11608. Proposed by D. Aharonov and U. Elias, Technion - Israel Institute of Technology, Haifa, Israel. Let f and g be functions on \mathbb{R} that are differentiable $n+m$ times, where n and m are integers with $n \geq 1$ and $m \geq 0$. Let $A(x)$ be the $(n+m) \times(n+m)$ matrix given by

$$
A_{j, k}(x)= \begin{cases}\left(f^{k}(x)\right)^{(j-1)}, & \text { if } 1 \leq j \leq n \\ \left(g^{k}(x)\right)^{(j-1-n)}, & \text { if } n<j \leq n+m,\end{cases}
$$

Let $P=\prod_{r=1}^{n-1} r!\prod_{q=1}^{m-1} q!$. Prove that

$$
\operatorname{det} A(x)=P f(x)^{n} g(x)^{m}[g(x)-f(x)]^{m n} f^{\prime}(x)^{n(n-1) / 2} g^{\prime}(x)^{m(m-1) / 2} .
$$

