
Exercise 7. Suppose that t0 = 0 and that

A(t) =
(

cos t − sin t
sin t cos t

)
.

Compute B(t) = ∫ t
0 A(s) ds, and show that A and B commute.

Exercise 8. Suppose A is the coefficient matrix of the companion equation Y ′ = AY
associated with the nth order differential equation

y(n) + p1(t)y(n−1) + p2(t)y(n−2) + · · · + pn−1(t)y′ + pn(t)y = 0.

That is,

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
−pn −pn−1 −pn−2 · · · −p1


 .

Compute B(t) = ∫ t
0 A(s) ds, and show that A and B commute if and only if all the

coefficient functions pi (t), i = 1, 2, . . . , n, are constants.
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Extending Theon’s Ladder to Any Square Root
Shaun Giberson and Thomas J. Osler (osler@rowan.edu), Rowan University, Glass-
boro, NJ 08028

Introduction. Little is known of the life of Theon of Smyrna (circa 140 AD). At this
time in the history of mathematics, there was a tendency to de-emphasize demonstra-
tive and deductive methods in favor of practical mathematics. An excellent example of
this is known as Theon’s ladder, which describes a remarkably simple way to calculate
rational approximations to

√
2. (See [2], [3], and [5].)

1 1
2 3
5 7
12 17
29 41
...

...

222 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



Each rung of the ladder contains two numbers. Call the left number on the nth rung xn

and the right number yn . We will use the notation [xn, yn] to denote the nth rung of
Theon’s ladder. We see that xn = xn−1 + yn−1 and that yn = xn + xn−1. So the next
rung of the ladder is [70, 99] because 29 + 41 = 70, and 70 + 29 = 99. The ratios of
the two numbers on each rung give us successively better approximations to

√
2:

1 1 1/1 = 1.00000 · · ·
2 3 3/2 = 1.50000 · · ·
5 7 7/5 = 1.40000 · · ·

12 17 17/12 = 1.41666 · · ·
29 41 41/29 = 1.41379 · · ·
70 99 99/70 = 1.41428 · · ·

169 239 239/169 = 1.41420 · · ·

Notice that the numbers are alternately above and below
√

2 = 1.41421 · · · . The con-
vergence of yn/xn to

√
2 is slow. From the above calculations, it appears that we gain

an extra decimal digit in
√

2 after calculating another one or two rungs of the ladder.
We will investigate more features of this ladder. We will show how to modify it to

calculate the square root of any number, we will look at several recursion relations,
and we will show how to increase the speed of the convergence.

First extension: Finding any square root. Suppose we wish to find rational
approximations to

√
c using the basic idea of Theon’s ladder. We assume always that

1 < c. The recursion relations that achieve this end are, for n > 1,

xn = xn−1 + yn−1, (1)

and

yn = xn + (c − 1)xn−1. (2)

(Notice that (1) is the same for any root.) Throughout this paper, we assume that the
first rung of the ladder is [1, 1]. From the above relations, it follows that 1 ≤ xn and
1 ≤ yn . As an example, to find

√
3 we use xn = xn−1 + yn−1 and yn = xn + 2 xn−1 to

obtain the ladder

1 1 1/1 = 1.00000 · · ·
2 4 4/2 = 2.00000 · · ·
6 10 10/6 = 1.66666 · · ·

16 28 28/16 = 1.75000 · · ·
44 76 76/44 = 1.72727 · · ·

120 208 208/120 = 1.73333 · · ·
328 568 568/328 = 1.73170 · · ·

We now show why the recursion relations (1) and (2) always lead to rational ap-
proximations of

√
c. Our examination in this section is simple, but not rigorous, since

we are required to assume that limn→∞ yn/xn exists. Later, independent of this section,
we will prove that this limit exists.

Dividing (2) by (1) gives us

yn

xn
= xn + (c − 1)xn−1

xn−1 + yn−1
.
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Dividing the numerator and the denominator on the right hand side by xn−1, we get

yn

xn
=

xn
xn−1

+ (c − 1)

1 + yn−1
xn−1

.

Replacing xn on the right hand side by (2), we get

yn

xn
=

1 + yn−1
xn−1

+ (c − 1)

1 + yn−1
xn−1

=
c + yn−1

xn−1

1 + yn−1
xn−1

.

Assuming that the limit exists, we let r = limn→∞ yn/xn. Then we have

r = c + r

1 + r
,

which reduces to r 2 = c. Thus we see that the ladder gives rational approximations
to

√
c.

Connection to (1 + √
c )n and (1 − √

c )n. We now show that the rungs of our
ladder [xn, yn] can be generated by powers of simple binomials

yn + √
c xn = (

1 + √
c
)n

and yn − √
c xn = (

1 − √
c
)n

. (3)

We will prove (3) by induction. Notice that (3) is true when n = 1. Assume (3) is true
for n = N . Then(

1 + √
c
)N+1 = (

1 + √
c
)N (

1 + √
c
) = (

yN + √
c xN

) (
1 + √

c
)

= (cxN + yN ) + √
c (xN + yN ) .

But from the recursion relation (1), xN + yN = xN+1. We now have

(
1 + √

c
)N+1 = (cxN + yN ) + √

c xN+1. (4)

Also (c xN + yN ) = (c − 1)xN + xN + yN = (c − 1)xN + xN+1 = yN+1, where we
have used (1) and (2). Now (4) becomes(

1 + √
c
)N+1 = yN+1 + √

c xN+1, (5)

and our induction proof for (1 + √
c )n is finished. In the same way we can show that

yn − √
c xn = (1 − √

c )n .

More recursion relations. In addition to the recursion relations (1) and (2), we
can easily derive others. For example, eliminating xn from (2) using (1), we get

yn = cxn−1 + yn−1. (6)

Relations (1) and (6) allow us to calculate the next rung using only the two numbers
on the present rung.

If we reindex (2) to read yn−1 = xn−1 + (c − 1)xn−2 and use it to eliminate yn−1

from (1), we get

xn = 2 xn−1 + (c − 1)xn−2. (7)
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From (6), we have

cxn = yn+1 − yn. (8)

Multiply (1) by c and get cxn = cxn−1 + cyn−1. Now use (8) to remove cxn and cxn−1

to get

yn = 2 yn−1 + (c − 1)yn−2. (9)

Relations (7) and (9) form an interesting pair. They allow us to calculate the x’s without
reference to the y’s and vice versa.

A rigorous proof that the ladder converges to
√

c. Earlier, in section 2, we
gave a simple non-rigorous demonstration that our extended ladder converges to

√
c.

Now we are able to give a rigorous demonstration. Dividing (3) by xn and recalling
that 1 ≤ c, we have ∣∣∣∣ yn

xn
− √

c

∣∣∣∣ =
(√

c − 1
)n

xn
.

From (7) we know that xn > (c − 1)xn−2. So it follows that xn > (c − 1)2xn−4, and
xn > (c − 1)3xn−6. Continuing in this way, we see that x2n > (c − 1)n and x2n+1 >

(c − 1)n . It now follows that for even rungs

∣∣∣∣ y2n

x2n
− √

c

∣∣∣∣ =
(√

c − 1
)2n

x2n
<

(√
c − 1

)2n

(c − 1)n
=
(√

c − 1√
c + 1

)n

,

and for odd rungs

∣∣∣∣ y2n+1

x2n+1
− √

c

∣∣∣∣ =
(√

c − 1
)2n+1

x2n+1
<

(√
c − 1

)2n+1

(c − 1)n
= (√

c − 1
) (√

c − 1√
c + 1

)n

.

Thus it follows that lim yn
xn

= √
c.

Second extension: Leaping over rungs. We saw earlier that the convergence of
yn/xn to

√
c was slow. We now show how to radically accelerate this speed by jumping

over many rungs of the ladder. Using (3), we have

y2n + √
c x2n = (

1 + √
c
)2n =

((
1 + √

c
)n
)2 = (

yn + √
c xn

)2

= (
cx2

n + y2
n

)+ √
c (2xn yn) .

Now we see that

x2n = 2xn yn and y2n = cx2
n + y2

n . (10)

Using (10), we could start on the 10th rung [x10, y10] and jump immediately to the 20th
rung [x20, y20] then to [x40, y40], then [x80, y80], . . . . In only 4 steps we jump from rung
10 to rung 80!

As a numerical example, consider the ladder given in section 1 (with c = 2),
where our last entry was x7 = 169, y7 = 239, and y7/x7 = 1.414201183. Using (10),
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we calculate x14 = 80782 and y14 = 114243. Now our calculator gives y14/x14 =
1.414213562 and

√
2 = 1.414213562. We have jumped from 4 accurate decimal

places to 9 in one step.
From (10), we get

y2n

x2n
= y2

n + cx2
n

2xn yn
= 1

2

(
yn

xn
+ cxn

yn

)
.

Let

zk = y2k n

x2k n
,

and obtain

zk+1 = 1

2

(
zk + c

zk

)
.

This is the iteration obtained when using Newton’s method [1, p. 68] for finding the
roots of z2 − c = 0. It is well known that this iteration converges “quadratically.”
Roughly speaking, we double the number of accurate decimal digits of

√
c with each

iteration.
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To call in the statistician after the experiment is done may be no more than ask-
ing him to perform a postmortem examination: he may be able to say what the
experiment died of. ——R. A. Fisher

(Indian Statistical Congress, Sankhya, ca. 1938)
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