
Teaching Statistics 
George Cobb 

MOUNT HOLYOKE COLLEGE 

Introduction 
This report on teaching statistics will present the Statistics Focus Group’s recom- 

mendations under three headings, corresponding to statistics (“Recent Changes in the 
Field”), mathematics (“Some Differences Between Mathematics and Statistics”), and teach- 
ing (“What Research Tells Us))). A fourth section (“Examples”) illustrates ways these 
recommendations can be put into practice, and a final section (“Making It Happen”) offers 
two meta-recommendations about implementation. 

What do we want students to  be able to do, themselves, in terms of performing statistical 
work after their course is completed? What kinds of statistical reasoning, or arguments, do we 
want them to be able to understand? What kinds of ezperiences should the students have had in 
the course? 

-Jim Landwehr, AT&T Bell Labs 

Our group made a deliberate decision not to prescribe lists of topics for particular 
courses, but instead to seek a general intellectual framework within which we and others can 
fit a great variety of courses. (For one list of recommended topics, see Appendix D: Report 
on a Workshop on Statistical Education, by Robert Hogg, which presents a consensus view 
of thirty-nine statisticians on problems in statistical education and suggestions for reform.) 

We intend our three recommendations to apply quite broadly. 
One introductory course may differ from another according to many factors: calculus pre- 

requisite versus no calculus; engineering, technical audience versus arts, nontechnical audience; 
goal of understanding versus goal of doing; taught by mathematics or statistics department versus 
taught by user department; large research university versus small college; large clientele (100s- 
1000s) versus small clientele (less than 100); required course versus elective course; students bright, 
intellectually curious versus students dull, passive; PC’s readily available versus computer facilities 
inadequate. 

-Howard Taylor, University of Delaware 

If I use applied regression as the vehicle to give students the experience they need and you use 
time series forecasting, that’s fine. What matters most is the experience with practical reasoning 
about data. 

-David Moore, Purdue 

Although our group spent most of its time thinking about several versions of the “stan- 
dard” introductory course, several of us know from experience that the spirit of what we urge 
can infuse courses devoted to experimental design and analysis of variance, sample survey 
design, regression, time series, or multivariate analysis, to name just five. At  Swarthmore, 
Gudmund Iversen teaches a pair of introductory courses (“Statistical Methods” and “Sta- 
tistical Thinking”) which are in some ways quite dissimilar, but the kind of general goals we 
shall describe are appropriate for both. At Mount Holyoke, the mathematics department 
offers two beginning statistics courses, one on experimental design and applied analysis of 
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variance, with emphasis on experimental studies in biology, psychology, and medicine, and 
another on applied regression, with emphasis on observational studies in public policy, eco- 
nomics, etc. A t  St. Lawrence University, Robin Lock teaches an introductory course on 
applied time series. At University of Delaware, Howard Taylor teaches beginning statistics 
to engineers. At SUNY Stony Brook, Judy Tanur teaches statistics to sociologists, and does 
a lot with surveys. The goals we advocate are suitable for all these courses. 

We have also sought to make our three recommendations relatively independent of level 
of preparation, in that we imagine them applying to courses designed for students at  any 
band within an entire spectrum of technical facility, ranging anywhere from ultra-nimble to 
infra-numb. Level of preparation will determine how far or how deep a course can go, but 
need not determine the general direction; it may limit the degree of subtlety and sophisti- 
cation with which students can come to understand random variability and it's underlying 
predictable patterns, but needn't prevent them from making a meaningful start. 

Recent Changes in the Field of Statistics 
Statistics has moved somewhat away from mathematics back toward its roots in scientific 

inference and the analysis of data. . . .The most important driving force in this shift of emphasis 
is the computer revolution. 

-David Moore 

During the last two decades, statistics has been changing simultaneously on three levels, 
which correspond to technique, practice, and theory. On the technical level, cheap, powerful 
computing has made possible a number of important innovations: graphical methods for 
data display, iterative methods for data description, diagnostic tools for assessment of fit 
between data and model, and new methods of inference based on resampling techniques 
such as the bootstrap. On the level of practice, such things as pattern-searching, model-free 
description, and systematic assessment of fit have all become more prominent, at  the expense 
of formal inference, most especially hypothesis testing. Statisticians now put more effort into 
the complex process of choosing suitable models, less effort into doing those things-simpler 
by comparison-which take the choice of model as given. 

How many of us still concentrate on hypothesis testing, and even within that narrow and 
questionable context permit students to finish an exercise in number crunching to a pre-specified t- 
test, with the sole application of the English language being the words "reject the null hypothesis?" 

-Walt Pirie, VPI tY SU 

Mathematicians who teach the introductory course probably will be completely oblivious to 
the decreasing importance of hypothesis testing in the work of statisticians. To mathematicians, 
this may have the most profound implications for their introductory course because it calls into 
question the ultimate goals of the course. 

-Ann Watkins, California State at Northridge 

On the level of theory, one can distinguish two kinds of changes that invigorate dis- 
cussions about the reasoning of statistics. First, foundational discussions of long standing 
(should unknown parameters be regarded as fixed or as values of random variables? Should 
inferences be conditional or unconditional?) now much more often take place in the con- 
text of real applications. Second, statistical practice has partly outgrown its mathematical 
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theories, which are consequently less relevant. Important new elements of data analysis 
(model-choosing, model-checking, and model-free description) don’t fit the older theoreti- 
cal frames, while the influential area of statistical process control offers new ways, not yet 
mathematically developed, to frame the enterprise of learning from data. 

[Alternatively,] a coherent theme built around modern information processing can encompass 
the general concepts of EDA (exploratory data analysis), graphics, and computing as they relate 
to  the introductory course in statistics. 

-Dick Gunst, Southern Methodist 

A deeper and more detailed treatment of the recent changes in statistics may be found 
in David C. Hoaglin and David S. Moore (Eds.), Perspectives in Contemporary Statistics, 
MAA, 1992. Suggestions for additional reading can be found at  the end of this report. 

What does all this mean for the teaching of statistics? We offer the following recom- 
mendation: 

Recommendation I: EMPHASIZE STATISTICAL THINKING 
Any introductory course should take as its main goal helping students to learn the 

basic elements of statistical thinking; many advanced courses would be improved by a more 
explicit emphasis on those same basic elements: 
1. T h e  need for data. 

To recognize in one’s own citizenship, the need to  base personal decisions and actions on 
evidence (data), and the dangers inherent in acting on assumptions not supported by evidence. 
This doesn’t even necessarily invoke the concept of randomness, but is nevertheless inherent in 
statistics as a discipline. 

-Walt Pirie 

2. The importance of data production. 
It is very difficult and time-consuming to  formulate problems and to get data  that are of 

good quality and really deal with the right questions. Data generally don’t represent what people 
initially think. Moreover, most people don’t seem to realize that this is the way things work out 
until they go through this experience themselves. This is the most important part of actually doing 
statistics, because if it is not done well all the subsequent analysis can’t be worth much. . . . Most 
people I deal with would be better off if they carried realistic notions about formulating problems 
and getting relevant and accurate data, rather than some vague notion of significance or confidence 
from the course they had. 

-Jim Landwehr 

I haven’t had students plan studies and gather data in a couple of years, for various reasons. 
I wasn’t very happy with the actual projects during the four semesters I did it. However, I was 
quite happy with the students’ ezperiences. Almost every one of them, by the time they finished, 
was rather sheepish about what a poor study it turned out to  be, because they could see all the 
ways i t  really should be improved. 

-Mary PaTker, Austin CC 

Let’s not forget that  the most desirable process is usually (always?) starting with the model, 
in the sense of “design before data.” In my experience the most frequent cause of poor (or even 
failed) experimentation is the lack of good prior design. 

-Walt Pirie 
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3 .  The omnipresence of variability. 

by lecture-it must be experienced. 
Variability is ubiquitous. It is the essence of statistics as a discipline . . . it is not best understood 

-Dick Gunst 

Some data have variability due to measurement error, where other data have variability due 
to the fact that the phenomenon isn’t completely deterministic. As mathematicians, we notice 
that the same models can be used to analyze these two different kinds of variability, so we tend to 
identify them with each other. I think that students sense that these are different, and this is part 
of why they have a problem with the idea of a random variable. I had my students measure the 
length of the building by stepping it off, to illustrate that many measures are approximate even if 
we report them as exact. The scores for the whole class formed a normal distribution, with a few 
outliers, and we could see why we needed to discard them. In the same assignment, I asked each 
student to measure the heights of three females. These scores for the whole class also formed a 
normal distribution. We could see why it wasn’t appropriate to discard outliers this time. 

-Mary Parker 

4. The quantification and explanation of variability. 
a. Randomness and distributions. 
b. Patterns and deviations (fit and residual). 
c. Mathematical models for patterns. 
d. Model-data dialogue (diagnostics). 

-David Moore 

The development of the history of statistical thinking should also be included in any general 
education statistics course. (And not in a separate unit, but infused throughout.) Part of the 
reason that many instructors resist changes in the introductory statistics course is that they don’t 
understand how relatively young the subject is and that evolution can be expected. 

-Ann Watkins 

Just as there was mathematics before Euclid and Archimedes, there was statistics before Karl 
Pearson and Ronald Fisher, but comparing the times when these four lived gives a sense of how 
new a subject statistics is. In the context of two milleniaof changes within mathematics, essentially 
all changes in statistics are recent changes. 

-George Cobb, Mount Holyoke 

Some Pertinent Differences Between Statistics and Mathematics 
Much thinking about statistics falls victim to an unfortunate habit of locating quanti- 

tative courses along an intellectual continuum which stretches from the mechanical to the 
mathematical, from recipes (bad) to theory (good). Two natural but destructive conse- 
quences of this one-dimensional view are that data tend to get associated with recipes and 
dismissed as devoid of intellectual challenge, and mathematical theory is taken to include 
all of statistical thinking, so that non-mathematical concepts of statistics are not taught. 
Real life is not so simple. 

Statistics in practice involves a dialogue between models and data that is quite different from 
the deductive derivation of properties of models met in theory-based courses. Models are used to 
analyze data, but the data are allowed to criticize and even falsify a proposed model (diagnostics). 
Several different methods may be applied fruitfully to the same problem. The results of one study 
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often suggest another study, not a final conclusion. Students need to meet and use this way of 
thinking. 

-David Moore 

The key is to  teach statistics like statisticians instead of like mathematicians. 
-Walt Pirie 

Qualification: Math remains essential; you can never be too rich or too thin or know too much 

-David Moore 
mathematics. 

The question is, who is to be master-that’s all. 
-Humpty Dumpty, Through the Looking Glass. 

Recommendation 11: MORE DATA AND CONCEPTS: LESS THEORY, FEWER RECIPES 

Almost any course in statistics can be improved by more emphasis on data and concepts, at the 
expense of less theory and fewer recipes. (To the maximum extent feasible, automate calculations 
and graphics.) 

-David Moore 

Statistical concepts are best learned in the context of real data sets. Fortunately, using 
the computer to automate calculations and graphics makes it possible to work with real data 
without becoming a slave to the mechanics. 

The introductory course in statistics should focus on a few broad concepts and principles, 
not a series of techniques. Suggested concepts are: graphing data (as in Cleveland’s book-this 
is not trivial), randomness (the idea of producing a predictable pattern through randomness is 
difficult for a student to  grasp; it is not intuitive), inferential reasoning (ideas illustrated through 
bootstrap-like simulations are easiest to grasp and the formulas, for those who insist on using them, 
are approximations), experimental design (I’ve seen eyes light up for some reasonably intelligent 
people when they were able to set a stat-a-pult right on target after collecting information on a 
half rep of a two to the fourth factorial experiment; they did not think it could be done). 

-Dick Scheaffer, Florida 

I am less concerned with the mechanics than I am with students being able to display data 
quickly by hand or computer and then interpret the display. Examine many of the introductory 
texts today. See how many ask in chapter exercises for students to  interpret the salient features 
of the graphs. The inability of students to interpret the graphics they produce makes the process 
merely an abstract exercise. So too with descriptive statistics. They are initially presented as a 
calculation exercise, without regard to their informational content. 

-Dick Gunst 

[. . .] was the first introductory textbook attempt that I know of to approach a data set with 
a set of candidate tools (parametric, non-parametric, and robust), and the attitude of trying to 
determine which would be best for this particular problem. When I embraced that approach, a 
lot of students were really enthusiastic about it. But the resistance by many of my colleagues was 
intense and intractable. Now the second edition is out, and sure enough, the non-parametric and 
robust material has been relegated to chapters a t  the end of the book like all other texts, where 
instructors can (and do) ignore it. Want to compare means of two groups? Push a button and out 
comes a t tes t ,  the only thing we have to offer. No need to think about alternative approaches or 
make a judgment, just  memorize the formula. 

-Walt Pirie 
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Thinking about the role of probability can be a useful exercise in clarifying differences 
between statistical and mathematical thinking. Many statistical concepts don’t rely on 
probability theory at all, and a course which puts statistical concepts ahead of mathematical 
theory will recognize that fact. 

‘Yes, Virginia, there is statistics without probability.” Many basic ideas can be discussed 
prior to any discussion of probability. Most of EDA (exploratory data analysis) and graphing falls 
into this category, as does the basic principle of model building and experimental design. EDA 
allows for exploration and summarization of data and the formulation of questions, some of which 
may have obvious answers just from the exploration. Modelling looks at relationships but, at the 
basic level, does not require a goodness-of-fit test. (Does the scatterplot go up or down? Are the 
points close to a line or is there lots of scatter? Does interest in sports seem to be associated with 
the sex of the respondent?) Experimental design involves planned investigations to answer specific 
questions, but the plan and the data that result can be looked at  without probability notions. (It 
seems that I can get to school faster by route A than by route B. Stereo A is really the better buy 
when you consider its reliability. 

-Dick Scheaffer 

Some important statistical concepts do, of course, depend on probability, but it is all 
too easy to ignore Humpty Dumpty and forget which is to be master. 

Probability should be introduced in a less threatening way than we have traditionally done, and 
only in the framework of enabling students to draw statistical conclusions that enhance their simple 
graphs, simple statistics. The topics chosen should be directed toward a continuity or constancy 
of purpose (to borrow from Deming). I would like students to be able to use probabilities to make 
statistical conclusions: to understand the difference between phenomena that are likely and those 
that are unlikely, and, above all, to understand the distinction between phenomena that are “real” 
(in a statistical sense) and those that are likely to have occurred by chance. 

-Dick Gunst 

The distinction between mathematical theory and statistical concepts remains an im- 
portant one even in thinking about the standard introduction to mathematical statistics. 

I don’t think students who take the standard mathematical statistics course come away with 
even the faintest appreciation for what statistics is about. Unless students have had a previous 
course that does justice to data analysis, and so provides a meaningful context for the mathematical 
statistics, the course is mainly an opportunity to practice advanced calculus techniques. I think 
only three positions are tenable here: 

1. The mathematical statistics course should never be taught to students who haven’t first taken 

2. The mathematical statistics course must be radically revised, to integrate data analysis with 

3. The mathematical theory of statistics should be introduced via an optional adjunct to the 

-George Cobb 

an applied course; 

the statistical theory; or 

beginning applied course. 

Those students who have had my Statistical Thinking course early (freshmen, sophomores) 
are having a ball with mathematical statistics as juniors or seniors. Others struggle more because 
they get bogged down by probability theory and mathematical niceties like moment generating 
functions, and they have a harder time seeing what statistics is all about. This points to  a need to  
hear statistics twice before it makes sense, and we cannot lose the connection to real data. 

-Gudmund h e r s e n ,  Swarthmore 
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My persona1 peeve about statistics courses in the typical undergraduate mathematics major, 
the upper-division offerings, is that they tend to 75% or more probability theory with possibly 
a second semester of mathematical statistics that most students do not take. Our mathematics 
majors often see little of the material taught in the introductory non-mathematical statistics courses 
for, say, psychology majors. This is especially true if a non-statistician teaches the course in 
the mathematics department. The 1981 CUPM report urged that the standard junior-level one- 
semester probability/statistics course taken by a mathematics major include a month of work with 
data. Most texts for this course still have nothing about working with data. 

-Alan Tucker, SUNY Stony Brook 

I think the probability-mathematical statistics sequence is important but should be preceded 

--Jack Schuenemeyer, Delaware 
by a data analysis course. 

In an ideal Grinnell I’d like my students to have an applied methods course as sophomores 

-Tom Moore, Grinnell 
and then have a more traditional mathematical statistics sequence. 

One of my colleagues was visiting from Norway, where they have a more extensive undergradu- 
ate statistics program than we do. Their experience was that many of the best students-those you 
particularly want to attract to statistics-were turned off by the early course without the mathe- 
matical underpinnings, and decided that they weren’t interested in statistics. This surprised me at 
the time, but since then I have had a couple of quite bright mathematics majors take my elementary 
statistics course, with similar experiences. They seemed rather negative about statistics as we went 
through the elementary course, and neither was very interested in taking a mathematical statistics 
course because they felt they already knew all of that stuff. While I think I have convinced both 
of them to go on and take mathematical statistics, this experience indicates to  me that we need 
a different beginning course than the typical elementary statistics course. And I suspect that the 
ideal beginning course for these mathematics people will not be the same as the ideal beginning 
course for the rest of our audience. 

--Mary Parker 

This sequence should not be the first course, or, at the least, should be accompanied by a lab 
that shows the other side (I almost said “the real nature”) of the subject. For example, since the 
randomized comparative experiment is arguably the most important statistical idea of this century, 
one which has revolutionized the conduct of research in many fields of applied science, it’s a sin to 
teach a first course that doesn’t mention this idea and emphasize the contrast between observational 
and experimental studies. Because the two-sample t procedures and the mathematical model on 
which they are based ignore this distinction, the usual statistics theory course for mathematics 
majors also ignores it. That, as I said, is a sin. This example shows in brief what’s wrong with the 
introduction we often give our majors. 

-David Moore 

Recent Research On How Students Learn 
Shorn of all subtlety and led naked out of the protective fold of educational research 

literature, there comes a sheepish little fact: lectures don’t work nearly as well as many of 
us would like to think. This rather discouraging assertion is supported by two clusters of 
research results. The first cluster shows part of what makes learning hard and lecturing 
often ineffective; the second shows the kinds of things that do seem to work when lecturing 
doesn’t. 
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A .  Basic concepts are hard, misconceptions persistent. As teachers, we consistently 
overestimate the amount of conceptual learning that goes on in our courses, and consistently 
under-estimate the extent to which misconceptions persist after the course is over. 

Ideas of probability and statistics are very difficult for students to  learn, and conflict with 
many of their own beliefs and intuitions about chance and data. Students connect new ideas to  
what they already believe, and correct or abandon erroneous beliefs reluctantly, only when their 
old ideas don’t work or are inefficient. Learning is enhanced by having students become aware of 
and confront their misconceptions. 

-Joan Garfield, University of Minnesota 

I am still chagrined by an experience in class several weeks ago. Using IQ scores N(100,15) 
generated by the computer, my class “discovered” the central limit theorem. N o  problems. They 
were fairly experienced with sampling distributions, expected the normal shape, knew that the 
expected value of the sample average equals the population mean, and weren’t surprised by the 
standard error. We then went on to  examine a case where the population was decidedly not 
normal, using the ages of pennies that we brought to class. Suddenly they had no idea where 
the expected value of the sample average should lie for their samples of size four. We spent a lot 
of time establishing that. I am chagrined because in previous semesters, using synthetic data, I 
had essentially assumed that the location of p(z) was obvious to  students, spending time instead 
establishing the shape and standard error of the distribution of sample means. 

-Ann Watkins 
B. Learning is constructive. To absorb the full impact of these three words, you have 

to push their implied metaphor to its limits: concepts are constructs, learning is building. 
moreover, any building that students do will start with whatever conceptual raw materials 
they bring with them to the course. There’s no such thing as starting from scratch.) By 
taking these construction images to the edge of the literal, and applying common-sense 
principles of carpentry to the process of teaching and learning, you can arrive at much the 
same conclusions as those who do research on how students learn: If you want to teach your 
students to build, you won’t spend much time just talking, and what talking you do will 
occur on-site, where students who are learning-by-doing will want and need your comments 
on their work. 

Effective learning requires feedback. Students learn better by active involvement; they learn 
to do well only what they practice doing; they learn better if they have experience applying ideas 
in new situations. 

-Joan Garfield 

Taken together, the two sets of results lead to a third recommendation: 

Recommendation 111: FOSTER ACTIVE LEARNING 
As a rule, teachers of statistics should rely much less on lecturing, much more on the 

following alternatives: 
1 .  Group Problem Solving and Discussion. 

I do not lecture at all. Instead, students are required to read the textbook, guided by a 
student handbook I have written containing study questions, sample problems, etc. Each day we 
first discuss the study questions, often arguing about issues. . . .After our large group discussions, 
students then work in permanent small groups on activities, usually analyzing a set of data  and 
discussing questions about these data sets. 

-Joan Garfield 
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2.  Lab Exercises. 
Statistics should be taught as a laboratory science, along the lines of physics and chemistry 

rather than traditional mathematics. Students must get their hands dirty with data. The labo- 
ratory must be a requirement and must contain more than just a few computers. This approach 
involves real data  but also involves manipulative devices that include spinners, cards, bead boxes, 
a quincunx, stat-a-pults or similar devices for experimental design, and so on. Many things seem 
to work in the design of experiments realm (George BOX’S paper helicopters, Leg0 cars, rubber 
band guns, popcorn (see Hogg and Ledolter), balloons, melting ice cubes and on and on . . .), the 
important idea is that an experiment is to be designed to answer a specific question and at least 
two important factors can be controlled. 

-Dick Scheaffer 

3. Demonstrations Based on Class- Genemted Data. 
Whether by counting the number of red M&M’s in bags, taking surveys, or conducting simple 

experiments, the scientific enterprise referred to as the field of statistics must be experienced. This 
is very difficult to  do in large lecture sections, so opportunities for demonstrations in lieu of hands- 
on individual experiences are a necessary alternative. Ideally, several demonstrations or experiences 
would occur in a single course. They will, I contend, prove to be one of the features of the course 
that will be remembered long after the formal analyses are forgotten. 

-Dick Gunst 

4. Written and Oral Presentations. 
Students come to us with primarily an intuitive understanding of the world. It is part of our 

job to  ferret out those intuitive processes and correct the incorrect ones. As far as I know, this can 
only happen by having students discuss and write about their understandings and interpretations 
of problems. 

-Dick Scheaffer 

5. Projects, Either Group or Individual. 
Students in a first course should learn by doing. They will buy into the course and subject if 

they can formulate and design projects, collect and analyze data. Easy to use statistical software 
with graphics should be emphasized. Calculations should be de-emphasized. 

-Jack Schuenemeyer 

I’m doing student projects for the first time in an introductory course, and I have never had 
such enthusiasm. The assignment is to do a survey about some issue of interest a t  California State 
University at Northridge. 

-Ann Watkins 

Examples 
Ah, generalities, which like fish glitter but stink. Here we escape glittering generalities. 

-David Moore 

Our proposed escape route is marked by two clusters of examples. The first cluster 
relates principally to our first two recommendations, on what to teach, and consists mainly 
of examples of entire courses. Taken together, these examples illustrate how remarkably 
different courses may be, both as to technical level and as to statistical topics, while never- 
theless serving the general goals we have spelled out. The second cluster of examples relates 
principally to our third recommendation, on how to teach, and consists mainly of examples 
of parts of courses. These examples offer teachers of statistics a variety of alternatives to 
lecturing, all of them compatible with the examples of course content from the first cluster. 
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Teach Statistical Thinking 
The following examples illustrate how the maxims “more data, fewer recipes” and “more 

concepts, less theory” improve students’ statistical thinking. We begin with the junior high 
and high school level (Quantitative Literacy Project), then present three undergraduate 
general education courses (Chance, Quantitative Reasoning, and Statistical Thinking), then 
three courses that are technically somewhat more demanding (Statistical Methods, Time 
Series, and Multivariate Statistics), and end with two quite different variants of the standard 
mathematical statistics course. 

These courses rely on computers in various ways. For example, both Mount Holyoke’s 
quantitative reasoning course (No. 3) and Oberlin’s mathematical statistical course (No. 7) 
use computers to analyze moderate-to-large archival data sets. (Most of the other courses 
also use computers to analyze data sets.) A very different approach to the mathematical 
statistics course (No. 8) relies on computers for simulation-based empirical investigation of 
the properties of estimators. 

1. The Quantitative Literacy Project. (Dick Scheaffer, University of Florida) 
The National Council of Teachers of Mathematics (NCTM) recently released their Cur- 

riculum and Evaluation Standards, which have a carefully delineated strand in statistics 
throughout the curriculum and an emphasis on modelling from data in other areas such 
as algebra and functions. That emphasis on data analysis should be woven through the 
mathematics curriculum and connected to other components of the curriculum is seen in the 
following: 

This standard should not be viewed as advocating, or even prescribing, a statistics course; 
rather, it describes topics that should be integrated with other mathematics topics and disciplines. 

The NSF-funded Quantitative Literacy Project (QLP), a joint project of the Ameri- 
can Statistical Association (ASA)  and the National Council of Teachers of Mathematics 
(NCTM), served as the basis from which the strand in statistics was developed for the 
Standards. The QLP provides curriculum materials in certain areas of data exploration, 
probability, and inference, in a style that makes the material accessible to teachers and 
students, and provides a model framework for in-service programs to  enhance the skills of 
teachers in the area of statistics and probability. 

The curriculum units developed by the QLP explore elementary topics in data analysis, 
probability, simulation, and survey sampling, with new units being planned for exploring 
measurements and planning experiments. The approach is to use real data of interest to the 
students and simulations of real events to show how to use statistical ideas to extract useful 
information from numbers. Many of the statistical tools are graphical and reflect the latest 
thinking among practicing statisticians. Teachers using these materials are provided with 
opportunities to  make heavy use of hands-on activities, group discussion, student projects, 
and report writing. (From “The ASA-NCTM Quantitative Literacy Project: An Overview 
and Possible Extensions.” See also the report of the Focus Group on Quantitative Literacy 
in this volume.) 

2. Chance. (J. Laurie Snell, Dartmouth) 
This course is being developed at six colleges: Dartmouth, Grinnell, King, Middlebury, 

Princeton, and Spelman. The course studies chance issues currently in the news such as 
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statistical issues in AIDS, gender issues in SAT examinations, the use of DNA fingerprinting 
in the courts, scoring streaks and records in sports, reliability of current political polls, 
interpreting data graphics, and the role of cholesterolin the prevention of heart disease. Such 
topics form the focus of the course. Concepts in probability and statistics are developed only 
to the extent necessary to understand the issues. Students read and compare treatments 
in the newspapers, popular science journals such as Chance Magazine, Science, and Nature, 
and original research articles. The goal is to make students more literate in probability and 
statistics and to permit them to make more intelligent choices when faced with chanceissues. 
Experimental versions of the course are being given in the 1991 Fall term at Grinnell College 
by Tom Moore, at Middlebury College by William Peterson, and at Princeton University 
by Peter Doyle and Laurie Snell. These courses incorporate an emphasis on good writing, 
group learning, the use of the computer, and student projects. 

3. A Quantitative Reasoning Course. (George Cobb, Mount Holyoke College) 
In 1982, at  Mount Holyoke College, a group of faculty began to plan what was eventually 

to find its way into the course catalog as Interdepartmental 100-Case Studies in Quanti- 
tative Reasoning. After gaining provisional approval by the faculty in 1986, the course was 
taught for the first time in 1987. As of fall 1990, the QR course, as it has come to be called, 
had been taught for eight consecutive semesters all told. Fifteen faculty from six depart- 
ments had by then taught 22 sections of the course to a total of more than 250 students. 
The course, which has no prerequisites, is designed to appeal to students with a broad range 
of academic interests and widely differing mathematical backgrounds. It is not a simple 
presentation of technical methods followed by practice problems. Instead, case studies from 
a variety of disciplines form the subject matter of the course. Different quantitative methods 
are introduced and used in the attempt to develop understanding of these examples. The 
emphasis is not on rote computation, but on reasoning; not on formulas, but on ways to 
construct and evaluate arguments. The goals are to help students strengthen their analyti- 
cal skills and acquire more confident understanding of the meaning of numbers, graphs, and 
other quantitative summaries they will encounter in many subsequent courses, no matter 
what their majors. 

For example, witchcraft in seventeenth-century New England forms the central problem 
for investigation in the first third of the course, which concentrates on exploratory data 
analysis, with heavy emphasis on graphs, two-way tables, and other informal statistical 
tools for finding and presenting patterns in numerical data. In this case the data pertain 
to the 141 people accused of witchcraft in 1692 in Essex county, and to residents of Salem 
Village whose names appear in various tax records, petitions to the General Court, and 
minutes of the Village meetings. Discussions and assignments stress the process of working 
from numerical patterns to plausible explanations, and vice-versa, from possible explanations 
of the historical phenomena to relevant numerical evidence. The major project is to write 
a paper formulating, investigating, and discussing some hypothesis about the relationship 
between wealth and power as reflected in the historical records, along with some other 
hypothesis of the student’s own choosing. (“The Quantitative Reasoning Course at  Mount 
Holyoke College,” in Samuel Goldberg (Ed.), “The New Liberal Arts Program: A 1990 
Report ,” Alfred P. Sloan Foundation.) 
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4. Statistical Thinking and Statistical Methods. (Gudmund Iversen, Swarthmore College) 
At  Swarthmore we have carried this idea [Jim Landwehr’s distinction between doing 

and thinking] so far that we have two introductory courses. In Statistical Methods I expect 
the students to be able to do their own analyses after they have finished the course. Most 
students end up doing the statistics in papers, lab reports, and senior theses. But this means 
going through regression, analysis of variance, and contingency tables. This year I am using 
the Moore/McCabe book (Introduction to the Practice of Statistics, Freeman, 1989). In 
Statistical Thinking I do not expect students to be able to do anything, but the goal is to 
have them understand uses of statistics they see all around them in scientific journals, books, 
newspapers, television, news magazines, etc. I am using the Moore paperback (Statistics: 
Concepts and Controversies, 3rd edition, Freeman, 1991) with additional material for this 
course. (A more detailed description appears as Appendix B.3.) 

5. Time Series Analysis As a First Course in Statistics. (Robin Lock, St. Lawrence Uni- 
versity) 
A wide variety of fundamental statistical ideas can be conveyed through the study of 

time series. For example, the general notions of an underlying model for some real world 
phenomenon, estimation of its parameters from data, and diagnostic checking of the model 
assumptions are central themes in statistics. The models encountered in forecasting are 
fairly straightforward, yet can be used to effectively illustrate important principles such as 
parsimony, variability in parameter estimates, and criteria for choosing between competing 
models. The analysis of residuals to check model assumptions, suggest alternate models, or 
gauge the accuracy of the fit is a featured part of time series methodology which is often 
neglected in traditional introductions to statistics. Similarly, statistical graphics are used at 
many points throughout a time series analysis. 

The point here is not to demonstrate that the field of time series analysis uses important 
statistical techniques, but rather that many of the fundamental concepts in applied statistics 
can be effectively introduced to students within the context of time series analysis. (Adapted 
from “Forecasting/Time Series Analysis: An Introduction to Applied Statistics for Math- 
ematics Students,” SLAW Technical Report No. 90-001. This and other technical reports 
of Statistics and the Liberal Arts Workshop are available from Don Bentley, Mathematics, 
Pomona College.) 

6 .  Multivariate Descriptive Statistics. (Frank Wolf, Carleton) 
A course in multivariate descriptive statistics that presupposes preparation in linear 

algebra can be used as a course to introduce students to statistical ideas. Such a course 
requires students to make heavy use of mathematical modelling and of concepts, techniques, 
and results from linear algebra and, hence, contributes to the students’ understanding and 
appreciation of applied mathematics. The course is data-driven, and students learn to 
deal sensibly with real data. The course should be acceptable to a typical liberal arts 
mathematics department for credit in mathematics. It can be taught so as to assume no 
earlier training in statistics and yet be open and very useful to those students who have 
already taken one or more courses in that area. Such a course has been taught many times 
at  Carleton. (From “Multivariate Descriptive Statistics: An Alternative Introduction to 
Statistics,” SLAW Technical Report No. 90-004.) 
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7 .  Data Analysis in the Mathematical Statistics Course. (Jeff Witmer, Oberlin) 
I believe it is imperative that students learn something of how statistical theory is applied 

in practice, but it is particularly difficult to cover much material on applied statistics while 
at the same time covering the mathematical statistics topics. I address this problem by 
offering an additional, one-credit course at the upper level. 

In the spring of 1988, I started the course by discussing some of the statistical packages 
that are available on computers. I used MINITAB. I then presented some ideas from ex- 
ploratory data analysis . . . the use of normal probability plots and transformations of data 
. . . compound smoothers . . . statistical quality control . . . I devoted roughly half the course 
to the general topic of regression, relying heavily on MINITAB. 

In the spring of 1989, rather than present lectures, I involved the entire class in a data 
analysis project. We analyzed the results of a survey I helped conduct of libraries at liberal 
arts colleges. The students helped me explore roughly 200 variables measured on 97 colleges. 
I gave each of the students access to the computer file that contained the data and told them, 
“Explore, generate graphs, fit models, and let me know what you learn.” We spent class 
periods discussing the data set and the statistical methods we were using to analyze it. 

I am planning to teach the course in 1990 in a similar fashion. The reactions of students 
to this course have been positive. I believe, and they seem to agree, that seeing statistical 
methods applied to real data motivates students to want to learn more about the subject. 
(From “Data Analysis: An Adjunct to Mathematical Statistics at Oberlin College,” SLAW 
Technical Report No. 90-003.) 

8.  Computer-Enhanced Mathematical Statistics. (Marsha Davis, Mount Holyoke) 
Under a grant from FIPSE (Fund for Improvement of Post-Secondary Education), Math- 

ematical Statistics at Mount Holyoke College has been redesigned, and now meets in a com- 
puter classroom. With the aid of technology, the new course incorporates a constructivist 
approach to mathematics instruction. Laboratory projects have been designed to support 
theoretical material and to  guide students in discovering concepts for themselves. In one 
project, for example, students use computer simulation to examine the sampling distribu- 
tions of sample means as an introduction to the normal distribution and the central limit 
theorem. Another project, “The Taxi Problem,” places students in a hypothetical situation 
where they must estimate the parameter N of a discrete uniform distribution on the integers 
1 - N .  Students suggest plausible estimators, generate ideas of reasonable criteria for select- 
ing a “best” estimator, modify estimators based on theoretical considerations, and present 
their choice of estimator based on results from a simulation study. Through this process 
students gain an understanding of how a research statistician works, as well as a chance to 
experience the interplay of working with theory and testing ideas with simulation. 

Foster Active Learning 
The following examples correspond to the various alternatives to lecturing mentioned in 

our third recommendation: group problem solving and discussion, lab exercises, demonstra- 
tions, written and oral presentations, and projects. As many of the examples illustrate, there 
are effective alternatives to lecturing that do not use computers. (See also Robin Lock and 
Tom Moore, “Low-Tech Ideas for Teaching Statistics,” SLAW Technical Report No. 91-008.) 
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On the other hand, certain kinds of lab exercises (e.g., Nos. 3, 7, 8 above) and class demon- 
strations (No. 3b below) are impossible without computers, as are most projects (Nos. 5a and 
5b below). In particular, demonstrations that rely on even the simplest dynamic graphics 
(No. 3b below) can be extremely effective, and are impossible without computers. 

1. Group Problem Solving and Discussion. (Joan Garfield, University of Minnesota) 
In my classes, I do not lecture at  all, which takes a while for students to adjust to. 

Instead, students are required to read the textbook before coming to  class, guided by a 
study guide/student handbook I have written containing study questions, sample problems, 
etc. When students come to  class each day we first discuss the study questions, often arguing 
about issues such as which is the best measure of center to use, which type of plot gives 
the most information, etc. They rapidly learn that there is often not one right answer 
nor one way to solve a problem. At first they think this means that anything is OK, but 
then learn what is important is being able to justify a claim, defend a point of view, and 
judge the appropriateness of a solution process. After our large group discussions, students 
work in permanent small groups on activities, usually analyzing a set of data and discussing 
questions about these data sets. I find the Quantitative Literacy Project materials very 
useful for these small group activities. Each write-up is turned in that day and the group 
receives a group score. I also give weekly quizzes on the homework problems. This method 
works extremely well. Students tend to enjoy the course and express amazement that they 
are actually doing statistics (and it’s fun!). Many bring in data sets of interest to them to 
analyze for their “real life” problem assignments, and learn how to deal with messy data 
that are not easily plotted, missing values, and related issues. (A more detailed description 
appears as Appendix B.2.) 

2. Lab Exercises. (Dick Gunst, Southern Methodist University) 
I have a “nuts and bolts” experiment that I’ve used many times to illustrate (a) the 

need for data, (b) application of a simple two-factor factorial experiment, and (c) the ability 
of simple graphics (point plots) to convey important information. The experiment involves 
students selecting nuts and bolts from a tall, small mouth jar containing a variety of sizes 
of nuts and bolts. The objective is to select and screw four nuts onto four bolts in as short 
a time as possible. Students operate in groups, taking turns selecting and fastening the 
nuts and bolts and timing those who do. After the initial times are obtained and plotted, 
discussion ensues over why the times are unacceptable and what could cause a reduction of 
the times. A simple experiment is then conducted using four combinations of jar sizes and 
nut sizes and the results are again plotted. The sorting of jars and nuts results in lower 
times for  all four groups, an unexpected result. (A more detailed description appears as 
Appendix B.4.) 
3a. Demonstrations Bused on Self-Generated Time Series. (Howard Taylor, Delaware) 

(There are no prerequisites for this one.) The students are asked to  write down a 
random series of n = 100 numbers chosen from the digits 1, 2, . . . , 20. The form provided 
has columns with 1. -, 2. -, etc., to 100. -, a psychological nudge to write the 
numbers down sequentially. (But some of the brighter students will skip around, entering a 
bunch of 1’8, then a bunch of 2 ’ 4  and so on.) For comparison, one or more students (or the 
instructor) uses a table of random numbers, or a programmable hand calculator, to form 
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their lists. 
The analysis: 
(i) The students are asked to do a frequency tabulation and draw a histogram. The 

result is that most students have frequencies that look fairly realistic. 
(ii) Next, a time series plot is drawn. These typically look less realistic when compared 

to  the control plot. Some students go up-down too much; others are too smooth. 
(iii) This suggests a plot of X ( t )  vs X ( t  + 1) which typically looks less random, showing 

either a positive or negative correlation. 
(iv) Students are asked to count how many times X ( t )  = X ( t  + l), and how often this 

should happen in a random time series. 
(v) Students are asked to calculate the number of runs above and below the median R. 

The critical points for a test of randomness are R 5 40 or R 5 62. These critical 
points are written on a slip of paper and given to a student prior to the calculations 
of the R’s. Then the time series are divided into two groups according to the R 
values. This virtually always very nicely divides them into human generated versus 
computer or table generated, effectively demonstrating how hard it is for humans to 
be truly random. 

(Two more examples of demonstrations appear in Appendix B.l.) 

3b. Simple Computer-Based Demonstrations. (Ann Watkins, California State University at  
Northridge) 
(i) Standard deviations: One computer demonstration I use in class requires a large 

screen projector but only the simplest software. Students can construct a population 
of, say, 100 numbers between 1 and 100. The program computes the mean and 
standard deviation. The game we play in class is to find the population with the 
largest standard deviation (and then with a given standard deviation). This sounds 
incredibly simple-minded, but students find it challenging as they are just coming 
to grips with the idea of standard deviation. 

(ii) Regression: You can build effective labs or class demonstrations using programs that 
allow students to change the points of a scatterplot and watch the least squares line 
(and coefficients) change, or leave the points fixed but change the fitted line, and 
watch the residual sum of squares change. 

4. Written and Oral Presentations. (Gudmund Iversen, Swarthmore College) 
There is an increased emphasis on writing in today’s undergraduate curriculum, and 

papers can play an important role in an introductory statistics course. With the existence of 
good interactive statistical software it is possible to move the classic introductory statistics 
course away from the study of formulas to the study of statistical thinking and the role 
of statistics in society. In such a new course students get an increased understanding of 
statistical ideas by writing papers across a wide range of topics; actual topics have ranged 
from a comparison of statistics and religion to a study of the relationship between the time 
of first class in the morning and the distance from the bed to the alarm clock. (See “Writing 
Papers in a Statistics Course,” Proceedings of the Section on Statistical Education, American 
Statistical Association, 1991. See also Norean Radke-Sharpe, “Writing As a Component of 
Statistics Education,” American Statistician, Vol. 45, No. 4, November 1991.) 
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5a. Projects. (Tom Moore, Grinnell, and Katherine Halvorsen, Smith) 
Student projects can teach concepts not usually encountered in introductory or second- 

level statistics courses. Questions about study design, study protocols, questionnaire con- 
struction, informed consent, confidentiality, data management, data cleaning, and handling 
missing data may arise when students deal with collecting and analyzing their own data. 
. . .This paper describes the student projects we have used in introductory courses and in 
second-level statistics classes. It addresses the issues of motivating, monitoring, and eval- 
uating student projects, and discusses some unique problems student projects present for 
instructors using them. . . . In our experience students usually conclude that the project was 
one of the most useful parts of the course. Some comment that the project made them 
apply everything they learned as soon as they learned it. For some it is the first time they 
have stood in front of an audience to present their work. On the whole we would encourage 
other faculty to use this kind of project in their classes. (See “Motivating, Monitoring, and 
Evaluating Student Projects,” Proceedings of the Section on Statistical Education of the 
American Statistical Association, 1991.) 

5b. Projects. (Don Bentley, Pomona) 
There are at least three types of exercises involving data for students to work with at  the 

introductory level: the standard fictional data set, real data extracted from the literature, 
and statistical consulting. Students who have a potential interest in statistics as a career 
should be given the opportunity to become meaningfully involved in the analysis of data 
from original scientific investigations . . . to  encounter the excitement of being the first to 
know the results of the statistical analyses. . . . 

A list of projects with which students have been involved include soaking and clean- 
ing solutions for hard contact lenses, sterilizing solutions for soft contact lenses, proving 
efficacy of intraocular lenses, evaluation of a retroprofusion process used with angioplastic 
surgery, and investigation of the use of ambulatory tocodynamometry in high risk pregnan- 
cies. These industry-generated projects provide a wealth of opportunities for students to 
become involved in the analysis of meaningful data. The necessity for accuracy is clearly 
defined. This is an element frequently lacking in the classroom experience. The importance 
of the role of statistics in the research is also made very clear to  the student, both by the fi- 
nancial implications of the project to the corporation, and the implications for health care in 
general. (The consequences of both the Type I and Type I1 errors gain real meaning.) (See 
“Recruiting and Training Undergraduates Through Statistical Consulting,” Proceedings of 
the Section on Statistical Education, American Statistical Association, 1991.) 

Making It Happen 
The way faculty change and learn is probably not so very different from the way students 

change and learn. In particular, reports alone probably have about as much effect on the way 
most faculty teach statistics as lectures alone have on the way most students understand 
statistics. Our Focus Group may be full of sound and fury, but without effective follow- 
through, we’ll fail to signify even at the ten percent level. 

Change must overcome four inertias: one logistical, one intellectual, one interpersonal, 
and one institutional. 
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1. Logistical Inertia: 
Good data sets are hard to f i nd .  Anyone reading this report could easily invent enough 

examples to fill a lecture on differentiating polynomials, and it would take at most five 
minutes or so. But how long would it take you to come up with just one real data set, say 
from cognitive psychology, to illustrate the effect of outliers in one-way analysis of variance? 

Automating statistical busy-work has a high start-up cost. Unless you’re already set up 
with a data analysis package for your classes, the ordeal of first choosing a good one, then 
getting it installed, then learning how to use it yourself, and finally learning how to teach 
your students to  use it-all this may not be at the top of your list of ways to spend what 
would otherwise be your next vacation. 

2. Intellectual Inertia: 
Learning to  handle the ambiguities of statistics takes time, practice, and hard thought. 

Even with softwareinstalled and data sets in hand, doing a proper analysis and interpretation 
is a kind of challenge that many who teach statistics are not prepared to meet, mainly 
because, through no fault of their own, they’ve rarely if ever seen it done, and their training 
and experience have not prepared them either to do it or to value the doing of it. Remember 
that in Plato’s curriculum, students were to devote their entire first decade of study to 
mathematics, because the other subjects, being less clear-cut, were understood to be harder. 
(Mathematics is often mistaken for being harder because the absence of ambiguity makes 
the subject much less forgiving of low quality effort.) 

3. Interpersonal Inertia: 
Giving up the familiar role of ((I talk, you listen” doesn’t always come easily. Teachers 

who are skillful and comfortable delivering a lecture on volumes of revolution may, through 
lack of role models and lack of practice, find themselves neither skillful nor comfortable with 
the group dynamics of labs or discussions, where the direction of conversation is not set in 
advance, and there will often be more than one defensible position on what the data have 
to say. 

4. Institutional Inertia: 
Most deans and department heads don’t care very much whether statistics i s  taught well. 

One consequence is that untenured mathematics faculty are all too often being quite realistic 
to see a fork in their career path-to the left, doing what it takes to teach statistics well, or 
to  the right, doing what it takes to get tenure. A second consequence, apparently, is that 
many mathematics departments have not been willing to do what it takes to recruit and 
retain a Ph.D. statistician. According to Moore and Roberts (American Statistician, 1989, 
43:2) only 26 of 80 mathematics departments at  responding liberal arts colleges could claim 
a Ph.D. statistician. Half had no one with even a masters-level degree in statistics. 

In the hope of overcoming these inertias, we offer two clusters of meta-recommendations: 

Meta-Recommendation I: WORK AT THE GRASS ROOTS 
The statistics and mathematics professions should do more to support those who want 

to teach statistics well, through (1) new sections in journals, (2) a newsletter, (3)  improved 
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access to data, (4) more e-mail conferencing, (5) more workshops for teachers, and (6) better 
preparation for teaching in graduate schools. 

It seems to  me that ASA could do considerably more about undergraduate teaching than it 
currently does. For example, the other ASA to which I belong (American Sociological Association) 
maintains a Teaching Resource Center that collects and circulates such teaching materials as syllabi 
and reading lists and holds teaching workshops. The Association also sponsors a journal entitled 
Teaching Sociology that is a veritable treasure chest of ideas for managing classes and of research 
on the efficacy of teaching strategies. 

-Judy Tanur, SUNY Stony Brook 

1 .  Establish New Sections in Existing Journals. 

It would be easy to assume that most of the things we recommend should be done by the 
ASA, but some of this must be done in MAA journals. Quite a few statistics teachers in mathe- 
matics departments, members of MAA but not ASA, need to be encouraged to  participate in this 
conversation. 

-Mary Parker 

There should be sections devoted to  statistical education in some of the existing journals. A 
section on statistical education devoted to undergraduate teaching and learning should not be used 
as a vehicle to  publish low quality research papers. I’m opposed to starting a new journal. Libraries 
are cutting circulation and I can’t find time to read existing journals. 

-Jack Schuenemeyer 

The “Teacher’s Corner” in the American Statistician, although interesting) does not address 

-Mary Parker 
our concerns. 

I’d like things set up so most submissions would be short, each one describing a project or lab 
or class demo. There should be a well-planned classification scheme, so that  a highly structured 
index would be easy to  construct, to  make it possible for someone wanting a demo on the central 
limit theorem for a large lecture class to locate quickly a write-up of Howard Taylor’s example; 
ditto for someone wanting examples of two-hour computer labs on regression diagnostics for a small 
class of students with no linear algebra background) or . . . 

-George Cobb 

2 .  Establish a Newsletter. 

I like the idea of a newsletter to  be sent out three or four times a year. The “Undergraduate 
Mathematics Education” newsletter (UME Trends) began as a funded project (NSF, I think) and 
now is supported by paid subscribers like myself. It is an excellent source of information about 
current projects, programs, research, books, software, conferences, workshops, teaching ideas, etc., 
all related to  teaching undergraduate mathematics courses. 

-Joan Garfield 

3 .  Expand Eflorts to Make Data Sets Readily Available. 
Statisticians should contribute more often to the bank of data sets available by e-mail 

via the StatLib file server at  Carnegie Mellon University. (See Appendix C for a brief 
description and instructions on how to get data sets.) Data sets should be classified and 
indexed by area of application, structure (e.g., experimental two-way factorial in complete 
blocks), and interesting statistical features (e.g., data need to  be transformed to logs), so 



TEACHING STATISTICS 2 1  

that teachers could use the index to retrieve examples to fit particular pedagogical needs. 
A newsletter or section of a journal could list such summary information for data sets that 
had been contributed since the last issue. Periodically, anthologies of these data sets should 
be published. 
4. Expand E$orts to  Involve Statistics Teachers in E-mail Conferencing. 

Tim Arnold of North Carolina State has just recently set up a procedure for joining such 
a group, one established by the Statistical Education section of the ASA. (See Appendix C 
for a description and instructions on how to join.) 

In the ten years or so I have been teaching statistics, I have not seen many opportunities to  
participate in the kind of discussion we are having in this group. I think that statistics teachers 
would profit by, and enjoy, participating in such discussions. . . .We need to  be providing the kind 
of forum and inspiration to  people that will encourage each of them to think of ideas of their own. 
For me, reading what other people do is marvelously inspiring. I think it would be to  others. 

-Mary Parker 

5. R u n  Workshops at National and Regional Meetings. 

6 .  Establish Programs Within University Departments to Help Prepare Graduate Students 
to Teach. 

Our department also has a formal program for teaching our graduate students to  teach. (Of 
course, what they teach is introductory saciology, not statistics, but I would think some of the ideas 
are transferable.) In the fall semester the teaching practicum meets once a week to  study the art and 
craft of teaching, observe teachers who have a reputation for expertise and discuss their techniques 
with them, etc. Each member of the practicum prepares a syllabus for an introductory course, 
and gives several practice classes to  the other members of the practicum. In the spring semester, 
each graduate student teaches his/her own section of the introductory sociology course under the 
supervision of the practicum instructor (often me). Again, it seems to  work. The graduate students 
are considerably less nervous and considerably more effective with their classes than they would 
otherwise have been, and they have won far more than their share of university-wide awards for 
excellence in teaching. But again, this system is very demanding of resources. 

-Judy Tanur 

Meta-Recommendation 11: WORK AT THE TOP 
Statisticians and mathematicians should work together with academic administrators- 

first to improve the way colleges evaluate work by statisticians and others who teach statis- 
tics, and second, to insure that improved evaluation reshapes institutional criteria both for 
faculty recruitment and for subsequent personnel decisions. 

Without additional motivation and encouragement, I don’t think our material will be read by 
those who need it most. That kind of motivation usually has to  come from one’s senior colleagues 
within a department. What if young faculty see that the reward system is weighted mostly toward 
refereed publications? We need to  enlist the help of others who will influence them. The obvious 
group is Department Heads. That could be done through the auspices of the MAA and ASA, both 
of whom do have periodic Department Heads meetings. 

-Walt Pirie 

We need to  think hard about how to reach not just teachers of statistics, but also their chairmen 
who assign them the statistics courses. We need to impress presidents and provosts and deans that 
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things are bad, that  they need to do something about the teaching of statistics in their schools, 
and that we are available to help. 

- Gudmund Iveraen 

The comment which follows, by a newly elected Fellow of the ASA, came early in our 
group’s work, but serves well as a final summary: 

At Delaware we teach an introductory, non-calculus based, traditional, two-semester course to 
1000 students per year. Problems: too much lecturing, too much emphasis on hypothesis testing, 
too much material, too little involvement by students, and too little reward for those who spent 
time trying to  improve the situation. 

-Jack Schuenemeyer 
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Appendix A: Helping Students Learn 
b y  Joan Garfield, UNIVERSITY O F  MINNESOTA 

A summary of research related to learning statistics, drawn from the areas of learning 
and cognition, mathematics education, and statistical learning: 

A. Basic Concepts are Hard, Misconceptions Persistent 
1. Teachers should not underestimate the dificulty students have in understanding basic 

concepts of probability and statistics. Ideas of probability and statistics are very difficult 
for students to learn and conflict with many of their own beliefs and intuitions about data 
and chance (Shaughnessy, in press; Garfield and Ahlgren, 1988). Students may be able to 
answer some test items correctly or perform calculations correctly while still misunderstand- 
ing the basic ideas and concepts (Konold, 1990; Garfield and delMas, in press). Students’ 
misconceptions may be strong and resilient (Konold, in press; Garfield and delMas, in press; 
Shaughnessy, in press). “It is very difficult to replace a misconception with a normative 
conception, a primary intuition with a secondary intuition, a judgmental heuristic with a 

mathematical model. Beliefs and conceptions are slow to change” (Shaughnessy, in press). 
2. Learning is enhanced b y  having students actually become aware of and confront their 

own misconceptions. Activities that help students evaluate the difference between their own 
beliefs and intuitions about chance events and actual empirical results help students learn 
even better (delMas and Bart, 1989; Shaughnessy, 1977). If students are first asked to make 
guesses or predictions about data and random events, they are more likely to be engaged 
and motivated to  learn the results. When experimental evidence explicitly confronts their 
predictions, they should be helped to evaluate this difference. In fact, unless students are 
forced to record and then compare their predictions with actual results, they tend to see 
in their data confirming evidence for misconceptions of probability. Research in physics 
instruction also points to this method of testing beliefs against empirical evidence (e.g., 
Clement, 1987). 

B. Learning is Constructive 
1. Learning is a constructive activity. Students learn by constructing knowledge, not by 

passive absorption of information (Resnick, 1987; von Glasersfeld, 1987). Students approach 
a learning activity with prior knowledge, assimilate new information, and construct their own 
meaning (NCTM, 1989). They connect the new information to what they already believe. 
Students accept new ideas only when their old ideas don’t work or are inefficient. Ideas are 
not isolated in memory but are organized and associated with language and experiences. 
Students have to construct their own meaning for what they are learning, regardless of how 
clearly a teacher or a book tells them something (AAAS, 1989). Students retain best the 
mathematics that they learn by processes of internal construction and experience (NRC, 
1989). 

2. Students learn better b y  active involvement in learning activities. Students learn 
better if they are engaged and motivated to struggle with their own learning. Teachers should 
involve students in their own learning by using activities that require students to express 
their ideas both orally and in writing. Students learn better if they work cooperatively in 
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small groups to solve problems and learn to argue convincingly for their approach among 
conflicting ideas and methods (NRC, 1989). 

3. Students learn to do well only what they practice doing. Practice may be through 
hands-on activities, cooperative small groups, or computer work. Students also learn better 
if they have experience applying ideas in new situations. If they practice only calculating 
answers to well-defined problems, then that is all they are likely to learn. Students cannot 
learn to think critically, to analyze information, to communicate ideas, to make arguments 
unless they are permitted and encouraged to do those things over and over in many con- 
texts. Merely repeating and reviewing tasks is unlikely to lead to  improved skills or deeper 
understanding (AAAS, 1989). 

4. E’ective learning requires feedback. Learning is enhanced if students have opportu- 
nities to express ideas and get feedback. Feedback ought to be analytical, and come at  a 
time when students are interested in it. There must be time for students to reflect on the 
feedback they receive, make adjustments, and try again (AAAS, 1989). 

5. Computers should be used to  enhance learning, not just  to  crunch numbers. Computer- 
based instruction appears to help students learn basic statistics concepts by providing visual 
representations as well as the capability for easy interactive data exploration (Rubin, Rose- 
bery and Bruce, 1988; Weissglass and Cummings, in press). 

Statistics instruction should shift from lecture-based classes emphasizing learning 
mechanical skills, to  student-centered courses emphasizing application, understanding, and 
communication. Based on research in learning and cognition, and mathematics education, 
the National Council of Teachers of Mathematics (1991) is urging the following shifts in 
mathematical instruction, which also apply to statistics instruction: 

6. 

Toward classrooms as mathematical communities. 
Toward logic and mathematical evidence as verification, away from the teacher as the 
sole authority for right answers. 
Toward mathematical reasoning, away from merely memorizing procedures. 
Toward conjecturing, inventing, and problem solving, away from an emphasis on mech- 

Toward connecting mathematics, its ideas, and its application away from teaching math- 
anistic answer-finding. 

ematics as a body of isolated concepts and procedures. 
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Appendix B: Examples 

1. Classroom Experiments (Howard Taylor) 

Central Limit Theorem. (Prerequisite: Probability distribution, means and variances; a 
class of 40 to 100.) I start with a jar containing tags numbered 0, 1, . . . , 9 and select a tag 
at random, writing its number on the board. Then I select ten tags, with replacement, and 
compute their sample mean. A student repeats the experiment, providing another single 
digit and another sample mean. Then in the interest of speed, I pass out slips of paper, 
each slip containing a single digit plus ten more digits and their sample mean. (I create 
these using APL.) The students call out their single digit in order and we create a frequency 
tabulation. Usually you have to smooth it into five groups to get a reasonable histogram. You 
can compare the observed frequencies with the uniform probabilities. Of course the sample 
experience does not exactly conform to the population of the sample means. Prior to the 
tabulation, I predict the frequencies in the various groups from normal table calculations 
that I make ahead of time. From the histogram, we observe that the sample means are 
centered about the same number as the individual observations, there is less variability in 
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the sample means, and the bell-shaped curve has started to appear. Again, we compare the 
observed frequencies to  the predicted frequencies. (The students are often amazed that I 
can make these predictions.) 

Acceptance SampZing. (Prerequisite: Elementary binomial probabilities.) We compute 
the probability of accepting the lot when a sample size of 20 (and 50) items is selected, 
and we accept the lot if there are c or less defectives in the sample, as a function of the 
fraction p of defectives in the very large lot. We draw the operating characteristic curves 
for c = 0,1,2 and 0 < p < .20. We then choose n = 50 and c = 1 and pass out simulated 
data, 5 x 10 arrays of 0’s and 1’s representing each student’s sample. The first data is from a 
low acceptable value of p .  We count how many student’s accepted their lots, and how many 
rejected theirs, and compare the fraction accepted with the operating characteristic curve. 
Then we repeat with simulated samples from a higher value of p .  

I find acceptance sampling a natural way to  introduce students to hypothesis testing. 
Obviously, I treat Type I and Type I1 errors right from the start. One of the things pointed 
out at the end is that we could use a similar simulation to evaluate a very complicated 
acceptance rule whose operating characteristics we could not compute analytically. 

2. Teaching Without Lecturing (Joan Garfield) 

Case S tudy:  An  Alternative Approach t o  Teaching Introductory Statistics. This course 
was developed to introduce undergraduate students to the basic statistical ideas and meth- 
ods. The only prerequisite for the course is a high school level course in algebra. The course 
is based on the following components: 
1. Involvement wi th  real data. Students are involved in the analysis of real data in order to 

solve problems of interest to them. This involves analyzing existing data sets gathered 
from a variety of resources as well as collecting data of their own. 

2. Emphas is  o n  exploring data. The focus of the course is on exploring data and this theme 
is continued throughout the course. The intent is to help students develop the attitude 
that statistical work is like detective work: looking for clues in the data, speculating 
about the real situation that a sample of data represent, and learning how different 
ways of representing data give different information. 

3. Use of software designed t o  build conceptual understanding. Software is used not just 
as tools to crunch numbers and to display data more quickly and easily than by hand, 
but as a means to build concepts, confront misconceptions, and explore data by creating 
multiple representations. 

4. Emphas is  o n  oral and  writ ten communication. Students are given opportunities to com- 
municate about statistics both orally (as they solve problems and analyze data in groups) 
and in written form (writing interpretations of data and results of student projects). 

5 .  Confronting misconceptions. Students are confronted with their faulty reasoning, in- 
correct intuitions, and misconceptions through carefully designed experiences on the 
computer, group problem solving, and class discussion. 

Course Details. The text used is Statistics and Data  Analys i s  by Andrew Siegel. A 
study guide, written by the instructor, offers additional information, study questions to 
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guide students’ reading of the text, and sample problems with full solutions. Students are 
instructed to read the assigned chapters, jot down answers to the study questions, and work 
out the sample problems before coming to class. The class meets three times a week for 
ten weeks. Two sessions are two hours long and the third meets for fifty minutes (where 
students turn in homework and take a quiz). 

Each two-hour session begins with a discussion of the assigned material and questions 
students have about the reading and homework assignment. This takes about 30 minutes, 
The next 45 minutes students work in assigned groups of 3 to 4 students per group, analyzing 
one or more small data sets provided to them which use the methods from their assigned 
readings. These data sets are accompanied by questions which help students focus on what 
to look for in their analysis, and require them to summarize in writing what they did and 
what they learned. 

The next 45 minutes are spent in a computer lab using software to illustrate techniques, 
explore data, build conceptual understanding, or confront misconceptions. The software pro- 
grams currently used are not yet commercially available, but are available from the authors. 
They are the Chance Plus Software (Clifford Konold, SRRI, Hasbrouck Lab, University of 
Massachusetts, Amherst, MA 01003), and ELASTIC Software (Andee Rubin, TERC, 2067 
Massachusetts Ave., Cambridge, MA 02140). 

Evaluation. Students receive grades in the course based on their scores on each of the 
following: weekly homework assignments; weekly quizzes; daily group activities; mid-term 
and final exams; and two student projects (where students individually collect and analyze 
a set of data and write up a full report). 

I collect informal evaluation information about the course in several ways: 
1. I usually have students complete a mid-quarter survey which asks about their reactions 

to the course and its nontraditional format (i.e., no lectures, reading the book before 
coming to  class, and working in groups on problems during class time). Their responses 
are 90% enthusiastic, with comments such as: “I never knew statistics could be fun,” “I 
can’t believe I actually enjoy this course,” etc. 

2. I use a standard student evaluation form at the end of the quarter which indicates 
generally favorable student reactions. I know this is not just a teacher effect because 
I have trained six different graduate students to use my materials and methods, and 
students have expressed high levels of satisfaction in those sections of the course as well, 
even with two foreign students who often get lower ratings in traditional lecture classes. 

3. I use what I call “Real Life Problems.” These are structured written reports of student 
projects where students have gathered and analyzed a set of data. Although this is used 
as a learning activity, it also provides a useful assessment of students’ ability to use 
the statistical language appropriately, choose appropriate methods of analysis, interpret 
summary measures and graphs of data, and draw reasonable conclusions based on their 
analysis. As an  assessment method, it helps me see in which areas students are weak 
and may need additional work. Usually I find some consistent errors that then lead 
me to discuss these in class or structure additional activities for students to work on in 
groups. 
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3. Two Kinds of Introductory Courses (Gudmund Iversen) 

Not all students have the same statistical needs. Some students will be actively collecting 
data in laboratory experiments or in small sample surveys and analyzing these data for 
course projects and possible theses. Other students will be analyzing secondary data for 
similar purposes. A large group of other students will be exposed to statistical results and 
conclusions in their readings of books and journals for a variety of different courses as well 
as in their reading of newspapers and news magazines. But these students will never be 
asked to  collect or analyze data on their own. 

The premise of this dichotomy leads to the construction of two kinds of (non-calculus 
level) introductory courses. A possible name for the first type of course is Statistical Meth- 
ods, and this is essentially the type of introductory course commonly taught across the land. 
A possible name for the second type of course is Statistical Thinking, and this is a much 
more unusual course, even though varieties of this course are beginning to appear. 

Having tried this distinction for the last five years, my own evaluation is that it has been 
very successful. When only Statistical Methods was offered, the students were much more 
mixed in their expectations, their interest in the material, and in their abilities to do the 
work. Now that the students have a choice, the Statistical Methods course draws students 
who are motivated to learn statistics because they know they need these methods for their 
work in other courses. Sometimes this motivation comes late, and they take the course as 
late as their senior year. But by that time they are often involved with their own data, and 
they really see the need for knowing statistics. The enrollment in this course is now larger 
than it used to be, and it is now typically taken by about 20% of any graduating class. 

The goal of the Statistical Thinking course is for students to understand and critically 
evaluate statistical results they are exposed to both in their academic work and in their 
non-academic lives. This means they have to know about data collection, analysis, and 
inference, but they do not need to have the technical knowledge necessary to do any of these 
themselves. In practical terms this means the students do not have to see and study formulas. 

For example, instead of ever seeing the formula for the correlation coefficient T, students 
are shown scatterplots with different degrees of correlation and are told that we can compute 
a number which ranges from zero to one, the value depending on how close the points are to 
a line through the points. Giving the r-value for each plot and seeing the degree of scatter 
that goes with each T teaches non-mathematically inclined students more about the strength 
of relationships than any study of the formula for T can do. 

In the study of data collection the need is stressed for proper statistical random samples 
and randomized experiments. The students quickly catch on to the fact that self-selected 
samples and convenience samples cannot be used for generalizations. In the data analysis 
part of the course the focus is on simplifying the data so we can understand what they tell 
us without the loss of too much information. Graphical methods, with the use of overheads 
showing good and bad graphs, is a popular topic. Computational methods are harder to 
deal with, but it is still possible to explain about mean and standard deviation without 
writing down formulas. 

The inference part centers around p-values, both for tests for single variables and tests 
for relationships between variables. The technical details of whether we need to compute z, 

t ,  X-square, or F are interesting for statisticians but only of minimal interest and concern for 
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a person with interests in the substantive matter at hand. These quantities are only tools 
used to find the p-value, which tells the important story about the data. Now that computer 
software routinely supply us with p-values, a student needs only to understand the proper in- 
terpretation of this concept and to know where to look on the output to find the actual value. 

The last section of the course consists of a discussion of the role of statistics in today’s 
society. It stresses the need for information and the role it plays for an individual as well as 
for society in its attempt to determine public policy. 

An important part of the Statistical Thinking course consists of writing papers. The first 
paper deals with some aspect of statistics, based on what has been discussed in the course 
up to that point. A popular topic consists of taking an issue of a magazine like Newsweek 
and discussing the quality of some of the graphs found in that issue. Other topics include 
the role of statistics in some particular field. The second paper deals with the study of the 
relationship between two variables; how strong the relationship is, whether it is statistically 
significant, and whether it is causal or not. 

The hope is that the course gives an overview of the role of statistics without getting 
bogged down in technical details. Some students have taken this course first and gone on to 
the Statistical Methods course or a mathematical statistics course. They report that they 
find the second course particularly interesting because they already have some sense of the 
underlying issues, and they see the need for the particular statistical methods in a new and 
informative light. 

4. Project NABS: Nuts and Bolts Study (Dick Gunst) 

This classroom experiment is an introduction to statistical problem solving. It en- 
compasses concepts of quality improvement, the need for data (information), variability, 
group/team solutions, experimental design, graphical displays, and the scientific method. It 
requires approximately 30 minutes but can take up an entire 1 1/2 hour lecture depending 
on how much the instructor wishes to discuss the individual issues raised by the experiment. 

Requirements. 
1. At  least four identical jars are used for the first phase of the experiment. The jars are 

approximately 7 inches tall and are not wide enough for an adult’s hand to fit through 
the mouths. Each jar is filled with nuts, bolts, and washers. Most of the nuts in the 
jars fit the bolts, but there is a wide assortment of sizes in each of the jars and there are 
some nuts that do not fit any of the bolts. Refer to these jars as the “mixed” jars. 

2. At least four stop watches, the number equal to the number of mixed jars. 
3. At least four additional jars, the number again equal to the number of mixed jars. Half 

of the jars are identical to the mixed jars. The other half of the jars are smaller, with 
mouths the same size as the tall ones. Approximately half of each size jars are filled 
with an assortment of large bolts and their corresponding nuts. The remaining jars of 
each size are filled with an assortment of small bolts and their corresponding nuts. No 
washers are included in any of these jars and each nut fits a bolt. Refer to these jars as 
the “sorted” jars. 

Setting. The class members are employees of or consultants to a company that manufactures 
nuts, bolts, and washers. One very large group of its customers requires that the bolts it 
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purchases be shipped with the corresponding nuts securely fastened. In recent years the 
company has been losing customers because its competitors have been able to satisfy these 
customer requirements a t  a lower cost. Management has mandated that costs be reduced. 

Costs of the raw materials and machinery to manufacture the nuts and bolts are stan- 
dard industry-wide. A cost analysis of the process indicates that the only manufacturing 
component in which the company’s competitors could be achieving lower costs is in the 
assembly process, the fastening of the nuts to the bolts. In particular, the amount of time 
needed to fasten the nuts to the bolts has been determined to be the critical factor in the 
cost differential between this company’s costs and those of its competitors. The employees 
(consultants) have been assigned to a task force to determine the most effective means of 
reducing the assembly times. 

Assembly  Process. At this juncture the students are unable to  recommend any cost saving 
measures because nothing is known about the actual assembly process. Any recommenda- 
tions made at this point are easily recognized as pure conjecture. A reasonable suggestion 
(made by the instructor) is to familiarize the task force with the assembly process and to 
collect some data on assembly times. 

Industry-wide, nuts are fastened to the bolts by hand. Automation of this procedure 
has not been found to be cost effective because the nuts and bolts arrive at the assembly 
stations in large bins containing a wide assortment of sizes of nuts, bolts, and washers. In 
order to reduce accidents due to spillage, the nuts and bolts are extracted from the bins and 
placed into jars. These jars are delivered to the individual workers. The workers remove 
nuts and bolts from the jars and fasten them together, placing the assembled nuts and bolts 
into sorted bins in preparation for packaging. Data are needed on the time needed to fasten 
the nuts to the bolts. Stopwatches are deemed suitable for this purpose. 

The students are divided into groups in any convenient way. There are at  least two 
students in each group, with a maximum of about six per group. There are a sufficient num- 
ber of mixed jars and stopwatches to distribute one of each to each group. The task group 
members are permitted to familiarize themselves with the operation of the stopwatches. 
They may also examine the jars of nuts and bolts. As they are doing so, they are informed 
of the specifics of the assembly procedure. Because of safety reasons, OSHA (The U.S. 
Occupational Safety and Health Administration) mandates the following procedure: 

(a) The nuts and bolts may not be poured from the jars (danger of spillage and sub- 
sequent employee accidents). Some portion of the bottom of the jar must always 
touch the table. The jars may be tilted if the bottom remains touching the table. 

(b) Nuts and bolts must be extracted from the jar one at a time. More than one nut or 
one bolt may be placed on the table or desk and remain out of the jar as matches 
are sought. 

Initial Data  Collection and Analysis.  One individual in each group is selected as the assem- 
bler. Another person is the timer. A third individual is the data recorder for the group. 
Timing begins as the lid of the jar is being unfastened. It stops when four nuts have been 
completely fastened to four bolts. Once the time has been recorded, the procedure is re- 
peated with different students acting as the assembler, timer, and recorder. No controls 
(e.g., the same timekeeper) are allowed so that everyone can participate and so the uncon- 
trollable variability due to different assemblers and timers will be evident in the results. If 
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there are at least four groups, it is not necessary to repeat the experiment further. 
One of the main features of the analysis of data from this experiment is its simplicity. 

A point stressed is that often only simple data analyses are required to extract important 
information from experimental results. This is especially true if the data are collected in a 
well-designed experiment that includes satisfactory controls over extraneous variability. 

As the data are reported, they are graphed using a simple point plot (dot plot) of the 
assembly times. This is done on an overhead projector or on a blackboard. Usually the 
times range from about 50 to 200 seconds, although occasionally an observation is higher 
than 200 seconds. 

The data are usually widely scattered. Comments are made about how the experiment 
was conducted under controlled conditions (one classroom, same time of day, same instruc- 
tions and training, etc.) and yet the data vary widely. The concept of variability is stressed 
in this discussion. Students are alerted to the potential difficulty in interpreting data that 
exhibit such variability, motivating their presence in the course. 

Causes/Solutions. Next students are asked to critique the assembly process, with special 
attention to improvements that would reduce the assembly times. With very little encour- 
agement, numerous ideas are suggested, occasionally peppered with a sense of frustration! 
In this “brainstorming” session, all ideas are sought and are written on an overhead trans- 
parency or on the blackboard. Time permitting, these ideas are organized (e.g., cause and 
effect diagram) and prioritized. 

In virtually every session, three of the ideas for improvement are: 
sort the sizes of the nuts and bolts, 
select a different size for the jars, and 
eliminate the washers. 

While all the ideas are praised, these three are selected as especially noteworthy. The 
remainder (e.g., can’t pour nuts and bolts from the jars, training, time of day, differences 
in stopwatches, differences in assemblers and timers, heights of desks, etc.) are discussed 
in terms of continuous quality improvement and the scientific method, with the end result 
that some will be selected in further rounds of experimentation. 

Primary Experiment. The primary experiment consists of a factorial experiment in two 
factors: jar size and nut/bolt size. Four or more additional jars are introduced, as described 
above in Requirement 3. The jars are randomly distributed to the groups. Prior to this 
phase of the data collection, students are asked their expectations. Most state that the 
times will be reduced with the smaller jars. Some also believe the larger nuts and bolts will 
reduce assembly times. 

As times are reported, they are again plotted. A single point plot is constructed beneath 
the point plot for the initial data. On the second plot, data from each of the four combi- 
nations of the two factors are plotted using different symbols. Two things typically occur. 
First, the four plotting symbols overlap, revealing that no combination is clearly preferable 
to any of the others. Second, contrary to any of the student conjectures, all the plots show 
reduced assembly times; i.e., there is a downward shift in the second set of plots from the 
initial assembly times plot. 
Conclusions. So long as some sorting is performed and the washers are eliminated, the 
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assembly times will typically be reduced. The company can accrue additional cost savings 
by selecting the jar size that minimizes cost. These benefits are the result of simple experi- 
mentation and simple data analysis, both of which are based on sound statistical principles. 

Appendix C: Making It Happen 

Interesting and Available Data (Robin Lock, St. Lawrence University) 

The purpose of this column [in the Statistical Computing and Statistical Graphics News- 
letted is to provide a means for sharing the sorts of interesting data that stimulate, chal- 
lenge, and enliven the practice of statistics. . . . Contributed data sets will be made available 
through the StatLib file server at Carnegie Mellon University. For example, to obtain the 
baseball data send a message which contains only the line 

to the address 
send baseball.data from datasets 

statlib@lib.stat .cmu.edu. 

A list of all data sets currently available can be obtained by sending the message 

to the same address. General information about StatLib is available by sending the message 
send index from datasets 

send index 

to the StatLib address. (From Statistical Computing and Statistical Graphics Newsletter, 
April 1991.) 

EDSTAT-L: Statistics Education Discussion List (Tim Arnold, North Carolina State) 
Announcing a new electronic forum for discussion related to statistics education: the 

purpose of this list is to provide a forum for comments, techniques, and philosophies of 
teaching statistics. The primary focus is that of college level statistics education, both 
undergraduate and graduate studies. 

This list exists because we can learn from each other. What techniques are we using 
in statistical instruction? What strategies should we use to prepare our students for the 
future? What part do or should computers play in instruction? Are computers a new tool 
or a new subject for students? What assets (e.g., public-domain programs, data sets) can 
we share among ourselves? There are many individuals working in these areas, each with 
knowledgevaluable to  the others. This list attempts to bring together every teacher, student, 
researcher, and specialist interested in improving statistical instruction. 

You are encouraged to: 

problems or solutions in teaching statistics. 
Submit summaries of or commentary on published articles and books which address 

Share the results of your experiments in teaching statistics. 
Ask thought-provoking questions about the future of statistics education and the envi- 

. Recruit interested parties to this list, regardless of their status in education, industry, 
ronments in which it takes place. 

or government. 
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Subscribing to EDSTAT-L 

s erv0ncsuvm: 
Bitnet Users: Send the following command as the first line of a mail file to  l i s t -  

subscribe EDSTAT-L Your f u l l  name 

IBM VM users in Bitnet may add themselves to the mailing list with this command: 
t e l l  l i s t s e r v  at ncsuvm subscribe EDSTAT-L Your f u l l  name 

VAX/VMS users in Bitnet can subscribe in a similar way: 
send listservancsuvm subscribe EDSTAT-L Your f u l l  name 

Internet Users: Send the following command as the first line of a mail file to l i s t -  
serv@ncsuvm.cc.ncsu.edu: 

subscribe EDSTAT-L Your f u l l  name 

Appendix D: Report of Workshop on Statistical Education 
by Robert V. Hogg, UNIVERSITY OF IOWA 

On June 18-29,1990 thirty-nine statisticians gathered for a workshop on statistical edu- 
cation at the University of Iowa in Iowa City, Iowa. These persons represented universities, 
colleges, consulting firms, business, and industry. This workshop was sponsored by the Uni- 
versity of Iowa and the American Statistical Association (ASA). Financial assistance was 
provided by the National Science Foundation, the ALCOA Foundation, the Ott  Founda- 
tion, the Statistics Division of the American Society of Quality Control, and the Quality 
and Productivity Section of ASA. 

As we prepared for the workshop, most of the participants, and several others not at- 
tending, wrote position papers on some aspect of statistical education, the majority of which 
concerned a first course in statistics. As a group we recognized several poor characteristics 
of science and mathematical education, including statistical education: 

Improvements are needed in the K-12 curriculum as there is widespread science and 
mathematics illiteracy in the United States. 
There is little effort given to recruiting students to these areas, often because we want 
only students like ourselves. 
There is a lack of truly qualified teachers because the pool from which they come is 
drying up. 
College and university instructors are often required to teach large introductory classes 
that allow little or no interaction with students and severely limit student involvement 
with others. 
Frequently students view courses as being “hard” because the class periods are dull and 
it is difficult to  get good grades despite spending long hours doing homework. 

Reprint of a report of a workshop on statistics education, especially at the introductory level, organized 
by Roberg Hogg and held June 18-20, 1990. 


