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INTRODUCTION 

More than half of the college and university mathematics 
teachers in the United States do not hold a Ph.D. in one of the 
mathematical sciences. Thus, the bulk of undergraduate teaching of 
mathematics in the country is being done by men and women whose 
graduate training, for one reason or another, has broken off short 
of the doctorate. There is no convincing evidence that this situa-
tion will soon change: the rising output of Ph.D.s in mathematics 
is probably more than offset by rapidly rising college enrollments 
and by increasing demands on mathematics as a service discipline.* 

Those concerned with the preparation of college teachers are 
therefore faced with a basic problem: What is the best way to ar-
range the early part of the graduate program in mathematics to pro-
vide background for effective college teaching? This problem is 
further complicated because the research potential of most students 
is still untested when they begin graduate work; thus, it is not 
possible to separate those who will complete a Ph.D. from those who 
will not. Accordingly, the choice of topics for the first year or 
two of graduate study must permit students to progress unretarded 
toward the Ph.D. This booklet explores one solution to this problem. 

We contend that all graduate students of mathematics should be 
treated as future teachers--first, because most of them do in fact go 
into teaching, and second, because virtually all professional mathe-
maticians are engaged to some extent in the communication of mathe-
matics. Hence, graduate programs aimed at producing better teachers 
may be expected to benefit everyone. 

The CUPM ad hoc Committee on the Qualifications of College 
Teachers of Mathematics, in its report Qualifications for a College 
Faculty in Mathematics [page 102], outlined a graduate program 
("first graduate component") which provides both a reasonable first 
segment of a Ph.D. program and adequate background for teaching the 
lower-division courses described in Commentary on A General Curricu-
lum in Mathematics for Colleges (GCMC) [page 3 3 ] . In 1967 the 
Graduate Task Force, a group with membership drawn from CUPM and its 
Panel on College Teacher Preparation, was given the assignment of 
preparing a more detailed description of the first graduate compo-
nent. A description appears in the pages that follow. 

* The situation has, in fact, changed dramatically since this report 
was written. According to the 1972 document Undergraduate Educa-
tion in the Mathematical Sciences. 1970-71 (Report of the Survey 
Committee of the Conference Board of the Mathematical Sciences), 
university departments of mathematical sciences had, in the fall of 
1970, 6,304 doctorates in mathematical sciences, 348 other doctor-
ates, and 971 nondoctorates. In four-year college departments 
there were 3,508 mathematical science doctorates, 758 other doctor-
ates, and 5,158 nondoctorates. 
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Clearly, this set of recommendations is not the only possible 
solution to the problem stated above, but we believe that it forms a 
sound basic program which each university can adapt to local condi-
tions. The time for its completion will depend upon the student�s 
ability and preparation, but in most cases one to two years beyond 
the bachelor�s degree should be adequate. Satisfactory completion 
will insure that the student has sound academic qualifications for 
teaching lower-division courses in calculus, linear algebra, proba-
bility, and advanced multivariable calculus. 

Besides serving the purposes already described, appropriate 
parts of the course of study we recommend would constitute an excel-
lent sabbatical program for established teachers who wish to improve 
their acquaintance with modern approaches to mathematics. 

The recommended program is discussed in detail in the follow-
ing section. Here we mention some of its characteristic features 
and reasons for them. Two considerations figure prominently in the 
selection of topics for courses: first, the relative importance of 
the topic in all of mathematics, and second, its relevance to teach-
ing the lower-division courses described in the GCMC report. 

In analysis, to follow a year of undergraduate real analysis 
and a semester of undergraduate complex analysis (like the GCMC 
courses 11, 12, 13)�, the program includes a semester of measure and 
integration followed by a semester of functional analysis. The 
course in measure and integration is obviously relevant to the GCMC 
courses in calculus and probability. We believe that the course in 
functional analysis is more important at this stage than a second 
course in complex analysis, since functional analysis will further 
develop the methods of linear algebra, the concept of uniform conver-
gence, and various other topics in analysis. Moreover, functional 
analysis provides an immediate application of the course in measure 
and integration. 

In topology we recommend a sequence which, in addition to the 
usual material in basic topology, includes an introduction to mani-
fold theory and differential forms, to provide the prospective teach-
er with a deeper understanding of multivariable calculus. 

Since lower-division mathematics needs to be illustrated lib-
erally with uses of the subject, college teachers must command a 
broad knowledge of the applications of mathematics. Also, many will 
be called upon to teach elementary probability and statistics. Hence, 
we recommend that a course of study for college teachers include two 
or three semesters of work at the advanced undergraduate or beginning 
graduate level chosen from courses in probability, statistics, differ-
ential equations, numerical analysis, or subjects in applied mathe-
matics. Moreover, all courses in the program should give attention 
to the relevance of their subjects to undergraduate mathematics and 
related disciplines. 

In algebra we believe that a year-long advanced undergraduate 
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course such as that described in the CUPM publication Preparation 
for Graduate Study in Mathematics [page 453] is essential, but that 
further study of algebra is less important in the preparation of 
teachers of lower-division mathematics than the suggested work in 
analysis, topology, and applied mathematics; therefore, graduate-
level algebra has been treated as an elective. Likewise, we do not 
advocate a special requirement in geometry, partly because a con-
siderable amount of geometry in various forms is distributed through-
out other recommended courses, and partly because advanced training 
in geometry does not seem essential either as background for lower-
division teaching or as general preparation for further graduate 
study. Nevertheless, geometrical points of view should be stressed 
in courses whenever they are appropriate. 

It is certain that many teachers of lower-division mathematics 
will, in the very near future, be called upon to use the computer to 
some extent in their courses. However, in view of the rapid develop-
ments in computer science and the many nonmathematical factors in-
volved, any explicit recommendations on the role of computing in this 
program must be regarded as tentative at this time. We do expect 
that students completing this program will have acquired at least a 
basic knowledge of computers [for example, the content of the course 
CI in Recommendations for an Undergraduate Program in Computational 
Mathematics. page .563]. 

Apart from formal course work, we feel that a meaningful 
apprenticeship in teaching is an essential aspect of the student�s 
preparation. Activities to provide such an apprenticeship should 
form an integral part of beginning graduate work. 

A master�s degree would suitably recognize completion of the 
first graduate component. However, in place of a master�s thesis we 
strongly recommend the substitution of a comprehensive examination. 
Foreign language requirements are not discussed here because we be-
lieve that they are irrelevant for a student whose graduate training 
stops at the first graduate component; however, the student who hopes 
to earn a Ph.D. should be advised that a reading knowledge of foreign 
languages is likely to be essential in his subsequent work. 

It must be understood that the student who has completed this 
or any other program will not be, by that reason alone, a complete 
teacher or mathematician for the rest of his career; sustained intel-
lectual and professional growth is essential to continued competence 
as a teacher and as a mathematician. For this reason, we urge a 
graduate faculty to make vigorous efforts to involve the students 
seriously, as participants rather than observers, in the mathematics 
they are studying. It is important for the student who stops short 
of the Ph.D., even more than for the one who will complete it, that 
course work of the first two years of graduate study emphasize funda-
mentals and basic understanding. This applies especially to the pro-
spective college teacher who must be able to relate his graduate 
work to the material he will be teaching later. Courses which in-
volve the student in doing mathematics as distinct from hearing about 
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mathematics would seem to be particularly valuable. Depth of under-
standing on the part of the student is to be preferred to superfi-
cial exposure to mathematical terms. Our course outlines should be 
understood in this context. 

Finally, we emphasize that it has not been our objective to 
design a separate track in graduate mathematics. This program is 
intended to prepare the student as an effective and well-informed 
teacher of lower-division mathematics; but, at the same time, we 
believe it moves him toward the Ph.D. at a satisfactory rate. 

PROGRAM DESCRIPTION 

The "first graduate component," as described in Qualifications 
for a College Faculty in Mathematics [page 107], is a program of 
graduate study built upon strong undergraduate preparation in mathe-
matics. Because the undergraduate preparation of graduate students 
varies widely, it is useful to describe the first graduate component 
in terms of the combined undergraduate and graduate preparation of 
the candidate. It is likely that many students will have to com-
plete in graduate school some undergraduate-level work; for such 
students, up to two years of post-baccalaureate study may be re-
quired to complete this program. 

We assume that every student has already completed lower-
division courses equivalent to the GCMC courses Mathematics 1, 2, 
2P, 3, 4, 5, including a basic course in computer science, like CI 
[page 563]. 

In addition, he will have studied some, but probably not all, 
of the following upper-division courses: Mathematics 7 (Probability 
and Statistics)*, 8 (Introduction to Numerical Analysis), 9 (Geom-
etry), 10 (Applied Mathematics) [see page 79 ] . 

The following five courses form the core of preparation for 
graduate study: Mathematics 11-12 (Introductory Real Variable 
Theory), 13 (Complex Analysis), D-E (Abstract Algebra). For outlines 
of Mathematics 11-12 and 13, see page 93. For outlines of D-E, see 
page 453. 

Graduate courses which are especially appropriate for the first 
graduate component, and for which suggested course descriptions are 
given starting on page 121 of this COMPENDIUM, are: 

* We use 7A and 7B to refer to the probability component and sta-
tistics component, respectively, of Mathematics 7. 
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� Measure and Integration 

Functional Analysis 

Complex Analysis 

Topology 

Homology and Multivariable Integration 

Topology and Geometry of Manifolds 

Q 

R 

S 

� 

U 

V Galois and Field Theory 

W Ring Theory and Multilinear Algebra 

X Advanced Ordinary Differential Equations with 
Applications 

Y Problem-oriented Numerical Analysis 

� Seminar in Applications 

Courses 11-12. 13. D-E, P, Q, S, and � should be in every 
student�s program. Because of the great importance of applied mathe-
matics, every program of study should include at least one year of 
applied work, of which the following four sequences are examples: 
7A-7B. X-10, X-Y, X-Z. 

Each student should, if possible, include a third course from 
among the courses 7A, 7B, 10, �, �, � in his program. Students who 
plan to continue into the advanced graduate component and to special-
ize in some area, of pure mathematics are advised to take as many as 
possible of the courses R, U, V, W. Other students may substitute 
electives in geometry, logic, foundations, number theory, or other 
subjects. 

For the sake of convenience, we have stated our recommendations 
in terms of semester courses. However, we believe that courses at 
the graduate level are best thought of as year courses. The material 
outlined for pairs of related courses can, of course, be rearranged 
within the year to suit local conditions. 

Since beginning graduate programs ordinarily include year 
courses in analysis, topology, and algebra, our recommendations de-
part from the norm only in ways intended to enhance the ability of 
the student to teach lower-division mathematics. 

Effective exposition is a skill of major importance to any 
prospective mathematician, whether he expects his principal profes-
sional emphasis to be research or teaching. However, it is unreal-
istic to assume that a beginning graduate student is qualified to 
teach well, even in introductory undergraduate courses. Therefore, 
we propose that he be required to complete an apprenticeship in 
teaching under the thoughtful direction of experienced members of 
the faculty. Suggestions for such a program are discussed later in 
this report. 
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To complete the program, we suggest that every student be re-
quired to take a comprehensive examination designed specifically to 
test the breadth and depth of the candidate�s understanding of mathe-
matics relevant to the undergraduate curriculum. Whenever feasible, 
the examination should be scheduled so that students have several 
weeks devoted exclusively to preparation for it. We believe that a 
truly comprehensive examination is a more appropriate requirement 
than the traditional master�s thesis, principally because prepara-
tion for such an examination demands that the student regard his 
subject as a whole rather than a collection of parts. 

In summary, the first graduate component, as described here, 
consists of the following work: 

(1) Completion (if necessary) of a strong undergraduate major 
program which includes these upper-division courses: three 
semesters of real and complex analysis, a full year of abstract 
algebra (the equivalent of Mathematics 11-12, 13, D-E). 

(2a) A year of graduate topology, including differential 

(2b) A year of graduate analysis: measure and integration 
and functional analysis. 

(2c) A year of work at the advanced undergraduate or begin-
ning graduate level, emphasizing the applications of mathe-
matics: e.g., a year of probability and statistics; or a 
semester of differential equations followed by a semester of 
numerical analysis, a seminar in applications, or a "model 
building" course. 

(3) A year or more of work focused on problems of teaching 
undergraduates. 

For a student whose undergraduate preparation does not meet 
the standards described in (1) and (2c), completion of the first 
graduate component may require two years of study beyond his bache-
lor�s degree. For example, if his undergraduate preparation in alge-
bra and in analysis is weak, his program for the first graduate 
component might be as follows: 

Complex Analysis (Mathematics 13) Applied Mathematics (Mathe-

forms. 

First Year 

Analysis (Mathematics 11) Analysis (Mathematics 12) 

Algebra D 
Apprenticeship in Teaching 

matics 10) 
Algebra � 
Apprenticeship in Teaching 
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Second Year 

Analysis � Analysis Q 
Topology S Topology � 
^Probability (Mathematics 7A) and Statistics (Mathematics 7B) 

OR 

Differential Equations X and Numerical Analysis Y or 
Applications Seminar � 

Apprenticeship in Teaching Apprenticeship in Teaching 
Comprehensive Examination 

Most students will have completed some of the undergraduate 
courses in this program and thus will be able to substitute electives 
for some of the subjects listed. A student who has a very strong 
undergraduate major in mathematics will be able to complete the pro-
gram in one year, for example, by taking the second year of the pre-
ceding schedule. 

Graduate departments are urged to give careful attention to the 
proper placement of entering graduate students and to continue to 
advise them regarding course selections. 

COURSE OUTLINES 

Analysis 

The following section includes suggested outlines for three 
one-semester graduate courses in analysis: 

P. Measure and Integration (two suggested outlines are 
offered) 

Q. Functional Analysis 

R. Complex Analysis 

Each student should include courses � and Q in his program of 
study. 
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P. Measure and Integration 

This course provides an introduction to and essential back-
ground for Course Q, can be used in Course R, and is naturally use-
ful in more advanced courses in real analysis. We present two out-
lines, which represent different approaches and a somewhat different 
selection of material. If presented in the right spirit, a course 
in Measure and Integration provides insights into the material of 
lower-division courses that the student will have to teach. 

First Outline 

1. The limitations of the Riemann integral. Examples of a 

series that fails to be integrable term-by-term only because its 

sum is not integrable; of a differentiable function with a noninte-

grable derivative. Limitations of integration in general: there is 

no countably additive, translation-invariant integral for all char-

acteristic functions of sets (the usual construction of a non-

measurable set will serve). 

2. Lebesgue. integration on the line. Outer measure; defini-

tion of measurable sets by means of outer measure. Measurability of 

sets of measure 0, of intersections and unions, of Borel sets. 

Countable additivity. Application: the Steinhaus theorem on the 

set of distances of a set of positive measure. Measurable functions, 

Borel measurability, measurability of continuous functions. Egoroff�s 

theorem. Definition of the integral of a bounded measurable function 

as the common value of inf J* �(�) dx for simple majorants of Y of 

f and sup f cp(x) dx for simple minorants �. Riemann integrable 

functions are Lebesgue integrable. Bounded convergence and applica-

tions (necessary and sufficient condition for Riemann integrability; 

log 2 = 1 - 1/2 + 1/3 + . . . ) . Integrability of nonnegative func-

tions, Fatou�s lemma, monotone convergence, integrability of general 

functions. A nonnegative function with zero integral is zero almost 

everywhere. 

3. L^ spaces, with emphasis on L ; motivation from orthog-

onal series. Schwarz inequality; with little extra effort one gets 

(via convex functions) the Holder, Minkowski, and Jensen inequalities. 

L as a formal limit of iP via (j* f^) -� ess sup f as � -» �>. 

Parseval�s theorem, Riesz-Fischer theorem. Rademacher functions; 
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proof that almost all numbers are normal. Convergence of � � ^ 

and other series with random signs. Proof (by Bernstein poly-

nomials or otherwise) that continuous functions on an interval are 

uniformly approximable by polynomials; hence, continuous functions 

are dense in I?. 

4. Differentiation and integration. Proof that an indefinite 

integral is differentiable almost everywhere and its derivative is 

the integrand; the Lebesgue set. Equivalence of the properties of 

absolute continuity and of being an integral. 

5. Lebesgue-Stieltjes integral with respect to a function of 

bounded variation. A rapid survey pointing out what changes have to 

be made in the previous development. Applications in probability, 

at least enough to show how to treat discrete and continuous cases 

simultaneously. Riesz representation for continuous linear func-

tionals on C[a,b]. 

6. General measure spaces. Definition of the integral and 

convergence theorems in the general setting; specialization to n-

dimensional Euclidean space. Fubini�s theorem. Application to con-

volutions and to such matters as gamma-function integrals and 
_ 2 

j" e dx. The one-dimensional integral as the integral of the 

characteristic function of the ordinate set. 

7. (If time permits) Complex measures. Decompositions. 

Radon-Nikodym theorem. 

Second Outline 

1. Lebesgue integration on the line. F. Riesz�s step function 

approach. Definition of the integral for simple step functions and 

extension to the class of functions which are limits almost every-

where of monotone sequences of simple step functions. Definition of 

summable function and fundamental properties of the integral. Exten-

sion to complex-valued functions. The basic convergence theorems, 

including monotone, bounded, and dominated convergence theorems. 

Fatou�s lemma and convergence in measure. Illustrations and 
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applications: (a) justifications, by bounded convergence, of term-

by-tenti integration of series leading to formulas such as log 2 

= 1 - 1 /2 + 1 / 3 - 1 / 4 + ...; (b) use of dominated convergence to 

perform operations such as �  f (�,�) dx = �  f(x,a) dx; 

(c) proof of the analogue of Fatou�s theorem for series: 

lim. � a. 5 � lim. a. when a. £ 0 . Comparison of the Riemann 
� � in � 1 m in 

and Lebesgue integral. 

2 . Measure and absolute continuity. Measurable functions and 

measurable sets. Properties of measurable sets. Egoroff�s theorem. 

Cantor�s function and the relationship between Lebesgue and Borel 

sets. Nonmeasurable sets. Proof that the integral of a summable 

function is a countably additive set function. Almost everywhere 

differentiability of monotone functions. Review of basic properties 

of functions of bounded variation. Absolutely continuous functions. 

Fundamental theorem concerning differentiation of the integral of a 

summable function. Proof that an absolutely continuous function on 

an interval is of bounded variation and that its total variation is 

equal to the L^-norm of its derivative. Helly�s theorem on compact-

ness of families of normalized functions of bounded variation. 

3 . I? spaces and orthogonal expansions. Convex functions 

and the inequalities of Holder and Minkowski. Proof that the lP 

spaces are complete. Theorem: If {^^3 * s a sequence of measur-

able functions, if f. -» f pointwise almost everywhere, and if 

linu J |f | = J" |f|, then linu J |fi - f| = 0 . Lusin�s theorem: 

f measurable and finite almost everywhere and � > 0 implies there 

exists a continuous function � such that � = f except on a set 

of measure less than 6. Hence, continuous functions are dense in 

1?, 1 £ � < oo. Representation of continuous linear functionals on 

lP. Orthonormal systems in L^(a,b). Bessel�s inequality, Parseval�s 

inequality, and the Riesz-Fischer theorem. Proof that the Cesaro 

means of the Fourier series of a function f in L P (0,2TT) converge 

to f in the L^-norm (1 § � < �t>) and uniformly, provided that f 

is periodic and continuous. From this latter fact deduce the 

Weierstrass theorem on polynomial approximation of continuous func-

tions on an interval. The trigonometric functions form a complete 
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orthonormal system in L (0,2�). 

4. Integration on product spaces. Integration and measure 

in R n . Theorems of Fubini and Tonelli. Applications to nonlinear 

change of variable in multiple integrals. 

5. Convolution (optional). If f is summable, then f(t - x) 

is a measurable function on the plane. By Fubini�s theorem, f and 

g in L^" implies that f*g(t) = J* f(t - x) g(x) dx, the convolution 

of f with g, is finite for almost all t, f*g is in L \ and 

||f*g|| * ||f|| | |g||. In fact, for �  > 1, q > 1, and 0 < J = ^ + J - 1, 

we have L P * L Q C L T and ||f*g||r S ||f|| ||g|| . (Actually, 

= L p for 1 i p < o . ) Also, if 1 < �  < �� and p� = p/(p-l) 

and f £ L p, g £ L P , then f*g is bounded, L*� under convolution 

is an algebra without unit. Proof that f*g = fg, where � denotes 

the Fourier transform. Riemann-Lebesgue lemma. 

6. General measure theory (optional). Set functions and in-

troduction of abstract measure spaces. Definition of the integral 

and rapid review of standard theorems. Total variation of measures, 

regularity properties of Borel measures. Identification of Borel 

measures on the line with functions of local bounded variation. 

Absolutely continuous and mutally singular measures and consequences 

of the Radon-Nikodym theorem. Riesz representation for C(X), X 

compact. 

Q. Functional Analysis 

The purpose of this course is to develop some of the basic 
ideas of functional analysis in a form suitable to applications and 
to deepen the student�s understanding of linear methods in under-
graduate mathematics. Whenever possible, topics should be treated 
and applied in a setting with which the student has some familiarity; 
main theorems should be supported with concrete and meaningful ex-
amples . 

1. Metric spaces. Review of topology and metric spaces if 

necessary. Completion of metric spaces. Method of successive 

approximations. Proof that a contraction operator on a complete 
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metric space has a unique fixed point. Application to existence of 

the solution of a system of linear equations, polynomial equations, 

initial value problems for ordinary differential equations and inte-

gral equations. 

2. Normed linear spaces. Examples (not all complete) from 

sequence spaces, function spaces, and finite-dimensional spaces. 

Completion of C[a,b] under the L -norm. Proof that the unit ball 

in a normed linear space is compact if and only if the space is 

finite-dimensional. Equivalence of norms in finite-dimensional 

spaces. 

3. Linear functionals. The dual space of a normed linear 

space. Computation of the dual for spaces R n, c , i (1 s � < a> 

and C[a,b], Contrast with algebraic dual. Convex sets and separa-

tion of convex sets by linear functionals. Support functionals. 

Analytic, geometric, and complex forms of the Hahn-Banach theorem. 

Applications of the Hahn-Banach theorem, such as (a) computation of 

the distance from a point to a subspace in terms of the linear func-

tionals which vanish on the subspace; (b) the existence of a func-

00 CO tion in L (0,1) of minimal L -norm which satisfies the N + 1 

pi � 
relations t f(t) dt = a , � = 0, 1, ..., N; (c) solution of 

J 0 n 

the Hausdorff moment problem for C[0,1]; (d) the existence of 

Green�s function for Laplace�s equation in the plane for a domain 

with sufficiently smooth boundary. Principle of uniform boundedness 

and applications, such as (a) existence of a continuous periodic 

function on [-TT,�] whose Fourier series fails to converge; (b) the 

Silverman-Toplitz conditions for a regular matrix summability method 

(c) existence of the Riemann-Stieltjes integral �  f da for every 

continuous f implies that or is of bounded variation on [0,1]. 

Weak (not weak*) convergence of sequences in normed linear spaces. 

Proof that weakly convergent sequences are bounded but not neces-

sarily norm convergent. Characterization of weakly convergent 

sequences in spaces such as � (1 s � < oo) and C[a,b]. Elemen-

tary introduction to distribution theory. 

4. Linear operators. Examples from matrix theory, 
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differential and integral equations. The closed graph theorem and 

the interior mapping principle. Notion of an adjoint operator. In-

version of linear operators near the identity. The spectrum and 

resolvent of an operator. 

5. Hilbert spaces. Inner products, orthogonality, orthogonal 

systems. Fourier expansions, Bessel�s inequality, and completeness. 

Representation of linear functionals. Self-adjoint operators on a 

real Hilbert space as a generalization of symmetric linear trans-

formations on R n. Eigenvalues, eigenvectors, invariant subspaces, 

and projection operators. The spectral theorem for completely con-

tinuous self-adjoint operators. (Here the goal is the formula 

Ax = � �. (x,x. )x, , where A is a compact and self-adjoint opera-
k � � 

tor, � is any point, �^, �^> ��� is the sequence of nonzero 

eigenvalues, and x^, x^, x^, ��� is the corresponding set of 

eigenvectors.) Construction of a one-parameter family of projec-

tions � which allows representation of the action of A in 

� 
terms of a vector-valued Riemann-Stieltjes integral 

Ax = j � d E ^ x � 

Description (without proof) of the corresponding theorem for the 

unbounded case. Application of the theory of compact, self-adjoint 

operators to Sturm-Liouville systems or integral equations with 

symmetric kernels. 

R. Complex Analysis 

The amount of material that can be covered in this course 
depends very much on the amount of knowledge that can be assumed 
from Mathematics 13. The outline assumes that the student knows 
this material quite well, but some of the more advanced topics may 
have to be omitted or treated in less depth. Such topics are en-
closed in brackets. 

1. Holomorphic functions. (Much of this should be review.) 

Cauchy�s integral theorem in a more general setting than was used 

in Mathematics 13. According to circumstances, this may be for 

unions of star-shaped regions, for Ĉ " Jordan curves, for singular 
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cells, etc., but not for general rectifiable Jordan curves. Cauchy�s 

integral formula. Taylor and Laurent series. Residue theorem. 

[Evaluation of some definite integrals which are more sophisticated 

than those of Mathematics 13.] Classification of isolated singulari-

ties, Casorati-Weierstrass theorem. Liouville�s theorem. Funda-

number of poles), with applications to some special cases (number 

of zeros of a polynomial in a quadrant, for example). Maximum modu-

lus theorem. Schwarz�s lemma. Rouche�s theorem with some concrete 

applications (Fundamental Theorem of Algebra again; zeros of e + � 

and other special functions). [Montel�s theorem, Phragmen-Lindelof 

theorems.] 

2. Harmonic functions. Cauchy-Riemann equations. Mean value 

property for harmonic functions. Poisson formula and Dirichlet prob-

lem for the circle and annulus. Connection with Fourier series and 

Poisson summability of Fourier series at points of continuity. 

[Other problems on functions holomorphic in a disk: Abel�s theorem, 

elementary Tauberian theorems.] [Fatou�s theorem on radial limits.] 

[Positive harmonic functions, Herglotz�s theorem on the integral 

representation of holomorphic functions with positive real part in a 

disk. Harnack�s theorem.] 

3. Holomorphic functions as mappings. Mapping properties of 

the elementary functions. Nonconstant holomorphic functions are 

open. Conformality at points where the derivative is not zero. Only 

holomorphic functions produce conformal maps. Conformal automor-

phisms of the disk and the half-plane. Normal families. Proof of 

the Riemann mapping theorem. [Schwarz-Christoffel formula. Con-

formal representation of a rectangle on a half-plane. Elliptic 

functions. Proof of the small Picard theorem.] 

4. Analytic continuation. Schwarz reflection principle. 

Analytic continuation. Permanence of functional equations. Mono-

dromy theorem. [Multivalued functions. Elementary Riemann surfaces.] 

5. Zeros of holomorphic functions. Infinite products. Entire 

functions. Meromorphic functions. The Weierstrass factorization 

theorem. Mittag-Leffler theorem. Gamma function. [Jensen�s for-

mula and Blaschke products.] 

mental Theorem of Algebra. 
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[6. Approximation. Runge�s theorem and approximation by poly-

nomials. Mergelyan�s theorem.] 

Topology 

The following section includes suggested outlines for a se-
quence of three one-semester graduate courses in topology: 

S. Topology 

T. Homology and Multivariable Integration (two outlines are 
offered) 

U. Topology and Geometry of Manifolds 

Each student should include courses S and � in his program of 
study. Students who plan to elect course U must study the first 
(preferred) outline of T. 

S. Topology 

We assume that the students have made a brief study of metric 
spaces, Euclidean spaces, and the notion of continuity of functions 
in metric spaces. (This material is covered in Sections 4, 5, and 
6 of Mathematics 11-12.) 

1. Basic topology. Topological spaces, subspace topology, 

quotient topology. Connectedness and compactness. Product spaces 

and the Tychonoff theorem. Separation axioms, separation by con-

tinuous functions. Local connectedness and local compactness. 

Metric spaces, completion of metric spaces, uniform continuity. 

Paracompactness, continuous partitions of unity. 

2. Applications to calculus. Use the above results to prove 

again the basic topological results needed for calculus and the 

Heine-Borel and Bolzano-Weierstrass theorems. 

3. Fundamental group. Homotopies of maps, homotopy equiva-

lence. The fundamental group �., functional properties, depend-

ence on base point. Show that ��, (S ) = Z. 
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4. Applications of the fundamental group. Brouwer fixed 
2 2 3 

point theorem for the disk D . R is not homeomorphic with R . 

Relevance of the fundamental group to Cauchy�s residue theorem. 

Fundamental Theorem of Algebra. 

5. Covering spaces. Covering spaces, homotopy lifting and 

homotopy covering properties. Regular coverings, existence of cover-

ings, universal covering. Factoring of maps through coverings. 

Relation with Riemann surfaces. 

T. Homology and Multivariable Integration 

Preferred Outline 
k 03 

1. Manifolds. Topological manifolds. C and C functions 

on R n. Differentiable structure on a topological manifold. Diffeo-
00 

morphisms. C partitions of unity for paracompact manifolds. 
CO 

2. Functions on manifolds. The ring G(U) of C real-valued 

functions on an open set U, the ring Q(x) of germs of C func-co 

tions at a point x. Pullbacks of these rings via a C function. 

Tangent bundle and cotangent bundle. Bases for tangent and cotangent 

spaces in a coordinate system. Vector fields, Poisson bracket, flows. 

Inverse and implicit function theorems. Frobenius� theorem. 

3. Applications to differential equations. Relation of vector 

fields to ordinary differential equations and of Frobenius1 theorem 

to partial differential equations. 

4. Differential forms. Differential forms, elementary forms. 

Exterior multiplication of forms, the differential operator d on 

forms; dd = 0 and d of a product. 
5. Applications to classical vector analysis. The algebra of 

3 

forms on R contains vector algebra and with d contains vector 

analysis. CO 

6. deRham cohomology. Pullback of forms via a C map com-

mutes with d. Closed and exact forms, deRham groups as a cohomology 

theory. 

7. Simplicial homology. Simplicial complexes, simplicial 
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homology. Barycentric subdivision, simplicial approximation theorem. 

Calculation of rr̂  for a simplicial complex. Singular homology and 

cohomology of a space. 

8. Applications of simplicial homology. The Brouwer fixed 

point theorem for D n , invariance of domain, and the Jordan curve 

theorem. (Recall use of the Jordan curve theorem in complex analy-

sis .) 

9. Stokes� theorem. Integral of a p-form over a singular 

p-chain. Proof of Stokes1 theorem. This implies that integration 

induces a bilinear map from singular homology and deRham groups to 

R. Green�s theorem as a special case of Stokes� theorem. 

Second Outline 

Note: If a student does not plan to take course U, then the follow-
ing easier version of � may be desirable. This is carried out by 
working in R n instead of in general differentiable manifolds, and the 
result is still a fairly general version of Stokes� theorem. 

1. Simplicial homology. Simplicial complexes, barycentric 

subdivision, simplicial maps, and the simplicial approximation theo-

rem. Simplicial homology theory, functional properties of homology 

groups. Calculation of homology groups for simple complexes. 

2 . Differential forms. Differential forms on open sets of R n . 

Properties of differential forms, the operator d on forms. Pull-
co 

back of forms via a C function. Application to vector algebra and 

vector calculus. Closed and exact forms, the deRham groups. 

3. Singular homology and applications. Singular homology 

theory. Applications: the Brouwer fixed point theorem, R n and R m 

are homeomorphic if and only if � = m, invariance of domain, Jordan 

curve theorem. 

4. Stokes� theorem. Integration of p-forms over differenti-

able singular p-chains. Proof of Stokes� theorem. 
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U. Topology and Geometry of Manifolds 

1. Chain complexes. Chain and cochain complexes (examples 

from T), derived groups. Exact sequences, ladders, the 5-lemma. 

Exact sequences of chain complexes, Bockstein exact sequence. Chain 

homotopies. Poincare lemma and cone construction; derived groups of 

a contractible open set are zero. 

2. Riemannian metrics for manifolds. Riemannian metrics for 

paracompact manifolds. Geodesies: existence and uniqueness. A 
CO 

paracompact C manifold may be covered with a star-finite covering 

by geodesically convex sets (so that all sets in the covering and all 

intersections are contractible). 

3. Comparison of homology theories. A lattice L of subsets 

of X containing �  and X gives a category S with elements of 

L as objects and inclusions as morphisms. A cohomology theory h 

on S is a sequence of cofunctors h q from S to abelian groups, 

along with natural transformations 

6: hq(A � �) - hq + 1�(A U B) 

such that the Mayer-Vietoris sequence is exact. Proof that if L is 

a star-finite covering of X by open sets, then cohomology theories 

h, li which agree on finite intersections agree on X. Use of these 

results to deduce deRham�s theorem and to prove that simplicial and 

singular theories agree on a simplicial complex. 

4. Global differential geometry. The remainder of the course 

is devoted to surfaces. Gaussian curvature, spaces of constant curva-

ture. Gauss-Bonnet theorem for surfaces, non-Euclidean geometries. 

Algebra 

The following section includes suggested outlines for two one-
semester graduate courses in algebra: 

V. Galois and Field Theory 

W. Ring Theory and Multilinear Algebra 
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These courses are independent of one another and should be 
offered as electives. Each course outline includes a basic minimal 
list of topics as well as a list of optional topics from which the 
instructor is invited to choose. 

V. Galois and Field Theory 

Note: 1 and 2 are reviews of topics that should have been covered 
in the previous one-year algebra course D-E outlined on page 453. 

1. Review of group theory. The third isomorphism theorem. 

Definition of simple group and composition series for finite groups. 

The Jordan-Holder theorem. Solvable groups. Simplicity of the 

alternating group for � > 4. Elements of theory of p-groups. 

Theorems: A p-group has nontrivial center; a p-group is solvable. 

Sylow theory. Sylow theorem on the existence of p-Sylow subgroups. 

Theorems: Every p-subgroup is contained in a p-Sylow subgroup; all 

p-Sylow subgroups are conjugate and their number is congruent to 1 

modulo p. 

2. Review of elementary field theory. Prime fields and 

characteristic. Extension fields. Algebraic extensions. Structure 

of F(a), F a field, a an algebraic element of some extension 

field. Direct proof that if a has degree n, then the set of 

polynomials of degree � - 1 in a is a field; demonstration that 

F(a) s: F[x]/(f(�)), where f is the minimum polynomial of a. 

Definition of (K:F), where � is an extension field of F. If 

F C K C L and (L:F) is finite, then (L:F) = (L:K)(K:F). Ruler-

and-compass constructions. Impossibility of trisecting an angle, 

duplicating the cube, squaring the circle (assuming � transcen-

dental) . 

3. Galois theory. The group G(M/K) of K-automorphisms of 

a field � containing K. Fixed field H� of a subgroup � of 

G(M/K). Subgroup F� of G(M/K) leaving an intermediate field F 

fixed. Examples like Q( ̂ /2) to show that G(M/K)� may be bigger 

than K. An object is closed if it equals its double prime. If 

M D F D P j D K and G(�/�) => � 3 � � , then [Fj:F�] s (F:F^) and 
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(�^:��) £ [�:�^]. All finite subgroups of G(M/K) are closed. 

M/K is galois if G(M/K)1 = K. Fundamental theorem. Artin�s 

theorem: If � is a field and G is a finite group of automor-

phisms of M, then � is galois over G�. Extension of isomor-

phisms theorem. Applications to elementary symmetric functions. 

Galois subfields and normal subgroups. 

4. Construction of galois extension fields. Splitting fields, 

several characterizations. Uniqueness. Separability. Galois if 

and only if separable and splitting. Galois closure of intermediate 

field. Galois group as a group of permutations of the roots. Ex-

amples of splitting fields. Explicit calculations of galois groups 

of equations. Roots of unity. Cyclotomic polynomials. Irreduci-

bility over the rationals. Construction of regular polygons by 

ruler and compass. 

5. Solution of equations by radicals. Definition of radical 

extension fields. In characteristic 0, if M/K is radical, then 

G(M/K) is solvable. Tie-up between radical extensions and solving 

equations by radicals. Insolvability of general equations of de-

gree £ 5. If f is irreducible over Q, of prime degree p, and 

has exactly 2 real roots, then its galois group is S^. Explicit 

examples. Hilbert�s Theorem 90. Form of cyclic extension if ground 

field contains roots of unity. If G(M/K) is solvable, then M/K 

is radical. 

6. Finite fields. Recall GF(p). A field has p11 elements 
P

N 

if and only if it is the splitting field of x r - �. � ZD K, 

finite fields, implies � is galois and cyclic. Examples from 

elementary number theory. The normal basis theorem. 

Optional Topics 

The following topics are listed with no preferential order. 
They are to be used at the instructor�s discretion. 

7. Simple extensions and separability. A finite-dimensional 

extension field is simple if there are only finitely many inter-

mediate fields. � separable and finite-dimensional over � implies 

� is simple. Purely inseparable extensions and elements. Maximal 

separable and purely inseparable subfields. Splitting fields are 
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generated by these. Transitivity of separability. 

8. Algebraic closure and infinite galois theory. Definition 

of algebraically closed field. Existence and uniqueness of algebraic 

closure (use Zorn�s lemma). Point out that one cannot get the Funda-

mental Theorem of Algebra this way. Infinite algebraic extensions, 

Krull topology on galois group. Galois group is compact and totally 

disconnected. Inverse limit of finite groups. Fundamental Theorem 

of Galois Theory for this case. 

9. Transcendental extensions. Algebraically independent sub-

sets of field extensions. Purely transcendental extensions. Tran-

scendental extensions. Transcendence bases treated so that the proof 

could be used for bases of vector spaces. Usual properties of tran-

scendence bases and transcendence degree. Transcendence degree of 

composite. Separable generation. MacLane�s criterion. 

W. Ring Theory and Multilinear Algebra 

1. Categories and functors. Introduce the category of sets. 

Definition of a category. Examples of categories: the category of 

groups, the category of rings, the category of fields, the category 

of vector spaces, the category of modules; epimorphisms, monomor-

phisms, isomorphisms, surjections, Injections. Examples to show 

that an epimorphism is not necessarily surjective and a monomorphism 

is not necessarily injective. A group as a one-object category 

whose morphisms are all isomorphisms; similar ways of looking at 

groupoids and other algebraic systems. Dual of a category, duality, 

examples. Additive and abelian categories with examples. Functors 

and natural transformations with many examples, for instance viewing 

modules as functors. The Yoneda lemma: Nat(Hom(A,-),T) = T(A). 

Illustrations and examples of universal objects. -Definition and 

elementary properties of adjoint functors. (The language of cate-

gories will be useful throughout the course and elementary cate-

gorical notions can simplify many proofs.) 

2, Introduction to algebraic number theory. Noetherian rings 
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and their modules. The Hubert Basis Theorem. Definition of inte-

gral elements. Integral closure. Integers in a number field. Ex-

amples of quadratic fields. Units. The integers of Q(i), Q(<ju) 

form a UFD, but the integers in 0.(^5), QCv/��) do not form a UFD. 

Fermat�s last theorem for � = 3 using Q(u)). 

3. Valuation and Dedekind rings. Definition of a discrete 

valuation ring as a PID with exactly one nonzero prime ideal. Valu-

ation of quotient field associated with discrete valuation ring and 

converse. Examples of rank one discrete valuations. Various char-

acterizations of discrete valuation rings including: R is a dis-

crete valuation ring if it is a Noetherian domain which is integrally 

closed and has exactly one nonzero prime ideal. The ring of frac-

tions of a domain with respect to a multiplicative semigroup. R p 

for � a prime ideal. A Dedekind ring is a ring R such that R p 

is a discrete valuation ring for all prime ideals � of R. Unique 

factorization of ideals in Dedekind rings. Other characterizations 

of Dedekind rings. Approximation lemma. If � � ) � are fields with 

� finite-dimensional and separable over K, and if � is the 

field of quotients of a Dedekind ring A, then the integral closure 

of A in � is Dedekind. Integers of a number field are Dedekind. 

4. Tensor products. Definition of one-sided module over a 

ring R. Examples. Free modules. Submodules, quotient modules, 

exact sequences. Tensor products defined via universal properties. 

Uniqueness. Existence. Examples, Z/2Z � Z/3Z = 0 . If R is 

commutative, tensor product is again an R-module. Tensor product 

of maps. Behavior of tensor products with regard to exact sequences 

and direct sums. Examples. Tensor products of free modules and 

matrix rings. Associativity of tensor product. Tensor product of 

� modules over a commutative ring, multilinear maps. Tensors. 

Tensor product of � copies of a free module and q copies of its 

dual, components in notation of physics. Tensors as defined in 

CO II 
physics: R is the ring of C functions on R and � is the 
R-module of derivations of R. � is free, generated by the usual 

partials. Transformation of coordinates. Express elements of 
� *q 

� � R � in terms of two coordinate systems to get usual trans-

formation rules. The tensor algebra and its universal property. 
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5. Exterior algebra. Multilinear alternating maps. Anti-

symmetric maps. Definition of the exterior algebra as a homomorphic 

image of the tensor algebra. Universal property of the exterior 

algebra, p-vectors. Exterior algebra of a free module over a com-

mutative ring, explicit calculation of a basis and dimension of the 

module of p-vectors. Prove invariance of vector-space dimension once 

more. Determinants via exterior algebra. Usual formula for determi-

nant, determinant of transpose = determinant. 

6. Structure theory of noncommutative rings. Ring means ring 

with unit. Simple left module is ring modulo a maximal left ideal. 

Primitive ideals. Division rings and vector spaces over them. The 

ring of all linear transformations, both finite- and infinite-

dimensional case. Schur�s lemma. Density theorem. Wedderburn-Artin 

theorem. Uniqueness of simple modules. Structure of semisimple 

Artinian rings. Structure of semisimple modules. 

7. Finite group representations. The group algebra. Maschke�s 

theorem: The group algebra of a group of order � over a field of 

characteristic prime to � is semisimple. Representations and char-

acters. Connection between the decomposition of the group algebra 

over the complex field and the simple representations. The char-

acters determine the representation. 

Optional Topics 

The following topics are listed with no preferential order. 
They are to be used at the teacher�s discretion. 

8. Radicals of noncommutative rings. Radical = intersection 

of all primitive ideals = intersection of all left maximal ideals. 

Equivalent definition of radical. Examples. Behavior of radical 

under homomorphisms and subring formation. Nakayama�s lemma. 

Artinian rings. Radical is nilpotent in Artinian ring. A ring 

modulo its radical is a subdirect sum of primitive rings. Connection 

with semisimple rings. 

9. Further group theory. Permutation groups. Linear groups. 

Structure theory of linear groups. Examples of finite simple groups. 

Groups defined by generators and relations. Further work on repre-

sentations of finite groups: one-dimensional representations, the 
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number of simple characters, orthogonality relations, applications, 

and examples. 

10. Further algebraic number theory. Infinite primes. The 

product formula. The Dirichlet unit theorem and finiteness of the 

class number. 

Applications 

It is essential that the prospective teacher of college mathe-
matics know and appreciate some of the honest applications of the 
calculus, linear algebra, and probability. Merely as a matter of 
expediency a teacher of these subjects will have need of convincing 
examples and illustrations; but, more important, a knowledge of some 
applications will enable him to know best how to present mathematics 
and will add an extra dimension to his exposition. 

There are many different ways in which the prospective teacher 
can acquire a background in applications of mathematics. We list 
here several possibilities which seem highly appropriate; each re-
quires at least one year of course work. 

1. Probability and Statistics. Some students will wish to 

pursue the study of probability and statistics at the advanced under-

graduate or graduate level. The year-long course Mathematics 7 

[page 79 ] will serve our purpose well, provided that due emphasis 

is placed upon applications of these subjects. 

2. Differential Equations--Applications. In the pages that 

follow, three one-semester courses at the advanced undergraduate or 

beginning graduate level are described: 

X. Advanced Ordinary Differential Equations with Applications 

Y. Problem-oriented Numerical Analysis 

Z. Seminar in Applications 

As a source of material in applied mathematics, perhaps no 

subject is richer than differential equations. Hence, our alterna-

tive recommendations for a year�s study in applications begin with 

course X. 

A second semester can be chosen from several possibilities. 

Perhaps the best is the course Mathematics 10 [page 92 ], using 

one of the three outlines given in the 1972 CUPM publication 
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Applied Mathematics in the Undergraduate Curriculum [page 705]. 

Course Y, if taught in the proper manner, will also be suitable for 

this purpose. Another alternative for this second semester would be 

for the mathematics department to offer a seminar (course Z) present-

ing applications of the calculus, linear algebra, and probability to 

the physical, biological, and social sciences. 

In summary, the suggested requirement for a year of study in 
applications of mathematics is one of the four sequences: 7A-7B; 
X-10; X-Y; X-Z. Because of the demand on students� time, we have 
been compelled to limit this requirement to one year. Nevertheless, 
we hope that many students will have to opportunity and interest to 
elect a third semester from among 7A, 7B, 10, �, �, Z. 

X. Advanced Ordinary Differential Equations with Applications 

This course is designed to provide background for teaching the 
topics in differential equations that occur in the lower-division 
GCMC courses; to give further exposure to applications via one of 
the most intensively used classical routes; and to provide a first 
course for students who may be interested in specializing in this 
area. Because of the nature of the subject, many different good 
course outlines are possible, but, in any case, emphasis should be 
put on efficient ways of obtaining from differential equations use-
ful information about their solutions, as distinguished, say, from 
methods for finding baroque solution formulas of little practical 
value. 

1. Fundamentals. The vector differential equation � = f(t,x); 

prototypes in physics, biology, control theory, etc. Local existence 

(without uniqueness) by the Cauchy construction, when f is con-

tinuous. Prolongation of solutions and finite escape times. Prop-

erties of integral funnels (e.g., Kneser�s theorem); extreme solu-

tions when � = 2. Jacobian matrix of f locally bounded => 

Lipschitz condition => uniqueness => continuous dependence on 

initial values and parameters. Effects of stationarity. 

2. Numerical integration. Euler, Runge-Kutta, and other 

methods; elements of error analysis for these methods. Practical 

machine computation. 

3. Linear equations. Discussion of physical and other real-

world models leading to linear equations. Linearization. Structure 
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of the solution set of the vector equation (*) � = A(t)x + b(t); 

variation of parameters formula; the fundamental matrix. Matrix 

exponentials; thorough treatment of (*), using Jordan canonical form, 

when A is constant. Applications in engineering system theory. 

Floquet�s theorem. 

4. Sturm-Liouyille theory. The two-point boundary value prob-

lem for second-order self-adjoint equations and how it arises. 

Existence of eigenvalues. Comparison, oscillation, and completeness 

theorems. Orthogonal expansions. Green�s function. Applications 

to diffusion and wave equations. Some special functions. 

5. Stability. Liapunov, asymptotic, and orbital stability; 

uniform properties. Basic theorems of Liapunov�s direct method. 

Extensive treatment of the linear case. Applications in control 

theory. 

6. Phase-plane analysis. Geometric treatment of second-order 

stationary systems. Classification of simple equilibrium points. 

Closed orbits and Poincare-Bendixson theory. 

Optional Topics 

7. Power series solutions. Classification of isolated singu-

larities of linear equations; formal solutions; Frobenius� method. 

Asymptotic series. 

8. Caratheodory theory. (Prerequisite: Lebesgue integration). 

Y. Problem-oriented Numerical Analysis 

Although the course we have in mind overlaps with standard 
courses in numerical analysis in some of its material, it differs 
fundamentally in spirit from such courses. The traditional course in 
numerical computation is intended to train the student to be able to 
compute certain specific quantities, such as the approximate value of 
definite integrals, roots of polynomial and transcendental equations, 
or solutions of ordinary differential equations, by applying known 
algorithms to well-formulated specific numerical problems. Courses 
in contemporary theoretical numerical analysis have tended to empha-
size the technical aspects of specialized topics, such as the theory 
of approximation, spline interpolation, numerical linear algebra, or 
discrete variable techniques for differential equations; here the 
stress is on widely applicable computational techniques, their 
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underlying theory, and the errors arising in their application. 

A problem-oriented course in numerical analysis starts with 
real-life problems (from physics, economics, genetics, etc.), 
develops mathematical models (often in the form of differential or 
other types of functional equations), analyzes the models, and 
develops and applies numerical methods to the models in order to 
get some answers. The student�s knowledge of analysis, linear alge-
bra, or differential equations is called upon in the analysis of the 
model; techniques of numerical analysis are studied and sifted 
through in the search for applicable methods; specific numerical 
computations are performed by the student, using a computer; and, 
finally, the numerical answers are examined in two ways: by means 
of a theoretical analysis of the errors inherent in the algorithm 
and in the machine computation, and by a comparison with the origi-
nal problem to see whether the "answer" (often a table of values of 
some unknown functions) is a reasonably good approximation to real-
ity. 

It seems clear that text materials for Mathematics Y should 
include books or journal articles on applications (as a source of 
real problems) and numerical analysis texts (as a source of numerical 
methods). Sample topics and associated texts are: 

a. Problems in the theory of flight. Here one can find mathe-
matical models and their analyses in works such as Theory of Flight 
Paths by Angelo Miele (Reading, Massachusetts, Addison-Wesley Pub-
lishing Company, Inc., 1962). One can apply to the ensuing systems 
of differential equations techniques found in Discrete Variable 
Methods in Ordinary Differential Equations by Peter Henrici (New 
York, John Wiley and Sons, Inc., 1962). One sample problem on these 
lines can be found in Section 10.9 of Numerical Methods and Fortran 
Programming by Daniel D. McCracken and William S. Dorn (New York, 
John Wiley and Sons, Inc., 1964). Although these authors pull a 
refined model of a simplified flight problem out of a hat—which the 
instructor in course Y must not do--they examine at length the im-
plications of the properties of the numerical solutions for the 
behavior of the physical system and use the flexibility of their 
computer program to vary parameters and do some interesting mathe-
matical experimentation. 

b. Control theory. Selected models and analyses from an 
applied text such as Optimum Systems Control by Andrew P. Sage 
(Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1968) can lead 
to problems of numerical solution of partial differential equations, 
two-point boundary value problems, and problems of numerical linear 
algebra. There are several suitable sources for numerical methods. 
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�. Seminar In Applications 

As another approach to applications, we suggest a seminar de-
voted to applications of the calculus, linear algebra, and proba-
bility to the physical, biological, and social sciences. Fortu-
nately, there are now several books which contain a wealth of readily 
accessible examples. Many of these are referenced in the 1972 CUPM 
report Applied Mathematics in the Undergraduate Curriculum. 

The students would participate in the formulation of scientific 
problems in mathematical terms and in the interpretation and evalua-
tion of the mathematical analysis of the resulting models. Due 
emphasis should be given to problems whose analysis rests on the use 
of the computer. It might be appropriate for the instructor to in-
vite guests who could expose the student to the attitudes of users 
of mathematics. While such an arrangement would, perhaps, not be a 
traditional course in applied mathematics, it would allow the stu-
dents to come into contact with a variety of serious applications of 
the usual mathematics of the first two undergraduate years. The 
following illustrate the type of examples we have in mind: 

a. The formulation and analysis of a system of differential 

equations which serves as a model for (i) the interdependence of two 

species, one of which serves as food for the other, or (ii) a time-

optimal navigation problem which requires that a boat be transferred 

from a given initial position to a given terminal position in minimal 

time. 

b. The formulation and analysis of waiting line and traffic 

problems involving simple calculus and probability. 

c. Elementary matrix analysis associated with chemical mixture 

problems and mechanical equilibrium problems; matrix eigenvalue prob-

lems arising from electrical circuit analysis. 

d. The "transportation problem" of making optimal use of a 

given shipping network to obtain a specified redistribution of com-

modities. This is, of course, a special case of linear programming. 

e. Game theory as applied to games of timing ("duels") in 

which rewards to competing strategists depend on when certain acts 

are performed. 
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APPRENTICESHIP IN TEACHING 

Every mathematician is a teacher in the sense that he must 
explain mathematical ideas to other people—to students, to col-
leagues, or to the mathematical community at large. For this reason 
the graduate education of every mathematics student should include a 
program designed to develop skill in oral and written communication 
of mathematics. This program should begin as soon as the student 
enters graduate school and continue at increasing levels of respon-
sibility. 

Ultimately, the attitude of the graduate faculty will determine 
the success of any such program. If effective teaching is regarded 
as an important and nontrivial function of the department, and if 
senior mathematicians encourage excellent exposition by precept and 
personal interest, graduate students and younger faculty will re-
spond accordingly. Every instructor of a graduate class should 
realize that his course can have a profound effect upon his students 
in the way it serves to strengthen the attributes of a good teacher. 

Because the conditions of undergraduate and graduate instruc-
tion vary widely from one university to another, the suggestions 
given below offer a variety of ways in which the mathematics depart-
ments might stimulate more interest in good teaching. Each univer-
sity is encouraged to create its program individually, seeking to 
establish an intellectual environment in which teaching and learning 
flourish together. 

Some universities have experimented recently with special pro-
grams which bring new teaching assistants to the campus before the 
start of classes in the fall. Sessions are devoted to a general 
orientation to graduate and undergraduate study at that university 
and to the role of the graduate assistant. At least one program 
runs for the entire summer term and includes an initial involvement 
with graduate mathematics besides activities in preparation for 
teaching. 

During the first stage of his training, the teaching assistant 
should be given limited duties, but he should be made to feel that he 
is a junior colleague in a profession rather than a hired hand in a 
work crew. At a pace which is adjusted individually to his rate of 
development, he should progress through a sequence of teaching as-
signments, acquiring more responsibility and independence as he gains 
in experience and confidence. He can mark homework papers, conduct 
office hours for undergraduates, prepare questions for tests, and 
assist in marking tests. 

A prospective teacher can learn much by observing a skillful 
teacher in an undergraduate class in a subject familiar to the ap-
prentice. This is of particular value in a class of selected stu-
dents, such as freshman or sophomore honors sections, where the 
interchange between students and the instructor is lively and chal-
lenging. 
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Regular consultation between an apprentice and his supervisor 
is essential. Each course supervisor should arrange meetings of all 
assistants for that course; at these meetings there should be free 
exchange of ideas concerning problems of instruction, alternate sug-
gestions for presenting specific concepts, proposals for future test 
questions, and planning the development of the course. In addition 
to formal consultation, however, supervisors should maintain a run-
ning dialogue with apprentices, work with them in the marking of 
tests, and cooperate in performing with them the day-to-day duties 
which are an integral part of teaching. 

After a graduate student has developed competence in these 
duties and has acquired a basic feeling for classroom instruction, 
he should be drawn more actively into teaching by conducting discus-
sion sections, by giving occasional class lectures, or by accepting 
major responsibility for teaching an appropriate course at an appro-
priate level. His supervisor should maintain good contact through 
continued consultation, classroom visitation, and informal discus-
sions. As the assistant matures in his teaching role, direct super-
vision should be relaxed gradually to encourage him to develop his 
individual classroom style and techniques; the opportunity for con-
sultation should remain open, but the initiative should pass from 
the supervisor to the assistant. 

Special seminars can also be used to assist students to improve 
their exposition. Many departments require a proseminar in which 
graduate students present advanced mathematical topics to fellow stu-
dents and several members of the faculty. It would be equally appro-
priate to require each first-year graduate student to present a short 
series of talks on some phase of undergraduate mathematics which is 
outside his previous course of study. The objective should be to 
present the topic at a level suitable for undergraduates, emphasizing 
clarity in organization and expression rather than making the occa-
sion a mathematical "tour de force." 

Another possibility is to assign a few graduate students to 
experimental projects in undergraduate mathematical instruction in-
stead of assigning them regular classroom duties. For example, they 
could help to prepare a collection of classroom examples for a cal-
culus course, develop problems to be solved on the computer, or plan 
and evaluate alternative approaches to specific topics in lower-
division undergraduate mathematics. 

As indicated in the Program Description, the apprenticeship in 
teaching should constitute approximately one fourth of the total work 
load of a student during his first graduate component. It is con-
ceivable that some of these activities, such as seminars, can qualify 
for academic credit. But whether or not academic credit is granted 
for this phase of graduate work, the student�s performance as a 
teacher should be evaluated, and an informal departmental record 
should be kept in sufficient detail to show the work done and the 
level of competence attained. 
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Finally, any program of increased attention to the teaching 
role of prospective mathematicians has budgetary implications which 
cannot be ignored. One additional cost is for increased faculty 
time devoted to supervising teaching assistants. Another is for 
stipends for graduate students if the number of apprentice teachers 
is expanded. But if the quality of mathematics instruction improves 
in the future as a result of such efforts, the money will have been 
well spent. Fortunately, there is reason to believe that imagina-
tive proposals to improve the quality of teaching by graduate stu-
dents can attract the additional financial support needed to make 
them effective. 

Although many graduate students welcome an opportunity to 
teach and thereby to become self-supporting, the stipend itself is 
not an adequate incentive for good teaching. This incentive can 
best be provided by the persistent concern of established mathema-
ticians that teaching be excellent throughout the department. 
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