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BACKGROUND (1962) 

One reason for the current effort on the undergraduate program 
is the rapid change in the mathematical world and in its immediate 
surroundings. Three aspects of this change have a particular effect 
on undergraduate curricula in the physical sciences and engineering. 
The first is the work being done in improving mathematics education 
in the secondary school. Several programs of improvement in second-
ary school mathematics have already had considerable effect and can 
be expected to have a great deal more. Not only can we hope that 
soon most freshmen expecting to take a scientific program will have 
covered precalculus mathematics, but, perhaps more important, they 
will be accustomed to care and precision of mathematical thought and 
statement. Of course, not all students will have this level of prep-
aration in the foreseeable future, but the proportion will be large 
enough to enable us to plan on this basis. Students with poorer 
preparation may be expected to take remedial courses without credit 
before they start the regular program. 

This improved preparation obviously means that we will be able 
to improve the content of the beginning calculus course since topics 
which take time in the first two years will have been covered earlier. 
More than that, however, it means that the elementary calculus course 
will have to take a more sophisticated attitude in order to keep the 
student from laughing at a course in college which is less careful 
mathematically than its secondary school predecessors. 

The second aspect of change in mathematics which confronts us 
is the expansion in the applications of mathematics. There is a real 
"revolution" in engineering�perhaps "explosion" is an even better 
description than "revolution," because, as it turns out, several 
trends heading in different directions are simultaneously visible. 
One is a trend toward basic science. The mathematical aspect of this 
trend is a strengthening of interest in more algebraic and abstract 
concepts. An orthogonal trend is one toward the engineering of large 
systems. These systems, both military and nonmilitary, are of ever-
increasing complexity and must be optimized with regard to such fac-
tors as cost, reliability, maintenance, etc. Resulting mathematical 
interests are linear algebra and probability-statistics. A further 
trend, in part a consequence of the preceding two, is a real increase 
in the variety and depth of the mathematical tools which interest the 
engineer. In general, engineers are finding that they need to use 
new and unfamiliar mathematics of a wide variety of types. 

A third factor is the arrival of the electronic computer. It 
is having its effect on every phase of science and technology, all 
the way from basic research to the production line. In mathematics 
it has, for one thing, moved some techniques from the abstract to the 
practical field; for example, some series expansion, iterative tech-
niques, and so forth. Then too, computers have led people to tackle 
problems they would never have considered before, such as large sys-
tems of linear equations, linear and nonlinear programming, and 
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Monte Carlo methods. Many of these new techniques require increased 
sophistication in mathematics. 

An additional factor entering from another direction must also 
be mentioned. Mathematicians in the United States have in recent 
years become much more closely involved with areas adjacent to their 
own research. Of the many factors which enter here, we may mention 
the greatly increased interest of mathematicians at all levels in 
education, the rapid growth of mathematical employment in industry, 
the spread of research and consulting contracts into the universities, 
and the development of a number of mathematical disciplines, such as 
information theory, that have many applications but are not classical 
applied mathematics. There is thus a real desire among mathemati-
cians and scientists to cooperate in matters of education. 

The conclusions above and the recommendations that constitute 
the body of this report were formulated by the Panel after extensive 
consultation with mathematicians, physicists, and engineers. In en-
gineering, in particular, representatives of many fields and many 
types of institutions were consulted, as well as officials of the 
American Society for Engineering Education.-- The recommendations 
for physicists were drawn up in close collaboration with the Commis-
sion on College Physics. 

In considering the recommendations which follow, it is crucial 
to examine what has been our attitude toward certain ideas which in-
evitably occupy a central position in any discussion of mathematical 
education. Among these are mathematical sophistication and mathemat-
ical rigor, motivation, and intuition. Now it is a fact that mathe-
matical rigor--by which we mean an attempt to prove essentially every-
thing that is used--is not the way of life of the physicist and the 
engineer. On the other hand, mathematical sophistication�which 
means to us careful and clear mathematical statements, proofs of many 
things, and generally speaking a broad appreciation of the mathemati-
cal blocks from which models are built--is desired by, and desirable 
for, all students preparing for a scientific career. How does one 
choose what is actually to be proved? It seems to us that this is 
related to the plausibility of the desired result. It is unwise to 
give rigor to either the utterly plausible or the utterly implausi-
ble, the former because the student cannot see what the fuss is all 
about, and the latter because the most likely effect is rejection of 
mathematics. The moderately plausible and the moderately implausible 
are the middle ground where we may insist on rigor with the greatest 
profit; the great danger in the overzealous use of rigor is to employ 
it to verify only that which is utterly apparent. 

Some of the results of a conference with engineers are embodied in 
four addresses delivered at a Conference on Mathematics in the En-
gineering Curriculum, held under the auspices of this Panel in 
March, 1961. These addresses were published in the Journal of 
Engineering Education, 52 (1961), pp. 171-207. 
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Let us turn next to the subject of motivation. Motivation 
means different things to different people and thus requires clari-
fication. One aspect of motivation is concerned with the difference 
between mathematics and the applications of mathematics, between a 
mathematical model and the real world. For many engineers and 
physicists motivation of mathematical concepts can be supplied by 
formulating real situations which lead to the construction of reason-
able models that exhibit both the desirability and the usefulness of 
the mathematical concept. Thus, motion of a particle or growth of a 
bacterial culture may be used as physical motivation for the notion 
of a derivative. It is also possible, of course, to give a mathe-
matical motivation for a new mathematical concept; the geometric 
notion of a tangent to a curve also leads to the notion of deriva-
tive and is quite enough motivation to a mathematician. Since each 
kind of motivation is meaningful to large groups of students, we 
feel that both should appear wherever relevant. It is certainly a 
matter of- individual taste whether one or both motivations should 
precede, or perhaps follow, the presentation of a mathematical topic. 
In either case, however, it is necessary to be very clear in dis-
tinguishing the motivating mathematical or physical situation from 
the resulting abstraction. 

Physical and mathematical examples which are used as motivation, 
as well as previous mathematical experience, help to develop one�s 
intuition for the mathematical concept being considered. By "intui-
tion" we mean an ability to guess both the mathematical properties 
and the limitations of a mathematical abstraction by analogy with 
known properties of the mathematical or physical objects which moti-
vated that abstraction. Intuition should lead the way to rigor when-
ever possible; neither can be exchanged or substituted for the other 
in the development of mathematics. 

A mathematics course for engineers and physicists must involve 
the full spectrum from motivation and intuition to sophistication and 
rigor. While the relative emphasis on these various aspects will for-
ever be a subject for debate, no mathematics course is a complete ex-
perience if any of them is omitted. 

INTRODUCTION TO THE REVISION (1967) 

In the five years that have elapsed since the first publication 
of these recommendations, several factors have emerged to affect the 
teaching of mathematics to engineers. The most striking of these is 
the widespread application of automatic computers to engineering 
problems. It is now a commonplace that all engineers must know how 
to use computers and that this knowledge must be gained early in 
their training and reinforced by use throughout it. We have, accord-
ingly, included an introductory course in computer science as a 
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requisite for all engineering students and have increased the amount 
of numerical mathematics in other courses wherever possible. 

A second factor is the fairly general acceptance of linear 
algebra as part of the beginning mathematics program for all students. 
In the engineering curriculum this is tied in to the expansion in 
computing, since linear algebra and computers are precisely the right 
team for handling the large problems in systems analysis that appear 
in so many modern investigations. Five years ago there were only a 
handful of elementary texts on linear algebra; now treatments are 
appearing almost as fast as calculus books (with which they are 
often combined). 

A development of particular interest to these recommendations 
is the appearance of the CUPM report A General Curriculum in Mathe-
matics for Colleges (1965), referred to hereafter as GCMC. It is 
too early to judge how widely the GCMC will be adopted, but initial 
reactions, including those of teachers of engineering students, have 
been generally favorable. GCMC makes considerable use of material 
in the first version of these recommendations, and now we, in turn, 
borrow some of the courses in GCMC. 

Minor changes in the content of courses and some rearrangement 
and changes of emphasis are the result of experience and discussions 
over the years. 

Relatively little change has been made in the program for 
physicists. The only major one has been the inclusion of Introduc-
tion to Computer Science in the required courses. We do this in the 
conviction that all scientists (if not, indeed, all college graduates) 
should know something about the powers and limitations of automatic 
computers. 

Applications of Undergraduate Mathematics in Engineering, 
written and edited by Ben Noble, published in January, 1967, by the 
Mathematical Association of America and the Macmillan Company, is 
based on a collection of problems assembled as a joint project of 
CUPM and the Commission on Engineering Education. The book has five 
parts: Illustrative Applications of Elementary Mathematics, Applica-
tions of Ordinary Differential Equations, Applications to Field Prob-
lems, Applications of Linear Algebra, Applications of Probability 
Theory. 

INTRODUCTION TO THE RECOMMENDATIONS 

This report presents a program for the undergraduate mathemati-
cal preparation of engineers and physicists. 
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Since obviously no single program of study can be the best one 
for all types of students, all institutions, and all times, it is 
important that anyone expecting to make use of the present recom-
mendations understand the assumptions underlying them. The follow-
ing comments should make these assumptions clear and also explain 
some other features of the recommendations. 

1. This is a program for today, not for several years in the 
future. Programs somewhat like this are already being given at 
various places, and the sample courses we outline are patterned 
after existing ones. We assume a good but not unusual background 
for the entering freshman. 

Five or ten years from now the situation will undoubtedly be 
different--in the high schools, in research, in engineering practice, 
and in such adjacent areas as automatic computation. Such differ-
ences will necessitate changes in the mathematics curriculum, but a 
good curriculum can never be static, and it is our belief that the 
present proposal can be continually modified to keep up with develop-
ments. However, the material encompassed here will certainly con-
tinue to be an important part of the mathematical education needed by 
engineers and physicists. 

2. The program we recommend may seem excessive in the light of 
what is now being done at many places, but it is our conviction that 
this is the minimal amount of mathematics appropriate for students 
who will be starting their careers four or five years from now. We 
recognize that some institutions may simply be unable to introduce 
such a program very soon. We hope that such places will regard the 
program as something to work toward. 

3. Beyond the courses required of all students there must be 
available considerable flexibility to allow for variations in fields 
and in the quality of students. The advanced material whose avail-
ability we have recommended can be regarded as a main stem that may 
have branches at any point. Also, students may truncate the program 
at points appropriate to their interests and abilities. 

4. The order of presentation of topics in mathematics and 
some related courses is strongly influenced by two factors: 

a. The best possible treatment of certain subjects in 
engineering and physics requires that they be pre-
ceded by certain mathematical topics. 

b. Topics introduced in mathematics courses should be used 
in applications as soon afterwards as possible. 

To attain these ends, coordination among the mathematics, engineering, 
and physics faculties is necessary, and this may lead to course 
changes in all fields. 
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5. The recommendations are, of course, the responsibility of 
CUPM. In cases where it seems of interest and is available, we have 
indicated the reaction of the groups of engineers and physicists who 
were consulted. For convenience we refer to them as "the consultants." 

LIST OF RECOMMENDED COURSES 

It is desirable that all calculus prerequisites, including 
analytic geometry, be taught in high school. At present it may be 
necessary to include some analytic geometry in the beginning analy-
sis course, but all other deficiencies should be corrected on a non-
credit basis. 

The following courses should be available for undergraduate 
majors in engineering and physics: 

1. Beginning Analysis. (9-12 semester hours) 

As far as general content is concerned, this is a relatively 
standard course in calculus and differential equations. There can 
be many variations of such a course in matters of rigor, motivation, 
arrangement of topics, etc., and textbooks have been and are being 
written from several points of view. 

The course should contain the following topics: 

a. An intuitive introduction of four to six weeks to the 
basic notions of differentiation and integration. This 
course serves the dual purpose of augmenting the student�s 
intuition for the more sophisticated treatment to come and 
preparing for immediate applications to physics. 

b. Theory and techniques of differentiation and integration of 
functions of one real variable, with applications. 

c. Infinite series, including Taylor series expansion. 

d. A brief introduction to differentiation and integration of 
functions of two or more real variables. 

e. Topics in differential equations, including the following: 
linear differential equations with constant coefficients 
and first-order systems--linear algebra (including eigen-
value theory, see 2 below) should be used to treat both 
homogeneous and nonhomogeneous problems; first-order linear 
and nonlinear equations, with Picard�s method and an intro-
duction to numerical techniques. 
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f. Some attempt should be made to fill the gap between the 
high school algebra of complex numbers and the use of com-
plex exponentials in the solution of differential equa-
tions. In particular, some work on the calculus of com-
plex-valued functions of a real variable should be included 
in items b and c. 

g. Students should become familiar with vectors in two and 
three dimensions and with the differentiation of vector-
valued functions of one variable. This material can 
obviously be correlated with the course in linear algebra 
(see below). 

h. Theory and simple techniques of numerical computation 
should be introduced where relevant. Further comments on 
this point, applying to the whole program, will be found 
below (under course 3). 

We feel that the above comments on beginning analysis suffi-
ciently describe a familiar course. The remaining courses in our 
list are less generally familiar. Hence the brief descriptions of 
courses 2 through 12 are supplemented in the Appendix [or elsewhere 
in this COMPENDIUM] by detailed outlines of sample courses of the 
kind we have in mind. 

2. Linear Algebra. (3 semester hours) 

A knowledge of the basic properties of �-dimensional vector 
spaces has become imperative for many fields of applications as well 
as for progress in mathematics itself. Since this subject is so 
fundamental and since its development makes no use of the concepts 
of calculus, it should appear very early in the student�s program. 
We recommend a course with strong emphasis on the geometrical in-
terpretation of vectors and matrices, with applications to mathe-
matics (see items 1-e and 1-g above), physics, and engineering. 
Topics should include the algebra and geometry of vector spaces, 
linear transformations and matrices, linear equations (including 
computational methods), quadratic forms and symmetric matrices, and 
elementary eigenvalue theory. 

It may be desirable, for mathematical or scheduling purposes, 
to combine beginning analysis and linear algebra into a single co-
ordinated course to be completed in the sophomore year. 

For outlines of a Beginning Analysis sequence, see the courses 
Mathematics 1, 2, and 4 described in Commentary on A General Curricu-
lum in Mathematics for Colleges, page 44 . The course Mathematics 3 
(Elementary Linear Algebra) of the GCMC Commentary (page 55 ) approx-
imates the linear algebra course described here, but does not contain 
the recommended material on quadratic forms and elementary eigenvalue 
theory. This Panel�s recommended courses on functions of several 
variables, functions of a complex variable, real variables, and alge-
braic structures coincide with those of the GCMC Commentary (Mathe-
matics 5 [alternate version], 13, 11, and 6M, respectively). 
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3. Introduction to Computer Science. (3 semester hours) 

The development of high-speed computers has made it necessary 
for the appliers of mathematics to know the path from mathematical 
theory through programming logic to numerical results. This course 
gives an understanding of the position of the computer along this 
path, the manner of its use, its capabilities, and its limitations. 
It also provides the student with the basic techniques needed in 
order to use the computer to solve problems in other courses. 

An even more important part of the path must be provided by the 
student�s program as a whole. All the courses discussed here should 
contain, where it is suitable and applicable, mathematical topics 
motivated by the desire to relate mathematical understanding to com-
putation. It is especially desirable that the student see the pos-
sibility of significant advantage in combining analytical insight 
with numerical work. Indications of such opportunities are scattered 
throughout the recommended course outlines. 

4. Probability and Statistics. (6 semester hours) 

Basic topics in probability theory, both discrete and contin-
uous, have become essential in every branch of engineering, and in 
many engineering fields an introduction to statistics is also needed. 
We recommend a course based on the notions of random variables and 
sample spaces, including, inter alia, an introduction to limit theo-
rems and stochastic processes and to estimation and hypothesis test-
ing. Although this should be regarded as a single integrated course, 
the first half can be taken as a course in probability theory. For 
ease of reference we designate the two halves 4a and 4b. 

5. Advanced Multivariable Calculus. (3 semester hours) 

Continuation of item 1-d. A study of the properties of contin-
uous mappings from E n to E m , making use of the linear algebra in 
course 2 , and an introduction to differential forms and vector cal-
culus based on line integrals, surface integrals, and the general 
Stokes theorem. Application should be made to field theory, ele-
mentary hydrodynamics, or other similar topics, so that some intui-
tive understanding can be gained. 

6. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

This course continues the work on item 1-e into further topics 
important to applications, including linear equations with variable 
coefficients, boundary value problems, rudimentary existence theo-
rems, and an introduction to nonlinear problems. Much attention 
should be given to numerical techniques. 

7. Functions of a Complex Variable. (3 semester hours) 

This course presupposes somewhat more mathematical maturity 
than courses 5 and 6 and so would ordinarily be taken after them, 
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even though they are not prerequisites as far as subject matter is 
concerned. In addition to the usual development of integrals and 
series, there should be material on multivalued functions, contour 
integration, conformal mapping, and integral transforms. 

8. Partial Differential Equations. (3 semester hours) 

Derivation, classification, and solution techniques of boundary 
value problems. 

9. Introduction to Functional Analysis. (3 semester hours) 

An introduction to the properties of general linear spaces and 
metric spaces, their transformations, measure theory, general Fourier 
series, and approximation theory. 

10. Elements of Real Variable Theory. (3 semester hours) 

A rigorous treatment of basic topics in the theory of func-
tions of a real variable. 

11. Optimization. (3 semester hours) 

Linear, nonlinear, and dynamic programming, combinatorics, 
and calculus of variations. 

12. Algebraic Structures. (3 semester hours) 

An introduction to the theory of groups, rings, and fields. 

13. Numerical Analysis. 

14. Mathematical Logic. 

15. Differential Geoemtry. 

The last three courses are topics that might well be of inter-
est to special groups of students. Their lengths and contents may 
vary considerably. For a sample outline of a course in Numerical 
Analysis, see Mathematics 8 (Introduction to Numerical Analysis) in 
Commentary on A General Curriculum in Mathematics for Colleges, 
page 83. 

The above list of courses is the result of careful considera-
tion by the Panel and the consultants. The brief description given 
here and the detailed sample outlines found in the Appendix [or else-
where in this COMPENDIUM], while based on the mathematical structure 
of the topics themselves, reflect strongly the expressed interests 
of engineers and physicists. We realize that the nature of the in-
stitution and the requirements of other users of mathematics as well 
as of the mathematics majors may influence the specific offerings. 
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RECOMMENDED PROGRAM FOR ENGINEERS 

A. Courses to be required of all students. 

1. Beginning Analysis. This recommendation needs no com-
ments . 

2. Linear Algebra. The great majority of the consultants 
felt that this is important material that all engineers 
should have during the first two years. 

3. Introduction to Computer Science. Developments of the 
last few years make it clear that engineering is strongly 
dependent on a knowledgeable use of computers. 

4a. Probability. All students should have at least a 3-semes-
ter-hour course in probability. The consultants agreed 
on the value of probability to an engineer, but there was 
considerable disagreement among the consultants as to the 
advisability of requiring it of all students. However, 
the members of our Panel are unanimously and strongly of 
the opinion that this subject will soon pervade all 
branches of engineering and that now is the time to begin 
preparing students for this development. 

B. Courses recommended for students intending to go into 
research and development. 

4b. Statistics. 

5. Advanced Multivariable Calculus. 

6. Intermediate Ordinary Differential Equations. 

7. Functions of a Complex Variable. 

The consultants agreed to the value of the material in courses 5, 6, 
and 7, and some preferred that it be completed within the junior 
year. The Panel is convinced that an adequate presentation requires 
a minimum of nine semester hours, which could, of course, be taken 
in one year if desired. The order in which courses 5 and 6 are 
taken is immaterial except as they may be coordinated with other 
courses. If they are to be presented to the students in a fixed 
order, the instructor may wish to adjust the time schedules and 
choice of topics. 

C. Courses which should be available for theoretically 
minded students capable of extended graduate study. 

8. Partial Differential Equations. 

9. Introduction to Functional Analysis. 
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10. Elements of Real Variable Theory. 

640 

Presumably a student would take either 9 or 10 but not both; 9 is 
probably more valuable but 10 is more likely to be available. 

11. Optimization. 

D. Courses of possible interest to special groups. 

12. Algebraic Structures. 

13. Numerical Analysis. 

14. Mathematical Logic. 

15. Differential Geometry. 

RECOMMENDED PROGRAM FOR PHYSICISTS 

A. Courses to be required of all students. 

1. Beginning Analysis. 

2. Linear Algebra. Like the engineers, the physicists felt 
that this material is essential. 

3. Introduction to Computer Science. 

5. Advanced Multivariable Calculus. This course should be 
taken in the sophomore year if possible, and in any event 
no later than the first part of the junior year. 

6. Intermediate Ordinary Differential Equations. 

B. Additional courses, in order of preference. Students 
contemplating graduate work should be required to take a 
minimum of three to nine semester hours of these courses. 

7. Functions of a Complex Variable. 

9. Introduction to Functional Analysis. 

4a. Probability. The value of requiring this course in the 
undergraduate program of all physicists is not as well 
established as it is for engineers. 

12. Algebraic Structures. 



10. Elements of Real Variable Theory. 

8. Partial Differential Equations. 

Appendix 

DESCRIPTION OF RECOMMENDED COURSES 

While we feel strongly about the spirit of the courses out-
lined here, the specific embodiments are to be considered primarily 
as samples. Courses close to these have been taught successfully 
at appropriate levels, and our time schedules are based on this ex-
perience. Some of these courses are sufficiently common that approx-
imations to complete texts already exist; others have appeared only 
in lecture form. 

2. Linear Algebra. (3 semester hours) 

The purpose of this course is to develop the algebra and 
geometry of finite-dimensional linear vector spaces and their linear 
transformations, the algebra of matrices, and the theory of eigen-
values and eigenvectors. 

The course Mathematics 3 (Elementary Linear Algebra) of 
Commentary on a General Curriculum in Mathematics for Colleges 
(page 55) approximates the linear algebra course which this Panel 
has in mind. Mathematics 3 does not, however, contain the recom-
mended material on quadratic forms and elementary eigenvalue theory. 

3. Introduction to Computer Science. (3 semester hours) 

This course serves a number of purposes: 

(1) It gives students an appreciation of the powers and 
limitations of automata. 

(2) It develops an understanding of the interplay between the 
machine, its associated languages, and the algorithmic formulation 
of problems. 

(3) It teaches students how to use a modern computer. 

(4) It enables instructors in later courses to assign prob-
lems to be solved on the computer. 
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For an outline of such a course, see CI (Introduction to 
Computing) in Recommendations for an Undergraduate Program in Com-
putational Mathematics (page 563). 

4. Probability and Statistics. (6 semester hours) 

This is a one-year course presenting the basic theory of 
probability and statistics. Although the development of the ideas 
and results is mathematically precise, the aim is to prepare stu-
dents to formulate realistic models and to apply appropriate sta-
tistical techniques in problems likely to arise in engineering. 
Therefore new ideas will be motivated and applications of results 
will be given wherever possible. 

First Semester: Probability. 

a. Basic probability theory. (4 lectures) Different theo-

ries of probability (classical, frequency, and axiomatic). Combi-

natorial methods for computing probability. Conditional probability, 

independence. Bayes� theorem. Geometrical probability. 

b. Random variables. (5 lectures) Concept of random varia-

ble and of distribution function. Discrete and continuous types. 

Multidimensional random variables. Marginal and conditional dis-

tributions . 

c. Parameters of a distribution. (4 lectures) Expected 

values. Moments. Moment-generating functions. Moment inequalities. 

d. Characteristic functions. (4 lectures) Definition, 

properties. Characteristic functions and moments. Determination of 

distribution function from characteristic function. 

e. Various probability distributions. (6 lectures) Binomial, 

Poisson, multinomial. Uniform, normal, gamma, Weibull, multivariate 

normal. Importance of normal distribution. Applications of normal 

distribution to error analysis. 

f. Limit theorems. (6 lectures) Various kinds of conver-

gence. Law of Large Numbers. Central Limit Theorem. 

g. Markov chains. (4 lectures) Transition matrix. Ergodic 

theorem. 

h. Stochastic processes. (6 lectures) Markov processes. 

Processes with independent increments. Poisson process. Wiener 

process. Stationary processes. 
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Second Semester: Statistics. 

a. Sample moments and their distributions. (5 lectures) 

Sample, statistic. Distribution of sample mean. Student�s distri-

bution. Fisher�s � distribution. 

b. Order statistics. (4 lectures) Empirical distribution 

function. Tolerance limits. Kolmogorov-Smirnov statistic. 

c. Tests of hypotheses. (5 lectures) Simple hypothesis 

against simple alternative. Composite hypotheses. Likelihood ratio 

test. Applications. 

d. Point estimation. (5 lectures) Consistent estimates. 

Unbiased estimates. Sufficient estimates. Efficiency of estimate. 

Methods of finding estimates. 

e. Interval estimation. (6 lectures) Confidence and toler-

ance intervals. Confidence intervals for large samples. 

f. Regression and linear hypotheses. (4 lectures) Elemen-

tary linear models. The general linear hypothesis. 

g. Nonparametric methods. (5 lectures) Tolerance limits. 

Comparison of two populations. Sign test. Mann-Whitney test. 

h. Sequential methods. (5 lectures) The probability ratio 

sequential test. Sequential estimation. 

5. Advanced Multivariable Calculus. (3 semester hours) 

For an outline of this course, see Mathematics 5 (Multivariable 
Calculus II--alternate version) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 77. 

6. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

The presentation of the course material should include: (1) 
an account of the manner in which ordinary differential equations 
and their boundary value problems, both linear and nonlinear, arise; 
(2) a carefully reasoned discussion of the qualitative behavior of 
the solution of such problems, sometimes on a predictive basis and 
at other times in an a posteriori manner; (3) a clearly described 
awareness of the role of numerical processes in the treatment of 
these problems, including the disadvantages as well as the advan-
tages--in particular, there should be a firm emphasis on the fact 
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that numerical integration is not a substitute for thought; (4) an 
admission that we devote most of our lecture time to linear problems 
because (with isolated exceptions) we don�t know much about any non-
linear ones except those that (precisely or approximately) can be 
attacked through our understanding of the linear ones. Thus, a 
thorough treatment of linear problems must precede a sophisticated 
attack on the nonlinear ones. 

The distribution of time among items d through f cannot be 
prescribed easily or with universal acceptability. Only a super-
ficial account of these topics can be given in the available time, 
but each should be introduced. 

a. Systems of linear ordinary differential equations with 

constant coefficients. (6 lectures) Review of homogeneous and non-

homogeneous problems; superposition and its dependence on linearity; 

transients in mechanical and electrical systems. The Laplace trans-

form as a carefully developed operational technique without inver-

sion integrals. 

b. Linear ordinary differential equations with variable 

coefficients. (10 lectures) Singular points, series solutions 

about regular points and about singular points. Bessel�s equation 

and Bessel functions; Legendre�s equation and Legendre polynomials; 

confluent hypergeometric functions. Wronskians, linear independence, 

number of linearly independent solutions of an ordinary differential 

equation. Sturm-Liouville theory and eigenfunction expansions. 

c. Solution of boundary value problems involving nonhomogene-

ous linear ordinary differential equations. (7 lectures) Methods 

using Wronskians, Green�s functions (introduce � functions), and 

eigenfunction expansions. Numerical methods. Rudimentary existence 

and uniqueness questions. 

d. Asymptotic expansion and asymptotic behavior of solutions 

of ordinary differential equations. (3 lectures) Essentially the 

material on pp. 498-500 and pp. 519-527 of Methods of Mathematical 

Physics by Harold Jeffreys and Bertha S. Jeffreys (third edition; 

New York, Cambridge University Press, 1956). 

e. Introduction to nonlinear ordinary differential equations. 

(6 lectures) Special nonlinear equations which are reducible to 

linear ones or to quadratures, elliptic functions (pendulum oscil-

lations), introductory phase plane analysis (Poincare). 
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f. Numerical methods. (7 lectures) Step-by-step solution of 

initial value problems for single equations and for systems. Error 

analysis, roundoff, stability. Improper boundary conditions, dis-

continuities, and other pitfalls. 

7. Functions of a Complex Variable. (3 semester hours) 

For an outline of this course, see Mathematics 13 (Complex 
Analysis) in Commentary on A General Curriculum in Mathematics for 
Colleges, page 97. 

8. Partial Differential Equations. (3 semester hours) 

This course is suitable for students who have completed a 
course in functions of a complex variable. The emphasis is on the 
development and solution of suitable mathematical formulations of 
scientific problems. Problems should be selected to emphasize the 
role of "time-like" and "space-like" coordinates and their relation-
ship to the classification of differential equations. (It seems 
very useful to introduce the appropriate boundary conditions moti-
vated by the physical questions and be led to the classification 
question by observing the properties of the solution.) The student 
should be led to recognize how few techniques we have and how special 
the equations and domains must be if explicit and exact solutions are 
to be obtained; he particularly must come to realize that the effec-
tive use of mathematics in science depends critically on the re-
searcher�s ability to select those questions which both fill the 
scientific need and admit efficient mathematical treatment. To 
accomplish this realization, the instructor should frequently intro-
duce a realistic question from which he must retreat to a related 
tractable problem whose interpretation is informative in the context 
of the original question. 

a. Derivation of equations. (2 lectures) The derivation of 

mathematical models associated with many scientific problems. Re-

view of heat conduction to a moving medium, the flow of a fluid in 

a porous medium, the diffusion of a solute in moving fluids, the 

dynamics of elastic structures, neutron diffusion, radiative trans-

fer, surface waves in liquids. 

b. Eigenfunction expansions. (5 lectures) Eigenfunction 

expansions in both finite and infinite domains (Titchmarsh). 

c. Separation of variables. (7 lectures) The product series 

solutions of partial differential equation boundary value problems. 
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Integral transforms such as the Laplace, Fourier, Mellin, and 

Hankel transforms and their use. Copious illustration of these 

techniques, using elliptic, parabolic, and hyperbolic problems. 

d. Types of partial differential equations. (5 lectures) 

The classification of partial differential equations, characteris-

tics; appropriate boundary conditions. Domains of influence and 

dependence in hyperbolic and parabolic problems. The use of char-

acteristics as "independent" coordinates. 

e. Numerical methods. (8 lectures) Replacement of differ-

ential equations by difference equations; iterative methods; the 

method of characteristics. Convergence and error analysis. 

f. Green�s function and Riemann�s function. (9 lectures) 

Their determination and use in solving boundary value problems. 

Their use in converting partial differential equation boundary value 

problems into integral equation problems. 

g. Similarity solutions. (3 lectures) 

h. Expansions in a parameter. (3 lectures) Perturbation 

methods in both linear and nonlinear problems. 

9. Introduction to Functional Analysis. (3 semester hours) 

The purpose of this course is to present some of the basic 
ideas of elementary functional analysis in a form which permits 
their use in other courses in mathematics and its applications. It 
should also enable a student to gain insight into the ways of 
thought of a practicing mathematician and it should open up much of 
the modern technical literature dealing with operator theory. 

Prerequisite to this course is a good foundation in linear 
algebra and in the concepts and techniques of the calculus of 
several variables. The material of this course should be presented 
with a strong geometrical flavor; undue time should not be spent on 
the more remote and theoretical aspects of functional analysis. 
Topics should be developed and first employed in mathematical sur-
roundings familiar to the student. It would be very much in keeping 
with the intention of the course to emphasize the relationship be-
tween functional analysis and approximation theory, discussing (for 
example) some aspects of best uniform or best I? approximation to 
functions, and some error estimates in integration or interpolation 
formulas. 

While some knowledge of measure theory and Lebesgue integra-
tion is needed for an understanding of this material, it is not 
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intended that the treatment be as complete as that in a standard 
real analysis course. The intended level is that to be found in 
the treatment by Kolmogorov and Fomin (Kolmogorov, A. N. and Fomin, 
S. V. Elements of the Theory of Functions and Functional Analysis. 
Vol. 2: Measure, the Lebesgue Integral, Hilbert Space. Baltimore, 
Maryland, Graylock Press, 1961.) If there is additional time, stu-
dents might be introduced to some of the elementary theory of inte-
gral equations, or to applications in probability theory, or to the 
study of a specific compact operator, or to distributions. 

For an outline of such a course, see Mathematics Q (Functional 
Analysis) in A Beginning Graduate Program in Mathematics for Pro-
spective Teachers of Undergraduates, page 125. 

10. Elements of Real Variable Theory. (3 semester hours) 

For an outline of this course, see Mathematics 11 (Introduc-
tory Real Variable Theory) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 93. 

11. Optimization. (3 semester hours) 

Attempts to determine the "best" or "most desirable" solution 
to large-scale engineering problems inevitably lead to optimization 
studies. Generally, the appropriate methods are highly mathematical 
and include such relatively new techniques as mathematical program-
ming, optimal control theory, and certain combinatorial methods, in 
addition to more classical techniques of the calculus of variations 
and standard maxima-minima considerations of the calculus. 

The 3-semester-hour course outlined below is planned to pro-
vide a basic mathematical background for such optimization studies. 
Another outline for a course in optimization, utilizing methods of 
programming and game theory, can be found in the report Applied 
Mathematics in the Undergraduate Curriculum, page 722. 

a. Simple, specific examples of typical optimization problems. 

(3 lectures) Minimization with side conditions (Lagrange multi-

pliers, simple geometrical example). Linear program (diet problem). 

Nonlinear program (least squares under inequality constraints, delay 

line problem). Combinatorial problem (marriage or network). Varia-

tional problem (brachistochrone). Control problem (missile). 

Dynamic program (replacement schedule). 

b. Convexity and �-space geometry. (6 lectures) Convex 

regions, functions, general definition (homework: use definition 
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to show convexity [or nonconvexity] in nonobvious cases, such as 

Chebychev error over simple family of functions). Local, global 

minima. Convex polyhedra (review matrix, scalar product geometry). 

Geometric picture of linear programming. 

c. Lagrange multipliers and duality. (6 lectures) Classical 

problem with equality constraints. Kuhn-Tucker conditions for in-

equality constraints. Linear programs. Dual variables as Lagrange 

multipliers. Reciprocity, duality theorems. 

d. Solution of linear programs � simplex method. (3 lectures) 

e. Combinatorial problems. (6 lectures) Unimodular property. 

Assignment problem (Hall�s theorem, unique representatives). Net-

works (min-cut max-flow). 

f. Classical calculus of variations. (7 lectures) Station-

arity. Euler�s differential equation, gradient in function space. 

Examples, especially Fermat�s principle and brachistochrones. 

g. Control theory. (8 lectures) Formulation. Pontryagin�s 

maximum principle (Lagrange multipliers again). 

12, Algebraic Structures. (3 semester hours) 

For an outline of this course, see Mathematics 6M (Introductory 
Modern Algebra) in Commentary on A General Curriculum in Mathematics 
for Colleges, page 68. 
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