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Mathematicians have long been intrigued by the sum 1m + 2m + · · · + nm of the
first n integers, where m is a nonnegative integer. The study of this sum of powers
led Jakob Bernoulli to the discovery of Bernoulli numbers and Bernoulli polynomials.
There are expressions for sums of powers in terms of Eulerian numbers and Stirling
numbers [5, p. 199]. In addition, past articles in this MAGAZINE contain algorithms
for producing a formula for the sum involving powers of m + 1 from that involving
powers of m [1, 4]. (The algorithm in Bloom [1] is actually Bernoulli’s method.)

This note involves a curious property concerning sums of integer powers, namely,

1m + 2m + · · · + (m − 1)m < mm, for m ≥ 1. (1)

In other words, the sum of the m − 1 terms from 1m to (m − 1)m is always less than
the single term mm , regardless of how large m is. This inequality is not true for an
arbitrary number of terms; 1m + 2m + · · · + (n − 1)m is not necessarily less than nm

for all n, but the inequality is true when n = m.
Proving (1) is not too difficult. In fact, one proof is a nice first-semester calculus

problem using left-hand Riemann sums to underestimate the integral
∫ m

0 xm dx . An-
other establishes (x + 1)m − xm > xm for x < m via the binomial theorem; replacing
x successively with 0, 1, 2, . . . , m − 1 and summing yields (1).

There is a deeper question here, though. Dividing (1) by mm produces the inequality

(
1

m

)m

+
(

2

m

)m

+ · · · +
(

m − 1

m

)m

< 1. (2)

Since this relation holds regardless of the value of m, a natural question to ask is
this: What is the limiting value of the expression on the left of (2) as m approaches
infinity? Our investigation of this value involves a useful tool in any mathematician’s
bag of tricks—one that is, unfortunately, not often taught in undergraduate courses—
the Euler-Maclaurin formula for approximating a finite sum by an integral. Along the
way we also prove (1) using Euler-Maclaurin, thus illustrating the use of the Euler-
Maclaurin formula with remainder.

Rota calls Euler-Maclaurin “one of the most remarkable formulas of mathematics”
[6, p. 11]. After all, it shows us how to trade a finite sum for an integral. It works much
like Taylor’s formula: The equation involves an infinite series that may be truncated at
any point, leaving an error term that can be bounded.

The formula uses the very numbers discovered by Bernoulli during his investiga-
tions into the power sum, and the error term uses Bernoulli’s polynomials. For ex-
ample, the second-order formula with error term is given in Concrete Mathematics [2,
p. 469]:
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n−1∑
j=0

f ( j) =
∫ n

0
f (x)dx + B1

1!
(

f (n)− f (0)
)
+ B2

2!
(

f ′(n)− f ′(0)
)

+ (−1)3 1

2!
∫ n

0
B2({x}) f ′′(x)dx, (3)

where

• Bi is the i th Bernoulli number (B1 = −1/2, B2 = 1/6),
• B2(x) is the second Bernoulli polynomial: x2 − x + 1/6,
• {x} = x − �x�, and
• f is twice-differentiable.

Since {x} is the fractional part of x , the function B2({x}) in (3) is just the periodic
extension of the parabola B2(x) = x2 − x + 1/6 from [0, 1] to the entire real number
line. In other words, B2({x}) agrees with B2(x) on [0, 1] and is periodic with period 1.

Proving (3) involves nothing more complicated than integration by parts. A brief
outline is as follows: Start with (1/2)

∫ 1
0 (y2 − y + 1/6) g′′(y) dy. Use integration by

parts twice and solve for g(0). Let g(y) = f (y + j), and then substitute x for y + j to
find an expression for f ( j). Sum this expression as j varies from 0 to n − 1, noting that
the terms involving f ′( j) and f ′( j + 1) telescope, while those involving f ( j + 1) are
absorbed into the sum. This yields (3), since B2({y}) = B2({x}). The interested reader
is invited to fill in the details.

The full Euler-Maclaurin formula with no remainder term (for infinitely differen-
tiable f ) is given in Concrete Mathematics [2, p. 471]:

m−1∑
j=0

f ( j) =
∫ m

0
f (x)dx +

∞∑
k=1

Bk

k!
(

f (k−1)(m)− f (k−1)(0)
)
. (4)

Unfortunately, the infinite sum on the right-hand side often diverges. This formula can
also be proved using integration by parts; Lampret, in fact, shows how to use parts to
prove Euler-Maclaurin for arbitrary orders [3].

On to the proof of (1): We can easily verify the inequality for small values of m. In
particular, for m = 1, we have 0 < 1 = 11, and for m = 2, we have 12 = 1 < 4 = 22.
For m ≥ 3, we turn to Euler-Maclaurin. Plugging f (x) = xm and n = m into (3) yields

m−1∑
j=1

jm =
∫ m

0
xmdx − 1

2
mm + 1

12
m mm−1 − 1

2!
∫ m

0
B2({x})m(m − 1)xm−2dx

= mm+1

m + 1
− 5

12
mm − 1

2

∫ m

0
B2({x})m(m − 1)xm−2dx . (5)

Now, let’s deal with the error term. Completing the square on the parabola B2(x)

gives us B2(x) = (x − 1/2)2 − 1/12. This tells us that the minimum value of B2(x)

on [0, 1] is −1/12, occurring at x = 1/2, and the maximum value on [0, 1] is 1/6, oc-
curring at the two endpoints x = 0 and x = 1. Since B2({x}) is the periodic extension
of B2(x) from [0, 1] to the real number line, the minimum and maximum values of
B2({x}) over the real numbers are −1/12 and 1/6, respectively (which, incidentally,
occur infinitely often). This tells us that −1/2B2({x}) ≤ (−1/2)(−1/12) = 1/24.
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Therefore,

−1

2

∫ m

0
B2({x})m(m − 1)xm−2dx ≤ 1

24

∫ m

0
m(m − 1)xm−2dx

= m

24
mm−1 = 1

24
mm .

Plugging back into (5) produces

m−1∑
j=1

jm ≤ mm+1

m + 1
− 5

12
mm + 1

24
mm

< mm − 3

8
mm = 5

8
mm .

This establishes the inequality (1), namely 1m + 2m + · · · + (m − 1)m < mm, for all
positive integers m, via the second-order Euler-Maclaurin formula with remainder.

We now move on to our main question—determining the limiting expression for(
1

m

)m

+
(

2

m

)m

+ · · · +
(

m − 1

m

)m

.

From our proof of (1), we know that the limit must be less than 5/8. To find the exact
value we use the full Euler-Maclaurin formula (4). For fixed m and f (x) = xm , we
have

m−1∑
j=1

(
j

m

)m

= 1

mm

m−1∑
j=0

jm

= 1

mm

∫ m

0
xmdx + 1

mm

∞∑
k=1

Bk

k!
(

f (k−1)(m)− f (k−1)(0)
)

= m

m + 1
+ 1

mm

∞∑
k=1

Bk

k! ( f (k−1)(m)− f (k−1)(0)).

Since f (k−1)(m)− f (k−1)(0) is nonzero only for k ≤ m, this yields

m−1∑
j=1

(
j

m

)m

= m

m + 1
+ 1

mm

m∑
k=1

Bk

k! f (k−1)(m)

= m

m + 1
+ 1

mm

m∑
k=1

[
Bk

k! m
m−k+1

(
m(m − 1) · · · (m − k + 2)

)]

= m

m + 1
+

m∑
k=1

[
Bk

k! m
1−k(m(m − 1) · · · (m − k + 2))

]
.

There are exactly k − 1 factors in the expression m(m − 1) · · · (m − k + 2). Thus the
resulting polynomial is mk−1 plus a polynomial of degree k − 2. For our purposes,
all that matters of the latter polynomial is its degree. We can therefore use “big-O”
notation to express m(m − 1) · · · (m − k + 2) as mk−1 + O(mk−2). Here, O(mk−2)

effectively means that the expression added to mk−1 is of order no larger than that of
mk−2. (For a more precise definition and a discussion of big-O notation, see Concrete
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Mathematics [2, p. 471].) Multiplying through by m1−k then yields the expression
1+ O(1/m). Substituting back in, we have

m−1∑
j=1

(
j

m

)m

= m

m + 1
+

m∑
k=1

Bk

k!
[

1+ O

(
1

m

)]
.

Now we take the limit to get

lim
m→∞

m−1∑
j=1

(
j

m

)m

= lim
m→∞

{
m

m + 1
+

m∑
k=1

Bk

k!
[

1+ O

(
1

m

)]}

= 1+
∞∑

k=1

Bk

k! + lim
m→∞

{
O

(
1

m

) m∑
k=1

Bk

k!

}
.

The crucial question for both the second and third terms is the convergence of∑∞
k=0 Bk/k!. Fortunately, the infinite sum is a special case of the exponential gen-

erating function for the Bernoulli numbers,

∞∑
k=0

Bk
xk

k! =
x

ex − 1
,

valid for |x | < 2π [5, p.147]. Therefore,
∑m

k=1 Bk/k! is bounded by a constant, yield-
ing

lim
m→∞

{
O

(
1

m

) m∑
k=1

Bk

k!

}
= 0.

Since B0 = 1, we have

lim
m→∞

m−1∑
j=1

(
j

m

)m

=
∞∑

k=0

Bk

k! ,

which gives us the simple limiting expression

lim
m→∞

[(
1

m

)m

+
(

2

m

)m

+ · · · +
(

m − 1

m

)m]
= 1

e − 1
.

Thus, in the limit, the sum 1m + 2m + · · · + (m − 1)m will represent (e − 1)−1 (ap-
proximately 0.582) of mm .

The interested reader may enjoy showing that the left-hand side of (2) actually
increases to 1/(e − 1). In addition, the excellent text Concrete Mathematics contains
numerous further examples of the use of the Euler-Maclaurin summation formula [2,
pp. 469–489].
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Proof Without Words:
Inclusion-Exclusion for Triangular Numbers

THEOREM. Let tk = 1 + 2 + · · · + k, t0 = 0. If 0 ≤ a, b, c ≤ n and 2n ≤ a +
b + c, then

ta + tb + tc − ta+b−n − tb+c−n − tc+a−n + ta+b+c−2n = tn

Proof.

 c

 a

 b

 n

NOTES:

1. If 0 ≤ a, b, c ≤ n, 2n > a + b + c, but n ≤ min(a + b, b + c, c + a), then the
identity is ta + tb + tc − ta+b−n − tb+c−n − tc+a−n + t2n−a−b−c−1 = tn , with a similar
proof.

2. The following special cases are of interest:
(a) If (n; a, b, c) = (2k − j; k, k, k), then 3(tk − t j ) = t2k− j − t2 j−k;
(b) If (n; a, b, c) = (a + b + c; 2a, 2b, 2c), then t2a + t2b + t2c = ta+b+c +

ta+b−c + ta−b+c + t−a+b+c;
(c) If (n; a, b, c) = (3k; 2k, 2k, 2k), then 3(t2k − tk) = t3k .

Illustrations for all of these cases can be found at the MAGAZINE website.
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