In each case below, provide an appropriate example and explain your reasoning. If no such example exists, briefly explain why.

- Provide an example of a function f such that $f(a+b)=f(a)+f(b)$ for all real numbers a and b. Find all such examples.
- Suppose $\lim _{x \rightarrow 3} f(x)=0$ and $\lim _{x \rightarrow 3} g(x)=0$.
(a) Provide an example of function f and g such that then $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$ is equal to 5 .
(b) Provide an example of function f and g such that then $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$ does not exist.
- Provide an example of a rational function $r(x)=\frac{f(x)}{g(x)}$ (where $f(x)$ and $g(x)$ are polynomials) such that $r^{\prime}(x)$ is not a rational function.
- Provide an example of a function f such that $f^{\prime}(3)$ exists but f is not continuous at 3 .
- Provide examples of differentiable functions f and g such that $\frac{d}{d x}[f(g(x))]=f^{\prime}\left(g^{\prime}(x)\right)$. Find all such examples.
- Provide an example of a function f and a real number c such that f has a tangent line at c but $f^{\prime}(c)$ does not exist.
- Provide an example of a function f such that $\lim _{x \rightarrow 0} f(x)=f(0)$, but $f^{\prime}(0)$ does not exist.
- Provide an example of a function f that is increasing and differentiable on (a, b) but $f^{\prime}(x) \neq 0$ for all x in (a, b).
- Provide an example of a function g such that $g^{\prime \prime}(0)=0$, but g does not have an inflection point when $x=0$.
- Provide an example of a definite integral that cannot be evaluated using the Fundamental Theorem of Calculus.
- Provide an example of a function f, an interval $[a, b]$, and a real number $c \in[a, b]$ such that the Mean Value Theorem does not apply yet $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
- Provide an example of each of the following.
(a) A nonconstant function f and an interval $[a, b]$ such that the corresponding definite integral equals 0 .
(b) A nonconstant function f and an interval $[a, b]$ such that the corresponding definite integral equals 2 .
(c) A nonconstant function f and an interval $[a, b]$ such that the corresponding definite integral equals -1 .
(d) A function f and an interval $[a, b]$ such that the corresponding definite integral does not exist.
(e) A function f and an interval $[a, b]$ such that the corresponding definite integral equals infinity.
- Provide examples of functions f and g such that $\int f(x) g(x) d x=\int f(x) d x \cdot \int g(x) d x$.

