nk}\k (2-11)

is the primary decomposition of T. The space Vy is called the [Aj]-primary, or [A]-isotypic, subspace of
V; or alternatively, the subspace of T that transforms according to A,

4. Schur orthogonality relations. Let C(G) be the vector space of all functions F:G—C. The
dimension of C(G) is n, where n is the order of G. Equip C(G) with the normalized inner product

(Fi|Fpy=n~1 3 Fi(g)Fyg)- (2.12)
gEG
For each class [A\]€ G, choose a representation A which is unitary, and let A; denote the matrix entries
relative to an orthonormal basis for V. Then the Schur orthogonality relations (which follow directly
from Schur’s Lemma) state that the functions e{M(g)= Vd, Ay (g) on G, for \J€G and 1<i,
j<dy=deg A, are an orthonormal subset of C(G). That this orthonormal set is complete is a
consequence of the:

5. Decomposition of the regular representation. Let R be the right regular representation of G on the
space C(G). Then each class [\]€G occurs in @ with multiplicity dj =deg A, and the [A]-primary
subspace of C(G) is the space C\(G) spanned by the matrix entries A;. In short

C(G)= > ®G\(G) (2.13)
Aleé
and
R=L= 3 D dA\ (2.14)
\eé

Note that by a dimension count, the order of G is related to the degrees of the irreducible
representations by the formula

n= > di (2.15)
Aeé
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6. The group algebra. For F,, F,€ C(G), define their convolution by

(FirF)(8)= X Fi(g)Fy(g'g). (2.16)
21EG
With convolution as multiplication, C(G) has the structure of an associative algebra, called the group
algebra of G. From this point of view, the subspaces C,(G), for [\]€ G, are two-sided ideals, and
(2.13) is the decomposition of the group algebra into its minimal two-sided ideals. In particular, the
representation theory of G is a special case of the Wedderburn theory of semi-simple rings.

In a common variant of the group algebra, the function F € C(G) is written as a formal sum, which in
our case has the nonstandard form 2, F(g)g~ 1, By an elementary calculation, it is easy to see that in
this formalism convolution is the “natural” multiplication

(= Fleve)( 3 Feder')= S 3 (Ra)FiaDssr
81€EG 8EG G

81€EG g€

7. Character theory. The character of a representation T is the complex-valued function x(g)=
tr(T (g)) for g€ G. The importance of the notion of character, fundamental to the original work by
Frobenius and Schur as well as to the modern point of view, lies in the fact that two representations
are equivalent if and only if they have the same character. In other words, the trace is a complete
invariant for the equivalence relation.

Finally, there is a Fourier analytic overview to the representation theory of G. That is the theme of
the next section.

3. Compact harmonic analysis: The Peter-Weyl Theorem. Modern harmonic analysis begins in the
1920’s with the confluence of two great streams of mathematical thought which had previously been
developing concurrently but independently.

First, there is the role of group theory, rooted in large part in geometry through the philosophy
(Klein’s Erlanger program) of studying a space through its group of motions. In particular, the theory
of geometric transformation groups, known today as Lie groups in honor of the Norwegian mathema-
tician Sophus Lie, who created the subject over a century ago, arose from certain kinds of partial
differential equations in rough analogy to the origin of Galois groups from algebraic equations.

On the other hand, a variety of purely analytic theories were developing in the late nineteenth
century from very different aspects, such as boundary value problems, of differential equations. For
example, if in the vibrating string problem described in Section 1 we do not assume that the tension
and density are uniform across the string, then the wave equation (1.1) is replaced by the equation

9 3 9%
a_x(T(x)a—;‘c)=,o(x)3t-2-. G.1)

The principle of superposition of solutions applied to more general equations such as (3.1) leads to
eigenfunction expansions more general than Fourier series, to Sturm-Liouville theory, to spectral
theory on Hilbert space, and ultimately to modern abstract functional analysis.

The genius for bringing together these two seemingly unrelated themes belongs to Hermann Weyl,
who should be regarded as the father of modern harmonic analysis. The date of birth is 1927, and the
official birth certificate is the remarkable paper [14] by Peter and Weyl, in which the structure theory
for the representations of a finite group is carried over, essentially without change, to the context of
compact Lie groups. For it turns out that it is not the finiteness of the group on which the validity of
the properties (1)~(7) hinges, but rather on the existence of an averaging procedure over the group.
That is to say, what is required is an invariant integral which assigns finite volume to the group. The
decisive analytic idea, originating with Peter and Weyl and fundamental to essentially all the
succeeding developments in noncommutative harmonic analysis, is the use of an infinite dimensional
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representation and its decomposition by means of spectral theory for bounded operators on Hilbert
space.

F. Peter was a schoolteacher who worked under Wey] for a short time. Upon completing this joint paper
he apparently decided that the research life was not for him, and returned to high school teaching. Needless
to say, it was a very good high school.

A topological group is a group G on which is given a topology with respect to which the group
multiplication (x,y)—xy and inversion x—x~! are continuous mappings. Clearly, each translation
(e.g., right translation x—xa by a) is a homeomorphism of G, so the topology of G is completely
determined by local behavior at the identity e. Thus, one says that G is locally compact if there exists a
compact neighborhood of e; and still more restrictedly, G is locally Euclidean if there exists a
neighborhood of e which is homeomorphic to an open subset of some Euclidean space R”. The most
important topological groups are the Lie groups. These are locally Euclidean groups in which the
group operations are infinitely differentiable mappings. For a long time it was an open question—
Hilbert’s fifth problem—as to whether a locally Euclidean group is necessarily a Lie group. That is to
say, can continuity be replaced by differentiability? The affirmative resolution was given by Gleason,
Montgomery, and Zippin in the 1950’s.

As the terminology suggests, a topological group G, whether or not it is a Lie group, is called
compact if G itself is a compact set. It is to the class of compact groups that the results of this section
apply.

The first prerequisite for harmonic analysis is the availability of an invariant integral on the group.
When dealing with noncommutative groups, an author is faced with the decision—completely
arbitrary, of course—as to the use of left versus right translation. For reason of habit, we choose the
side of right, and for the most part leave the sinister unsaid.

Throughout, we shall be extremely casual in our approach to integration. The reader familiar with
measure theory will know what is meant by an “integral.” Those less experienced will find it adequate to
simply think of an invariant integral as a generalization to G of the ordinary Riemann integral on the real
line.

An integral on the topological group G is said to be right invariant if

fG f(xa)dx = fG F(x)dx (32)

for all a€G. For a Lie group, it is rather easy to construct a right invariant integral. For locally
compact groups, the existence of a right invariant integral was proved by Haar in 1933. Then von
Neumann immediately established the uniqueness, up to a positive constant factor, of such an integral
and obtained a number of important consequences.

Fix a right invariant integral on the locally compact group G. By its uniqueness, for each a € G there is a
positive constant 8(a) defined by the identity [ f(ax)dx=¥8(a) f f(x)dx. Then §: G—>R™ is a continuous
homomorphism, called the modular function of G, which relates left and right invariance as well as
inversion. Specifically, the formula f f(x)8(x)dx defines the corresponding left invariant integral, and
S f8(x)dx= f fx~dx.

The group G is called unimodular if §(a)=1 for all a. Obviously, G is unimodular if and only if there
exists an integral which is simultaneously left and right invariant, in which case it is also invariant under
inversion. Evidently a compact group is unimodular, for the multiplicative group R* has no compact
subgroups other than {1}.

We note that in the same paper von Neumann used the existence of an invariant integral, together with
the Peter-Weyl theorem, to give an élementary and short proof of Hilbert’s fifth problem for compact
groups.

Finally, in his celebrated book [15] in 1938, Weil provided a converse. Namely, local compactness
is implied by the existence of a right invariant integral. In honor of its discoverer, an invariant integral
is called a Haar integral.



1978] ON THE EVOLUTION OF NONCOMMUTATIVE HARMONIC ANALYSIS 535

Now fix a compact group G. From the compactness, it follows that G has finite volume. Therefore,
we can assume that the invariant integral is so normalized that the volume of G is one; i.e.,

vol(G)=j;;1dx=l. (3.3)

For example, if G=T, the circle group, then

f f(x)dx=(2m)"" f > £(0)db;
G 0

and if G is a finite group of order n, then

[fax=n" 3 f(g).
G g8EG
Armed with the invariant integral, motivated by the Fourier analysis of Section 1, and aware of the
representation-theoretic facts in Section 2, we now describe the Peter—-Weyl theory.

In view of the topological nature of G, we hereafter require all representations to be continuous;
that is to say, the matrix entries are to be continuous functions on G. Let the dual object G be defined
as in Section 2, and for each class [\]€ G fix once and for all a unitary matrix-valued representation A
belonging to that class. Thus, for each x in G, A(x) is a d) X d, matrix, where d\ =deg A.

THE PETER-WEYL THEOREM. The normalized matrix entries ef)(x)=Vdy A;(x) for [\|€ G and
1<i,j < d\, form a complete orthonormal system relative to the inner product

ilfy= fG F1(0) () dx. (3.4)

The structure theory described for finite groups in Section 2 can now be transferred more or less
directly to the context of compact groups. That is to say, there are complete analogs of properties (1)
through (7), in which summation over a finite group is supplanted by integration over the compact
group.

There are a few distinct features that ought to be mentioned when G is compact but not finite. The first
concerns the introduction of infinite-dimensional spaces.

A Hilbert space is defined to be a (complex) vector space with inner product, which is complete relative
to the norm determined from the inner product. In the case at hand, the vector space C(G) of all continuous
functions on G with inner product (3.4) is not complete. Its completion is the Hilbert space L%(G) of all
(Lebesgue) square-integrable functions on G. Thus, to be technically correct in the transition from finite
groups to compact groups, one should replace €(G) by L%(G). Of course, LX(G) is infinite dimensional (if
G is not finite), and the regular representations R and £ are infinite dimensional unitary representations of G
on the space ¥'= L%(G). This is the highly original step taken by Peter and Weyl. Namely, they replaced the
counting argument (cf. formula (2.15)) for a finite group by a spectral theoretic analysis of the infinite-di-
mensional representation space L%(G). Thus, in analogy to (2.14),

LA(G)= 28 G(G)

Aleé

where each irreducible representation A of G is finite dimensional, but in general G is an infinite set. Then
(2.14) is valid as it stands; that is, each irreducible representation appears in the regular representation with
multiplicity equal to its degree.

For the reader who has some experience with spectral theory on Hilbert space, we mention the simple
idea at the heart of the proof of the Peter-Weyl Theorem. For f, and f, in L%(G), their convolution is given
by

D)= [ HONHG ™)

(cf. (2.16)). The operator £(f) on L%(G) defined by £(f)h=f+h for h€ L¥G), can be formally written as
()= ff(»)E(»)dy. This operator £(f) is called left convolution by f. Now, R(a)L(f)=L(f)R(a) for all
a€G, so the primary subspaces of the right regular representation coincide with the eigenspaces of £(f).
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The Peter-Weyl Theorem is then readily reduced to the fact that the operators £(f) are completely
continuous.

The Peter—Weyl Theorem can be rephrased in terms of Fourier analysis. The Fourier series of a
function f on G is defined as

dx
)= 32 d I fN(x) (3.5)
neé  iv=1
where the numbers
BN == [ SR dx (36)

are the Fourier coefficients of f. The series (3.5) applies to those functions f which are square-integrable
in that the norm

1/2
1= { f 1 soopes (37)
G
is finite; and equality in (3.5) is in the mean-square sense of
d/\
IfIP= 2 & 2 MW (3.8
Aeé i=1

Formula (3.8) is called the Plancherel formula for G.
Of course, when G=T is the circle group, the dual object is just the dual group of functions e,, and

formulas (3.5), (3.6), (3.7), and (3.8) reduce to the Fourier series formulas (1.7), (1.8), (1.10), and
(1.11), respectively.

More generally, let G be any compact abelian group. Then by Schur’s Lemma the irreducible
representations are all one-dimensional, and the dual object G is the dual group of all continuous
homomorphisms A of G into T. Then the Fourier coefficients f(A)= f f(x)A(x)dx are numbers, and the
Fourier series (3.5) is more simply given by f(x)=Z, c ¢ fAA(x).

Since the Plancherel formula is exceedingly important in harmonic analysis, we offer some further
elaboration. Let L*G) denote the vector space of square integrable functions on G. Motivated by
formula (3.6) we define the d) X d) matrix

fO = [ SR d, (39)

G
the matrix entries of which are the Fourier coefficients. Then the Fourier series (3.5) takes the form
fx)="3 dr(fONx)) (3.10)

neé

and the Plancherel formula (3.8) is more simply written
1A= 1/, (3.11)
Aeé
where the space C%*% of all dy X d, matrices is given the inner product

dy .
<A|B>d)\ = d)‘tr(AB*)": d)\ .21 a,~j b,j N
ij=

and the corresponding norm |4 ”3& =dytr(44*). Form the orthogonal direct sum

L¥(G)= Y, @C»*%. (3.12)

(a1eé



1978] ON THE EVOLUTION OF NONCOMMUTATIVE HARMONIC ANALYSIS 537

Then (3.11) implies the noncommutative version of the PLANCHEREL THEOREM: The mapping F : f—f
is a unitary transformation, the Plancherel transform, of L*(G) onto L*(G). In particular, the Plancherel
Theorem shows that noncommutativity in harmonic analysis resides in the noncommutativity of
matrix multiplication.

The importance of the Plancherel transform lies in the fact that it quite explicitly gives the decomposi-
tion of the right (as well as left) regular representation ?. Indeed, the equivalent representation & on
L%(G), defined by ‘R(a)f g ‘E}L(q) F-1, is easily seen to be described in terms of right multiplication by
Ma)'. Specifically, (R(a)/)X) = fONaY".

Examples: As with all abstract mathematical theories, it is important to analyze the examples to
which the abstraction applies and to enrich the theory by any additional structures which may be
present. The Peter-Weyl Theory is a case in point, for it can only be fully appreciated when combined
with the rich algebraic, geometric, and combinatoric processes that collectively comprise the
Cartan—Weyl representation theory of the compact Lie groups. Now, there exists a complete structure
theory for the compact Lie groups. Very roughly, a connected compact Lie group splits as a product,
the individual factors of which are either abelian or “simple,” and these are listed below.

1. A connected compact abelian Lie group is necessarily a torus, by which is meant a direct
product of circles.

2. The special orthogonal group SO (n) consists of all nX n real matrices g of determinant 1 such
that gg‘=1. In other words, SO (n) is the connected component of the identity matrix in the group of
all matrices that preserve the natural inner product on R”.

3. The special unitary group SU (n) is the analog over the complex field of SO (n). It consists of all
complex n X n matrices of determinant 1 such that gg*=1.

4. The compact symplectic group Sp(n) is the analog over the quaternionic division algebra H of
SO (n). Specifically, Sp(n) consists of all nX n matrices over H which preserve the natural (real) inner
product on H”.

5. The groups SO(n), SU(n), and Sp(n) form the three families of so-called classical compact
simple groups. They are simple in the sense that modulo a finite group (the center) there are no
normal subgroups. Aside from these classical groups there are only five other compact simple groups,
denoted Eg, E;, Eg, Fy, and G,. They are referred to as the exceptional compact simple groups, and
have realizations in terms of certain nonassociative algebras such as the Cayley numbers.

It is beyond the scope of this elementary introduction to go into the explicit nature of the
harmonic analysis of the compact Lie groups (although we touch upon it in the next section). Suffice
it to say that the irreducible representations were constructed algebraically, or “infinitesimally,” by
Cartan, and the formulas for the characters were calculated by Weyl, who also constructed the
representations “globally.” Although all of this was known over fifty years ago, it is still of importance
today to obtain new realizations of the representations of compact Lie groups that bear upon various
aspects of analysis, geometry, arithmetic, and mathematical physics.

Compact groups which are not Lie groups arise by suitable “limits” from Lie groups. In particular,
there are a variety of p-adic analogs of the compact simple groups, but the representation theory and
harmonic analysis of such groups is at present highly incomplete.

4. Harmonic analysis and special functions: Spherical harmonics. The classical treatises on the
special functions of mathematical physics—for example, the five-volume Bateman manuscript or
Watson’s encyclopedic Treatise on Bessel Functions—provide imposing monuments to the cleverness
of our forebears. To the purist they are often impenetrable, and their use may represent a turn of
events born of desperation. For there one finds what seems to be a tangled chaotic jungle of series
and integral representations, recurrence relations, difference and differential equations, and assorted
variations for a myriad of higher transcendental functions, if ruled by reason, clearly not by order.
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On the other hand, among physicists, engineers, and those with an applied bent, there is a familiarity
that can effect a great uplifting of the spirit. A vivid illustration is given by my erudite colleague and friend
W. J. Holman, III, who upon breaking a problem in complex analysis on a symmetric space through
esoteric methods in special functions exclaimed: “Is it not sublime! Meditate it until you can feel its
exquisite diathrodial ginglimus in every joint of your body.” An uncommon group theoretical allusion,
diathrodial ginglimus refers to that property of the jaw, unique among all the joints of the body, that it can
be both rotated and translated.

Nonetheless, from the standpoint of harmonic analysis, there is an orderly overview to a sizable
part of the literature on special functions. This approach is founded upon the Peter~-Weyl Theory, and
originates in 1929 with E. Cartan’s determination of the special functions associated with compact
Riemannian symmetric spaces. We give two examples illustrative of the general theory. The first, the
harmonics of the circle, is simply a rephrasing of the Fourier series considerations from Section 1, and
is presented for motivation. The second is a group-theoretical description of spherical harmonics.

EXAMPLE 1. We view the circle in two different ways. First, it is the 1-dimensional unit sphere S
of points x=(x,,x,) in the Euclidean plane R? having unit norm. Second, it is the rotation group
SO (2) of matrices

- _[ cos® siné
g=g(9) (—sino cos9) @1
acting on R? by the formula
xg=(x;cosf — x,sinf,x,sinf + x, cosf). 4.2)

Of course, the action of SO(2) on R? restricts to the subset S, for S! is the orbit under SO(2) of the
“north pole” 1=(1,0). That is to say, S! consists precisely of the points 1g=(cosé,sind). Let R
denote the regular representation

(R()f )(x)=f(xg) “43)

of SO(2) on the Hilbert space L%S') of square-integrable functions on S!. More familiarly,
(R(0)N)()=f(p+0) where x=(cos¢,sindp)ES! and g=g(#) €S0 (2).

Now, the two-dimensional Laplacian V2=092/9x7+92/0x2 can be rewritten in polar coordinates
as

92 19 .1 9?2
29 427 42 2
V= 2t + 207 (4.4)
from which one sees the justification in referring to the operator A=d?/df? as the Laplacian on the
circle. Namely, it is the “circular part” of V2. By the results in Section 1, the Hilbert space L*(S")

decomposes as the orthogonal direct sum

CO
LY(SYh= Y& H, 4.5)
n=0
of the eigenspaces H, of the Laplacian. Recall that Hy is the 1-dimensional null-space of A and
contains the constant functions; whereas for n > 2, H,, is the 2-dimensional eigenspace corresponding
to the eigenvalue —n? of A and having the functions cosnf and sinnf as basis. From this point of view,
H, could be called the space of circular harmonics of order n, and the variant

0
f(@)=ag+ > (a,cosnd+b,sinnd) (4.6)
n=1
of the Fourier series (1.7) is the orthogonal expansion of f in the special functions associated to the action
of SO (2) on S'. The precise relationship with the representation theory of SO (2) is expressed by the
commutation relation
R(g)A=AR(g) (47)
for g€ SO(2).
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ExamPLE 2. The preceding example has a higher dimensional generalization to the (k—1I)-
dimensional unit sphere S¥~! in the Euclidean space R¥. For simplicity, we restrict to the case k=3.

The 2-sphere S? is not a group. However, it is a homogeneous space. In fact, S 2=50(3)/S0(2).
More precisely,

S?=K\G (4.8)

that is, the space of right cosets Kg, where G=S0(3) is the rotation group on R and X is the
subgroup, isomorphic to SO (2), of matrices

cosf sinf O
k=k(@)=| —sin@ cosd 0] 4.9)
0 0 1

In finer detail, G= SO (3) is the group of proper isometries of R3; i.e., the 3 X3 matrix g is in G if and
only if || xg||=]|x|| for all xR? (alternatively, gg’=1) and det g=1. Here, ||x||=(x}+x3+x}"/? is
the norm of the point x =(x;,x,,x3) ER®. Then the unit sphere S?={xER>:||x||=1} is the orbit of
the north pole 1=(0,0,1) under G; i.e., S>’={1g:g€ G}. The subgroup of G that leaves the point 1
fixed (alternatively, the subgroup of rotations about the x;-axis) is easily seen to be the above group
K, and the mapping x =1g— Kg identifies S with the space K\G of right cosets Kg in such a way
that the action by rotation of G on §? corresponds to the natural right action of G on K\G.

Next, the 3-dimensional Laplacian V>=932/3x?+032/3x3+02/0x} can be rewritten in spherical
coordinates as

92 239 1 9 1 3?

2 —_ —_

Ve=wtre [ g 98 ("3 ) % 302] (410)
where r=||x|| and ¢ and @ are latitudinal and longitudinal coordinates on S2, respectively. In
particular, the Laplacian on the sphere is

19 (. 1 92
sing a_¢(sm¢3_¢)+ sinp 992
As in the example of the circle, A is a negative-definite self-adjoint differential operator on S2, and

the Hilbert space L%(S?) of square-integrable functions on the sphere (relative to the usual surface
integral) decomposes as the orthogonal direct sum

A @11)

o0
LX(SH)= @& H, (4.12)
n=0
of the eigenspaces H, of A. Here, the eigenvalue of A for H, is —n(n+1), and dimH,=2n+1.
The decomposition (4.12) also admits a group-theoretic interpretation, for A commutes with the
right regular representation R of SO (3) on L*(S?) in complete analogy to formulas (4.3) and (4.7).
This dual relationship can be summed up as follows:

Formula (4.12) gives both the spectral decomposition of the Laplacian on the sphere as well as the
primary decomposition of the regular representation of SO(3) on L*(S?). In particular, H, is both an
eigenspace of A, and an irreducible invariant subspace of LX(S?). The functions in H, are called the

spherical harmonics of degree n, and they are the special functions associated to the action of SO(3) on
S2.

Denote by A® the subrepresentation of R on the space H,. Then A is an irreducible representation of
SO(3) of degree 2n+ 1. These representations are all inequivalent and, in fact, exhaust the dual object
SO@3)". Now, SO(3) is homeomorphic to 3-dimensional real projective space, so the matrix entries
@n+1)"/2\{ form the Peter-Weyl basis for the Hilbert space of square-integrable functions on the
projective space. For the general case k>3, the analogous representations A® of SO(k) (i.e., those that
appear in L2(S*~ 1)) are irreducible and inequivalent, but they comprise only a small part of the full dual
SO(k)".
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The deeper aspects of the decomposition (4.12), and the connection with classical special func-
tions, are revealed by a characteristic and most striking feature. Namely, in each space H,, of spherical
harmonics there exists a particular function f,, unique up to a constant factor, which is invariant
under K; that is to say, R (k)f,=f, for all k€ K. In other words, f, is left fixed by all rotations about
the x3-axis; or equivalently, f, is a function on the sphere which is constant on parallels of latitude.
Classically, f, is called the zonal spherical function of degree n, but in modern terminology it is known
simply as a spherical function. The spherical function uniquely determines the entire space H,, for the
translates R (g)f, under SO (3) span H,,.

We can now reveal the classical identity of the spherical functions. For from (4.11) and the fact
that f, is independent of @ (it depends only upon latitude ¢), f, satisfies the differential equation

d% @ _
dTbZ +(cot¢)7$ =—n(n+1)y (4.13)
which upon the subsitution ¢=cos¢ becomes Legendre’s equation
_dy & -
(1-1¢% i 2t a7 +n(n+1)y=0. 4.14)
Thus,
J2(8,¢)=P,(cos¢) (4.15)

where P, is the Legendre polynomial of degree n. It follows that the Legendre polynomials have a
purely group theoretical formulation, so it should not be surprising that the wealth of classical
analysis relating to these special functions is put into place by means of harmonic analysis.

To hint at the general theory, the previous example is a special case of a phenomenon that applies
to certain Riemannian manifolds (compact symmetric spaces) S for which G is a transitive group of
isometries, K is the subgroup leaving fixed a base point, and A is the Laplace-Beltrami operator on S.
However, the connection with special functions persists even more generally; and as one varies the
group, space, and action through the more familiar examples, one accounts for the theory of Bessel
functions, certain other cases of the hypergeometric function, and Jacobi, Gegenbauer, Hermite, and
Laguerre polynomials. (The spherical functions for the action of SO(k) on S¥~1=S0(k)/SO(k—1)
are Gegenbauer polynomials.) For more complicated groups, the associated special functions need
not be classical. For example, for the collection of (non-compact!) real semi-simple Lie groups,
Harish-Chandra has calculated the spherical functions. To be sure, the Harish-Chandra spherical
functions form only a small part of the special functions which are crucial to his profound and
impressive theory of harmonic analysis.

5. Noncompact classical analysis: Fourier integrals. The foregoing exposition has dealt exclusively
with harmonic analysis on compact domains. However, major emphasis during the past four decades
has been placed upon the noncompact noncommutative theory, a subject which is fundamentally more
difficult than its compact counterpart and which should be viewed realistically as occupying an
extensive expanse of the current frontier in harmonic analysis.

It is to noncompact problems that we now turn, beginning with the classical commutative case.
Even in this well-known and comparatively elementary context, the first of the two major difficulties
in noncompact harmonic analysis arises. Namely, the fundamental harmonics do not occur discretely
and the function spaces do not decompose as direct sums. Rather, the harmonics form a continuum, and the
natural function spaces decompose as continuous smearings, called in the technical jargon “direct
integrals.”

Historically, the noncompact theory originates, as with the compact theory, in the partial
differential equations of mathematical physics; in particular, with the heat equation for an object,
such as a metal rod, of infinite extent. Once more, the crucial idea is due to Fourier, who, in 1811,
replaced the series representation of a solution by an integral representation, and thereby initiated the
study of Fourier integrals.
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Formally, the Fourier integral, or Fourier transform, f of a function f on the real line is defined for
all real numbers A by

f=@m™2 [ fx)e=dx, (5.1)
and f is recaptured from f by the Fourier inversion formula
f(x)=@m)~/? f * f\)e™dn. (5.2)
— 0

Clearly, these formulas bear strong analogy to formulas (1.8) and (1.7), respectively, for Fourier
coefficients and Fourier series of a function on the circle.

The constant (27) ~!/2 in (5.1) appears as a matter of convenience, in that one avoids the appearance of
a constant in the important formula (5.3) below. Group theoretically, this constant can be viewed as a
suitable normalization of the Haar integral on R.

The L!-theory of the Fourier integral treats the case in which f is integrable over the real line.
Then f is well defined. Nonetheless, the integrability of f does not imply the integrability of f (even in
the Lebesgue sense), and generalized “methods of summability” are required to give rigorous sense to
the integral in (5.2).

More to our purposes is the L2-theory. For if f is both integrable and square-integrable (i.e.,
fEL'(R)N L*R)), then f is square-integrable. Moreover, in complete analogy to the case of Fourier
series, equality in (5.2) holds in the mean-square sense and the Plancherel formula

S fopan= [ |70opax (53)

is valid. The L2-theory is summarized by the PLANCHEREL THEOREM FOR THE REAL LINE: The mapping
f—1, originally defined on L'(R)N L*(R), extends uniquely to a unitary operator %, called the Plancherel
transform, from the Hilbert space L*(R) to itself.

Let us view the L2-theory group-theoretically. The real line R under addition is a locally compact
abelian group, and the regular representation R of R on L%(R), defined by

(R(a)f )(x)=f(x+a), (54)
is unitary. Furthermore, the functions e, (x)=e™* exhaust the dual group of all continuous homomor-
phisms of R into the circle group T. To facilitate the “spectral analysis” of R, we consider the

equivalent Plancherel-transformed representation R, given by R(a)=%R(a)F'. A straightforward
calculation shows that for any a€R

(R@f)N)=e™fR) (5.5)

for all f € L*(R). Notice, in contrast to the compact case, that A is a continuous variable. Consequently,
formula (5.5) represents a continuous decomposition of R into its irreducible constituents e,. In
symbols, we write

A @
R= fR exd\ (5.6)

(in analogy to the notation for a direct sum) and say that R is the direct integral of the one-dimen-
sional representations e,. In particular, each specific value of A is measure-theoretically irrelevant, so
e, is not a subrepresentation of R in the usual sense. At best, it is an “infinitesimal” component. As a
consequence, we are led to conclude that R, or equivalently the regular representation of R, has no
irreducible subrepresentations. Alternatively, the Hilbert space L*(R) of square-integrable functions on R
possesses no irreducible invariant subspaces.

As one might expect from previous considerations, the above group theory can be replaced by
spectral theory of the Laplacian A=d?/dx? on R. For A is negative-definite (and self-adjoint) and
commutes with the regular representation. In this context, e, is an eigenfunction (specifically,
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Ae, = —A%,), but these eigenfunctions are not square-integrable. Thus, we see that the noncompact-
ness of R is manifested in a continuous spectrum for A, and the direct integral decomposition

®R)= [ ®Cepd, 57
R
underlies the spectral decomposition
a= ®(=A»ar (5.8)
R

as well as the representation-theoretic formulation (5.6).

The theory of Fourier series and integrals has a generalization, due to Weil [15], to an arbitrary
locally compact abelian group G. The dual group G consists of the continuous homomorphisms of G
into the circle group T, and G is itself a locally compact abelian group relative to pointwise
multiplication as the law of composition and the compact-open topology. Then the Fourier transform

f= [ )G dx (59)
G
is defined for all A€ G, and the inversion formula takes the form
)= [ JONx)dA (5.10)
G i

where dx and dA are suitably normalized Haar integrals on G and G, respectively. The classical
theory of Fourier analysis—exclusive of the connection with differentiation—has an extension to this
general context. Of course, when G =T, the mapping e,—n identifies G with the group Z; when
G=R, the mapping e,—A identifies G with R (so R is self-dual); and the formulas (5.9) and (5.10)
reduce to those for Fourier series and Fourier integrals, respectively.

Finally, we can at least mention the second major difficulty in noncompact harmonic analysis, a
complication that does not arise in the commutative theory. As we have indicated, the irreducible
representations of a locally compact abelian group are all one-dimensional. For compact groups we
have seen that the irreducible representations are finite-dimensional, and if the group is non-abelian
they need not be of dimension 1. However, for a group which is locally compact, but neither compact nor
abelian, one is forced to deal with irreducible representations which are infinite-dimensional.

6. Quantum mechanics and infinite-dimensional harmonic analysis. In our discussion of classical
harmonic analysis, we have hinted at the interaction with classical physics. The most striking rapport
is obtained with noncommutative harmonic analysis and quantum physics. For within a few years of
the appearance in 1925 of Heisenberg’s tour de force on “matrix mechanics,” with which the
floodgates were opened for mathematical quantum theory, the operator-theoretic basis for quantum
mechanics was well established. Moreover, it had already been shown that the quantum numbers
were parameters for representations of appropriate symmetry groups, and Weyl’s classic treatment
[13] of the connection with group theory had been published.

For our purpose of introducing infinite-dimensional representation theory, we shall examine the
intimate relationship between the HEISENBERG UNCERTAINTY PRINCIPLE

PQ-QP=—il (6.1)
and the noncompact noncommutative group G of all 3 X3 real matrices of the form
1 0 O
glrprpry)=|n2 1 0 6.2)
r3 r 1

By reason of this association, G is known as the HEISENBERG GROUP.
Formula (6.1) can be given a brief mathematical description as follows. The physical states of a
quantum mechanical system are to be viewed as vectors in an infinite-dimensional Hilbert space H,
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and the observables are Hermitian linear transformations, typically unbounded, on H. In particular,
for a dynamical system with one degree of freedom, there is the position observable Q and the
momentum observable P which satisfy the fundamental commutation relation (6.1). This relation is
interpreted physically as an expression of the uncertainty (we have normalized Planck’s constant % to
1) inherent in simultaneous measurement of position and momentum. Now, Heisenberg realized P
and Q as infinite matrices, the entries of which represented transitions between energy states. Shortly
thereafter, Schrodinger, working with wave mechanics, realized the state space H (in modern
terminology) as L*(R) and the operators P and Q as —id/dx and multiplication by x, respectively.
These competing mathematical models for quantum theory generated the obvious question: What are
all possible solutions to the Heisenberg relation (6.1)? To this question Weyl, Stone, and von
Neumann (independently) gave a group theoretical answer: Up to multiplicity and equivalence,
Schrodinger’s solution is unique. The group theory enters as follows.

In the above-mentioned book, Weyl observes that (6.1) can be converted into a group theoretical
form if one replaces P and Q by the one-parameter groups of unitary operators that they generate,
namely, U(s)=e" " and V(r)=e"2, respectively. Then U and V are unitary representations of the
additive group R on the Hilbert space H such that

U(o) V(1) U(o) V(1) '=eT (6.3)

for all 6,7 €R. Formula (6.3), which is the “global version” of the Heisenberg relation, is called the
Weyl equation. If we use script letters for Schrodinger’s solution, so (Pf)(x)= —if'(x) and (2f)(x)=
xf(x) for sufficiently smooth functions in L?(R), the corresponding solution of (6.3) is given by

(W(e)N(x)=f(x+0) and (V()f)(x)=e"(x). (6.4)

The term global is used in contrast to the term infinitesimal, the latter being referenced to differentiation.
Thus, P and Q are recaptured from U and ¥V by differentiation; specifically, P= U’(0) and Q= V"(0).

The uniqueness theorem mentioned above can now be stated with precision.
Let U and V be unitary representations of R on a Hilbert space H such that (6.3) holds. Then H is the
orthogonal direct sum of subspaces, say H,, and there is a unitary mapping A from H, to L*(R) such that

AU(0)A™'=%U(6) and AV(1)A~'=%Y(7) (6.5)

Jor all 6,7 ER, where U and V are the specific representations given by (6.4).

This result is sometimes called the UNIQUENESS THEOREM FOR THE HEISENBERG RELATIONS, but
more often is referred to as the STONE—-VON NEUMANN THEOREM. In short, the Schrodinger formulas
(6.4) give the only representations of R that satisfy the Weyl equation, up to multiplicity and (unitary)
equivalence.

We turn to the Heisenberg group G and its relationship to the previous theory. Notice from (6.2)
that there are three one-parameter subgroups of G consisting of the matrices u(r,)=g(r,,0,0),
v(ry)=g(0,r,,0), and w(r;)=g(0,0,r;), respectively. Moreover, the former two subgroups generate all
of G, for

g=w(rs)o(ro)u(r) (6.6)
for all g=g(r,r,,r3)E G, and
u(a)o(r)u(e) 'o(r) ' =w(—or) (6.7)

for all 0,7 €R.

A one-parameter subgroup of a topological group G is a homomorphism of R into G. Note that the
one-parameter subgroup w is the center of G; i.e., w(r)g=gw(r) for all r€R and g€ G.

Evidently, the Weyl equation mirrors in operators the commutation relation (6.7) in G. In view of
(6.6) it is natural to define

T(g)=e"V(r)U(r,) (6.8)
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for g€ G, where V and U are given by (6.4). Now, from (6.2) and (6.4) one can easily verify that
equation (6.8) defines a unitary representation T of G on the Hilbert space L2(R). Furthermore, this
representation illustrates the complication in noncompact noncommutative harmonic analysis alluded to at
the end of the preceding section. For T is infinite-dimensional, but also irreducible.

If T is an infinite-dimensional representation (i.e., dim ¥'= co, where V"= V), then we must refine the
notion of irreducibility. Namely, T is irreducible if there are no proper closed invariant subspaces. In the
situation at hand, although there are a number of dense subspaces of L3(R) that are invariant under T (e.g.,
the space of all continuous functions on R which vanish off some finite interval), {0} and L?(R) itself are
the only closed invariant subspaces.

From the basic representation 7, one can construct a family of representations 7) of G
. parametrized by all real numbers A+0. These are defined by the formula T)(g)=T(g,) where
a\(r1,rer3)=g(r,Ary,Ars) for all g€ G. In more detail,

(Tr(8)f)(x)=eMrs+5rd f(x 4 1)) (6.9)
for all g€ G and f € L*(R).

The mapping g—g, is an automorphism of G for each A50. Alternatively, T} is that version of T which
arises from the normalization =AM of Planck’s constant.

We can now restate the Stone-von Neumann Theorem as a characterization of the dual object G
of the Heisenberg group: With the exception of a set of 1-dimensional representations (which are
substantially uninteresting in the harmonic analysis of G; cf. formulas (6.10) through (6.13)), all the
irreducible representations of G are infinite-dimensional. More specifically, the representations T, are
unitary, irreducible, mutually inequivalent, and to within equivalence exhaust all the (non 1-dimensional)
irreducible unitary representations of G.

Note that there is a special emphasis on unitary representations. In general, a noncompact group G will
have representations (on a Hilbert space) which are not unitarizable. For such representations, there is no
fully adequate theory of harmonic analysis. Hence, one usually restricts attention to unitary representations.
In particular, G is the unitary dual, composed of the equivalence classes of irreducible unitary representa-
tions.

At this point, the better part of discretion might lead one to end the exposition. For to go further
with the harmonic analysis of G becomes quite technical. However, the Heisenberg group is in a sense
“almost abelian,” and as such it is a relatively elementary noncompact nonabelian group. Thus, we
cannot resist the temptation to illustrate the infinite-dimensional, operator-theoretic nature of non-
compact harmonic analysis. Our comments will be brief, and necessarily vague.

The Fourier transform f of a function f on G is given formally for all nonzero real numbers A by
the operator

F 0= [ ST (2)de, (6.10)
where dg = dr,dr,dr; is (bi-invariant) Haar measure on G, and f is recaptured by the inversion formula
F(@=@m 7 [ar(f WTi(2)”)NaA. (6.11)

Using classical Fourier analysis, one can show that for sufficiently smooth functions f, the trace in
(6.11) exists, and these formulas make rigorous sense. The measure dm()\)=(27)"%]A|dA on G is called
Plancherel measure for G, and the formula (which follows from (6.11))

[1/&)Pdg= [ 1IFMIPam() (6.12)
G G

is the Plancherel formula for G. Here, || f(\)|| denotes the so-called Hilbert-Schmidt norm of the
operator f(A). Finally, by means of the Plancherel formula, one obtains the decomposition
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R=[ © o Tydm(\) (6.13)
G

of the regular representation R of G as a direct integral in which each element T, of the
infinite-dimensional unitary dual appears with infinite multiplicity.

7. Concluding remarks. The preceding exposition takes us to the brink of the postwar era in
harmonic analysis. Indeed, the past three decades have witnessed a remarkable growth in our
understanding of infinite-dimensional group representations and the associated noncompact
harmonic analysis. Once again, in the interest of simplicity we shall be brief and mention but a few of
the highpoints. Here, of course, my own prejudices will be revealed. I apologize for omissions of
perhaps equally important contemporary developments that would be mentioned in a longer article.

The thrust of much of the recent work in harmonic analysis on locally compact topological groups
has been directed toward solutions to the following two fundamental problems for a noncompact
nonabelian group G.

1. Find all irreducible unitary representations of G, up to equivalence. That is, what is G ? This is
the problem of existence of fundamental harmonics.

2. Decompose the regular representation of G on L*(G). Alternatively, find the Plancherel
formula.

In stark deviation from the compact or abelian theory, there is essentially no hope for reasonable
solutions in terms of the generic noncompact nonabelian group G.

Groups for which there exists a satisfactory decomposition theory are called Type I, or less commonly
but more fittingly, zame. The definition is too technical to give here. The general abstract representation
theory of such groups has been extensively studied and is well developed. For Type I unimodular groups,
there is a general existence theorem for the Plancherel formula, due to I. E. Segal. However, for a specific
group, the abstract theory gives no clue as to the construction of the Plancherel measure, nor to the
structure of the dual.

Nonetheless, as one sees for the Heisenberg group, all is not so bleak if one considers more restrictive
classes of such groups. Regrettably, the resultant harmonic analysis is most often extremely com-
plicated. At the very least, one is forced to deal with such discomforts as interwoven combinations of
discrete and continuous decompositions, infinite-dimensional irreducible representations, and the fact
that not all elements of G appear in the Plancherel formula. We mention some of the high points.

Mackey theory. In the early 1950°s, the algebraic and measure-theoretic foundations for infinite-di-
mensional representation theory were put in place by George Mackey. The central notion is that of an
induced representation. Very roughly, Mackey’s theory reduces the representation theory of a group to
that of a normal subgroup, modulo questions of group extensions.

Harish-Chandra theory. Here one is concerned with harmonic analysis on noncompact real
semi-simple Lie groups. The early work, especially for complex groups, was done by Gelfand and
various collaborators. However, the subject is now dominated by the work of Harish-Chandra, whose
numerous papers over a span of two decades finally culminated in 1968 in the Plancherel formula for
real semi-simple groups.

Kirillov theory. In his doctoral thesis in 1962, A. A. Kirillov supplied a powerful geometric idea
which completely described the harmonic analysis of nilpotent Lie groups, and which now dominates
harmonic analysis on solvable groups. Roughly speaking, Kirillov’s theory associates to each element
of the dual of a Lie group, a so-called orbit which has the structure of a symplectic manifold.
Extensions of Kirillov’s method, by L. Auslander and B. Kostant, yielded the decomposition of the
regular representation for all tame solvable groups, as well as the more general geometric theory, due
to Kostant, of “quantization.”
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Typically, although not exclusively, the important applications of harmonic analysis (e.g., those in
physics, number theory, and noncommutative real and complex analysis) arise from the decomposi-
tion of L2(X) under the action of a group of symmetries of the space X. For such applications, the
reader is referred to the literature.

8. A Guide to Further Readings. Section 1. A more substantial introduction to Fourier series
appears in the monograph by Weiss [1]. A treatment of the subject which brings out the diverse
applications of Fourier series is given by Dym and McKean [4]. For a distribution-theoretic
presentation of Fourier series, see the text by Beals [2]. Our historical citations are drawn from
Grattan-Guiness [3] and the references therein. See also the exposition by Zygmund in [38]. The two
volumes [6] by Zygmund form the definitive scholarly work in the field of Fourier series.

Section 2. Wussing’s book [8] presents the historical development of group theory. (For a start, see
the review by W. Waterhouse, Bulletin Am. Math. Soc., 78 (1972) 385-391.) Of course there are
innumerable texts on the subject of finite groups. The book by Boerner [7] contains an elementary
treatment of the representation theory.

Section 3. A mathematically substantive account of the development of Lie theory appears in the
Historical Notes of [9].* Tidbits of philosophy and history can also be found in Weyl’s important
book [11]. See also the Historical Notes in [10] for information on the genesis of topological groups
and Haar measure. For a short contemporaneous account of the Peter-Weyl Theorem from the pen of
the master, see Weyl’s lecture [12] to the Swiss Mathematical Society in 1927. For a current point of
view, see the expository paper by G. Weiss in [38]). Weil’s book [15] contains a more extensive
treatment. The Cartan-Weyl theory is developed in Wallach [31].

Section 4. Vilenkin’s book [16] provides extensive coverage of special functions from the harmonic
analysis point of view. We refer to Stein and Weiss [17] for a classical treatment of spherical
harmonics, and to Coifman and Weiss [32] for a group theoretic presentation. The elementary article
[18] gives a somewhat more general point of view. The last chapter of Helgason’s book [29] contains
the general theory.

Section 5. Of course, there are many expositions of the classical theory, e.g., [1], [17], [20]. The
encyclopedic treatise is Titchmarsh’s book [19]. For the abstract theory, see [15], [21], and Graham’s
article in [38)]. A development that centers around the Stone-von Neumann Theorem is given by Segal
and Kunze [22].

Section 6. See the original article by von Neumann [33], the exposition by Pukanszky [20], or [22]
for the Stone—von Neumann Theorem.

Section 7. There is no royal road through contemporary infinite-dimensional representation
theory. § Most treatments or surveys are highly technical. Mackey’s article [24] surveys the field
through 1963, and the A.M.S. symposium [27] brings matters up to 1972. The textbook [23] by
Kirillov, which gives a broad introduction to current practice, contains a relatively elementary
introduction to his orbit theory. The expository paper [38] by P. Sally describes the most easily
accessible example in which Harish-Chandra’s theory applies. One might also want to take a look at
the survey [30] by Harish-Chandra, and the memoir [28] by Auslander and Moore. [34] treats

*After this paper was written, the preprint [41] by S. Helgason appeared. This is a written version of an invited
address to the A.M.S. The introductory section is a highly attractive summary of the origins of Lie theory.

11t has been brought to my attention that the reissue in 1976 of Mackey’s 1955 lectures at the University of
Chicago contains a lengthy appendix that brings [24] up to date. In this addendum one finds a survey that touches
not only upon “Mackey theory” itself, but nilpotent, solvable, and semi-simple representation theory, as well as
applications in number theory, ergodic theory, and quantum mechanics.

{Cf. the review by R. A. Kunze, Bull. Amer. Math. Soc., 84 (1978), 73-75.



1978] ON THE EVOLUTION OF NONCOMMUTATIVE HARMONIC ANALYSIS 547

number-theoretical applications, [35] concerns those in probability, and [36] is one among many
treatments of applications to physics. Dyson’s elementary article in [39] is the first place to look for
group theory in physics. See also the expositions [25] and [26] by Mackey. Extensive bibliographies
appear in [24], [27], [23], and Warner’s treatise [37].
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DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HiLL, NC 27514,

GEOMETRICAL OPTICS AND THE SINGING OF WHALES
CATHLEEN SYNGE MORAWETZ

I must begin by confessing that the title of this talk is quite a come on. I am just as fascinated as
anyone by the huge mammals that cavort in the sea and by their long mysterious and repetitive songs,
but I am not at all an authority on how they make these sounds or what they are trying to
communicate. What captured my fancy was the enormous distances sound travels in water and that
whales appear to take advantage of this.

However, even more than that I felt that here is a simple example from nature which should arouse
the applied mathematician in all of us to understanding, the analyst to rigorizing and, I hope, the
teacher to explaining. It is, therefore, to the theoretical problems of mathematical physics that I will
address myself.

That is the gist of my sermon and I am sorry that I cannot reproduce in print the beautiful
“hymns” of the whales which have been so excellently recorded.* Certain features are characteristic.
Early recordings sound like a lot of cocktail party noise and are as hard to analyze. Single whales in
bays demonstrate that they repeat their sounds over and over. It is not hard to imagine that they are
fascinated by the echoes from the walls of the bay. They also may be trying to send messages and we
shall see how. The most intriguing sound of all is the low frequency note that they produce which can
be transmitted for hundreds of miles, unlike the high frequency tones which are absorbed by the
water. This note sounds more like a motor boat than a sound made by anything so human as a whale.

Turning to the mathematics, it is necessary to begin somewhere. We plunge in with the differential
equation for the disturbance in the pressure:

b= C*Ad,

here ¢ is a function of all the space variables and time, A=div grad and c is the speed of sound given
in terms of pressure p as a function of density p by Vdp/dp . Since water is almost incompressible,
this speed is much greater in the ocean than in air. In the limit it seems A¢p=0. What in fact does this
familiar limit mean? We shall come back to this later, but meanwhile we must justify the quantity ¢ as
the speed of propagation of something and also ask how much of the something actually goes with it.

To draw these conclusions from this equation is fairly complicated and the simplest way to go
about it is to study high frequency disturbances. It is their behavior which is given by “geometrical
optics.” The helpful fact is that qualitatively they also describe not so high frequency behavior.

*The best example is “Songs of the Humpback Whale” by Roger S. Payne, Capital Records Stereo ST-620, and
early recordings were made by W. E. Chaville and W. A. Watkins at the Woods Hole Oceanographic Institute. See
also [7).

The author received her Ph.D. from New York University (Courant Institute) under the direction of K. O.
Friedrichs and (except for a year at M.LT.) has been there ever since. Her interests are in the applications of
partial differential equations, especially in fluid dynamics, transsonic flow, diffraction theory, etc. This article was
an invited address to the MAA at the 1976 Summer Meeting.— Editors
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