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Abstract. We prove a generalization of both Pascal’s Theorem and its converse, the
Braikenridge–Maclaurin Theorem: If two sets of k lines meet in k2 distinct points, and if
dk of those points lie on an irreducible curve C of degree d , then the remaining k(k − d)
points lie on a unique curve S of degree k − d. If S is a curve of degree k − d produced in
this manner using a curve C of degree d , we say that S is d-constructible. For fixed degree
d , we show that almost every curve of high degree is not d-constructible. In contrast, almost
all curves of degree 3 or less are d-constructible. The proof of this last result uses the group
structure on an elliptic curve and is inspired by a construction due to Möbius. The exposition
is embellished with several exercises designed to amuse the reader.

Dedicated to H.S.M. Coxeter, who demonstrated a heavenly syzygy: the sun
and moon aligned with the Earth, through a pinhole. (Toronto, May 10, 1994,
12:24:14)

1. INTRODUCTION. In astronomy, the word syzygy refers to three celestial bod-
ies that lie on a common line. Other interesting patterns are also sometimes called
syzygies. For example, in a triangle, the three median lines that join vertices to the
midpoints of opposite sides meet in a common point, the centroid, as illustrated in the
left diagram of Figure 1. Choosing coordinates, this fact can be viewed as saying that
three objects lie on a line: There is a linear dependence among the equations defin-
ing the three median lines. In commutative algebra and algebraic geometry, a syzygy
refers to any equation relating the generators of a module.
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Figure 1. Two syzygies: the centroid (left) and Pappus’s configuration (right)

Pappus’s Theorem, which dates from the fourth century A.D., describes another
syzygy. It is one of the inspirations of modern projective geometry.

http://dx.doi.org/10.4169/amer.math.monthly.120.10.901
MSC: Primary 14H50, Secondary 14H52

December 2013] FROM PASCAL’S THEOREM TO d-CONSTRUCTIBLE CURVES 901



Theorem 1 (Pappus). If three points A, B, and C lie on one line, and three points
a, b, and c lie on another, then the lines Ab, Bc, and Ca meet the lines aB, bC, and
cA in three new points and these new points are collinear, as illustrated in the right
diagram of Figure 1.

Pappus’s Theorem has inspired a lot of amazing mathematics. The first chapter
of a fascinating new book by Richter-Gebert [18] describes the connections between
Pappus’s Theorem and many areas of mathematics, including cross-ratios and the
Grassmann–Plücker relations among determinants.

Pappus’s Theorem appears in his text Synagogue [17], a collection of classical
Greek geometry with insightful commentary. David Hilbert observed that Pappus’s
Theorem is equivalent to the claim that the multiplication of lengths is commutative
(see, e.g., Coxeter [3, p. 152]). Thomas Heath believed that Pappus’s intention was
to revive the geometry of the Hellenic period [11, p. 355], but it wasn’t until 1639
that the sixteen-year-old Blaise Pascal generalized Pappus’s Theorem [4, Section 3.8],
replacing the two lines with a more general conic section.

Theorem 2 (Pascal). If six distinct points A, B, C, a, b, and c lie on a conic section,
then the lines Ab, Bc, and Ca meet the lines aB, bC, and cA in three new points, and
these new points are collinear.

Pascal’s Theorem is sometimes formulated as the Mystic Hexagon Theorem: If a
hexagon is inscribed in a conic, then the three points lying on lines extending from
pairs of opposite edges of the hexagon are collinear, as in Figure 2. It is not clear why
the theorem deserves the adjective mystic. Perhaps it refers to the case where a regular
hexagon is inscribed in a circle. In that case, the three pairs of opposite edges are
parallel and the theorem then predicts that the parallel lines should meet (at infinity),
and that all three points of intersection should be collinear. Thus, a full understanding
of Pascal’s Theorem requires knowledge of the projective plane, a geometric object
described in Section 2.

Figure 2. The Mystic Hexagon Theorem

Pascal’s Theorem has an interesting converse named after the British mathemati-
cians William Braikenridge and Colin Maclaurin. Braikenridge and Maclaurin seem
to have arrived at the result independently, though they knew each other and their cor-
respondence includes a dispute over priority.
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Theorem 3 (Braikenridge–Maclaurin). If three lines meet three other lines in nine
points, and if three of these points lie on a line, then the remaining six points lie on a
conic.

In 1848, the astronomer and mathematician August Ferdinand Möbius generalized
Pascal’s Theorem. Suppose that a polygon with 4n + 2 sides is inscribed in a nonde-
generate conic and we determine 2n + 1 points by extending opposite edges until they
meet. If 2n of these 2n + 1 points of intersection lie on a line, then the last point also
lies on the line. Möbius had already developed a system of coordinates for projective
figures, but surprisingly his proof relies on solid geometry. In Section 3, we prove an
extension of Möbius’s result using a significant generalization of Pascal’s Theorem and
its converse (Theorem 6): When two sets of k lines meet in k2 distinct points and dk of
these points lie on an irreducible curve C of degree d < k, then the remaining k(k − d)
points lie on a unique curve S of degree k − d . If S is a curve of degree k − d produced
in this manner using a curve C of degree d , we say that S is d-constructible. In a very
interesting article [12] in this MONTHLY, Katz asks which curves are 2-constructible.
In Section 4, following Katz’s arguments, we give a dimension-counting argument to
show that most curves of high degree are not d-constructible. In contrast, we show
that most curves of degree 3 or less are d-constructible for all d > 0. The proof of this
last result for cubics involves inscribing polygons in an elliptic curve in a surprising
manner.

2. PROJECTIVE GEOMETRY. Applying Pascal’s Mystic Hexagon Theorem
(Theorem 2) in the case where opposite sides of the hexagon are parallel, suggests
that parallel lines should meet in a point and that the collection of such intersection
points should lie on a line as we vary the pairs of parallel lines. This is manifestly false
in the Euclidean plane, but the plane can be augmented by adding points at infinity,
after which Pascal’s Theorem holds. The resulting projective plane P2 is a fascinating
object with many nice properties.

One powerful model of the projective plane identifies points in P2 with lines through
the origin in 3-dimensional space. To see how this relates to the Euclidean plane, con-
sider the plane z = 1 in 3-dimensional space as a model for R2, and note that most
lines through (0, 0, 0) meet this plane. The line passing through (x, y, 1) is identified
with the point (x, y) ∈ R2. But what about the lines that don’t meet this plane? These
are parallel to z = 1 and pass through (0, 0, 0) so they are lines in the xy-plane. Each
of these lines can be viewed as a different point at infinity, since they’ve been attached
to our copy of R2.

In 1827, Möbius developed a useful system of coordinates for points in projective
space [16], later extended by Grassmann. If we consider the punctured 3-space R3

\

{(0, 0, 0)} and the equivalence relation

(x, y, z) ∼ (λx, λy, λz)⇔ λ 6= 0,

then each equivalence class corresponds to a line in R3 through the origin. We denote
the equivalence class of points on the line through (x, y, z) by [x : y : z]. This is a
sensible notation, since the ratios between the coordinates determine the direction of
the line. Returning to our earlier model of P2, the points with z 6= 0 correspond to
points in our usual copy of R2, while the points with z = 0 correspond to points at
infinity.

If points in P2 correspond to lines through the origin, then what do lines in P2

look like? If we once again identify the plane z = 1 with R2, we see that the points
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making up a line on z = 1 correspond to lines through the origin that, together, form
a plane. Any line in R2 can be described by an equation of the form ax + by + c = 0;
the reader should check that this determines the plane ax + by + cz = 0. Thus, lines
in P2 correspond to dimension-2 subspaces of R3. In particular, the line in P2 whose
equation is z = 0 is the line at infinity.

Each curve C in the projective plane can be described as the zero-set of a homoge-
neous polynomial F(x, y, z):

C = {[x : y : z] : F(x, y, z) = 0}.

The polynomial needs to be homogeneous (all terms in the polynomial have the same
degree) in order for the curve to be well-defined (see Exercise 4.2 below). It is tradi-
tional to call degree-d homogeneous polynomials degree-d forms. The curve C is said
to be a degree-d curve when F(x, y, z) is a degree-d polynomial. We say that C is an
irreducible curve when F(x, y, z) is an irreducible polynomial. When F(x, y, z) fac-
tors, then the set C is actually the union of several component curves, each determined
by the vanishing of one of the irreducible factors of F(x, y, z).

Exercise 4. If this is the first time you’ve met projective space, you might try these
exercises to get a feel for projective space.

1. Show that the line ax + by + cz = 0 in P2 consists of all the points of the form
[x : y : 1] such that ax + by + c = 0, together with a single point at infinity (the
point [b : −a : 0]). We say that the line ax + by + cz = 0 is the projectivization
of the line ax + by + c = 0. Now show that the projectivizations of two parallel
lines ax + by + c = 0 and ax + by + d = 0 in R2 meet at a point at infinity.

2. The projectivization of the hyperbola xy = 1 in R2 is the set of points in P2

that satisfy xy − z2
= 0. Show that whether a point [x : y : z] lies on the pro-

jectivization of the hyperbola or not is a well-defined property (i.e., the answer
doesn’t depend on which representative of the equivalence class [x : y : z] we
use). Where does the projectivization meet the line at infinity?

3. Show that if a1x + b1 y + c1z = 0 and a2x + b2 y + c2z = 0 are two distinct lines
in P2, then they meet in a point P = [a3 : b3 : c3] whose coordinates are given
by the cross product,

〈a3, b3, c3〉 = 〈a1, b1, c1〉 × 〈a2, b2, c2〉.

Interpret the result in terms of the geometry of 3-dimensional space. Similarly,
show that if P1 = [a1 : b1 : c1] and P2 = [a2 : b2 : c2] are two points in P2, then
the line through P1 and P2 has equation a3x + b3 y + c3z = 0, with a3, b3, and
c3 as above. Describe how to phrase these results for lines and points in R2.

4. Pascal’s Theorem predicts that if a regular hexagon is inscribed in a circle, then
the three pairs of opposite edges intersect in three collinear points. Which line
do the three points lie on? Is it surprising that it doesn’t matter where in the plane
the circle is centered?

5. Show that if F(x, y, z) = 0 is a homogeneous polynomial equation defining a
curve C ⊂ P2, then a point P ∈ C is smooth (that is, there is a uniquely-defined
tangent line to C at P) if and only if ∇F(P) 6= 0. (Hint: For which points P is
there a tangent plane to the level surface in R3 given by F = 0?)

6. The polynomial P(x0, x1, x2, y0, y1, y2) is said to be bihomogeneous in the vari-
ables xi and yi if P is homogeneous in the remaining variables when considering
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all the x-variables or all the y-variables as constants. Show that if P is bihomo-
geneous, then the set of points ([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2

× P2 such that
P(x0, x1, x2, y0, y1, y2) = 0 is well-defined.

7. There is an interesting duality between points and lines in P2. The dual of the
point P = [a : b : c] ∈ P2 is the line P̌ ⊂ P2, with equation ax + by + cz = 0,
and vice-versa.

(a) Show that a line L : ax + by + cz = 0 in P2 goes through two points P1 6=

P2, if and only if the dual point Ľ = [a : b : c] lies on the intersection of the
two dual lines P̌1 and P̌2.

(b) It turns out that the duals of all the tangent lines to an irreducible conic C
form a collection of points lying on a dual irreducible conic Č , and vice-
versa (see Bashelor, Ksir, and Traves [1] for details). Show that dualizing
Pascal’s Theorem gives Brianchon’s Theorem: If an irreducible conic is in-
scribed in a hexagon, then the three lines joining pairs of opposite vertices
intersect at a single point.

Projective space P2 enjoys many nice properties that Euclidean space R2 lacks.
Many results are easier to state and more elegant in projective space than in Euclidean
space. For instance, in Euclidean space two distinct lines meet in either one point or in
no points (in the case where the two lines are parallel). By adding points at infinity to
Euclidean space, we’ve ensured that any two distinct lines meet in a point. This is just
the first of a whole sequence of results encapsulated in Bézout’s Theorem.

Theorem 5 (Bézout’s Theorem). If C1 and C2 are curves of degrees d1 and d2 in the
complex projective plane P2

C sharing no common components, then they meet in d1d2

points, counted appropriately.

Bézout’s Theorem requires that we work in complex projective space; in P2
R, two

curves may not meet at all. For instance, the line y − 2z = 0 misses the circle x2
+

y2
− z2
= 0 in P2

R; the points of intersection have complex coordinates. In the rest
of the paper, we’ll work in complex projective space (denoted P2) so that we can
take advantage of Bézout’s Theorem. The points of P2 correspond to one-dimensional
subspaces of C3.

To say what it means to count points appropriately, requires a discussion of in-
tersection multiplicity. This can be defined in terms of the length of certain modules
[8], but an intuitive description will be sufficient for our purposes. When two curves
meet transversally at a point P (there is no containment relation between their tangent
spaces), then P counts as 1 point in Bézout’s Theorem. If the curves are tangent at
P or if one curve has several branches passing through P , then P counts as a point
with multiplicity. One way to determine the multiplicity of P is to look at well-chosen
families of curves C1(t) and C2(t) so that C1(0) = C1 and C2(0) = C2, and to count
how many points in C1(t) ∩ C2(t) approach P as t goes to 0. For instance, the line
y = 0 meets the parabola yz = x2 in one point P = [0 : 0 : 1]. Letting C1(t) be the
family of curves y − t2z = 0 and letting C2(t) be the family consisting only of the
parabola, we find that if t 6= 0, then C1(t) ∩ C2(t) = {[t : t2

: 1], [−t : t2
: 1]}; so two

points converge to P as t goes to 0. In this case, P counts as two points. The reader
interested in testing their understanding could check that the two concentric circles
x2
+ y2
− z2
= 0 and x2

+ y2
− 4z2

= 0 meet in two points, each of multiplicity two.
More details can be found in Fulton’s lecture notes [8, Chapter 1].
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It is traditional to call this result Bézout’s Theorem because it appeared in his
widely-circulated and highly-praised book.1 However, Isaac Newton proved the re-
sult over 80 years before Bézout’s book appeared! Both Etienne Bézout (1730–1738)
and Charles Julien Brianchon (1783–1864) had positions with the French military. The
18th- and 19th-century French military played an interesting role in supporting the de-
velopment and teaching of mathematics. As Examiner of the Guards of the Navy in
France, Étienne Bézout was responsible for creating new textbooks for teaching math-
ematics to the students at the French Naval Academy. Kirwan [13] gives a nice proof
of Bézout’s Theorem.

We can also construct higher-dimensional projective spaces. Naturally, we add
points at infinity to Cn to create n-dimensional projective space Pn . As in the two-
dimensional case, points in Pn can be identified with one-dimensional subspaces of
Cn+1 and each point is denoted using homogeneous coordinates [x0 : x1 : . . . : xn].

Higher projective spaces arise naturally when considering moduli spaces of curves
in the projective plane. For instance, consider a degree-2 curve C given by the formula

a0x2
+ a1xy + a2xz + a3 y2

+ a4 yz + a5z2
= 0. (1)

Multiplying the formula by a nonzero constant gives the same curve, so the curve C
can be identified with the point [a0 : a1 : a2 : a3 : a4 : a5] in P5. More generally, letting
Rd be the vector space of degree-d homogeneous polynomials in three variables, the
degree-d curves in P2 are identified with points in the projective space P(Rd), where
we identify polynomials if they are nonzero scalar multiples of one another. A basis of
Rd is given by the D =

(d+2
2

)
monomials of degree d in three variables, so the degree-d

curves in P2 are identified with points in the projective space P(Rd) ∼= PD−1.
Returning to the case of degree-2 curves in P2, if we require C to pass through

a given point, then the coefficients a0, . . . , a5 of C must satisfy the linear equation
produced by substituting the coordinates of the point into (1). Now, if we require C to
pass through five points in P2, then the coefficients must satisfy a homogeneous system
of five linear equations in six variables. The Rank-Nullity Theorem shows that such a
system always has a non-trivial solution: There is a conic through any five points in
P2. If the points are in general position (so that the resulting system has full rank), then
the system has a one-dimensional solution space and so there is a unique conic passing
through all five points (see [1] for details).

The Zariski topology is the coarsest topology that makes polynomial maps from
Pm to Pn continuous. More concretely, every homogeneous polynomial F in n + 1
variables determines a closed set in Pn

V(F) = {P ∈ Pn
: F(P) = 0},

and every closed set is built by taking finite unions and arbitrary intersections of such
sets. Closed sets in the Zariski topology are called varieties. The nonempty open sets
in this topology are dense; such a set is not contained in a proper subset of the form
V(F). We’ll say that a property holds for almost every point in Pn if it holds on a
dense Zariski-open set in Pn . More details on the Zariski topology can be found in
Shafarevich [19, Section 4.1].

1Both the MathSciNet and Zentralblatt reviews of the English translation [2] are entertaining. The assess-
ment in the MathSciNet review is atypically colorful: “This is not a book to be taken to the office, but to be
left at home, and to be read on weekends, as a romance”, while the review in Zentralblatt Math calls it “an
immortal evergreen of astonishing actual relevance”.
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3. AN EXTENSION OF PASCAL’S THEOREM. We start this section by estab-
lishing a significant generalization of both Pascal’s Theorem and the Braikenridge–
Maclaurin Theorem.

Theorem 6. Let F(x, y, z) = 0 and G(x, y, z) = 0 define two curves of degree k and
assume that these curves meet in a set 0 of k2 distinct points. If H(x, y, z) = 0 defines
an irreducible curve C of degree d > 0 that passes through kd of the points in 0, then
there is a curve S = 0 of degree k − d that passes through the remaining k(k − d)
points in 0 \C. Moreover, S = 0 is the unique curve of degree k − d containing 0 \C,
if G factors into distinct linear forms G = G1 · · ·Gk .

The first part of the following proof is due to Kirwan [13, Theorem 3.14]. Katz [12,
Theorem 3.1] gives the proof of the case of Max Noether’s Theorem discussed in the
second paragraph.

Proof. Let [a : b : c] be a point on C but not in 0, and define a curve X of degree k
by the equation M(x, y, z) = 0, where

M(x, y, z) = G(a, b, c)F(x, y, z)− F(a, b, c)G(x, y, z).

The degree-k curve X meets the degree-d curve C in at least kd + 1 points, namely the
kd points of 0 ∩ C and the point [a : b : c], so by Bézout’s Theorem, C and X must
share a common component. Since C is irreducible, M(x, y, z) = H(x, y, z)S(x, y, z)
for some degree k − d form S. Since M vanishes on 0, the curve defined by S = 0
must contain all the k(k − d) points of 0 off C .

Now, we assume that G has k distinct linear factors G1, . . . ,Gk , and show that
any degree-k form N defining a curve that contains 0 must satisfy N = aF + bG
for suitable constants a and b. This is a special case of a result that Max Noether
called the Fundamental Theorem of Algebraic Functions, though today it is known by
a more technical name, the AF + BG Theorem. Both N and F have the same zeros
when restricted to G1 = 0, so for some constant a, N − aF vanishes identically on
the first line G1 = 0, and N − aF = G1 Qk−1 for some degree k − 1 form Qk−1. Now,
Qk−1 vanishes at all points of 0 off the first line G1 = 0. In particular, for each of
the remaining lines G i = 0, Qk−1 vanishes at k points on the line, hence G i divides
Qk−1. Since the forms G2, . . . ,Gk are relatively prime, Qk−1 = bG2 · · ·Gk for some
constant b and N = aF + bG.

Now, if S1(x, y, z) and S2(x, y, z) are two forms of degree k − d vanishing on
0 \C , then H S1 = a1 F + b1G and H S2 = a2 F + b2G for constants a1, a2, b1, and b2.
Then H must divide both b2 H S1 − b1 H S2 = (b2a1 − b1a2)F and a2 H S1 − a1 H S2 =

(a2b1 − a1b2)G. Now if a2b1 − a1b2 6= 0, then the curve C given by H = 0 must be
contained in the set of points 0 = (F = 0) ∩ (G = 0), a contradiction. So a2b1 −

a1b2 = 0 and the forms H S1 and H S2 are scalar multiples of one another. It follows
that the curves defined by S1 = 0 and S2 = 0 are identical.

In the rest of the paper we will be interested in the case where both of the forms
F and G factor completely into linear forms, in which case their zero-sets determine
collections of k blue and k red lines, respectively. If the polynomial HS in Theorem 6
also factors completely into linear forms, then the resulting arrangement of lines—in
which each point of intersection lies on a line from HS = 0, a red line, and a blue line—
is called a multinet, an intriguing combinatorial and geometric object in the theory of
hyperplane arrangements (see Falk and Yuzvinsky [7] for details on the connection
between multinets and resonance varieties).

December 2013] FROM PASCAL’S THEOREM TO d-CONSTRUCTIBLE CURVES 907



Pascal’s Mystic Hexagon Theorem, Theorem 2, follows from an easy application of
Theorem 6. Color the lines Ab, Bc, and Ca red and the lines aB, bC , and cA blue. A
degree-2 curve passes through six of the intersection points of the blue and red lines, so
the remaining three points must lie on a degree-1 curve—they are collinear. To prove
the Braikenridge–Maclaurin Theorem, Theorem 3, just color one collection of three
lines blue and the other collection red, and apply Theorem 6.

Theorem 6 can be extended to cover the case where the points in 0 are not distinct;
however, this would divert us to a discussion of scheme theory. Details can be found in
David Eisenbud, Mark Green, and Joe Harris’s amazing survey paper [6, Section 1.3]
on the Cayley–Bacharach Theorem, a vast generalization of Theorem 6. They connect
the result to a host of interesting mathematics, including the Riemann–Roch Theorem,
residues, and homological algebra. Their exposition culminates in the assertion that
the theorem is equivalent to the statement that polynomial rings are Gorenstein. The
Cayley–Bacharach Theorem has many practical applications; see, for example, Gold,
Little, and Schenck [9] for an application in algebraic coding theory.

Rather than state the full Cayley–Bacharach Theorem, we recall an early version of
the theorem, first proved by Michel Chasles: If two plane cubic curves meet in nine
distinct points, then any other cubic passing through eight of these points must also
pass through the ninth. Because of its content, the result is often called the 8⇒ 9 The-
orem. Chasles used the 8⇒ 9 Theorem to prove Pascal’s Mystic Hexagon Theorem.
The theorem can also be used to prove that the group law on an elliptic curve is asso-
ciative. Terrence Tao recently gave a simple, elementary proof of the 8⇒ 9 Theorem
in his blog.2

Now we turn to Möbius’s generalization of Pascal’s Theorem [15]. Möbius proved
two results in this direction. In the first, a polygon with 4n + 2 sides is inscribed in
a irreducible conic, and we determine 2n + 1 points by extending opposite edges un-
til they meet. If 2n of these 2n + 1 points of intersection lie on a line, then the last
point also lies on the line. Using Theorem 6 allows us to extend Möbius’s result, re-
placing the constraint on the number of sides of the polygon by the constraint that the
intersection points are distinct.

Theorem 7. Suppose that k red lines and k blue lines meet in a set 0 of k2 distinct
points, with 2k points of 0 lying on a conic Q. If a line L contains k − 1 of the k2

− 2k
points of 0 off Q, then L contains one other point of 0 off Q as well.

To see the connection with Möbius’s result, suppose that a polygon with 2k =
4n + 2 sides is inscribed in an irreducible conic. Working around the perimeter of the
polygon, color the edges alternately red and blue. Since there are 4n + 2 sides, oppo-
site sides have opposite colors. Extending the edges to lines, consider the k = 2n + 1
points of intersection of the pairs of opposite sides. If k − 1 = 2n of these points lie
on a line L , then Theorem 7 shows that another of the points in 0 lies on L as well.
Since the points of 0 are distinct, the only possibility is that the remaining pair of
corresponding edges intersect on the line L .

Proof of Theorem 7. Let F = F1 · · · Fk and G = G1 · · ·Gk be completely reducible
forms of degree k whose zero-sets determine the union of the red lines and the union
of the blue lines, respectively. Since there are 2k points of 0 on the conic Q, Theorem
6 guarantees the existence of a degree-(k − 2) curve C1, so that C1 passes through the
remaining k2

− 2k points of 0 off Q. Now, C1 meets the line L in at least k − 1 points,
so Bézout’s Theorem forces L to be a component of C1. Write C1 = C2 ∪ L , where

2See Tao’s July 15, 2011 post at http://terrytao.wordpress.com.
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C2 is a curve of degree k − 3. Now, D = C2 ∪ Q is a curve of degree k − 1 that passes
through all points of 0 off L . We’ll assume that L contains only k − 1 points of 0
off Q, and derive a contradiction. Under this assumption, D contains k2

− (k − 1) =
k(k − 1) + 1 points of 0. So the degree-(k − 1) curve D meets the degree-k curve
F = 0 in more than k(k − 1) points. It follows that D and (F1 = 0) ∪ · · · ∪ (Fk = 0)
share a common component. Relabeling the linear forms in F if necessary, assume
that the common component is Fk = 0. Note that each red line Fi = 0 only contains k
points of 0: the intersections of Fi = 0 with the k blue lines. Removing Fk = 0 from D
produces a curve D1, which meets (F1 = 0)∪ · · · ∪ (Fk−1 = 0) in at least k(k − 2)+ 1
points. Carrying on in this fashion produces a curve Dk−2 of degree 1 that meets the
line (Fk = 0) in precisely k + 1 points of 0. This is impossible—the red line Fk = 0
only contains k points of 0—so L must contain another point of 0 off Q. If L contains
more than k points of 0, then it must share a common component with both F and G,
and hence one of the blue lines must equal one of the red lines. Since the blue and red
lines intersect in a finite set of points, this is impossible. So there are precisely k points
of 0 on L .

Möbius also proved a result involving two polygons inscribed in a conic. Consider
two polygons P1 and P2, each with 2k edges, inscribed in a conic, and associate one
edge from P1 with one edge from P2. Working counterclockwise in each polygon, as-
sociate the other edges of P1 with the edges of P2. Extending these edges to lines,
Möbius proved that if 2k − 1 of the intersections of pairs of corresponding edges lie
on a line, then the last pair of corresponding edges also meet in a point on this line.
Assuming that the points of intersection of the lines are distinct, this result also fol-
lows from Theorem 6. A similar construction using a pair of inscribed polygons will
reappear when we consider constructible cubics in the next section.

4. CONSTRUCTIBLE CURVES. Let’s take a constructive view of Theorem 6.

Definition 8. A curve S of degree t is d-constructible if there exist d + t red lines
`1, . . . , `d+t and d + t blue lines L1, . . . , Ld+t , so that: (a) 0 = {`i ∩ L j : 1 ≤ i, j ≤
d + t} consists of (d + t)2 distinct points; (b) d(d + t) of the points in 0 lie on a
degree-d curve C ; and (c) the remaining t (d + t) points in 0 lie on S. Setting R =
C[x, y, z], we say that the d-construction is dense in degree t if there is a nonempty
Zariski-open set U ⊂ P(Rt) so that every degree-t curve in U is d-constructible.

The two curves S and C are said to be directly linked via the set 0. The notion of
linkage has important applications in the study of curves. Indeed, special properties of
one curve are reflected in special properties of the other curve. This point of view leads
to the beautiful subject of liaison theory. The last chapter of Eisenbud [5] introduces
this advanced topic in commutative algebra; more details can be found in Migliore and
Nagel’s notes [14].

We’ll restrict our attention in the rest of the paper to the question of which curves
are d-constructible. A simple dimension count shows that most curves of high degree
are not d-constructible, so the d-construction is not dense in high degrees.

Theorem 9. If d ≥ 3, then the d-construction is not dense in degrees d + 4 or higher.
The 2-construction is not dense in degrees five or higher. The 1-construction is not
dense in degrees six or higher.

Proof. The curves of degree t are parameterized by a projective space of dimension(t+2
2

)
− 1 = (t2

+ 3t)/2. Let’s try to parameterize the set of d-constructible curves of
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degree t . For each such curve, there is a curve C of degree d , d + t blue lines, and
d + t red lines, as in Definition 8. There are

(d+2
2

)
− 1 degrees of freedom in choosing

the curve C and 2(d + t) degrees of freedom in choosing the blue lines. Since the
red lines must meet C in the d(d + t) points of intersection of the blue lines with C ,
there are finitely many choices for the red lines (when d ≥ 2) and so these do not add
anything to our dimension count. Altogether, the parameterizing set has dimension
(d2
+ 3d + 4(d + t))/2. Since this quantity is smaller than (t2

+ 3t)/2 when t ≥ d +
4, the first statement must hold. In fact, the dimension of the 2-constructible curves
of degree t is 9+ 2t , which is less than (t2

+ 3t)/2 when t ≥ 5, proving the second
claim. When d = 1, there are not just finitely many choices for the red lines—each red
line must pass through one point where the t + 1 blue lines meet the line C . In this
case, two parameters determine the line C , t + 1 parameters determine the points in 0
on C , and 2(t + 1) parameters determine the slopes of the blue and red lines. So the
1-constructible curves can be parameterized by a space of dimension 3t + 5. This is
smaller than (t2

+ 3t)/2 when t ≥ 6, proving the last claim.

It is easy to see that all lines are d-constructible. For instance, if L is a line, then
choose any set of d + 1 points on L and pick red and blue lines that pass through
these points and meet in (d + 1)2 distinct points. Then Theorem 6 shows that there
exists a curve C of degree d passing through the remaining points, showing that L is
d-constructible.

As well, for all d > 0, the d-construction is dense in degree 2. The defining poly-
nomial of any conic can be expressed in the form [x, y, z]A[x, y, z]T , where A is a
symmetric matrix. The conic is irreducible if and only if rank(A) = 3. So the set of ir-
reducible conics is Zariski-open; it is the complement of the hypersurface det(A) = 0
in P(R2) ∼= P5. Now it is easy to show that any irreducible conic Q is d-constructible.
Just inscribe a polygon with 2(d + 2) edges in Q, color the edges alternately red and
blue and, if necessary, move the vertices so that the extensions of the red and blue
edges meet in distinct points, 0. Theorem 6 shows that the points in 0 that lie off Q
form a degree-d curve, so Q is d-constructible.

Using the group law on elliptic curves allows us to show that for each d , the d-
construction is dense in degree 3. An elliptic curve is a smooth plane curve of degree
3. In particular, each elliptic curve is irreducible; it is not the union of other curves.
The points on a fixed elliptic curve E form an abelian group; the sum of three distinct
points is equal to the identity element in the elliptic curve group if and only if they are
collinear.3 Figure 3 illustrates the group law on the elliptic curve E given by y2z −
x3
+ xz2

= 0. The point at infinity [0 : 1 : 0] ∈ E serves as the identity element 0E .
The three points A, B, and C are collinear, so A + B + C = 0E and C = −(A + B).
The vertical line through C and 0E meets the curve in one more point D, and since
C + 0E + D = 0E , D equals −C = A + B.

Theorem 10. Every elliptic curve is d-constructible for each d > 0.

Proof. Given an elliptic curve E , we produce a set of d + 3 blue lines and d + 3 red
lines meeting in a set of (d + 3)2 distinct points 0 with 3(d + 3) of them on E . Then
by Theorem 6, there exists a curve S of degree d through the points on 0 \ E , and so
E is d-constructible.

To produce the red and blue lines, we start with d + 4 properly selected points
A0, B0, P1, P2, . . . , Pd+2 on E (we’ll say more on how to pick the points later). We’ll

3Two of the points are the same if and only if the line is tangent to E at this point. All three points are equal
(to Q, say) if and only if Q is a flex point—the tangent line to E at Q intersects E with multiplicity 3.
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Figure 3. The group law on an elliptic curve

use these points to produce a sequence of auxiliary points {As, Bs}(1 ≤ s ≤ d + 2)
and 0 will contain all the points As and Bs , together with the points P1, . . . , Pd+2.
The group law on E helps determine the final point Q ∈ 0. The precise construction
breaks into two cases depending on the parity of d .

When d is even, let A0 and B0 be arbitrary points on E . For 0 ≤ s ≤ d + 1, let As+1

be the third point of intersection of E with the line through As and Ps+1, and let Bs+1

be the third point of intersection of E with the line through Bs and Ps+1. The points As

and Bs are the vertices of a polygon inscribed in the elliptic curve, depicted in Figure
4. In the picture, each edge with endpoints labeled a and b and midpoint labeled c
represents a line that passes through a, b, and c. The dotted edges correspond to blue
lines and the solid edges correspond to red lines.

Ad+1

Ad+2

Ad

Pd+1

Pd+2

P1

P2Pd+1

Pd+2

A2
A1

Bd+2

Bd+1
Bd B2

B1

B0

P2

P1

Q

A0

Q

Figure 4. A polygon with 2(d + 3) vertices inscribed in an elliptic curve

Figure 4 suggests that the line through Ad+2 and B0 meets E at the same point, Q,
where the line through Bd+2 and A0 meets E . To see this, first note that

A0 + A1 + P1 = 0E ⇒ A1 = −A0 − P1,

A1 + A2 + P2 = 0E ⇒ A2 = −A1 − P2 = A0 + P1 − P2,

...

Ad+1 + Ad+2 + Pd+2 = 0E ⇒ Ad+2 = A0 + P1 − P2 + · · · − Pd+2,
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and similarly, Bd+2 = B0 + P1 − P2 + · · · − Pd+2. Then

Q = −B0 − Ad+2

= −B0 − (A0 + P1 − P2 + · · · − Pd+2)

= −A0 − (B0 + P1 − P2 + · · · − Pd+2)

= −A0 − Bd+2.

It follows that Q ∈ E is collinear with B0 and Ad+2, as well as with A0 and Bd+2.
Note that each point As and each point Bs lie on the intersection of one blue and

one red line. Because d is even, the number of edges from A0 to B0 is odd, so that each
point Ps (and the point Q) also lie on both a red and a blue line. So the red and blue
lines intersect E in the subset 0 consisting of all the points As and Bs , together with
the points P1, . . . , Pd+2, and Q.

Figure 4 is misleading when d is odd, because there are an even number of edges
from A0 to B0, so each point Ps occurs on two lines of the same color. In this case, we
adopt Möbius’s approach: We inscribe two polygons in the elliptic curve, each with
d + 3 vertices, as in Figure 5.

Ad+1

Ad+2

Ad

Pd+1

Pd+2

P1
P3

Pd+1
Pd+2

A2
A1

Bd+2

Bd+1
Bd

B2
B1

B0

P2

P1

Q

A0

Q
P4

B3

B4

P2
P3

P4

A4

A3

Figure 5. Two polygons, each with d + 3 vertices, inscribed in an elliptic curve

To be precise, let A0 and B0 be arbitrary points on E . Let B1 be the third point of
intersection of E with the line through A0 and P1, and let A1 be the third point of
intersection of E with the line through B0 and P1. As in the d even case, for 1 ≤ s ≤
d + 1, let As+1 be the third point of intersection of E with the line through As and Ps+1,
and let Bs+1 be the third point of intersection of E with the line through Bs and Ps+1.

Once again, the line through Ad+2 and B0 meets E at the same point, Q, where
the line through Bd+2 and A0 meets E , as depicted in Figure 5. To see this, we use
the same method as in the case where d is even, though the computations are slightly
different. If we set T = −P1 + P2 − P3 + · · · − Pd+2, then Ad+2 = −B0 + T and
Bd+2 = −A0 + T , so

Q = −B0 − Ad+2 = −B0 + (B0 − T ) = −A0 + (A0 − T ) = −A0 − Bd+2,

from which we conclude the collinearity claims. It follows that when d is odd, the red
and blue lines intersect the elliptic curve E in the subset 0 consisting of all the points
As and Bs , together with the points P1, . . . , Pd+2, and Q.
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It remains to show that, no matter what the parity of d , if we pick the points
A0, B0, P1, P2, . . . , Pd+2 carefully on E , we can ensure that the intersection points of
the red and blue lines are distinct. When we dealt with conics, it was possible to move
the vertices of the polygons independently to ensure that the points of intersection
were distinct, but in the case of cubics the position of one vertex affects all the others.
Instead, we give an algorithm that produces a set of lines satisfying a stronger, color
blind, statement: We can arrange to make the points of intersection of any two lines
distinct, irrespective of their color. At step 0, pick distinct points A0 and B0 on E .
For step s (s = 1, . . . , d + 1) we choose the next point Ps+1 and form the red and
blue lines As Ps+1 and Bs Ps+1; these in turn determine the points As+1 and Bs+1 on E .
Let 0s be the collection of points At , Bt , Pt with t ≤ s, together with all the points
of intersection of the (red and blue) lines already constructed. We may assume that
the points in 0s are distinct and we aim to pick Ps+1 so that the points in 0s+1 are
distinct as well. To do this, we will show that if the points in 0s+1 are not distinct, then
Ps+1 ∈ E must lie on a (finite) union of lines. Since E is irreducible, these lines meet
E in finitely many points, and so it suffices to pick Ps+1 ∈ E outside of this finite set.

The new points in 0s+1 that are not obviously in 0s are Ps+1, As+1, Bs+1, and all the
points of intersection of the lines As Ps+1 and Bs Ps+1 with the previously constructed
red and blue lines. If any of these new points equal a point in 0s , then Ps+1 lies on a
line joining a point in 0s to either As or Bs (here, the line joining As or Bs to itself
should be interpreted as the tangent line to E). As well, if one of the points Ps+1, As+1,

or Bs+1 lies on a previously constructed red or blue line, then, since that point is also
on E , it must equal one of Pt , At , or Bt for t ≤ s, and so Ps+1 must again lie on a
line joining As or Bs to a point of 0s . This last case includes the situation where the
two new lines are coincident with a previously constructed line, since Ps+1 is the only
point on both new lines. So it remains to determine when Ps+1, As+1, and Bs+1 are
distinct. If Ps+1 = As+1, then As + 2Ps+1 = As + Ps+1 + As+1 = 0E , so Ps+1 lies on a
line tangent to E that passes through As . The number of lines tangent to a nonsingular
curve that passes through a point is independent of the point and is called the class of
the curve; the class of E is six (see Fulton [8]). Similarly, if Ps+1 = Bs+1, then Ps+1

lies on a line tangent to E through Bs . It turns out that As+1 cannot be equal to Bs+1;
if As+1 = Bs+1, then canceling terms in As + Ps+1 + As+1 = 0E = Bs + Ps+1 + Bs+1

forces As = Bs , which contradicts our assumption that the points in 0s are distinct.
For s = 1, . . . , d + 1, the points in 0s+1 are distinct as long as Ps+1 does not lie on

a line joining As or Bs to a point in 0s , or on a line through As or Bs that is tangent
to E . In the final stage of the construction (step s = d + 1) we need to take additional
precautions with the choice of Ps+1. In choosing Pd+2, we not only determine lines
Ad+1 Pd+2 and Bd+1 Pd+2, but also determine lines A0 Bd+2 and B0 Ad+2 and the point
Q ∈ E on their intersection, as illustrated in Figure 6.

Ad+1

Ad+2

Pd+2

A0

Bd+2

Bd+1

B0

Q

Figure 6. Pd+2 determines Ad+2, Bd+2, and Q
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If Q ∈ 0d+1, then

Bd+2 ∈ 1 = {p ∈ E : p lies on a line joining A0 or B0 to a point of 0d+1}.

Thus, Pd+2 lies on a line joining Ad+1 or Bd+1 to a point of 1. This case includes the
situation where Q ∈ E lies on a previously constructed line, because then the point of
intersection is in E and so is in 0d+1. If one of the new lines passes through a point of
intersection of the previous lines, then again Pd+2 must lie on a line joining Ad+1 or
Bd+1 to a point of 1. If Q = Ad+2, then 2Ad+2 + B0 = 0E , so

Ad+2 ∈ 3 = {p ∈ E : p lies on a tangent line to E that passes through A0 or B0}.

It follows that Pd+2 lies on a line joining either Bd+1 or Ad+1 to a point of 3 (sim-
ilarly, if Q = Bd+2, then the same conclusion holds). Finally, if Q = Pd+2, then
A0 + Q + Bd+2 = 0E = Bd+1 + Pd+2 + Bd+2 and canceling terms gives A0 = Bd+1,
which is impossible by our construction, since all the points of 0d+1 are distinct.

So the points in 0 = 0d+2 ∪ {Q} are distinct as long as Pd+2 does not lie on a line
joining Ad+1 or Bd+1 to a point in 0d+1 ∪1 ∪3 or on a line through Ad+1 or Bd+1

that is tangent to E . By avoiding poor choices of the points Ps , we can ensure that all
the red lines intersect the blue lines in distinct points. This completes the proof that
each elliptic curve is d-constructible.

Corollary 11. The d-construction is dense in degree 3.

Proof. To show that the d-construction is dense in degree 3, it is enough to show that
the elliptic curves form a dense open set in the set P(R3) ∼= P9 parameterizing all
degree-3 curves. This is well known, but we sketch the proof. Consider the set

C = {(F, P) ∈ P(R3)× P2
: P is a singular point of the curve F = 0}.

One way to check whether a point P is singular on the level curve F = 0 is to check
whether ∇F(P) is zero—in this case, there is no well-defined tangent line (see Ex-
ercise 4.5). Since ∇F(P) is a bihomogeneous polynomial, the set C is Zariski-closed
in the product of projective spaces P(R3)× P2 (see Exercise 4.6 and Shafarevich [19,
Section 5.1] for details). Now, the image of a projective variety under the projection
π1 : P(R3)× P2

→ P(R3) is also Zariski-closed (see Shafarevich [19, Section 5.2] for
details), so the set π1(C) of singular degree-3 curves is Zariski-closed. It follows that
the set of smooth (nonsingular) curves is Zariski-open, and hence dense, in P(R3).

Theorem 9 suggests that for all d , the d-construction is also dense in degree 4.
Proving this result seems to require that we inscribe polygons in degree-4 curves, but
this appears to be difficult to do in general.
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