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1. Preface 

The growing influence of modern electronic computing in many 
fields of knowledge has contributed to a dramatic increase and diver-
sification in the application of mathematics to other disciplines. 
No longer are the uses of mathematics confined exclusively to the 
physical sciences and engineering; they are found with increasing 
frequency in the social, behavioral, and life sciences as well. Cor-
respondingly, the use of the computer has led to different require-
ments for the solution process in mathematics itself. Theory con-
struction and model building have assumed a different dimension; in 
addition to knowing existence theorems, the user of mathematics must 
know constructive methods for solving problems, and he must have the 
means to ascertain the efficiency as well as the correctness of these 
me thod s. 

These developments have created new challenges with regard to 
revision of the undergraduate mathematics curriculum. The basic cur-
riculum should reflect the contemporary points of view associated 
with computer application in mathematics; it should acquaint the stu-
dents with the newly developed methods of solving standard problems 
and also introduce them to the host of problems which have arisen in 
the past few years. 

There now appears to be growing recognition that more consider-
ation should be given to the potential impact of the computer on the 
basic undergraduate courses which serve not only potential mathema-
ticians and computer scientists but many other students as well. The 
present report is the result of the first study of this problem by 
CUPM. 

Although a consensus about the role of computers in the basic 
mathematics curriculum has not yet evolved, we believe there is an 
urgent need for experimentation in this area. This report presents 
ideas for such experimentation by proposing changes in various basic 
mathematics courses and by suggesting some new courses which are de-
signed to take advantage of the presence of computers. 

As is the case with all CUPM reports, these recommendations 
must be regarded as general suggestions which will need to be adapted 
to local circumstances and revised in the light of subsequent experi-
ence. Nevertheless, mathematics departments should immediately con-
cern themselves with the ideas outlined in this report so that they 
can prepare their students for the uses of mathematics in the context 
of the availability of computers. 
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2. Premises of this Study 

We suggest four ways in which the computer can influence under-
graduate mathematics education: 

(i) Computing can be introduced into traditional mathematics 
courses; 

(ii) New courses in computationally-oriented mathematical 
topics can be designed; 

(iii) The entire curriculum can be modifed to integrate com-
puting more fully into the student�s program; 

(iv) Computers and computer-related devices can be used as 
direct aids to mathematical instruction. 

This report addresses itself to (i) and certain aspects of (ii). 
As for (iii), some possible curriculum restructuring relating to com-
puting has been discussed in the CUPM report Recommendations for an 
Undergraduate Program in Computational Mathematics. Finally, (iv) is 
a very broad area which would require a separate study of its own; we 
include only a brief discussion of some related topics in the final 
section of the report. 

We do not suggest that all mathematics instruction be modified 
along any of these lines. In recent years it has become appropriate 
to speak of the mathematical sciences in a broad sense rather than of 
mathematics in the more familiar, narrower sense. This situation in-
dicates a need for different avenues within mathematics education; 
the introduction of computer-oriented material should therefore be 
regarded as a development parallel to the standard curriculum which 
interacts with the standard curriculum at a number of places. 

Nearly every student taking mathematics courses can benefit 
from some computer-oriented mathematics instruction. The use of com-
puters is beginning to pervade all phases of life in our society, and 
in most disciplines, including mathematics, there is a need for stu-
dents to become familiar with some aspects of computing. Many mathe-
matics departments have observed that well over half of their under-
graduate majors enter computer-related careers or graduate programs 
after graduation. Clearly, these students would benefit considerably 
from computer-oriented courses and curricula. Computer-oriented 
courses also serve all those students from other disciplines who are 
interested in learning more mathematics in order to solve problems 
from their own fields. Modern applied mathematics has a strong com-
puter orientation; when students enter this field, those whose educa-
tion stresses concern for computational problems have a decided ad-
vantage over those who are familiar only with theoretical results. 
Finally, the growing trend toward introducing computers in high 
schools will require that prospective teachers learn about the inter-
action between the computer and mathematics. 

574 



Although the content and objectives of computational material 
differ considerably for various groups of students, computing pro-
vides all of them an unusual opportunity for active participation. 
For this reason the motivational aspects of computing are significant 
for most students, and the value of such motivation should not be 
underestimated. 

A more substantive objective must be to select course material 
and approaches so as to reflect the actual influence of computing on 
mathematics. The recommendations which follow are based on the pre-
mise that any program which seeks to reflect this influence should 
stress four points�namely, algorithms, approximations, model build-
ing, and the nature of the entire problem-solving process. 

Algorithms. The modern computer�s development as a general-
purpose problem-solving system derives not so much from its arith-
metic capabilities but from its ability to handle logical and non-
numerical problems. From a mathematical viewpoint this has led to a 
greater emphasis on the construction and analysis of algorithms for 
the actual solution of mathematical problems rather than only on the 
proof of the existence of solutions. Stressing the algorithmic 
aspects forces the student to state both the problem and the method 
of solution in precise and unambiguous terms. It fosters his ability 
to organize and formulate logically an attack on a problem as well as 
to recognize and clarify the assumptions he is making in order to 
solve the problem. 

Approximations. In most analysis courses numerical algorithms 
are more prevalent than nonnumerical ones. This leads to questions 
of error or, more generally, to questions about the quality of the 
approximations produced by the algorithm. If an algorithm produces 
an answer, some statement is needed to relate this answer to a solu-
tion of the original mathematical problem. If a process appears to 
converge, there is a need to prove that the process converges as well 
as to determine how rapidly it converges. If a method is bound to be 
applicable to certain input data, it is necessary to establish what 
happens when changes are introduced in these data. Clearly, in under-
graduate courses these questions can rarely be answered satisfactorily 
but the student should acquire a concern for them and an appreciation 
of their importance. 

Model Building. An important part of every real application of 
mathematics is the recognition and formulation of a satisfactory 
mathematical model of the given nonmathematical problem. Developing 
the student�s skill in this process should be an objective of every 
course involving computer applications. 

The Problem-Solving Process. Modeling, the development of al-
gorithms, the study of the approximations used, and the computation 
and interpretation of results are all principal steps in the process 
of solving a problem on a computer. It is important to stimulate in 
the student an understanding of this process viewed as a whole by 
discussing and assigning the complete solution of appropriate simple 
problems. 
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The four points raised here--namely, the stress on algorithms, 
the development of a concern for the quality of approximations, the 
emphasis on model building, and a general emphasis on the entire 
problem-solving process--should be considered as general objectives 
in the student�s program. In those undergraduate courses which in-
volve a limited amount of computing, little more can be done than to 
illustrate the importance of these points and to instill in the stu-
dent an intuitive understanding and concern for them. This requires 
a careful selection of the computational topics to be discussed and 
of the problems to be assigned. In other words, without underesti-
mating the motivational value of computing, we believe that the in-
troduction of computational material into a mathematics course should 
go beyond merely illustrating a mathematical concept. It should at 
least provide a definite answer to a specific question or problem in 
order to give the student deeper insight into the theory, the model, 
and the algorithms used. 

Implementation and Precautions. There are wide variations in 
the extent and type of computer use which can be introduced into a 
traditional mathematics course. Such variations arise both from 
differences in computing facilities and from differences in the in-
structors� opinions of how essential these uses can and should be 
for the course. Where computing facilities are readily available or 
where courses are modified extensively to emphasize the four objec-
tives discussed above, the trend is often to use the computer fre-
quently and in a matter-of-fact manner. This means that computer-
related material is presented throughout the course and that computer 
problems are assigned as a regular part of the homework; the student 
is expected to master these problems in order to have a coherent 
understanding of the subject. Where computing facilities are not so 
readily available or where computer-related material enters the course 
only in a secondary, supportive role, the trend is to consolidate 
computer use into the solution of a number of relatively substantial 
problems and to expect the student to apply his mathematical knowl-
edge to these problems, but not to demand mastery of these problems 
for a coherent picture of the course. In this case, extra credit is 
sometimes given for the computer component of a course. 

In whatever way the computer is used, there are a number of 
precautions which ought to be observed. Primarily, one should 
neither misuse nor overuse the computer. The computer is certainly 
misused when one is not mathematically honest about what it can or 
cannot do. For example, a computer can approximate a limit, but it 
cannot "compute" one or verify its existence, nor can it "test" a 
function for continuity. Specific examples of overuse of the com-
puter are harder to provide, but it can be recognized when computing 
begins to crowd mathematical material out of the course or when stu-
dents become bored by it. Overuse of the computer can result when 
the excitement of the new approach obscures the principal purpose: 
to teach mathematics. It is primarily the algorithmic approach to-
gether with the other three objectives, rather than the actual use 
of a computer, which will help to advance this purpose. Many points 
about algorithms can be made without using a computer at all; three-
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digit arithmetic can be used to discuss approximations and roundoff 
error, and model-building and problem-solving expertise can also be 
gained from judiciously chosen paper-and-pencil problems. Also, 
students need not program every algorithm they encounter, and experi-
ments with preprogrammed algorithms can often provide more insight 
than the lengthy drudgery of debugging a complicated program. It is 
up to the individual instructor to maintain a proper balance between 
the use of the computer and the other components of the course. 

3. Basic Courses 

3.1 Introduction 

In this section we discuss five one-semester beginning under-
graduate courses which include an emphasis on computing. As in all 
CUPM reports, the outlines given here are not meant to be prescrip-
tive but are intended to extend the exposition of our ideas in the 
previous section by giving suggestions and possible approaches for 
implementing them. 

For reference purposes we begin with a list of brief catalog 
descriptions for these courses. The descriptions do not include any 
programming requirements; these are discussed in Section 5.2. 

MC-0. Elementary Functions and Problem Solving. [Prerequi-
site: College admission] Basic computer programming, elementary 
functions, matrix operations. These topics are to be motivated by, 
and applied to, practical problems. 

MC-1. Calculus I with Computer Support. [Prerequisite: MC-0 
plus trigonometry, or equivalent mathematical background] Differen-
tial and integral calculus of the elementary functions with associ-
ated analytic geometry, supported by computer applications. 

MC-2. Calculus II with Computer Support. [Prerequisite: 
MC-1] Techniques of integration, introduction to multivariate cal-
culus, and elements of differential equations, supported by computer 
applications. 

MC-DM. Discrete Mathematics. [Prerequisite: No specific 
course prerequisite, but see page 590] Concepts and techniques in 
discrete mathematics that find frequent applications in computing 
problems. 

MC-3. Algorithmic Elementary Linear Algebra. [Prerequisite: 
MC-0 or equivalent background] An introduction to matrix and vector 
algebra in � dimensions with an emphasis on algorithmic aspects. 
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The four courses MC-0 through MC-3 represent computer-oriented 
versions of the courses Mathematics 0 through 3 in the 1972 CUPM 
report Commentary on a General Curriculum in Mathematics for Colleges 
(GCMC Commentary). In the case of MC-0 and MC-3, the material in 
the GCMC Commentary courses was considerably modified and rearranged 
in order to introduce a fairly strong emphasis on computation. In 
MC-1 and MC-2, on the other hand, the purpose and the outline have 
remained essentially the same as for traditional courses; the empha-
sis on what is taught, however, has shifted along with the shift in 
the kinds of applications that are possible with the computer. The 
remaining course MC-DM represents a new development. It has a strong 
algorithmic flavor and introduces material of considerable importance 
in many computer applications. The course may not only supplement 
the standard curriculum but could also serve well as a first mathe-
matics course for students from many disciplines. 

Ideally, a student entering any of these computer-related 
courses other than MC-0 should have at least a rudimentary knowledge 
of programming. Since this is, at present, an unrealistic require-
ment, several possible alternatives are suggested in Section 5.2. 
Since these alternatives depend strongly on local circumstances, no 
further mention of them is made in the outlines. Only in the case 
of MC-0 is some time allotted to introduce certain elementary com-
puter concepts. 

In each of the following outlines, the suggested pace is in-
dicated by assigning a number of hours to each group of topics. A 
standard semester contains 42 to 48 class meetings, and we follow the 
GCMC Commentary in allowing approximately 36 hours for discussion of 
new material; the remaining time can be devoted to tests, reviews, 
etc. 

3.2 Course Outlines 

MC-0. Elementary Functions and Problem Solving 

[Prerequisite: College admission] The aim of this freshman-
level course is to teach students ways to approach problems in the 
physical, natural, and social sciences and to equip them with some 
fundamental mathematical and computational tools for the solution of 
these problems. Typical problems are concerned with measurement and 
prediction: given a process such as a factory producing steel, 
traffic moving on a city street, or a shifting population, it is 
desired to predict future properties of the process on the basis of 
past measurements. The approach taken in the course is first to 
have students model and simulate specific processes using a computer 
and then look for functional relationships between various aspects 
of these processes, e.g., between time and the total output of steel, 
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between traffic light timing and traffic density, or between past and 
future population distributions. The objectives of this approach are 
to create an understanding of modeling through approximation and 
simulation and a feeling for the types of questions asked about 
models and functions. 

Studies of elementary functions, computational techniques, and 
matrix operations are interwoven in the course and are used to illus-
trate and motivate one another. Depending upon the selection and 
treatment of particular topics, this course may serve either as a 
refresher course for students going on to calculus or as a terminal 
course for students who intend to take only one course in mathematics. 
However, this course alone probably will not prepare students ade-
quately for a one-year sequence in calculus, since it does not con-
tain the topics from trigonometry which they will need. The orienta-
tion towards applications and the emphasis on computing should make 
the course attractive to many students who might otherwise avoid 
more traditional mathematics courses. There are no prerequisites, as 
instruction in the use of a computer is integrated with the rest of 
the course. 

COURSE OUTLINE 

1. Introduction. (6 hours) Number representation, algo-

rithms, elements of programming, functions, relations. 

2. Linear and quadratic functions. (8 hours) Simulations 

involving constant and accelerated rates of change, graphs of linear 

and quadratic functions, zeros, maxima, minima, applications. 

3. Linear programming. (4 hours) Linear functions of two 

variables, linear inequalities, maxima, minima, applications. 

4. Matrix operations. (6 hours) Representations of tabular 

data, subscripts, matrix and vector operations, simultaneous equa-

tions, applications. 

5. Algebra of functions. (6 hours) Algebraic operations on 

functions, polynomial and rational functions, maxima, minima, zeros, 

inverses, composition. 

6. Exponential and logarithmic functions. (6 hours) Simula-

tions of exponential growth, properties of exponents, logarithms as 

inverses of exponentials. 

579 



COMMENTARY 

1. Introduction. Simple mathematical concepts can be intro-

duced or reviewed in the context of teaching the rudiments of pro-

gramming in a computer language such as APL, BASIC, or FORTRAN. For 

a start, students should learn to use arithmetic, branching, and 

simple looping statements; other techniques, such as subroutines, 

can be considered later as the need for them arises. Machine arith-

metic can be contrasted with ordinary arithmetic, with examples of 

roundoff error being given. 

Functions should be introduced as single-valued rules of 

association, with the relationships between the inputs and outputs 

of computer programs providing many examples of both numeric and 

nonnumeric functions. Questions of scaling which arise in the de-

velopment of a simple program for graphing functions can be used as 

a bridge to the next section on linear functions. 

2. Linear and quadratic functions. In studying rates of 

change, the student can first write a computer program to model a 

situation involving constant change. After this model has been used 

to motivate a study of linear functions, the computer program can be 

modified by the addition of a single statement to model constant 

acceleration, thereby motivating a study of quadratic functions; 

later, the added statement can be changed to have the program model 

more complicated rates of acceleration (e.g., a bouncing ball or 

exponential growth). Questions about zeros, maxima, and minima 

should be raised and answered to ascertain properties of models, 

functions, and graphs. In this way the study of linear and quadratic 

functions provides a framework for later material in the course. 

In addition to using the computer for simulation, one can 

stress the algorithmic aspects of graphing by using programs to com-

pute the slopes of lines or the zeros of a quadratic function by the 

quadratic formula. Zeros, and in particular square roots, can also 

be approximated by the bisection method. 

3. Linear programming. The study of linear functions leads 

naturally to a study of linear programming in two dimensions. Bound-

ary conditions lead to a consideration of linear inequalities and to 
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the solution of simultaneous equations in two unknowns in order to 

determine constraint regions. Cost functions can be introduced as 

functions from vectors in those regions to numbers, and the location 

of the maxima and minima of these functions at the vertices of 

regions can be demonstrated by drawing level curves. 

4. Matrix operations. As a further example of the applica-

bility of linear methods, models of population movement can be 

studied. One can introduce a vector V to represent the population 

distribution at a given time and a matrix � to represent the per-

centage redistribution of population over a year�s time. Matrix and 

vector multiplication can be motivated by writing a computer program 

to model population movement over a number of years and observing 

that M n V is the population distribution after � years. Finally, 

this model can be used to motivate the solution of simultaneous 

linear equations or the inversion of a matrix to find the equilib-

rium distribution. 

5. Algebra of functions. By associating functions with sub-

routines which compute them, one can motivate a general discussion of 

the domains and ranges of functions, as well as of algebraic opera-

tions on functions. Applied to polynomials, this leads naturally to 

the rational functions. In order to answer standard questions about 

these functions, one can discuss numerical techniques such as bisec-

tion and hill-climbing for locating zeros, maxima, and minima. The 

inverse of a function can be found by computing the zeros of trans-

lated functions. 

6. Exponential and logarithmic functions. Computations in-

volving population growth, interest rates, or radioactive decay lead 

to a study of exponential functions. The logarithm can be computed 

by the method developed in Section 5, and its properties can be 

established from the properties of exponentials. 

REFERENCES 

No presently available text is suitable for this course. While 
some of the references listed below contain material that can be used 
in the course, no text develops computing and mathematics together 
along the lines suggested by units 1 and 2. The approaches to com-
puting in two of the references bracket the suggested approach: 
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Vogeli, et al., is generally too elementary and does not use comput-
ing in a substantial way, while Higgins presumes too much prior ex-
perience both in computing and in mathematics. The remaining refer-
ences are programming texts which contain some examples appropriate 
for the course. 

Barrodale, Ian; Ehle, Byron; Roberts, F. D. K. Elementary Computer 
Applications in Science, Engineering, and Business. New York, John 
Wiley and Sons, Inc., 1971. 

Gruenberger, Fred and Jaffray, George. Problems for Computer Solu-
tion. New York, John Wiley and Sons, Inc., 1965. 

Higgins, G. Albert. The Elementary Functions: An Algorithmic 
Approach. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1974. 

Kemeny, John G. and Kurtz, Thomas E. Basic Programming, 2nd ed. 
New York, John Wiley and Sons, Inc., 1971. 

Maurer, �. A. and Williams, �. R. A Collection of Programming 
Problems and Techniques. Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1972. 

Vogeli, Bruce R.; Prevost, Fernand; Gilbert, Glenn; Carroll, Edward. 
Algebra One. Morristown, New Jersey, Silver Burdett Company, 1971. 

MC-1 and MC-2. Calculus I and II with Computer Support 

[Prerequisite for MC-1: MC-0 and trigonometry, or equivalent 
background; prerequisite for MC-2: MC-1] The introductory courses 
on calculus appear to be those mathematics courses in which the use 
of the computer has been most popular. One reason for this is the 
fact that many concepts and methods in the calculus have a practical 
flavor which can be enhanced by introducing computing. While the 
motivational value of computational work plays a considerable role, 
the student can also handle more realistic problems using the com-
puter as a tool and with it learn to appreciate more fully the power 
and usefulness of calculus. 

There are at this time no firm guidelines as to how the com-
puter should be introduced into calculus courses; many radically 
different experiments have been conducted and are still being car-
ried on. We believe that at present a practical and rather attrac-
tive approach is to use the computer to support courses which are 
more or less traditional in the selection and sequencing of the 
material. Hence the courses described below are, at least in out-
line, identical with the courses Mathematics 1 and 2 in the GCMC 
Commentary, and their basic purpose remains essentially the same--
namely, that of being an intuitive, yet sound, introduction to 
limits in various forms, such as derivatives, integrals, or sums of 
series, along with applications of several types, such as maximum-
minimum problems or questions leading to integrals. 
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We do not believe that it is enough to teach the calculus 
courses more or less as usual and to assign computer projects as 
supplements to the course. Such an approach does not take full ad-
vantage of the interplay between theoretical and algorithmic ideas. 
The new courses must be taught in a different manner, if only because 
computing can provide much useful motivation for the calculus. More-
over, the emphasis on what is taught should shift towards the kind 
of realistic applications that are possible with the computer. In 
these ways the computer can be used to support the presentation of 
material rather than merely to supplement it. 

The commentaries below indicate ways in which this supportive 
role of the computer can be accomplished. For the most part these 
commentaries are meant to supplement rather than replace those in 
the GCMC Commentary. 

COURSE OUTLINE FOR MC-1 

1. Introduction. (4 hours) Review of the function concept. 

Function evaluation and graphing on a computer. 

2. Limits, continuity. (3 hours) Limit and approximation 

defined intuitively. Derivatives as examples. Definition of con-

tinuity, types of discontinuity, Intermediate Value Theorem. Compu-

tational applications involving the bisection method and showing 

effects of truncation and roundoff error. 

3. Differentiation of rational functions; maxima and minima. 

(5 hours) Computational projects involving search algorithms for 

finding extrema. Newton�s method. 

4. Chain rule. (3 hours) Include derivatives of functions 

defined implicitly, inverse function and its derivative. The algo-

rithmic aspect of functional composition. 

5. Differentiation of trigonometric functions. Higher deriva-

tives. (3 hours) 

6. Applications of differentiation. (3 hours) Tangent as 

"best" linear approximation. Approximations using differentials. 

Additional extremal problems. Related computer applications. 

7. Intuitive introduction to area. (2 hours) Computational 

approximation of areas of regions under a curve. 

8. Definite integral. (3 hours) Simple quadrature rules and 

their applications. 

9. Indefinite integrals, Fundamental Theorem. (4 hours) 
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10. Logarithmic and exponential functions. (3 hours) Computer 

problems involving exponential growth or decay using Euler�s method. 

11. Applications of integration. (3 hours) 

COMMENTARY ON MC-1 

1. Introduction. The computer can be used to evaluate func-

tions, thereby considerably extending the kinds of functions a stu-

dent can handle and, indeed, even recognize as functions (e.g., func-

tions with piecewise or algorithmic definitions can be evaluated 

numerically even though they may not be expressible algebraically). 

Students should recognize that the relation between the input and 

the output of a computer program can define a function; such an 

awareness can be used later to demonstrate the existence of various 

interesting functions. 

A good computing facility would enable the student to experi-

ment with functions--and also their graphs when they can be drawn--

in much the same way as he can work with simple functions when he 

has only pencil and paper. A graphing program should be provided or 

developed, and students should become reasonably familiar with it, 

so that it can be used to motivate later topics in terms of graphs . 

2. Limits, continuity. Many kinds of calculations help to 

motivate the need for a precise definition of limit. Such calcula-

tions arise in practical attempts to approximate limits of functions 

or rates of change. While the student will sense that successive 

approximations are approaching a limit, he will also discover that 

the limitations of numerical approximations due to truncation or 

roundoff errors prevent him from calculating that limit exactly. 

This awareness should be used to motivate the need for mathematical 

proofs of the existence of limits. 

The bisection method for finding zeros of continuous functions 

can be introduced either as motivation for or as an application of 

the Intermediate Value Theorem. 

In this section, as well as in others, one should recall 

several points observed earlier concerning the use or misuse of the 

computer. First, one should use terminology carefully so as not to 

584 



mislead students; a computer can approximate a limit, but it cannot 

"compute" one, nor can it "test" a function for continuity. Second, 

one should remember that the primary purpose of the course is still 

to teach calculus and that it is the algorithmic approach, and only 

secondarily the actual use of the computer, which advances this pur-

pose; hence the computer does not have to be used in every conceiv-

able situation, and many points about algorithms can be made without 

a computer at all. 

3. Differentiation of rational functions. Nonnumerical algo-

rithms can be recognized when they appear even though they may not be 

programmed. For example, formal differentiation should be recognized 

as a process that can be mechanized. 

More realistic maximum and minimum problems can be attempted. 

The approach to such problems would include graphing functions, 

searching for extremal points, and sometimes finding zeros of deriva-

tives. The computer increases the student�s power to find zeros of 

functions since the bisection method or Newton�s method are available 

when algebraic techniques fail. 

4. Chain rule. Computer programs and flowcharts can be used 

to explain the process of functional composition and to motivate the 

chain rule. Information about the inverse of a function f can be 

obtained by finding zeros of f(x) - a, for various values of a. 

5. Differentiation of trigonometric functions. The graphing 

program can be used for motivation. 

6. Applications of differentiation. The limitations of numer-

ical methods can be used to motivate the need for theorems concerning, 

say, the number of extremal points. For example, numerical methods 2 2 

may lead one to suspect that � + cos (kx) has a unique minimum 

when k is slightly larger than 1, rather than two minima which 

are separated by a maximum at 0. 

Again, more realistic maximum and minimum problems can be 

attempted. Newton�s method for locating zeros of functions can be 

developed and compared with the bisection method for its rate of con-

vergence and range of applicability. 

7. Intuitive introduction to area. 
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8. Definite integral. The notion of the definite integral 

can be made concrete prior to the proof of the Fundamental Theorem 

so that the student need not confuse the existence of the definite 

integral of a function with his ability to find an antiderivative. 

The student can write programs to approximate definite integrals by 

techniques such as the trapezoidal rule. Improper integrals can be 

motivated in terms of programs to approximate them. 

9. Indefinite integrals. Fundamental Theorem. The nature of 

the indefinite integral as a function of the upper endpoint can be 

illustrated by considering a computer program to approximate values 

of this function. 

10. Logarithmic and exponential functions. Numerical methods 

can be used to discuss and sketch solutions of the differential equa-

tion y� = ky. 

11. Applications of integration. The computer greatly in-

creases the variety of examples which can be treated. Applications 

of the integral as the limit of Riemann sums, and not merely as an 

antiderivative, were recommended in the GCMC Commentary and can be 

handled much more successfully with the use of the computer. For 

example, in following those suggestions one can use numerical tech-

niques to integrate the normal probability distribution or to graph 

a logistic curve corresponding to a differential equation 

N� = (a - bN)N governing population growth. One can also observe 

the general applicability of numerical techniques as opposed to the 

often limited applicability of analytical techniques. For example, 

given experimental data concerning the acceleration of a vehicle, 

one can compute the values of integrals to obtain the velocity and 

position of that vehicle [cf. Garfunkel, Solomon. "A laboratory 

and computer based approach to calculus." American Mathematical 

Monthly. 79 (1972), pp. 282-290]. 

COURSE OUTLINE FOR MC-2 

1. Techniques of integration. (9 hours) Integration by 

trigonometric substitutions and by parts; inverse trigonometric 

functions; quadrature formulas and computer applications; improper 
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integrals and numerical questions; volumes of solids of revolution. 

2. Elementary differential equations. (7 hours) Elementary 

methods for computational solution. 

3. Analytic geometry. (10 hours) Vectors; lines and planes 

in space; polar coordinates; parametric equations. 

4. Partial derivatives. (5 hours) 

5. Multiple integrals. (5 hours) 

COMMENTARY ON MC-2 

1. Techniques of integration. At the discretion of the in-

structor, less attention might be paid to techniques of formal inte-

gration in order to provide time for a study of numerical methods 

for approximating definite integrals. Experiments can be performed 

to suggest theorems about the rates of convergence of various methods. 

In some simple cases one might attempt to place bounds on the numer-

ical errors due to the approximation method and to truncation and 

roundoff effects. In general, an applied flavor can be introduced 

into the calculus course by relating some of the theorems to realis-

tic numerical processes. 

Although formal integration is more complicated than formal 

differentiation, certain aspects, such as integration of powers of 

sines and cosines or the use of partial fractions, can be considered 

from an algorithmic point of view. 

As an example of finding error bounds, consider the midpoint 

(or tangent) approximation 

f (x) dx « h � f (a + [k - |]h), 
J a k = 1 

b-a 
where h = , to the integral of a twice-differentiable function 

� 

f. One can show with the aid of Taylor�s theorem that the trunca-

tion error is bounded by � j ^ ^ � B , provided that |f"(x)| £ � 

for a < � < b. Furthermore, for suitable a, b, and h, the error in 

evaluating the approximation is bounded by nhE^ + n(n-l)E2Fh, 

which is less than (b-a)(E.^ + nE2F), where E^ is the maximum 

absolute error in the computation of f(x) for a < � < b, � is 
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a bound for ~ (r being the relative roundoff error 

bound), and |f(x)| s F for a < � < b. In the particular case 

-27 
� = 128 and = = 1.01 X 2 , the midpoint approximation to 

J: 
•2 (jx 

� = log 2 can be guaranteed to have an error of no more than 
1 x 

� � " 5 . 

It should be observed that formal and numerical methods are 

not mutually exclusive alternatives, and that many problems require 

a combination of the two. Analytical techniques may be used to 

transform an integral for numerical methods. For example, the in-

tegral 
sin � , 

dx 

is more easily handled numerically if it is first transformed to 

4 � � sin � 
2 Ji 3 � $� � 

dx, 

which is obtained by integrating by parts twice. 

2. Elementary differential equations. The notion of a tangent 

field can be used to suggest numerical methods for the approximate 

solution of first-order differential equations. Higher-order equa-

tions can also be treated by translating them into systems of first-

order equations which can then be solved numerically. 

A bound on the propagated error for a simple method can be 

derived. With Euler�s method applied to y� = f(x,y), V ( X

Q ) = yQ> 

it can be shown that the propagated error is bounded by 

^�� e x P £ L < x

n " X o ) ] � 

where R is a bound on the local "roundoff" error 

y n • C l * "�Vl�Vl�� 
� is a bound on the local "truncation" error 

y ( x n } " y ( V l } " h f ( Vl� y ( Vl ) ) � 
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h is the step-size, L is a Lipschitz constant, and y C is the 
� 

computer approximation to y(x ), � > � . [See Gear, C. William. � n o 

Numerical Initial Value Problems in Ordinary Differential Equations. 

Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1971.] 

3, 4, 5. Analytic geometry. Partial derivatives. Multiple 

integrals. Due to the lack of numerical methods which are both 

elementary and practical, the computer itself has less impact on 

the teaching of multivariable calculus than on single-variable cal-

culus. However, an algorithmic approach can still be used, for ex-

ample, to stress analogies with single-variable calculus or to intro-

duce formal manipulations. If computing applications are desired, 

one might discuss hill-climbing techniques for finding maxima or 

some relatively simple method for approximating the values of double 

integrals. 

REFERENCES 

The following texts contain elementary applications of numeri-
cal methods to the calculus. 

1. Sources of applications 

Barrodale, Ian; Ehle, Byron L.; Roberts, F. D. K. Elementary Com-
puter Applications in Science, Engineering, and Business. New York, 
John Wiley and Sons, Inc., 1971. 

Dorn, William S.; Bitter, Gary G.; Hector, David L. Computer Appli-
cations for Calculus. Boston, Massachusetts, Prindle, Weber, Inc., 
1972. 

Hamming, Richard W. Calculus and the Computer Revolution. Boston, 
Massachusetts, Houghton Mifflin Company, 1968. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 
1969. Chapter 9. 

2. Some calculus texts having a computational flavor 

Flanders, Harley; Korfage, Robert R.; Price, Justin J. Calculus. 
New York, Academic Press, Inc., 1970. 

Henriksen, M. and Lees, M. Single-Variable Calculus. New York, 
Worth Publishers, Inc., 1970. 

Stenberg, Warren, et al. Calculus, A Computer Oriented Presentation, 

Parts 1 and 2. CRICISAM, Florida State University, 1970. 
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MC-DM. Discrete Mathematics 

[Prerequisite: The material of this course can be taught at 
various levels of difficulty and sophistication in the undergraduate 
curriculum. Although no specific college mathematics courses are 
prerequisite for MC-DM, it is important that the student have ability 
in manipulating symbols and in using formulas.] Although an obvious 
goal of this course is to equip the students with some useful mathe-
matical tools, a more important goal is to develop their ability to 
perceive, formulate, and solve problems that are discrete in nature. 
This course can be taken prior to, or concurrently with, a course in 
calculus. Indeed, students who are not mathematics majors might be 
counseled to take such a course rather than the traditional freshman 
calculus course. (For example, it can be argued that for social 
science, behavioral science, and biological science majors, a course 
in discrete mathematics might be more useful than a course in calcu-
lus.) There are several undergraduate-level mathematical courses 
that can follow this course naturally. A course in Probability and 
Statistics (see, for example, 4.2 below) or a course in Applied 
Algebra may well be popular choices. Other courses are Combinatorial 
Mathematics, Optimization Techniques (such as those proposed by the 
Panel on Applied Mathematics in the CUPM report Applied Mathematics 
in the Undergraduate Curriculum), Applied Logic, Graph Theory, and 
Computational Algorithms. Although computing facilities are not 
absolutely essential in such a course, they can play a very attrac-
tive supporting role. Since there is a strong algorithmic flavor 
throughout this course, the implementation of some computational 
algorithms will enhance the understanding and appreciation of the 
mathematical results. Also, probably in a less significant way, 
ideas such as graphical representation of discrete functions and 
solution of difference equations can be illustrated on a computer. 

The number of hours specified is intended to indicate the rela-
tive emphasis for the various topics. Some instructors will find 
these time estimates unsuitable and will therefore need to make ad-
justments for their classes. However, because the material covered 
in this course is so new and unusual in the undergraduate curriculum, 
the Panel felt it would be valuable to present a wide variety of 
ideas for a course in discrete mathematics. 

COURSE OUTLINE 

1. Elementary set theory. (2 hours) Basic concepts and 

terminology in set theory. Subsets. Empty set. Intersection, 

union, symmetric difference, and complementation of sets. Venn 

diagrams. 

2. Permutations and combinations. (4 hours) Permutation and 

combination of objects. Simple enumeration formulas such as that for 

the number of ways to select or to arrange r objects from � 
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objects with or without repetitions. Simple machine tools of combi-

natorics such as computer algorithms for generating all permutations 

and all combinations of a set of objects. 

3. Discrete functions. (2 hours) Domain and range of a 

function. One-to-one and onto functions. Pigeonhole principle. 

4. Manipulation of discrete functions. (2 hours) Forward 

and backward differences of a discrete function. Accumulated sum of 

a discrete function. Sum, product, convolution, and correlation of 

discrete functions. 

5. Generating functions. (4 hours) Generating functions as 

alternative representations of discrete functions. Operations on 

discrete functions and the corresponding operations on their gener-

ating functions. 

6. Difference equations. (5 hours) Linear difference equa-

tions with constant coefficients. Homogeneous solution and particu-

lar solution. Boundary conditions and undetermined coefficients. 

Solution of difference equations by the technique of generating func-

tions. Simultaneous difference equations. 

7. Relations. (2 hours) Cartesian product of sets. Binary 

relations. Reflexive, symmetric, transitive relations. Equivalence 

relations. Partial ordering relations. Union, intersection, and 

complementation of relations. 

8. Graphs. (2 hours) Basic terminology in the theory of 

graphs. Directed graphs. Linear graphs and multigraphs. Connected-

ness. Paths. Graphs as representations of binary relations. Graphs 

as structural models. 

9. Trees, circuits, and cut-sets. (4 hours) Mathematical 

properties of trees. Trees as structural models. Spanning trees. 

Circuits. Cut-sets. 

10. Path problems in graphs. (5 hours) Eulerian path. 

Hamiltonian path. Existence of Eulerian paths and Hamiltonian paths 

in graphs. Physical interpretation of these notions. Shortest path 

algorithms and related problems. 

11. Network flow problems. (4 hours) Transportation networks. 

Maximum-flow minimum-cut theorem. The Ford-Fulkerson algorithm for 

finding maximum flow. 
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COMMENTARY 

1. Elementary set theory. The theme of this course is "dis-

crete objects and their relationships." Consequently, the language 

of elementary set theory will be used throughout the course. The 

discussion should remain at an intuitive level, although it is quite 

reasonable to mention topics such as Russell�s paradox which may 

lead to a discussion of axiomatic set theory. 

2. Permutations and combinations. The discussion can begin 

with a determination of the number of subsets of a given set, a 

natural continuation of the material in Section 1. An important 

lesson to teach the students is that often some seemingly difficult 

problems may have very simple methods of solution when considered 

from the correct point of view. 

Example: Design an algorithm for generating all r-combinations 

of � objects with unlimited repetitions. 

Example: From all 5-digit numbers a number is selected at 

random. What is the probability that the number selected 

has its digits arranged in nondescending order? 

3. Discrete functions. The notion of discrete functions is 

introduced as an association of values (elements in the range) to 

objects (elements in the domain). There are numerous examples of 

discrete functions: coloring the faces of a polyhedron, assigning 

grades to students, classification of documents, etc. Point out the 

obvious extension to the notion of continuous function. The pigeon-

hole principle (also known as the shoebox argument) is a powerful 

technique, although it sounds extremely simple, as the following 

example illustrates. 

Example: The integers 1, 2, 3, 101 are arranged 

randomly in a sequence. Show that there is either a 

monotonically increasing subsequence or a monotonically 

decreasing subsequence of 11 (or more) integers. 

[Solution: Let a^, a^, a^, a ôi denote a random arrange-

ment of the integers 1, 2, 3, 101. Let us label each 
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integer a^ with a pair of numbers (^�^k^� where i^ is 

the length of a longest monotonically increasing subsequence 

that begins at a,, and j is the length of a longest mono-
K k 

tonically decreasing subsequence that begins at a^. Suppose 

that 1 s ife S 10, 1 s j s 10 for k = 1, 2, ..., 101. 

According to the pigeonhole principle, there must exist a 
m 

and a which are labelled with the same pair of numbers, 
� r 

However, this is an impossibility because a < a implies 
m � 

that i > i , and a > a implies that 1 > i . (We 
m � m � m � 

assume that m < n.)] 

4. Manipulation of discrete functions. The notion of the for-

ward and backward differences of a discrete function corresponds to 

the notion of the derivative of a continuous function. The notion of 

the accumulated sum of a discrete function corresponds to the notion 

of the integral of a continuous function. The convolution z(n) of 

two discrete functions x(n) and y(n) is defined to be 

z(n) = � x(i) y(n-i). 
i 

The crosscorrelation function w(n) of two discrete functions x(n) 

and y(n) is defined to be 

w(n) = � x(i) y(i-n). 
i 

The autocorrelation of a function is the crosscorrelation of the 

function with itself. 

Example: Consider the sequence A = [1, 1, 1, -1, 1, 1, -1} 

as a signal transmitted by a radar transmitter. This signal is 

bounced back by an object whose distance from the radar is to 

be measured. (The distance can be determined from the elapsed 

time between the transmission of the signal and the arrival of 

the return signal.) To minimize the effect of noise interfer-

ence, we want to choose a sequence so that the correlation 

function between the transmitted and the received signals will 

have a large peak value. Show that A is a good choice. 

[Answer: The autocorrelation function of the sequence A is 

[-1,0,-1,0,-1,0,7,0,-1,0,-1,0,-1}, which has a large peak 

value.] 
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5. Generating functions. The concept of the generating func-

tion of a discrete function corresponds to the concept of the Laplace 

transformation or the Fourier transformation of a continuous func-

tion. The sum of two discrete functions corresponds to the sum of 

their generating functions. The convolution of two discrete func-

tions corresponds to the product of their generating functions. 

Example: Show that 

� '�� '�� '������ '-ff)-
Give a combinatorial interpretation (in terms of selection 

of objects) of this equality. [Answer: When a coin is 

tossed 2n times, there are 2^ n sequences of possible 

outcomes. Both sides of the above equality give the number 

of sequences of outcomes in which the number of heads 

occurring in the first � tosses is equal to the number 

of heads occurring in the last � tosses.] 

6. Difference equations. Students will be better prepared 

for a course in differential equations after they have studied dif-

ference equations in this course. Indeed, concepts such as homo-

geneous solutions and particular solutions carry over directly to 

differential equations. Solving difference equations by the tech-

nique of generating functions corresponds to solving differential 

equations by the technique of Laplace transformations. 

Example: A certain nuclear reaction in a system containing 

nuclei and high and low energy free particles is described 

as follows. There are two kinds of events: (i) a high 

energy particle strikes a nucleus, causing it to emit 3 

high energy particles and 1 low energy particle, and is 

absorbed; (ii) a low energy particle strikes a nucleus, 

causing it to emit 2 high energy particles and 1 low energy 

particle, and is absorbed. Every free particle causes an 

event 1 \j,sec after it is emitted. If a single high energy 

particle is injected at time t = 0 into a system containing 

only nuclei, what will the total number of free particles 

in the system be at time t = 20 ^.sec? [Solution: Let a 
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denote the number of high energy particles and b the 
� t h 

number of low energy particles in the system at the � 

�������. We have the simultaneous difference equations: 

a = 3a + 2b � and b = a , + b . , with the initial 
� n-1 n-1 � n-1 n-1� 

conditions a = 1 and b Q = 0. Solving these equations, we 

obtain a n + b n = ^ {(2 + , / 3 ) n + 1 - (2 - ^3) n + 1 } . ] 

7. Relations. Structural properties of sets of discrete 

objects can be described by relations. There are numerous examples 

of the concept of relations between objects: for instance, the 

relation "is the father of" is nonreflexive, nonsymmetric, and non-

transitive; the relation "is the spouse of" is symmetric; the rela-

tion "is divisible by" (between integers) is a partial ordering 

relation. 

Example: Write a computer program to determine all possible 

assignments of 0�s and l�s to the vertices of the partial 

ordering diagram in Fig. 1 so that a 1 never precedes a 0. 

Fig. 1 

8. Graphs. There are many examples from various disciplines 

using graphs as abstract models of structures, among which are social 

structures, finite state machines, PERT charts, data structures in 

computer programs. 

Example: The inputs to an electronic combination lock are 

strings of 0�s and l�s. The lock will be opened when the 

pattern 010010 appears at the end of the input string. Such 

a lock can be modeled graphically as in Fig. 2, where a string 

of 0�s and l�s defines a path starting at the initial vertex. 
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1 

�  � 

Fig. 2 

9. Trees, circuits, and cut-sets. Although trees are very 

simple in concept, they are rich in structure and find application 

in many areas of study. There is enormous room for further discus-

sion beyond the basic concepts; topics such as enumeration of trees, 

optimal trees (notably the Huffman algorithm for determining trees 

with minimum weighted path lengths), and algorithms for traversing 

trees may be considered. 

Example: Communication links are to be built between cities. 

Suppose the cost of building a link between two cities is 

proportional to the distance between them. We want to build 

a set of links so that there is a path through these links 

between every two cities. Design a nonexhaustive algorithm 

that will yield a layout of minimal total cost. (This is a 

problem of designing an algorithm for finding a minimal span-

ning tree in a graph with weighted edges.) 

10. Path problems in graphs. The notion of a shortest path 

in a graph has a clear interpretation in physical terms. If comput-

ing facilities are available, the implementation of some graph algo-

rithms by students would be highly desirable. The discussion of 

Eulerian paths brings out another feature in our study of discrete 

structures--a simple criterion for the existence of some properties 

in a large class of structures. The following examples also illus-

trate some physical interpretations of the abstract notions of 

Eulerian and Hamiltonian paths. 
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Example: Arrange all �-digit binary numbers in such a way 

that the last (n-1) digits of a number are equal to the first 

(n-1) digits of the successive number. (This is an Eulerian 

path problem with application in digital engineering.) 

Example: Arrange all �-digit binary numbers in such a way 

that two adjacent numbers differ only at one digit. (This is 

a Hamiltonian path problem with application in digital 

engineering.) 

11. Network flow problems. This discussion not only exposes 

the students to the general problem of discrete optimization but 

also shows them a recursive technique in which the solution is im-

proved in a step-by-step manner until an optimal solution is reached. 

This has exactly the same flavor as that of the simplex method in 

linear programming. 

Example: Engineers and technicians are to be hired by a 

company to participate in three projects. The personnel 

requirements of these three projects are listed in the 

following table: 

Minimal number of Minimal number in each category 

people needed in Mechanical Mechanical Electrical Electrics 
each project engineers technicians engineers technicie 

Project I 40 5 10 10 5 

Project II 40 10 5 15 5 

Project III 20 5 0 10 5 

Moreover, to prepare for later expansion, the company wants to 

hire at least 30 mechanical engineers, 20 mechanical technicians, 

20 electrical engineers, and 20 electrical technicians. What 

is a minimal number of persons in each category that the com-

pany should hire, and how should they be allocated to the three 

projects? (This problem can be formulated as a problem of 

finding a minimal flow in a transportation network where there 

is a lower bound on the flow-value in each of the edges.) 
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REFERENCES 

The following four books would be useful in a course at the 
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McGraw-Hill Book Company, 1968. 

Ryser, Herbert J. Combinatorial Mathematics, MAA Carus Monograph 14. 
New York, John Wiley and Sons, Inc., 1963. 
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MC-3. Algorithmic Elementary Linear Algebra. 

[Prerequisite: MC-0 or equivalent background] This course 
corresponds to Mathematics 3, "Elementary Linear Algebra," as de-
scribed in the GCMC Commentary, and we refer the reader to that 
report for some additional comments. The differences between the 
two courses are mainly matters of emphasis and arrangement of topics. 
Whereas the course described in the GCMC Commentary stresses the 
algebraic and geometrical aspects of linear algebra and has a cer-
tain abstract flavor, the present course has a predominantly algo-
rithmic viewpoint and its discussion revolves around the various 
ramifications of solving a system of linear equations. Throughout 
the course, detailed algorithms are to be presented and discussed, 
in flowchart or some simple step-by-step form, and the students 
should use these in connection with various practical problems, on 
a computer where possible. At the same time, in this course it is 
particularly important to warn the student that the algorithms are 
based on arithmetic with real numbers and that in a practical com-
putation the effect of roundoff errors may lead to considerable 
distortions of the final result. This may be illustrated with well-
chosen examples, but no attempt should be made to enter into a 
deeper discussion of such numerical problems. 

COURSE OUTLINE 

1. Introduction. (3 hours) Discussion of various practical 

problems involving matrices. Review of the elimination process for 

2 x 2 and 3 x 3 systems of equations. Examples showing various 

cases of solvability of such systems. 

2. Matrix algebra. (5 hours) Definition of real � X m 

matrices. Examples of various special forms of matrices. Trans-

poses; symmetric and diagonal matrices. Equality, addition, and 

scalar multiplication. Matrix product and its properties. Computa-

tional applications of matrix algebra. 

3. Vectors and geometry. (4 hours) Geometrical interpreta-

tion of 1 X 3 matrices. Algebraic properties in 3-space. The inner 

product. Euclidean length, angle, orthogonality, direction cosines. 

Linear combinations. Lines and planes. Projections. Vector proofs 

of simple geometric theorems. Matrices as linear transformations in 2 3 

R and R . Geometric interpretation of one linear equation in three 

variables and of a 3 X 3 system. 

4. Inverses and the row echelon form. (5 hours) Left and 

right inverses of an � X m matrix and relation to existence and 
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uniqueness of solutions of linear equations. Review of the elimina-

tion process as motivation for the elementary row operations. Ele-

mentary row operations and their formulation in terms of multiplica-

tion by elementary matrices. The algorithm for transforming a matrix 

to row echelon form. Equivalent systems of equations. Solvability 

properties of homogeneous and inhomogeneous systems using row echelon 

form. 

5. Linear dependence and independence. (5 hours) Linear 

combinations of � X m matrices. Linear spaces of vectors and mat-

rices. Subspaces. Linear dependence and independence of vectors 

in R"* and in R n , and of matrices. Examples and basic properties. 

Use of row echelon form to determine linear dependence or independ-

ence in R n. Bases. Exchange algorithm. Dimension. Sum and inter-

section of subspaces and their dimensions. 

6. Elimination. (5 hours) Algorithm for solving triangular 

systems. Inverses of triangular matrices. Gaussian elimination 

without pivoting; triangular decomposition. Pivots and the general 

algorithm. Backsubstitution and the solution of square linear sys-

tems. Algorithm for the computation of inverses. Numerical examples 

of ill-conditioning. 

7. Rank. (5 hours) Linear mappings between linear spaces. 

Range space and null space. Relation between algebra of mappings 

and of matrices. Uniqueness aspect of row echelon form. Rank of a 

matrix. Rank of the transpose. Dimensions of null space and range 

space and related results. 

8. Euclidean spaces. (4 hours) The inner product. Schwarz 

inequality. Euclidean length in R n. Orthogonal bases. Gram-Schmidt 

process. Orthogonal projections. The least squares method. 

9. [Optional] Abstract vector spaces. Axiomatic definition 

of vector space over R. Examples. Linear transformations and their 

algebra. The matrix of a linear transformation with respect to a 

given basis. Change of basis. 
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COMMENTARY 

1. Introduction. Practical problems involving matrices a-

bound. They may include the adjacency matrix of a street net, a 

simple resistive electrical network, a Markov chain example, the 

method of least squares, etc. [See, e.g., Noble, Ben. Applied 

Linear Algebra. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 

1969, Chapter 2.] 

2. Matrix algebra. The stress here is on the algorithms of 

matrix algebra. Matrix multiplication can be motivated by practical 

examples of inner products leading to the product of a 1 � � matrix 

by an � X 1 matrix. Then the transformation of variables in linear 

equations readily provides a motivation of the matrix product. The 

examples introduced earlier can now be elaborated; for example, con-

nectivity of a street net can be determined by forming powers of the 

adjacency matrix. A subroutine package for matrix algebra may be 

very useful for these applications. 

3. Vectors and geometry. This section is rather standard. 

For comments we refer the reader to the GCMC Commentary. 

4. Inverses and the row echelon form. In this section a basic 

algorithm is introduced, namely, the reduction to row echelon form; 

it will play a central role in the remainder of the course. Various 

applications are possible--for instance, determining solvability 

properties of a resistive electrical network. 

5. Linear dependence and independence. In discussing the use 

of the row echelon form to determine linear dependence and independ-

ence, it is particularly important to illustrate the numerical prob-

lems which might occur when a computer is used. This can be motivated 

well by simple 2- and 3-dimensional examples. If time permits, the 

role of the exchange algorithms in linear programming can be illus-

trated by simple examples. [See, e.g., Stiefel, �. L. Introduction 

to Numerical Mathematics, translated by W. C. Rheinboldt. New York, 

Academic Press, Inc., 1963.] 

6. Elimination. After a thorough discussion of the overall 

algorithm, it may be desirable to use a well-written subroutine 

package for computer assignments involving the solution of linear� 
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systems arising in the practical problems introduced earlier. [See, 

for example, the routines given in Forsythe, George E. and Moler, C. 

Computer Solution of Linear Algebraic Systems. Englewood Cliffs, 

New Jersey, Prentice-Hall, Inc., 1967.] 

7. Rank. For some applications of rank, e.g., to chemical 

reactions, see Chapter 5 of the book by Ben Noble which was cited 

above. 

8. Euclidean spaces. Again, applications abound. In particu-

lar, various problems leading to the use of the least squares method 

can be discussed. 

REFERENCES 

1. Matrices and linear algebra 

Davis, Philip J. The Mathematics of Matrices. Waltham, Massachusetts, 
Blaisdell Publishing Company, 1965. A well-written elementary intro-
duction to matrices. 

Hohn, Franz E. Elementary Matrix Algebra. 2nd ed. New York, The 
Macmillan Company, 1964. An introductory text which proceeds in a 
manner similar to the outline above. 

Noble, Ben. Applied Linear Algebra. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. This excellent text corresponds in spirit 
and approach to our outline but contains considerably more material 
and is, in parts, somewhat more advanced. 

2. Numerical aspects 

Forsythe, George E. and Moler, C. Computer Solution of Linear Alge-
braic Systems. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 
1967. A brief, modern, but more advanced text on the basic numerical 
aspects of solving systems of linear equations. 

Fox, Leslie. Introduction to Numerical Linear Algebra. New York, 
Oxford University Press, Inc., 1965. This text is a good source of 
Instructive examples of error problems in numerical linear algebra. 
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4. Further Undergraduate Courses 

In this section we discuss a rather heterogeneous group of 
upper-division undergraduate mathematics courses and areas affected 
by computing. The given list does not exhaust the possibilities and, 
even for the areas discussed here, there may well be other ways of 
incorporating the effect of computing. Clearly, at this level there 
is considerably more flexibility and there are probably many ways of 
modifying the approaches we suggest here. 

For the courses in this section, the programming prerequisites 
are, of course, more advanced than for the previous courses; the 
computational facilities may also need to be more flexible. (See 
Sections 5.1 and 5.2). Further, the knowledge of computing and 
applied mathematics required by faculty members teaching these 
courses differs considerably from course to course. Thus for Ordi-
nary Differential Equations (4.1) and Numerical Calculus (4.4) a 
knowledge of numerical analysis as well as facility in programming 
are absolutely essential. For Discrete Probability and Computing 
(4.2) reasonable programming experience in addition to a knowledge 
of probability is required. For Algebra Courses Influenced by Com-
puting (4.5) a grounding in the algebraic foundations of computer 
sciences is needed in addition to the more usual kinds of computer 
expertise. Finally, for Mathematical Computer Modeling (4.3) a 
thorough knowledge of the applications involved is essential, of 
course, in addition to the programming and numerical analysis knowl-
edge required by the selected applications. 

4.1 Ordinary Differential Equations (3 semester hours) 

[Prerequisites: MC-3, Mathematics 4 from the GCMC Commentary, 
good programming experience] How ordinary differential equations 
arise in practice. Separation of variables, integrating factors, 
variation of parameters, substitution. Equations with constant co-
efficients. Series solutions. Euler�s method and a brief treatment 
of existence and uniqueness. An explicit Runge-Kutta method; a trap-
ezoidal method for stiff systems. [For a discussion of stiff systems, 
see Gear, C. William. Numerical Initial Value Problems in Ordinary 
Differential Equations. Englewood Cliffs, New Jersey, Prentice-Hall, 
Inc., 1971.] An introduction to boundary value problems. 

The purpose of this course is basically the same as that of a 
more traditional course on ordinary differential equations, except 
that greater emphasis should be given to practical methods of solu-
tion. The most significant change is the inclusion of several care-
fully chosen numerical methods. 

One numerical method is based on a well-established Runge-Kutta 
formula and is treated in enough detail to permit the writing of a 
reasonably effective computer program. This method is adequate for 
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nonstiff problems, and there is no need to make more than brief 
reference to more complicated methods, such as multi-step methods, 
for these problems. However, one other method is needed for stiff 
systems of ordinary differential equations. A method based on the 
trapezoidal rule is included in this course because it is both simple 
and adequate. Numerical methods for boundary value problems are also 
included. A more detailed discussion of other numerical methods 
should be left to courses in numerical analysis. 

This course can be followed by a second semester course cover-
ing several more advanced topics and exploiting more thoroughly vari-
ous numerical methods. Topics for such a second semester may be 
chosen from among the following: 

Series solutions (including special functions), autonomous 
systems, Laplace transform, comparison theorem, eigenvalues 
and eigenfunctions, perturbation theory, asymptotic behavior, 
numerical methods, Galerkin methods, applications. 

COURSE OUTLINE 

1. Systems of equations. (2 hours) How ordinary differential 

equations arise in physical, chemical, biological, and economic prob-

lems . 

2. Elementary analytic methods. (5 hours) Variables sepair-2 

able, e.g., in y� = 1 - y . Integrating factors, e.g., in 

y� + P(x)y = Q ( x ) . Substitution, e.g., in y� = (ax + by)/(cx + dy). 

Variation of parameters. Solving equations with constant coeffi-

cients, e.g., the system y� = ay + bz, z� = cy + dz, or the higher-

order equation y" + ay� + by = f(x). Introduction to series solu-

tions. 

3. Euler�s method. (5 hours) Brief treatment of an exist-

ence and uniqueness, theorem (perhaps without a detailed proof) of 

the Cauchy-Lipschitz kind, which can also be viewed as a theorem 

about the convergence of a simple numerical procedure. Bound on 

propagated error with Euler�s method. Numerical examples, including 

a difficult one such as the Volterra equations that often arise in 

biological problems, e.g., y� = 2(y - yz), z� = -z + yz. 

4. More efficient numerical methods. (6 hours) Motivation 

of explicit Runge-Kutta formulas. A complete numerical method, 

including a strategy for changing step-size (see flowchart given 

below). Numerical examples, comparison with Euler�s method. Note 
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the generality of the numerical method for systems of first-order 

equations: it can be used with nonlinear as well as linear equa-

tions; moreover, higher-order equations can be reduced to systems of 

first-order equations. Brief mention of more complicated multi-step 

methods. 

5. Stiff systems of equations. (6 hours) The inability of 

standard methods to cope efficiently with stiff systems (e.g., with 

stable linear systems whose eigenvalues differ in magnitude by large 

factors). A complete numerical method for stiff systems based on 

the trapezoidal rule. Numerical examples, e.g., y� = -lOly - 100z, 

z� = y. Compare Runge-Kutta and trapezoidal methods. Brief mention 

of other methods for stiff systems. 

6. Boundary value problems. (10 hours) Elementary theoreti-

cal considerations, including an introduction to eigenvalues and 

eigenfunctions. Shooting methods. Finite difference methods. Men-

tion of Galerkin methods. 

7. Limitations of numerical methods. (2 hours) Acknowledge 

the limitations of numerical methods and the need for their improve-

ment. Point out the need for further analysis of solutions of dif-

ferential equations, for example in the neighborhood of a singularity. 

COMMENTARY 

This course is intended to provide a reasonable balance be-

tween analytic and numerical methods that can be applied to problems 

involving ordinary differential equations. The students are expected 

to carry out numerical work related to applications. 

This theme can be illustrated with Volterra�s equations, which 

are mentioned above in the detailed outline. To begin with, examples 

of this sort are easily motivated in terms of predator-prey relation-

ships. Then analytic methods can provide some useful information, 

such as existence and uniqueness of the solutions, and, with certain 

initial conditions, the existence of periodic solutions. But finding 

reasonable approximations to the solutions involves the use of numer-

ical methods. The analytic methods are limited to relatively simple 

problems but help to provide an understanding for more general situa-

tions. The numerical methods are much more generally applicable, but 
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A Runge-Kutta method for nonstiff problems 

Start 
Start with f (x,y) , x Q , y Q , x f (final value of x) ,T (tolerance 

per unit step), h m a x (maximum step-size) 

Choose 
step-size h 
and, if 
necessary, 
calculate 
current slope 

Calculate 
next 
approximation 
to 
y 

Calculate the 
estimate of 
error per unit 
step, EST 

EST 4 �  J 
El Update x,y 

f min { h m a x , x f - x } , on entry 

otherwise 

Find slope on entry and after successful step 

Use Kutta�s formula 

[��+�=� + £ ( k 0 + 2 k 1 + 2 k 2 + k 3 ) , 

where k Q = hf(Xj,yj) 

k | = hf(xj + V4h, yj + !4k0), etc.] twice with step-size �� �� 

Find approximation y by using Kutta�s formula once with 

step-size h; then EST = I 15h I 

Stop 
Stop with x Q , y 0 replaced by Xf and the 

computed approximation to y (Xf ) 

6 0 6 



they do not contribute very much to one�s understanding; moreover, 

it is often difficult to assess their reliability. 

We include in this section a flowchart for the explicit Runge-

Kutta method and some comments on a trapezoidal method for stiff 

systems. 

Notes: j , 

1. Choosing h to be ^ ( T / E S T ) 4 times its previous value 

can be justified as follows. First of all, the exponent is \ be� 

cause the method is a fourth-order method and the ratio ( T / E S T ) 4 

is asymptotically equal to the ratio of step-sizes associated with 

errors of � and EST respectively. The trial step-size should bt 

chosen to be somewhat smaller than what is determined by this ratio, 

and the factor .9 has been shown experimentally to be reasonably 

good. 

2. Some modifications of the above are needed if we wish to 

allow x_ < � . 
f � 

3. Care should be taken to avoid possible overflow in calcu-

lating T / E S T . 

4. Provision could be made for using an error exit if the 

error test fails with h equal to a given h . . 
�  m m 

A trapezoidal method for stiff systems 

A relatively simple method for stiff systems can be patterned 

on the flowchart given above. The only major change that needs to 

be made is to replace Kutta�s formula with the trapezoidal formula 

and to arrange for this equation to be solved by Newton�s method. 

(The latter is required because simple iterations on this formula 

will not usually converge for stiff systems.) 

Some minor changes are also needed. The exponent \ which is 

used in finding h must be replaced by \ because the trapezoidal 

formula is only second-order, and the factor 15 in the formula for 

EST must be replaced by 3 for the same reason. 
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REFERENCES 

There is no one book which contains all the topics described 
in this outline. However, the following books taken together cover 
the material, although the last three especially contain too much 
for this one course; thus, topics will have to be selected. 

Boyce, William E. and DiPrima, Richard C. Elementary Differential 
Equations and Boundary Value Problems, 2nd ed. New York, John Wiley 
and Sons, Inc., 1969. 

Coddington, Earl A. An Introduction to Ordinary Differential Equa-
tions . Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1964. 
Complete coverage of the theoretical aspects. 

Davis, Harold T. Introduction to Nonlinear Differential and Integral 
Equations. New York, Dover Publications, Inc., 1960. Good treat-
ment of practical examples, including the Volterra equations. 

Gear, C. William. Numerical Initial Value Problems in Ordinary 
Differential Equations. Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1971. Numerical methods for initial value problems, 
including stiff systems. 

Keller, Herbert B. Numerical Methods for Two-Point Boundary-Value 
Problems. Boston, Massachusetts, Ginn and Company, 1968. 

4.2 Discrete Probability and Computing 

[Prerequisites: MC-2 and some knowledge of programming and 
computing procedures such as those found in Sections 2 and 3 of 
MC-DM] This course is intended as an introduction to the elements 
of probability. The main difference between it and a standard 
probability course, apart from the use of computing, is that, in 
order to get to more complex problems, less time is spent developing 
tools for solving simple problems. This difference is reflected in 
the amount of time allotted to the various units comprising the 
course, as well as in the fact that difficult theorems (such as the 
Central Limit Theorem) are to be stated without proof. However, in 
cases where proofs are omitted, the computer is used to provide ex-
perimental intuition for the validity of the theorems. 

COURSE OUTLINE 

1. Definition of a discrete probability measure; conditional 

probability for experiments with a finite number of outcomes. (3 

hours) 

2. The frequency concept of probability; fluctuation theory 
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illustrated by simulation; the arcsine law for the number of times 

in the lead. (3 hours) 

3. Sums of sequences of independent random variables with 

common distribution; generating functions; mean; variance. (7 hours) 

Computational illustration of the Central Limit Thoerem. Proof of 

the Weak Law of Large Numbers. Illustration of the Strong Law of 

Large Numbers by simulation. 

4. Brief discussion of probabilities on infinite spaces. (4 

hours) Poisson, normal, and exponential distributions. Waiting-

time problems illustrated by computer simulation. 

5. Fair games (martingales). (6 hours) System theorems. 

Ruin probabilities. The meaning of convergence of nonnegative mar-

tingales illustrated using branching processes and other examples. 

6. Finite Markov chains. (6 hours) Recurrent and absorbing 

chains. Use of matrix computation to write programs for basic de-

scriptive quantities relating to Markov chains. 

7. Additional topics. (7 hours) Applications of previous 

topics to selected problems in discrete potential theory, simulation 

of complex systems, or statistics. 

COMMENTARY 

1. Definition of a discrete probability measure. This unit 

represents in part a survey of material from MC-DM. Counting is 

restricted to permutations and combinations. Computational applica-

tions involve the properties of the binomial coefficients. 

2. The frequency concept of probability. A possible computer 

assignment involves the discovery of the highly unintuitive arcsine 

law for the number of times in the lead in a penny-matching game. 

Once a conjecture has been established on the basis of experiments, 

a proof can be given using Feller�s treatment based on the reflec-

tion principle. This provides an example of an easy limit theorem. 

3. Sums of sequences of independent random variables with 

common distribution. Let X^, X^, ... be a sequence of independent 

integer-valued random variables, and let S = X, + ... + X . A 
� � 1 � 

computer program can be used to compute 
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� / � ) = � � [ � � ^ ] 

using only that 

pi - I p k pj-k � 
k 

This program may then be employed to motivate the concepts of mean 

and variance and to illustrate the Central Limit Theorem. 

4. Brief discussion of probabilities on infinite spaces. 

This unit is included primarily to provide background for a later 

course on statistics. The discussion should be limited to distribu-

tions for a single experiment, with concepts such as the mean and 

variance being introduced by analogy with the finite case. 

5. Fair games (martingales). Chapter 8 of Kemeny, Schleifer, 

Snell, and Thompson provides source material. This unit could be 

replaced by a unit on branching processes and generating functions. 

6. Finite Markov chains. For a discussion of some related 

computational work, see, for example, Kemeny, John G. and Kurtz, 

Thomas E. Basic Programming, 2nd ed. New York, John Wiley and Sons, 

Inc., 1971, especially Section 16.3. 

7. Additional topics. The purpose of this unit is to unify 

numerous applications through techniques discussed previously. For 

example, discrete potential theory can be applied to optimal stop-

ping problems and to Markov decision processes; and the solution of 

the Dirichlet problem can be found using (a) the voltage in an 

electrical network, (b) the value of a stopped martingale (the Monte 

Carlo method), and (c) Markov chain methods. Such applications 

would build upon units 5 or 6 or both. Alternative or additional 

applications could include the simulation of complex systems (cf. 

Forester) or an introduction to elementary statistics. 

REFERENCES 

There is no single text which is suitable for the entire 
course. Sections of Feller and of Kemeny, Schleifer, Snell, and 
Thompson can be used for various units of the mathematical topics, 
i.e., noncomputational aspects. Freiberger gives a more advanced 
treatment, and Forester is an example of an application of these 
ideas to a real-life problem. 
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1. Mathematical background 

Feller, William. An Introduction to Probability Theory and Its 
Applications, vol. 1, 3rd ed. New York, John Wiley and Sons, Inc., 
1968. 

Kemeny, John G.; Schleifer, �.; Snell, J. Laurie; Thompson, Gerald L. 
Finite Mathematics with Business Applications. 2nd ed. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc., 1972. 

2. Some computational applications 

Forester, Jay W. Urban Dynamics. Cambridge, Massachusetts, MIT 
Press, 1969. 

Freiberger, Walter F. and Grenander, Ulf. A Short Course in Compu-
tational Probability and Statistics. New York, Springer-Verlag New 
York, Inc., 1971. 

4.3 Experimental Development of a Course in Mathematical-Computer 
Modeling 

A mathematical model of a phenomenon, mechanism, or process 
can be a system of algebraic, differential, difference, or functional 
equations, a stochastic process, or an abstract structure in terms of 
which a problem or question can be studied and can be given a mathe-
matical solution. The usefulness of mathematical models in the 
physical sciences and engineering is beyond question; in many in-
stances the models are so good that computer simulation is as accu-
rate as any experimental measurements that can be made. The power 
of the computer to simulate and to compute widens the scope of ac-
ceptable models, affects the usefulness of mathematical methods, and 
makes possible procedures which are much different from those of the 
past and far superior to them. 

In view of the complexity of physical phenomena which have been 
successfully subjected to mathematical analysis, mathematicians and 
scientists do not doubt that useful mathematical models can be con-
structed in all of the sciences. Indeed, for a long time we have 
witnessed a growing mathematization within the nonphysical sciences. 

In all of this we are just beginning to appreciate the impact 
of the computer, and we are even less aware of the impact which com-
puting and the computer will eventually have upon mathematics and 
pedagogy. Today our mathematical instruction is barely beyond the 
pencil-and-paper and chalk-and-blackboard stage; relatively few 
mathematicians have had experience in mathematical modeling and in 
effective use of the computer. 

Although it seems imperative today to re-examine the content 
of our courses and to give our students some training in the processes 
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by which mathematics is and can be applied, it is certainly beyond 
our experience at the moment to do so extensively at an elementary 
level. Modeling itself might best be introduced as an integral part 
of courses designed to teach a certain body of mathematics, but 
initially it might be better and easier to gain experience by experi-
menting with a separate course in mathematical-computer modeling at 
a post-calculus level. This could be a joint experimental under-
taking by a number of faculty members and a few students; it should 
consist of the study and investigation in depth of a small number of 
carefully selected problems. 

In selecting a problem one should take the following things 
into account: 

(1) The problem should be easily stated. Without requiring 
extensive specialized knowledge or background, it should be possible 
to distinguish enough of the essential features in order to begin to 
construct some mathematical models, however crude. 

(2) The problem should have mathematical content--the simpler 
the better at this level--which illustrates how mathematics is needed 
(i) to provide insight, (ii) to test the model (e.g., against a sim-
ple special case where the solution is obvious or easy), (iii) to 
develop a theory of the essential features of the model, and (iv) to 
indicate computational procedures. 

(3) The problem should in some essential way require use of 
the computer (i) to provide insight through computer experimenta-
tion with the model or problem, (ii) to provide approximate answers 
and practical solutions, and (iii) to test the model and the solu-
tions . 

This does not imply that it is impossible to learn a great 
deal about modeling with pencil and paper, but a basic objective 
here is to go beyond this stage and to learn something about the 
uses and misuses of the computer and mathematical theory. More time 
needs to be spent in thinking about what goes into and what comes 
out of the computer than about the computation itself. 

It is within the rules of the game to use mathematical or 
scientific results without proof, although where proofs are easily 
accessible and instructive they could be included. It would also be 
good pedagogy to consider models which are known to be poor, im-
practical theories and solutions, and poor numerical methods. 

A SAMPLE PROBLEM 

An excellent example is suggested by the work of Harold W. 

Kuhn. See his papers listed in the references at the end of this 

section; see also Courant and Robbins. 
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Fermat-Steiner-Weber Problem 
1 2 

Given � distinct points � = ( x ^ y ^ , � = (x 2 , y 2 ) , .... 

p n = (x >y ) in the plane and � positive numbers w,, w�, .... w 
� � i � � 

find points which minimize 

� 

F ( P ) = Y W J P - P 1 ! . 
i=l 

where � = (x,y) and |p| = (x2 + y 2 ) ^ (thus |p - p*~\ is the 

Euclidean distance between � and p 1 ) . This problem, posed by 

Fermat in the early 17th century with � = 3 and w^ = w 2 = = 1, 

has had a long history and has been studied recently with renewed 

interest because of applications to spatial economics (optimal loca-

tion of a factory, a shopping center, a hospital, a communications 

center, etc.). 

Omitting the trivial case when the � points are collinear, 

we can show without difficulty that F is strictly convex, has a 

unique minimum which is in the convex hull of p \ p 2 p n , and 

that the vanishing of a gradient (suitably defined at the vertices 

p��) is a necessary and sufficient condition for a minimum. 

The history and theory is interesting and provides a necessary 

background to the problem of finding approximate solutions numeri-

cally. The computational difficulties are nontrivial. 

The following algorithm has been independently proposed at 

least three times: 

Let 

q" = T i c T 1 ) , 

where 

T(q) = q + h(q) VF(q), 

�  (kl^
l" - p k i " 1 ) " 1 

k k 
with T(p ) = � at the vertices [h(q) is the harmonic mean of 

the distances to the vertices]. 

It can be shown that: 

If q minimizes F, then it is a fixed point of T. If q 
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is a fixed point of � that is not a vertex, then q minimizes F. 

Either (1) Tn(q) converges to a fixed point or (2) T-�(q) = p k 

for some j and some k. 

Kuhn gives an algorithm which controls the step-size 

h(q) VF(q) for which he conjectures that F(q n + 1 ^ s F(q n ). This 

would imply convergence. Calculations involving � = 3 to � = 24 

give close approximations after seven iterations. 

Outline for the Study of this Problem 

1. Nonmathematical statement and discussion of an economic 

problem involving the optimal location of a plant, shopping center, 

etc. 

2. Mathematical statement of the problem. Locate in the plane 

a point that minimizes the weighted sum of its distances to � given 

points in the plane. 

3. History of the problem. Solution of simple cases. Sim-

plest case (3 points, equal weights) considered by Fermat (c. 1635) 

in an essay on maximum and minimum problems. The more general prob-

lem with weights w^, w^, w^ appears in an early book on "fluxions" 

by Simpson, one of the first textbooks on calculus. 

4. Some mathematical theory. 

a. Existence-uniqueness. 

b. Necessary and sufficient conditions. 

c. Dual problem. 

5. Computational methods. Use of the computer. 

a. As a problem in mathematical programming. 

b. A proposed algorithm and its motivation. Iterations, 

convergence, and fixed points. 

c. Computation of some examples. 

d. The conjecture F(q n + ^) s F(q n ). Special cases in 

which it can be verified. 

e. Computer tests of the conjecture. 

6. A specific application. Study the problem of a good loca-

tion for a large regional high school in the community. 

7. Generalizations and unanswered mathematical and practical 

questions (research problems). 
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Desirable Features Illustrated by the Example 

1. It is simple to describe, easily understood, explicit, 

interesting, and significant. 

2. It has deep roots within the history of mathematics. 

Special cases of this problem appear as exercises in the earliest 

texts on "fluxions." It can be considered today in the light of new 

ideas, new mathematics, and computational procedures related to 

modern digital computers. 

3. It serves to review and illustrate mathematics to which the 

student has been exposed: max-min, Lagrange multipliers (not re-

quired if the dual problem is omitted), simple linear algebra (analy-

tic geometry), convergence. 

4. It requires introduction at an elementary level of some 

new mathematics and new ideas important in mathematics and applica-

tions: convexity, duality, iteration (successive approximations), 

fixed points, and mathematical programming. 

5. It provides an opportunity to develop a small body of 

theory. 

6. It raises questions of computation, significant examples 

of which require the computer. 

7. It raises a conjecture which can be proved in special 

cases and can be tested on the computer in more general cases. 

8. It reaches the frontiers of research (generalizations to 

nonlinear costs, noneuclidean distance, etc., which are significant 

for applications). 

A RECOMMENDATION 

The development of individual topics, problems, exercises, etc., 
needed for a course of this type will require considerable work and 
imagination. This might be accomplished through isolated projects 
for independent group study with selected students, directed by an 
applications- and computer-oriented mathematician and a colleague 
representing the area of application. 

Such experimental courses would be the testing ground for the 
development of instructional model building and are encouraged by 
the Panel. In the long run we believe that such model building 
should come in directly as a vehicle for teaching mathematics and 
its applications (for an example see the book by Grenander and the 
book by Freiberger and Grenander). 
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4.4 Thoughts on a "Postponed" Calculus Course with Emphasis on 
Numerical Methods 

In recent years many questions have been raised about the 
special role played by the basic calculus sequence as the first set 
of courses in traditional college mathematics curricula. There are 
many arguments for beginning with the calculus, but with the growth 
of computer science and the need for more mathematics in the be-
havioral and social sciences there are more and more arguments for 
postponing the calculus courses. 

For those students who do not need to use the calculus in 
other courses until the junior or senior year, a drastically revised 
one-year calculus course which makes heavy use of computing and algo-
rithmic ideas may be suitable. This course would have the Discrete 
Mathematics course MC-DM and a thorough knowledge of programming as 
prerequisites and would not be taken until the sophomore or junior 
year. A constructive approach to the basic concepts of the calculus 
would be used throughout the course and heavy emphasis would be 
placed on both numerical and nonnumerical algorithms. The course 
would contain some elementary numerical analysis, attention being 
paid to error analysis and degrees of approximation. 

By necessity, some of the traditional topics of the calculus 
will have to be slighted, but the knowledge that the students will 
gain in being able to handle fairly complex real-world problems would 
certainly offset this. 

The following outline should be considered as a first tentative 
suggestion. Given the novelty of the approach, there are very few 
experiences which might have been used as a guide. The material is 
ample for a one-year course, but no attempt is made to indicate the 
pace. The increased mathematical maturity of the students should 
make possible a faster pace than that in the usual calculus course. 
It should be kept in mind throughout the course that the topics are 
to be treated with heavy emphasis on numerical orientation. 
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A TENTATIVE OUTLINE 

1. Numbers. A brief review of (intuitive) number concepts. 

Distribution of floating-point numbers on the line. Arithmetic 

problems with floating-point numbers. Roundoff errors. Ordering, 

inequalities, distances, and absolute value. All of this should be 

computationally oriented. 

2. Sequences. Computational example of approximating the 

square root. Squeeze concept. Other related examples of limits. 

Need for irrational numbers to "fill" the number line; completeness 

concept. Definition of limit. Basic limit theorems (prove only a 

few). Squeeze theorem. Importance of error estimates. Slow and 

fast convergence illustrated by various examples. 

3. Functions. Review of function concept (functions as map-

pings). Functions defined by algorithms, e.g., Horner�s scheme, etc. 

Graphs and basic curve sketching. Arithmetic combination of func-

tions. Geometric discussion of "near" functions and simple computa-

tional examples of approximations. Composition of functions, in-

verses. Monotonicity. Zeros, bisection algorithm. Uniform con-

tinuity; Intermediate Value Theorem for uniformly continuous func-

tions using bisection algorithm. 

4. Interpolation. Polynomial interpolation, undetermined 

coefficients, Lagrange formula, application to the solution of equa-

tions . 

5. Derivatives. Limits, basic limit theorems with reference 

to the sequential case. Motivation and definition of the derivative. 

The cases � (small k) and 1/x. Concept of higher derivatives. 

Continuity. Basic differentiation theorems. Derivative of poly-

nomials, Horner�s algorithm again. Derivative of rational functions. 

Linearization. Newton�s method. Monotone convergence of Newton�s 

method. Derivatives of monotone, convex, and concave functions. 

Chain rule. Implicit functions, inverse functions, application to 
1/n 

x 

6. Area. Intuitive discussion of properties of area. Area 

of regions under monotone functions by approximations with sums of 

rectangles. Extension to nonmonotone functions, application to � , 

k = 0, 1, 2, 3. 
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7. Integral. Riemann sums, existence for uniformly contin-

uous functions, basic properties. The Fundamental Theorem of Calcu-

lus. Application to the calculation of definite integrals. Substi-

tution and integration by parts. 

8. Quadrature• Review of rectangular approximation, trape-

zoidal rule and Simpson�s rule. Integration by the Lagrange formula. 

Algorithmic treatment of partial fractions. 

9. Differential equations. Direction fields, concept of 

solving first-order initial value problems. Separable case. Euler�s 

method. Differential equations of radioactive decay, first-order 

logarithms. Second-order linear equations, superposition principle, 

harmonic motion, trigonometric functions. 

10. Taylor�s theorem. Mean Value Theorem, Taylor�s theorem. 

Lagrange and integral remainder, application to error of interpola-

tion, quadrature, l�Hopital�s rule, critical points, simple numeri-

cal methods for critical points. 

11. Numerical solution of differential equations. Euler�s 

method reviewed, trapezoidal rule, local discretization error, modi-

fied Euler�s methods, Taylor�s polynomial methods, idea of Runge-

Kutta and multi-step methods. Brief geometric discussion of sta-

bility problems. 

REFERENCES 

There is no single textbook which covers the material proposed 
here, but parts of the following three texts may be used. 

Flanders, Harley; Korfhage, Robert R.; Price, Justin J. Calculus. 
New York, Academic Press, Inc., 1970. 

Henriksen, M. and Lees, M. Single-Variable Calculus. New York, 
Worth Publishers, Inc., 1970. 

Stenberg, Warren, e_t al_. Calculus, A Computer Oriented Presentation. 
Parts 1 and 2. CRICISAM, Florida State University, 1970. 

For the numerical analysis portions, parts of various standard books 
on numerical methods can be used, especially for problems and appli-
cations . 
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4.5 Algebra Courses Influenced by Computing 

At the present time it is not clear how the standard under-
graduate introduction to algebra (e.g., Mathematics 6M in the GCMC 
Commentary) should be modified to reflect the growing influence of 
computers. Some knowledge of algebra is essential for an under-
standing of areas such as algebraic algorithms and symbol manipula-
tion which have a strong algebraic flavor. Nonetheless, there is no 
consensus as to how the usual introduction to abstract algebra should 
be modified. In the discussion below we present brief outlines of 
three possible modifications, along with some sources of further 
information. 

1. At Harvard University the Department of Applied Mathematics 
has taught a one-year course based on Birkhoff and Bartee, Modern 
Applied Algebra (New York, McGraw-Hill Book Company, 1970). Topics 
are selected from among the following: 

Sets and functions, relations, graphs. Finite state machines, 
programming languages. Monoids, groups, lattices, Boolean 
algebras, rings, polynomials, finite fields. Optimization� 
and computer design, binary group codes, polynomial codes, 
recurrent sequences, computability. 

For further details about the course, the book by Birkhoff and Bartee 
should be consulted. 

2. Professor John Lipson of the University of Toronto has 
taught a modification of the one-year algebra course to advanced 
students in computer science for the past three years. Lecture 
notes for this course are expected to be available to interested 
parties sometime in 1973. 

The principal topic in the second half of this course is a 
study of algebraic algorithms which incorporates recent work not 
readily available in the textbook literature. The following topics 
are considered: 

Sets, relations, functions. Examples of algebraic systems. 
Universal algebra. Lattices, Boolean algebra, groups, rings, 
finite fields. Interpolation theory, algebraic algorithms. 

In addition to the usual textbooks in algebra, the following 
sources are used: 

Berztiss, A. T. Data Structures. New York, Academic Press, Inc., 
1971. 

Birkhoff, Garrett. Lattice Theory. 3rd ed. Providence, Rhode Island, 
American Mathematical Society, 1966. 

Birkhoff, Garrett and Bartee, Thomas C. Modern Applied Algebra. New 
York, McGraw-Hill Book Company, 1970. 
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Knuth, Donald �. The Art of Computer Programming. Reading, 
Massachusetts, Addison-Wesley Publishing Company. Vol. I, 1968; 
Vol. II, 1969. 

3. A one-semester modification of the course described has 
been taught in the Department of Electrical Engineering at the 
Massachusetts Institute of Technology and in the Division of Applied 
Mathematics at Brown University. The following topics are covered: 

Sets, relations, functions, morphisms, diagram graphs and 
applications. Monoids, groups, lattices. Finite state 
machines, semantics of flow diagrams, programming languages. 
Rings, fields, polynomials, extension fields, finite fields. 

5. Implementation 

5.1 Computing Facilities 

See Section 3.2 of Recommendations for an Undergraduate Program 
in Computational Mathematics, page 547. 

5.2 Programming Requirements 

The principal objective of any of the courses described in 
this report is to describe a mathematical subject area and applica-
tions related to it. Thus, the teaching of programming should not, 
by itself, be a purpose of any of these courses. Ideally, a student 
entering any of the lower-division courses except MC-0 should be 
required to have at least a beginning knowledge of one of the stand-
ard algorithmic languages implemented at his institution, as well as 
the ability to develop flowcharts and basic programs from a general 
description of a process. For the upper-division courses a more 
thorough familiarity with such a language and more programming exper-
tise is required. 

At present, few students entering the lower-division courses 
will have the corresponding programming background, although the 
expanding use of computers in high schools may change this picture 
in the future. Meanwhile, there are several alternatives that can 
be adopted. 

If a student�s schedule permits, one solution would be for him 
to take a one-semester introduction to computing, such as the course 
CI described in the CUPM report Recommendations for an Undergraduate 
Program in Computational Mathematics. If this approach leads to 
delays in the mathematical progress, a possible alternative might be 
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to let him take the computing course and his first mathematics course 
concurrently. In that case any one of the courses in Section 3 could 
be modified and taught in such a way that programming is not abso-
lutely essential, although the results of the computations and the 
problems raised by computations would, of course, be used in the 
course. 

Another alternative not involving a separate computing course 
is to teach a minimum amount of programming in supplementary lec-
tures to those who need it during the first few weeks of the fresh-
man courses. The time required for this depends considerably on the 
computing facilities available and on the language used; here com-
puter use in a conversational mode is often particularly helpful. It 
is essential that the students be given ample opportunity to write 
and run programs of their own and to operate the necessary equipment, 
such as terminals or key punches. Moreover, it is important that con-
sultants be available who can help them over their difficulties with-
out overwhelming them with technical details. In courses where addi-
tional credit is given for the computational work, the supplementary 
programming lectures would, of course, take up the first few of the 
laboratory sessions held throughout the semester. 

Which of these alternatives is the most feasible in a given 
situation depends not only upon the intended use of the computer in 
the course but also upon the nature of the available computing 
facilities. 

As mentioned before, a few lectures in programming are not suf-
ficient preparation for the more advanced courses. A consistent pro-
gramming experience in the lower courses may, in general, enable a 
student to read an introductory computer science text on his own and 
to round out his computer knowledge in this way. Otherwise, a first 
computing course such as the course CI cited earlier is certainly a 
natural prerequisite for the upper-division courses. 

5.3 Changes in Instructional Techniques 

In connection with the general topic of this report it is 
appropriate to review the state of teaching techniques in light of 
requirements for incorporating computers into the curriculum and to 
develop new teaching methods for bringing computational results and 
numerical algorithms into the classroom. The principal objective is 
to foster the "laboratory" atmosphere in class and to make each stu-
dent feel that he is actively engaged in learning through problem 
solving, experimentation, and discovery. 

It is important to bring the computational results into the 
classroom. Although thoughtful students wili learn well from pro-
gramming projects assigned as homework,� the hurried or less thought-
ful students see these assignments as chores to be done as quickly as 
possible. Sometimes a student will turn in a program with an error 
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in it so gross as to make his answers meaningless. He will not have 
learned anything from the activity unless the instructor is able to 
review the work in class and exhibit the results which the problem 
was intended to elucidate. 

The college mathematics teacher has always been at a real dis-
advantage when asked to make his lectures with chalk and blackboard 
as exciting and interesting as those of, say, his colleagues in 
physics who have carefully orchestrated, and often dramatic, experi-
ments to perform in class. More than ever, though, we find chalk 
and blackboard inadequate for the presentation of the new material 
being proposed in this report; a teacher filling a board with com-
puter results to six significant digits is likely to deter even the 
most energetic student! We hope that authors and publishers will 
address themselves to this problem and begin to develop new teaching 
materials for the mathematics teacher. Three possibilities are men-
tioned below, in order of increasing cost and complexity. 

The first and most accessible teaching assist might come from 
sets of transparencies to be used with an overhead projector. Graphs 
of functions of one and two dimensions, successively "blown-up" por-
tions of them, and computational results can all be presented. Care-
fully prepared overlays can give graphical results a dynamic sense. 
We are all familiar with the power and appeal of really good, profes-
sionally executed illustrations in textbooks. A library of trans-
parencies of equal excellence with which a teacher could illustrate 
his lecture would go far toward livening up the classroom. The 
teacher interested in developing visual material should seek help 
from a media specialist.^ 

The second possibility to be considered is that of videotaped 
or filmed presentations. Here the dynamic nature of the algorithms 
can be well conveyed. For illustration, let us consider the concept 
of the definite integral. If the limit definition is phrased in an 
algorithmic form, the student will comprehend it best if he sees the 
approximating rectangles sketched, their areas added in one at a 
time, and the whole process repeated for a finer partition. When the 
partition is refined, he sees the effect of taking a larger number of 
smaller contributions to the integral. It is very difficult to draw 
accurately enough and fast enough on a blackboard to give students 
this sense of dynamism. Also, when animation is under consideration, 
it is natural to try to incorporate computer-produced graphics in 
these presentations.2 

1. Some information might also be obtained from the Association for 
Educational Communications and Technology, 1201 16th Street, N.W., 
Washington, D. C. 20036. 

2. Advice may be obtained from Educational Development Center, 
55 Chapel Street, Newton, Massachusetts 02160. 
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An independent reason for developing recorded presentations is 
that television cassette technology is reaching a stage which will 
allow a student to view a presentation independently, making individ-
ualized instruction a reality. A "library" of cassettes will make it 
possible for him to spend as much time as necessary on precisely the 
material that is appropriate for him. Courses could become modular 
in nature and it would no longer be necessary for all students to 
proceed in lock-step through the material. We note that freshman 
classes are becoming increasingly heterogeneous, both with respect to 
the students� capabilities and to the quality and quantity of their 
high school mathematics preparation. As "learning centers" with 
carrels containing TV screens and other audio-visual devices become 
increasingly common, the mathematical community should be concerned 
with their potential impact and usefulness. 

We encourage authors who wish to prepare materials utilizing 
these new media to seek professional help from audio-visual special-
ists. Television and film offer new opportunities for innovative 
teaching. Simply to televise or to film traditional lectures would 
fail to take full advantage of the possibilities afforded by these 
media. 

The third and most sophisticated and desirable technological 
solution is to have an on-line terminal connected to a reliable com-
puter available at all times in the classroom. Devices are available 
which tap the input to a cathode ray tube display device and put the 
same image on one (or more) television monitors so that a large class 
can "participate" in the interaction.3 If an on-line computer is 
used, a great deal of preliminary work is required on the part of the 
teacher. Numerical experiments must be chosen with great care, lest 
roundoff errors, the peculiarities of the computer operating system, 
etc., produce unanticipated results. Thus "inverting" a nearly sin-
gular matrix or "summing" an alternating series with terms alike to 
6 digits using 5-digit arithmetic would obscure rather than illumi-
nate, and could carry the teacher far deeper into the theory of com-
putation than he ever intended to go. These problems are particularly 
likely to arise if a mini-computer with a small word length is used 
with only single precision arithmetic. 

3. For an overview of these technological developments, we recommend 
Ronald Blum, ed., Computers in Undergraduate Science Education 
Conference Proceedings, Commission on College Physics, College 
Park, Maryland, 1971 (available from American Institute of Physics, 
335 East 45th Street, New York, New York 10017). See also Pro-
ceedings of a Conference on Computers in the Undergraduate Cur-
ricula, 1970 (available from the University of Iowa Computer 
Center, Iowa City, Iowa 52240), Proceedings of the Second Annual 
Conference on Computers in the Undergraduate Curricula, 1971 
(available from The New England Press, Box 979, Hanover, New 
Hampshire 03755), and Proceedings of the 1972 Conference on Com-
puters in the Undergraduate Curricula, 1972 (available from 
Southern Regional Education Board, 130 Sixth Street, N.W., 
Atlanta, Georgia 30313). 
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