
Computer Science

This chapter contains the report of the Subpanel on
Computer Science of the CUPM Panel on a General
Mathematical Sciences Program, reprinted with minor
changes from Chapter I V of the 1981 CUPM report en-

MATICAL SCIENCES PROGRAM.
titled RECOMMENDATIONS FOR A GENERAL MATHE-

A Growing Discipline
Computer Science is a new and rapidly growing sci-

entific discipline. It is distinct from Mathematics and
Electrical Engineering. The subject was once closely
identified in mathematicians' minds with writing com-
puter programs. In the beginning, however, computer
scientists concentrated on the discipline's mathemati-
cal theories of numerical analysis, automata, and re-
cursive functions, as well as on programming. In the
past decade, theories developed to understand problems
in software design (compilers, operation systems, struc-
tured programs, etc.) have blossomed. These theories
involve the analysis of complex finite structures, and in
this sense have a strong mathematical bond with the
finite structures common in operations research and di-
verse areas of applied mathematics.

More importantly, these computer science theories
are needed by analysts who design algorithms for com-
plex problems in the mathematical sciences. For this
reason, all mathematical sciences students must be
given an introduction to the basic concepts of computer
science. Further, facility in computer programming is
required of all mathematical sciences students so that
they can perform practical computations in mathemat-
ical sciences courses and in subsequent mathematical
sciences careers.

Although only one-third of the country's colleges
and universities now have computer science depart-
ments, the number of students currently majoring in
computer science taught in a computer science depart-
ment (approximately 50,000 students) is greater than
the number of all majors in mathematics, mathemati-
cal sciences, and applied mathematics. The computer
science recommendations in this chapter are designed
for institutions where computer science is taught in a
mathematical sciences department or in a mathemat-
ics department. When a separate computer science
department exists, that department's diversity of com-
puter science offerings will enhance a mathematical sci-

ences major. A mathematical sciences undergraduate
program and a computer science undergraduate pro-
gram should complement one another to the advantage
of both departments and their students (for example,
see the description of the interaction at Potsdam State
in Chapter I, "A General Mathematical Science Pro-
gram").

Introductory Courses

The foundation for a computer science component in
a mathematics department is a one-year introductory
sequence. Courses CS1 and CS2, prolposed in the As-
sociation of Computing Machinery Curriculum 78 (see
last section of this chapter), are excellent models for
this year sequence. The Subpanel on Computer Science
endorses the objectives of these two courses, and rec-
ommends that all mathematical sciences majors should
be required to take the first course and strongly encour-
aged to take the second course in this sequence. If the
second course is not required, substantial use of com-
puters should be an integral part of other mathematical
sciences courses.

The primary emphasis in the first 'course should be
on:

Problem solving methods and algorithmic design

Implementing problem solutions in a widely used

* Techniques of good programming i~tyle, and
Proper documentation.

and analysis,

higher-level programming language,

Lectures should include brief surveys of the history of
computing, hardware and architecture, and operating
systems.

The second course should include at least one major
project. The course should cover topics such as recur-
sive programming, pointers, stacks, queues, linked lists,
string processing, searching and sorting techniques.
The concepts of data abstraction and algorithmic com-
plexity should be introduced. Proofs of correctness may
also be discussed.

Good design and style in programming should be em-
phasized throughout both courses: the use of identi-
fiers to indicate scope, modularity, appropriate choice
of identifiers, good error recovery procedures, checks
for integrity of input, and appropriate commentary and

30 RESHAPING COLLEGE MATHEMAE

documentation. Of course, efficient algorithms and cod-
ing should also be stressed. There is a strong tendency
among students to worry only about whether their pro-
grams run correctly. Through class lectures and care-
ful grading of programming assignments, the instructor
must teach the students the importance of good design,
style, and efficiency in programming.

A source of useful commentary about introductory
computer science courses is the SIGCSE (Special Inter-
est Group on Computer Science Education) Bulletin.
The bulletin is published quarterly, and issue #1 each
year, which contains papers presented at the SIGCSE
annual meeting, is especially valuable.

Most introductory texts have many sample projects.
In addition, the following three texts are good general
sources of computer projects.
1. Bennett, William R., Scientific and Engineering

Problem-Solving with the Computer, Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

2. Gruenberger, Fred and Jaffray, G., Problems for
Computer Solution, John Wiley & Sons, New York,
1965.

3. Wetherall, Charles, Etudes for Programmers, Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1978.

Mathematicians teaching introductory computer sci-
ence often emphasize numerical computation in pro-
gramming assignments. At the introductory level, the
computer science issues involved in numerical computa-
tion are quite simple, Assignments requiring symbolic
manipulation and data organization present more sub-
stantive programming problems and, in general, require
more thought. The following is a sample assignment
that could be given late in the first course:

Write a program which obtains a five-card
poker hand from some source (terminal, input
deck, or file), prints the hand in a reasonably
well-formatted style, and determines whether or
not the hand contains a pair, three of a kind, a
straight, a full house, etc.

Intermediate Courses

Intermediate-level computer science courses building
on CS1 and CS2 should address basic underlying issues
in computer science. In describing computer science
in the first two years, the ACM Curriculum 78 report
states that the student should be given “a thorough
grounding in the implementation of algorithms in pro-
gramming languages which operate on data structures
in the environment of hardware.” Thus these courses
should develop general topics about algorithms, con-

cepts in programming languages, data structures, and
computer hardware.

The intermediate-level courses should be taught by
a computer scientist, that is, by an individual who has
significant graduate-level training in computer science
(see below).

The Subpanel on Computer Science, in concurrence
with ACM curriculum groups, strongly rejects the idea
of a set of courses that each address a specific pro-
gramming language, e.g., a sequence of advanced FOR-
TRAN, COBOL, RPG, and APL. The argument for
such a sequence is usually based on the employability
of students completing it. If indeed this argument is
valid, and there is some question about that , it is a short
range benefit. Students completing such a sequence will
soon find that the lack of underlying concepts will put
them at a severe disadvantage. However, i t may be ac-
ceptable, resources permitting, to have one “vocational”
elective course that studies a second higher-level lan-
guage such as COBOL. Of course, it is also natural to
discuss new programming languages in several interme-
diate (and advanced) computer science courses. How-
ever, the new language would not be the focus of the
course, but rather a tool used in learning and illust,rat-
ing fundamental concepts.

The role of numerical and computational mathernat-
ics in computer science has diminished in recent years.
While the ACM Curriculum 68 treated numerical anal-
ysis as part of core computer science, today numeirical
mathematics is considered by most computer scientists
to be simply another mathematical sciences field that
has overlap with computer science. Numerical math-
ematics is very important in a mathematical sciences
major, but it is not a part of the computer science com-
ponent .

Following the CS1 and CS2 courses, the ACM Cur-
riculum 78 specifies six additional courses in core com-
puter science.

CS3 Introduction to Computer Systems
CS4 Introduction to Computer Organization
CS5 Introduction to File Processing
CS6 Operating Systems and Computer Architecture
CS7 Data Structures and Algorithm Analysis
CS8 Organization of Programming Languages
The syllabi of these courses are given at the end of

this chapter. Ideally, all six of these courses would be
offered. A concentration or a minor in computer sci-
ence would commonly consist of CS1 and CS2, followed
by two of CS3, CS4, and CS5, and two of CS6, CS7,
and CS8. For the purposes of a mathematical scieiices
program, it may be justified to place more emphasis on
the software oriented areas. This would imply, if there

COMPUTER SCIENCE 31

was difficulty in offering all six courses, that CS3, CS5,
CS7, and CS8 would be most useful. Then CS3, CS5,
CS7, and CS8 would be offered once a year, and CS4
and CS6 offered as topics courses every other year.

At many schools, it may not be feasible to offer at
least four of these intermediate courses in computer sci-
ence on a regular basis. Then one can combine parts of
these intermediate courses to provide a significant offer-
ing in two courses above CS1 and CS2. In this case, only
two computer science courses, one elementary and one
intermediate, would be offered each semester. One ap-
proach would be to combine topics from CS5 and CS7
into one course, and topics from CS3, CS4, and CS6
into the other. This would yield two courses with the
following sort of syllabi (for more details about these
topics, see the ACM Curriculum 78 syllabi a t the end
of this chapter):
Al . Algorithms for Data Manipulation

1. Algorithm design and development illustrated in
areas of sorting and research (25%)

2. Data structure implementation (30%)
3. Access methods (25%)
4. Systems design (15%)
5. Exams(5%)

1. Basic logic design (15%)
2. Number representation and arithmetic (10%)
3 . Assembly systems (35%)
4. Program segmentation and linkage (15%)
5. Memory management (10%)
6. Computer systems structure (10%)
7. Exams (5%)

A2. Computer Structures

This approach focuses on data structures and soft-
ware issues that relate to operating systems. An al-
ternative approach could concentrate on programming
languages and algorithms involved in computer systems
performance. This theme could be realized by combin-
ing topics in CS3, CS5, and CS8 into one course, and
topics in CS4, CS6, and CS7 into the other course. This
would yield two courses with the following syllabi:
B l . Language Types and Structures

1. Assembly systems (25%)
2 . Program segmentation and linkage (15%)
3. Language definition structure (10%)
4. Data types and structures (15%)
5. Control structures and data flow (20%)
6. Access methods (10%)
7. Exams (5%)

1. Basic logic design (20%)
2 . Algorithm design and analysis (20%)
3. Procedure activation algorithms (15%)

B2. Algorithms for Computer Systems

4. Memory management (15%)
5. Process management (15%)
6. Systems design (10%)
7. Exams (5%)

It is important to note that an individual wishing to
go on from these courses to advanced .work in computer
science may have to make up, as deficiencies, areas in
core computer science that are not represented in these
condensed pairs of courses.

Concentrations and Minors;

A computer science concentration i n a college mathe-
matics department can be defined as an option within a
mathematical sciences major or as a “stand-alone” mi-
nor. A computer science minor should consist of about
six courses, ACM Curriculum 78 couirses CS1 and CS2
plus four intermediate courses.

A computer science concentration within a mathe-
matical sciences major has three components:

A. Mathematics: 5-plus courses;
B. Computer Science: 4-6 courses;
C . Applied Mathematics: 3-plus courses.

A. The mathematics component would include
the three semester freshman-sophomore “calculus se-
quence” plus linear algebra. As recommended in Chap-
ter I, “A General Mathematical Sciences Program,” any
mathematical sciences major should contain upper-level
course work of a theoretical nature, typically algebra or
advanced calculus. In a major with a computer science
concentration, algebra is the natural area. Specifically,
the applied algebra course given in Chaper I would be
excellent for the computer science concentration. The
course’s syllabus incorporates most of the topics of the
ACM 78 discrete mathematics course (required of com-
puter science majors). A small department could offer
applied algebra and standard abstract algebra courses
in alternate years. Logic and automata theory are at-
tractive electives in the mathematics component if a
mathematics department wishes to focus on more the-
oretical aspects of computer science.

It should be noted that several computer science ed-
ucators have questioned the reliance on calculus as the
basic mathematics for future computer scientists; ACM
Curriculum 78, for instance, requires a (freshman) year
of calculus. They advocate a mathematics component
based on discrete mathematics with only one semester
of calculus (taught, say, in the junior year). See A. Ral-
ston and M. Shaw, “Curriculum 78--Is Computer Sci-
ence Really that Unmathematical?”, Commzlnications
A C M 2 3 (1980), pp. 67-70.

32 RESHAPING COLLEGE M A T H E M A T ?

B. The computer science component would include
ACM Curriculum 78 courses CS1 and CS2 plus two to
four intermediate courses, as described in the preceding
section. The syllabi of ACM Curriculum 78 core courses
are given at the end of this chapter.

C . The applied mathematics component should in-
clude a course in numerical analysis and a course in
probability and statistics. The third applied mathe-
matics course would be discrete methods, which would
cover the combinatorial material in the ACM Curricu-
lum 78 discrete mathematics course in greater depth, in-
cluding operations-research-related graph modeling (see
Chapter I for a full description of this course). The
CUPM Mathematical Sciences Program panel recom-
mends that all mathematics departments should offer
a discrete methods course. Other good courses for the
applied mathematics component are ordinarily differen-
tial equations, mathematical modeling, and operations
research. The 1971 CUPM Report on Computational
Mathematics describes courses in computational mod-
els, in combinatorial computation, and in differential
equations with numerical methods; these courses com-
bine topics from a variety of mathematical sciences and
computer science courses and hence are particularly at-
tractive to small departments.

In either the computer science concentration or mi-
nor, all six computer science courses are needed for
future graduate study in computer science. Incoming
graduate students with less preparation are commonly
required to make up undergraduate course deficiencies.

Faculty Training
For the foreseeable future, the dominant factor af-

fecting computer science instruction a t all institutions,
but particularly at smaller colleges and universities, will
be the extreme shortage of qualified computer scientists
in academe. At smaller colleges and universities it may
therefore be effectively impossible to hire a computer
scientist to teach core computer science courses. Among
the possible solutions to this problem are:
1. Using adjunct faculty to teach computer science

2. Using existing (non-computer science) faculty to

The first solution is acceptable for some courses. Al-
though one cannot build a program with adjunct fac-
ulty and although staffing courses with adjunct faculty
is never as desirable as using full-time faculty (e.g., stu-
dent advising is a particular problem), this is a feasi-
ble way to get computer science courses taught when
such faculty exist in the local community. However,

courses.

teach computer science courses.

since so many smaller colleges are located away firom
the metropolitan areas where most technical and scien-
tific employers of such adjunct faculty are found, this
solution will not be useful to most smaller institutions.

A crucial point that must be emphasized when using
existing non-computer science faculty (i.e., mathemati-
cians) to teach computer science courses is that com-
puter science cannot be treated like most other new
mathematics course topics which mathematicians will
(quickly) learn as they teach it. Mathematicians un-
trained in computer science are very likely to teach
computer science badly, hurting both the students and
the mathematics department’s reputation. Therefore,
if a current mathematics faculty member is to be used
to teach computer science, especially beyond the first
course, he or she must first acquire some formal educa-
tion in computer science.

The most plausible approach to such computer sci-
ence training is through some program of released time.
The pertinent questions about the training are: how
long? where? and how financed?

Assuming that the mathematician who is to be
trained is, a t most, familiar with programming in a
high-level language, then full-time study for one year is
the minimum period needed to acquire the background,
knowledge, and experience necessary to teach several
of the intermediate-level core computer science courses.
Since one year is also the maximum period which would
be administratively or financially feasible, this shoiild
be viewed as the canonical period for faculty training
in computer science. Part-time study over a longer pe-
riod or a succession of summers can also be considered.
However, both because the needs to train faculty in
computer science are pressing and because intermittent
study is almost always less effective than continuous
study, at least one faculty member in a mathematics
department should have completed a one-year program
of full-time study in computer science.

The most logical place at which to study computer
science for the purpose of becoming able to teach it is a t
a university with undergraduate and graduate (prefer-
ably Ph.D.) programs in computer science. Although
there are exceptions, the current level of computer sci-
ence instruction in American colleges and universities is
so uneven that only a t such institutions can one be rea-
sonably assured of an atmosphere in which there will be
the necessary broad understanding of the principles of
computer science. Such an atmosphere is particularly
important for an academic mathematician preparing to
teach the subject.

Another possibility which should be mentioned is for
the faculty member to spend one year a t one of those

COMPUTER SCIENCE 33

(relatively few) major industrial firms with good in-
house training programs in computer science. An addi-
tional attraction to this idea is that it might be possible
to arrange an exchange in which a member of the firm
taught at the college for a year.

Methods of financing such a program of faculty train-
ing in computer science are fairly obvious:

Through released time at full pay from the mathe-
matician’s home institution.
Through grants from current, and hopefully new,
federal programs; officials of both the MAA and
ACM are currently pressing NSF to provide more
funds for this purpose.
Through grants from private foundations; individ-
ual institutions and departments may be more ef-
fective than professional associations in obtaining
such private funds.
Through corporate sponsorship of participation in
in-house training programs or academic-corporate
exchanges.

Computer Facilities

Facilities to support computing in mathematical sci-
ences instruction can be provided in a variety of ways,
ranging from one large centrally administered system to
many small personal computing devices. The suitabil-
ity of a particular means depends not only upon its in-
tended applications, but also upon factors such as cost,
ease of use, and local politics. At present, computing
services in most colleges and universities are provided
by a large centralized facility, the Computing Center.
Growing numbers of institutions, however, are begin-
ning to decentralize computing on campus. Three cur-
rent modes of providing service are discussed below:

Centralized facilities
* Departmental computers

Personal computers.
There is a fourth mode that is primarily a form of access
to centralized or departmental computers:

The second half of this section discusses the cost and
ease of implementation of various applications with dif-
ferent types of computing facilities.

It should be noted that it is possible for an institu-
tion to form a consortium with nearby schools to op-
erate a common central computing facility or to buy
time (and services) from commercial computing centers.
This option allows an institution to have a mix of com-
puting, using large computers for problems requiring

Terminals

great speed or memory size, such as “number crunch-
ing,” and smaller computers for student programs and
other instructional purposes.

CENTRALIZED FACILITIES

Historically, so-called “economies of scale” encour-
aged the development of increasingly larger computers;
and of increasingly larger organizations to administer
them. Such computer systems are caplable of providing
a great variety of services with a low cost for each ser-
vice. In addition, the organizations .which administer
these systems can play an important, role in develop-
ing and supporting instructional uses of computing on
campus.

On the other hand, the very size of such facilities
and the organizations that administer them create cer-
tain problems. First, large systems have a high unit
cost, in the range of half a million to several million
dollars; replacing or enhancing such i3 system involves
a major administrative decision. Second, instructional
users of such systems must often compete with other
powerful and better-financed constituencies; either sep-
arate facilities are needed to reduce competition among
instructional, research, and administrative uses of the
computer, or policies are needed to allocate the services
provided by a single facility. And third, large organiza-
tions can be bureaucratic and inflexible.

DEPARTMENTAL COMPUTERS

For the last ten years minicomputers have provided
an alternative to a large centralized facility. Lower unit
costs (around $100,000 or less) and the possibility of
local control have made it attractive for academic and
administrative departments to acquire facilities of their
own. Such facilities can be tailored t.0 a department’s
needs and can provide almost as many services as a
large centralized system.

Minicomputers, however, are not necessarily the an-
swer to every department’s computiing needs. First,
there is the question of which services they will provide.
Second, there are hidden costs associated with admin-
istering any computer facility: personnel are needed to
operate and maintain the facility and to provide tech-
nical assistance to users. Small departments run the
risk of diverting attention from their primary task of
teaching mathematics to the subsidiary task of manag-
ing such an enterprise. One way to deal with such hid-
den costs is for departments to contract with a central
campus organization to manage their facilities. Third,
there are inconveniences for students faced with using,
and first learning to use, several different departmental
systems. Of course, this difficulty can be overcome by

34 RESHAPING COLLEGE MATH EM AT^

requiring departments to purchase compatible systems
and by interconnecting all systems.

Many academic computing specialists expect inter-
connected departmental computers to become the dom-
inant means of academic computing in the next decade.

PERSONAL COMPUTERS

The recent development of personal microcomputers
provides another alternative for instructional comput-
ing. Very low unit costs (one or two thousand dollars)
make computing possible for departments otherwise un-
able to afford or gain authorization for large facilities.
Microcomputer facilities suffer from many of the same
problems as minicomputer facilities. In addition, mi-
crocomputers are limited in the services they provide,
are slower than their large competitors, and may not
be designed for rugged use by large groups of students.
Still they can prove quite adequate for elementary ap-
plications. Further, by being less intimidating and more
exciting than larger computers, they can play a role in
overcoming a student’s ‘‘computer anxiety.”

TERMINALS
Terminals are used for remote, interactive access to

large computers. Some have small memories and prim-
itive editing capabilities. Departments often have a
greater choice in selecting terminals to connect to com-
puter systems than they do in selecting the systems
themselves. Cost, speed, and durability are primary
factors influencing the selection of a terminal. By these
criteria, video terminals are preferable. The availability
of graphical output and local editing features are other
factors to consider when choosing terminals. Hard-copy
(printing) terminals are more expensive and tend to be
slower than video terminals, but they do provide users
with a permanent record of their work, and so some
printing terminals are necessary (medium or high speed
printers can be used in conjunction with video termi-
nals to provide this record). Video terminals may also
be used in conjunction with television monitors to pro-
vide classroom displays of computer output. For such
output to be visible in a large classroom, either many
monitors must be provided or the video terminals em-
ployed must use larger, and hence fewer, characters in
their display.

Applications

The suitability of a particular computing facility de-
pends most upon its intended applications. The rest of
this section discusses the most common academic uses
of computers and how well different types of computing
facilities serve these uses.

INTRODUCTORY PROGRAMMING

Any of the three types of facilities can serve as a vehi-
cle for teaching beginners to program and for introduc-
ing computational examples into elementary mathemat-
ics courses. Such uses typically involve large numbers of
students writing relatively simple programs. Larger fa-
cilities tend to provide a greater choice of programming
languages, although modern languages such as PAS-
CAL and PL/I are becoming increasingly available even
on microcomputers. Larger machines tend to be faster
also; even though use of such machines is shared, stu-
dents will find that they process simple programs much
faster than microcomputers. Costs, however, tend to be
roughly equal for simple interactive computing on the
three types of facilities-around $2.00 per hour. These
costs can be reduced significantly by using larger ma-
chines in a noninteractive, batch-processing mode. This
mode of use, while predominant in the past, is becom-
ing less popular as minicomputers and microcomputers
make a more responsive computing environment avail-
able and affordable.

ADVANCED PROGRAMMING

Advanced programming is more distinguished from
introductory programming in its requirements for more
sophisticated languages and for facilities to handle large
programs. Microcomputers at present do not meet
these requirements; the languages they provide are
quite restrictive, and large programs exceed their ca-
pacity. Execution times and costs for large programs
tend to be lowest on large machines under batch pro-
cessing, but minicomputers are becoming competitive
both in price and speed.

P R O G R A M DEVELOPMENT A N D M A I N T E N A N C E

Program development is influenced heavily by the
computing environment in which it occurs. Corive-
nient interactive editing capabilities accelerate the task
of writing and correcting a program; microcomputers,
with almost instantaneous response, do a particularly
good job of editing. Facilities for file storage enable
program development to be spread over several ses-
sions. Large machines provide less expensive storage
and much faster retrieval of information; they also fa-
cilitate sharing programs among users and provide cen-
tralized backup. Microcomputer facilities can distribute
the costs of file storage by requiring users to purchase
individual floppy disks, but unless a centralized store
is provided through a network, sharing information can
be difficult.

GRAPHIC s
One of the primary attractions of personal microcom-

35 COMPUTER SCIENCE

puters is their ability to generate graphic displays and
to enable users t o interact with these displays. Larger
systems, unless specifically tailored to graphic applica-
tions, tend to have primitive graphic facilities a t best.

APPLICATION PACKAGES

Application packages available for various machines
provide aids for numerical and symbolic computations.
Typical areas of application include statistics, linear
programming, numerical solution of differential equa-
tions, and algebraic formula manipulation. Such pack-
ages are more widely available on larger machines.
Large computations often require an unacceptably long
time on microcomputers (several hours) and may ex-
ceed the memory size of small computers.

MISCELLANEOUS APPLICATIONS

Word processing systems facilitate production of
course notes, research papers, and term papers. If good
word processing facilities are available, they are likely
to quickly generate heavy faculty use. Simple word
processing software is available for personal computers,
but a minicomputer (or powerful $5,OOO-plus microcom-
puter) is needed for good mathematically-oriented word
processing software, such as the UNIX system. Large
computers often have poor word processing capabilities.

Data base systems are of more use in the social
sciences than in the mathematical sciences, but can
be used to provide real data for analysis in statistics
courses. Such systems require a centralized file store on
a larger computer.

Real-time data acquisition is of interest in the natural
sciences. They can also be used to provide real data for
mathematical analysis. Dedicated microcomputers are
better suited to laboratory instrumentation than are
shared machines.

ACM Curriculum 78
The following computer science course syllabi are re-

produced from the ACM Curriculum 78 Report in Com-
munications of ACM, March 1979, pp. 147-166. (Copy-
right 1979, Association for Computing Machinery, Inc.)
They provide eight core courses for a computer science
major.

CS1. Computer Programming I

OBJECTIVES:
To introduce problem solving methods and algo-

To teach a high-level programming language that is
rithm development;

widely used; and

To teach how to design, code, debug, and docu-
ment programs using techniques of good program-
ming style.

COURSE OUTLINE:
The material on a high-level programming language

and on algorithm development can be taught best as an
integrated whole. Thus the topics should not be cov-
ered sequentially. The emphasis of the 'course is on the
techniques of algorithm development and programming
with style. Neither esoteric features of a programming
language nor other aspects of computers should be al-
lowed to interfere with that purpose.

TOPICS:

A. Computer Organization. An overview identifying
components and their functions, machine and as-
sembly languages. (5%)

B. Programming Language and Progrcrmming. Repre-
sentation of integers, real, characters, instructions.
Data types, constants, variables. Arithmetic ex-
pression. Assignment statement. Logical expres-
sion. Sequencing, alternation, and iteration. Ar-
rays. Subprograms and parameters. Simple I/O.
Programming projects utilizing concepts and em-
phasizing good programming style. (45%)

Techniques of problem
solving. Flowcharting. Stepwise refiinement. Simple
numerical examples. Algorithms foi: searching (e.g.,
linear, binary), sorting (e.g., exchitnge, insertion),
merging of ordered lists. Examples taken from such
areas as business applications involving data manip-
ulation, and simulations involving games. (45%)

C. Algorithm Development.

D. Ezaminations. (5%)

CS2. Computer Programming I1

OBJECTIVES:
* To continue the development of discipline in pro-

gram design, in style and expression, in debugging
and testing, especially for larger programs;
To introduce algorithmic analysis; and
To introduce basic aspects of string processing, re-
cursion, internal search/sort methods and simple
data structures.

PREREQUISITE: CS 1.

COURSE OUTLINE:
The topics in this outline should be introduced as

needed in the context of one or more projects involv-
ing larger programs. The instructor may choose to be-
gin with the statement of a sizable project, then utilize

36 RESHAPING COLLEGE MATHEMATICS

structured programming techniques to develop a num-
ber of small projects each of which involves string pro-
cessing, recursion, searching and sorting, or data struc-
tures. The emphasis on good programming style, ex-
pression, and documentation, begun in CS1, should be
continued. In order to do this effectively, it may be
necessary to introduce a second language (especially if
a language like Fortran is used in CS1). In that case,
details of the language should be included in the outline.
Analysis of algorithms should be introduced, but at this
level such analysis should be given by the instructor to
the student.

Consideration should be given to the implementa-
tion of programming projects by organizing students
into programming teams. This technique is essential
in advanced level courses and should be attempted as
early as possible in the curriculum. If large class size
makes such an approach impractical, every effort should
be made to have each student's programs read and cri-
tiqued by another student.

TOPICS:
A. Review. Principles of good programming style, ex-

pression, and documentation. Details of a second
language if appropriate. (15%)

Control flow.
Invariant relation of a loop. Stepwise refinement of
both statements and data structures, or topdown
programming. (40%)

B. Structured Programming Concepts.

C. Debugging and Testing. (10%)
D. String Processing. Concatenation. Substrings.

Matching. (5%)
E. Internal Searching and Sorting. Methods such as

binary, radix, Shell, quicksort, merge sort. Hash
coding. (10%)

F. Data Structures. Linear allocation (e.g., stacks,
queues, deques) and linked allocation (e.g., simple
linked lists). (10%)

G. Recursion. (5%)
H. Ezaminations. (5%)

CS3. Introduction to Computer Systems

OBJECTIVES:
To provide basic concepts of computer systems;

a To introduce computer architecture; and
To teach an assembly language.

PREREQUISITE: CS 2.

COURSE OUTLINE:
The extent to which each topic is discussed and the

ordering of topics depends on the facilities available

and the nature and orientation of CS4 described below.
Enough assembly language details should be covered
and projects assigned so that the student gains expe-
rience in programming a specific computer. However,
concepts and techniques that apply to a broad range of
computers should be emphasized. Programming meth-
ods that are developed in CS1 and CS2 should also be
utilized in this course.

TOPICS:
A. Computer Structure and Machine Language. Mem-

ory, control, processing and 1/0 units. Registers,
principal machine instruction types and their for-
mats. Character representation. Program con-
trol. Fetch-execute cycle. Timing. 1 / 0 Operations.
(15%)

B. Assembly Language. Mnemonic operations. S,ym-
bolic addresses. Assembler concepts and instruction
format. Data-word definition. Literals. Location
counter. Error flags and messages. Implementation
of high-level language constructs. (30%)

C. Addressing Techniques. Indexing. Indirect Address-
ing. Absolute and relative addressing. (5%)

D. Macros. Definition. Call. Parameters. Expansion.
Nesting. Conditional assembly. (10%)

E. File I/O. Basic physical characteristics of 1/0 and
auxiliary storage devices. File control system. K/O
specification statements and device handlers. Data
handling, including buffering and blocking. (5%)

F. Program Segmentation and Linkage. Subroutines.
Coroutines. Recursive and re-entrant routines.

G. Assembler Construction. One-pass and two-pass as-
semblers. Relocation. Relocatable loaders. (5%)1

H. Interpretive Routines. Simulators. Trace. (5%)

(20%)

I. Ezaminations. (5%)

CS4. Introduction to Computer Organization

OBJECTIVES:
To introduce the organization and structuring of the
major hardware components of computers;
To understand the mechanics of information trans-
fer and control within a digital computer system;
and
To provide the fundamentals of logic design.

PREREQUISITE: CS 2.

COURSE OUTLINE:
The three main categories in the outline, namely

computer architecture, arithmetic, and basic logic 'de-
sign, should be interwoven throughout the course rather

COMPUTER SCIENCE 37

than taught sequentially. The first two of these areas
may be covered, at least in part, in CS3 and the amount
of material included in this course will depend on how
the topics are divided between the two courses. The
logic design part of the outline is specific and essential
to this course. The functional, logic design level is em-
phasized rather than circuit details which are more ap-
propriate in engineering curricula. The functional level
provides the student with an understanding of the me-
chanics of information transfer and control within the
computer system. Although much of the course mate-
rial can and should be presented in a form that is inde-
pendent of any particular technology, it is recommended
that an actual simple minicomputer or microcomputer
system be studied. A supplemental laboratory is ap-
propriate for that purpose.

TOPICS:

A.

B.

C.

D.

E.

Basic Logic Design. Representation of both data
and control information by digital (binary) signals.
Logic properties of elemental devices for processing
(gates) and storing (flipflops) information. Descrip-
tion by truth tables, Boolean functions and timing
diagrams. Analysis and synthesis of combinatorial
networks of commonly used gate types. Parallel and
serial registers. Analysis and synthesis of simple
synchronous control mechanisms; data and address
buses; addressing and accessing methods; memory
segmentation. Practical methods of timing pulse
generation. (25%)
Coding. Commonly used codes (e.g., BCD, ASCII).
Parity generation and detection. Encoders, de-
coders, code converters. (5%)
Number Representation and Arithmetic. Binary
number representation, unsigned addition and sub-
traction. One’s and two’s complement, signed mag-
nitude and excess radix number representations and
their pros and cons for implementing elementary
arithmetic for BCD and excess-3 representations.

Computer Architecture. Functions of, and commu-
nication between, large-scale components of a com-
puter system. Hardware implementation and se-
quencing of instruction fetch, address construction,
and instruction execution. Data flow and control
block diagrams of a simple processor. Concept of
microprogram and analogy with software. Prop-
erties of simple 1/0 devices and their controllers,
synchronous control, interrupts. Modes of commu-
nications with processors. (35%)
Ezample. Study of an actual, simple minicomputer
or microcomwter svstem. (20%)

(10%)

F. Ezaminations. (5%)

CS5. In t roduc t ion to File Process ing

OBJECTIVES:

To introduce concepts and techniques of structuring

To provide experience in the use of bulk storage de-

To provide the foundation for appllications of data

data on bulk storage devices;

vices; and

structures and file processing techniques.

PREREQUISITE: CS 2.

COURSE OUTLINE:

The emphasis given to topics in this outline will vary
depending on the computer facilities available to stu-
dents. Programming projects should be assigned to give
students experience in file processing. Characteristics
and utilization of a variety of storage devices should be
covered even though some of the devices are not part of
the computer system that is used. Algorithmic analysis
and programming techniques developed in CS2 should
be utilized.

TOPICS:
A. File Processing Environment. Definitions of record,

file, blocking, compaction, database. Overview of
database management system. (5%;)

Physical characteristics of se-
quential media (tape, cards, elk.). External
sort/merge algorithms. File manipulation tech-
niques for updating, deleting and inserting records
in sequential files. (30%)

C. Data Structures. Algorithms for manipulating
linked lists. Binary, B-trees, B*-trees, and AVL
trees. Algorithms for transversing and balancing
trees. Basic concepts of networks (plex structures).

Physical characteristics of disk,
drum, and other bulk storage devices. Algorithms
and techniques for implementing inverted lists, mul-
tilist, indexed sequential, and hierarchical struc-
tures. (35%)

E. File I /O . File control systems and utility routines,
1/0 specification statements for allocating space
and cataloging files. (5%)

B. Sequential Access.

(20%)
D. Random Access.

F. Ezaminations. (5%)

CS6. Opera t ing Sys t ems & Corn],. Archi tec ture

OBJECTIVES:

To develop an understanding of the organiza-
tion and architecture of comr>ute:r svstems a t the

38 RESHAPING COLLEGE MATHEMATE

register-transfer and programming levels of system
description;
To introduce the major concept areas of operating
systems principles;
To teach the inter-relationships between the oper-
ating system and the architecture of computer sys-
tems.

PREREQUISITES: CS3 AND CS4.

COURSE OUTLINE:

This course should emphasize concepts rather than
case studies. Subtleties do exist, however, in operating
systems that do not readily follow from concepts alone.
It is recommended that a laboratory requiring hands-on
experience be included with this course.

The laboratory for the course would ideally use a
small computer where students could actually imple-
ment sections of operating systems and have them fail
without serious consequences to other users. This sys-
tem should have, a t a minimum, a CPU, memory, disk
or tape, and some terminal device such as a teletype of
CRT. The second best choice for the laboratory experi-
ence would be a simulated system running on a larger
machine.

The course material should be liberally sprinkled
with examples of operating system segments imple-
mented on particular computer system architectures.
The interdependence of operating systems and archi-
tecture should be clearly delineated. Integrating these
subjects a t an early stage in the curriculum is particu-
larly important because the effects of computer archi-
tecture on systems software has long been recognized.
Also, modern systems combine the design of operating
systems and the architecture.

TOPICS:

A. Review. Instruction sets. 1/0 and interrupt struc-
ture. Addressing schemes. Microprogramming.

B. Dynamic Procedure Activation. Procedure activa-
tion and deactivation on a stack, including dynamic
storage allocation, passing value and reference pa-
rameters, establishing new local environments, ad-
dressing mechanics for accessing parameters (e.g.,
displays, relative addressing in the stack). Imple-
menting non-local references. Re-entrant programs.
Implementation on register machines. (15%)

Design methodologies such as
level, abstract data types, monitors, kernels, nuclei,
networks of operating system modules. Proving cor-
rectness. (10%)

(10%)

C. System Structure.

D. Evaluation. Elementary queueing, network models
of systems, bottlenecks, program behavior, and sta-
tistical analysis. (15%)

E. Memory Management. Characteristics of the hier-
archy of storage media, virtual memory, paging, :peg-
mentation. Policies and mechanisms for efficiency of
mapping operations and storage utilization. Mem-
ory protection. Multiprogramming. Problem of
auxiliary memory. (20%)

F. Process Management. Asynchronous processes. Us-
ing interrupt hardware to trigger software procedure
calls. Process stateword and automatic SWITCH
instructions. Semaphores. Ready lists. Implement-
ing a simple scheduler. Examples of process con-
trol problems such aa deadlock, product/consumers,
readers/writers. (20%)

G. Recovery Procedures. Techniques of automatic and
manual recovery in the event of system failures.

(5%)
H. Ezaminations. (5%)

CS7. Data Structures and Algorithm Analysis

OBJECTIVES :

To apply analysis and design techniques to non-
numeric algorithms which act on data structures;
To utilize algorithmic analysis and design criteria
in the selection of methods for data manipulation in
the environment of a database management system.

PREREQU SITES : C S 5.

COURSE OUTLINE:
The material in this outline could be covered sequen-

tially in a course. It is designed to build on the founda-
tion established in the elementary material, particularly
on that material which involves algorithm development
and data structures and file processing. The practical
approach in the earlier material should be made more
rigorous in this course through the use of techniques
for the analysis and design of efficient algorithms. The
results of this more formal study should then be in-
corporated into data management system design deci-
sions. This involves differentiating between theoreti-
cal or experimental results for individual methods and
the results which might actually be achieved in systems
which integrate a variety of methods and data struc-
tures. Thus, database management systems provide
the applications environment for topics discussed in ithe
course.

Projects and assignments should involve implemen-
tation of theoretical results. This suggests an alterna-
tive way of covering the material in the course; namely,

COMPUTER SCIENCE 39

to treat concepts, algorithms, and analysis in class and
deal with their impact on system design in assignments.
Of course, some in-class discussions of this impact would
occur, but at various times throughout the course rather
than concentrated at the end.

TOPICS:
A. Review. Basic data structures such as stacks,

queues, lists, trees. Algorithms for their implemen-
tation. (10%)

B. Graphs. Definition, terminology, and property (e.g.,
connectivity). Algorithms for finding paths and
spanning trees. (15%)

C. Algorithms Design and Analysis. Basic techniques
of design and analysis of efficient algorithms for in-
ternal and external sorting/merging/searching. In-
tuitive notions of complexity (e.g., NP-hard prob-
lems). (30%)

D. Memory Management. Hashing. Algorithms for
dynamic storage allocation (e.g., buddy system,
boundary-tag) , garbage collection and compaction.
(15%)

Integration of data structures,
sort/merge/search methods (internal and external)
and memory media into a simple database manage-
ment system. Accessing methods. Effects on run
time, costs, efficiency. (25%)

E. System Design.

F. Ezaminations. (5%)

C S8. Organization of Programming Languages

OBJECTIVES:
To develop an understanding of the organization of
programming languages, especially the run-time be-
havior of programs;
To introduce the formal study of programming lan-
guage specification and analysis;
To continue the development of problem solution
and programming skills introduced in the elemen-
tary level material.

PREREQUSITES: CS2; RECOMMENDED: CS3, CS5.

COURSE OUTLINE:
This is an applied course in programming language

constructs emphasizing the run-time behavior of pro-
grams. It should provide appropriate background for
advanced level courses involving formal and theoretical
aspects of programming languages and/or the compila-
tion process.

The material in this outline is not intended to be
covered sequentially. Instead, programming languages

could be specified and analyzed one at a time in terms
of their features and limitations based on their run-
time environments. Alternatively, desirable specifica-
tion of programming languages could bc: discussed and
then exemplified by citing their implementations in var-
ious languages. In either case, programming exercises
in each language should be assigned to emphasize the
implementations of language features.

TOPICS:
A. Language Definition Structure. Formal language

concepts including syntax and basic characteristics
of grammars, especially finite state, context-free,
and ambiguous. Backus-Naur Form. A language
such as Algol as an example. (15%)

B. Data Types and Structures. Review of basic data
types, including lists and trees. Constructs for
specifying and manipulating data types. Language
features affecting static and dynamic data storage
management. (10%)

C. Control Structures and Data Flow. Programming
language constructs for specifying program con-
trol and data transfer, including DO . . . FOR, DO
. . .WHILE, REPEAT . . .UNTIL, BREAK, subrou-
tines, procedures, block structures, and interrupts.
Decision tables, recursion. Relationship with good
programming style should be emphasized. (15%)

D. Run-time Consideration. The effects of run-time
environment and binding time on various features
of programming languages. (25%)

E. Interpretative Languages. Compilartion vs. inter-
pretation. String processing with language features
such as those available in SNOBOL, 4. Vector pro-
cessing with language features such as those avail-
able in SPL. (20%)

F. Lezical Analysis and Parsing. An introduction to
lexical analysis including scanning, finite state ac-
ceptors and symbol tables. An introduction to pars-
ing and compilers including push-down acceptors,
top-down and bottom-up parsing. (10%)

G. Ezaminations. (5%)

Subpanel Members

ALAN TUCKER, CHAIR, SUNY-Stony Brook.
GERALD ENGEL, Christopher Newport College.
STEPHEN GARLAND, Dartmouth College.
BERT MENDELSON, Smith College.
ANTHONY RALSTON, SUNY-Buffalo.

